## Supporting Information For: Modular Synthesis of Cyclic β-Difluoroamines

Natalie G. Charlesworth,<sup>1</sup> Dhanarajan Arunprasath,<sup>1</sup> Mark A. Graham,<sup>2</sup> Stephen P. Argent<sup>1</sup> Oleksandr P. Datsenko,<sup>3</sup> Pavel K. Mykhailiuk,<sup>3,4</sup> and Ross M. Denton<sup>1\*</sup>

<sup>1</sup>School of Chemistry, GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham, NG7 2GA, UK. <sup>2</sup>Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK. Correspondence and requests for materials should be addressed to R.M.D (email: ross.denton@nottingham.ac.uk). <sup>3</sup> Enamine Ltd; Winston Churchill Str. 78, 02094 Kyiv, Ukraine. <sup>4</sup>Chemistry Department, Taras Shevchenko National University of Kyiv. Volodymyrska 64, 01601 Kyiv, Ukraine.

# Table of Contents

| 1 | General                                                                    | Experimental                                                            | 2  |  |  |  |  |
|---|----------------------------------------------------------------------------|-------------------------------------------------------------------------|----|--|--|--|--|
|   | 1.1                                                                        | Reagents and solvents                                                   | 2  |  |  |  |  |
|   | 1.2                                                                        | Analysis and characterisation                                           | 2  |  |  |  |  |
| 2 | Reac                                                                       | tion Optimisation                                                       | 3  |  |  |  |  |
|   | Supplei                                                                    | mentary Table 1. Optimisation of alkynyl amine cyclisation              | 3  |  |  |  |  |
|   | Supplei                                                                    | mentary Table 2. Optimisation of alkenyl amine cyclisation              | 5  |  |  |  |  |
| 3 | Expe                                                                       | rimental Procedures and Characterisation of Compounds                   | 6  |  |  |  |  |
|   | 3.1                                                                        | General procedures                                                      | 6  |  |  |  |  |
|   | 3.2                                                                        | Graphical guide for the photoredox radical cyclisation reaction         | 7  |  |  |  |  |
|   | Supp                                                                       | lementary Figure 1. Photoredox Batch Set up                             | 7  |  |  |  |  |
|   | Supp                                                                       | lementary Figure 2. Reaction Set up                                     | 7  |  |  |  |  |
|   | Supp                                                                       | lementary Figure 3. Work-up procedure for cyclisation of alkenyl amines | 8  |  |  |  |  |
|   | Supp                                                                       | lementary Figure 4. Reaction Analysis                                   | 8  |  |  |  |  |
|   | 3.3                                                                        | Frequently asked questions                                              | 9  |  |  |  |  |
|   | 3.4                                                                        | Synthesis of tertiary amine starting materials                          | 10 |  |  |  |  |
|   | 3.5                                                                        | Cyclised alkenyl amines                                                 | 24 |  |  |  |  |
|   | 3.6                                                                        | Cyclised alkynyl amines                                                 | 29 |  |  |  |  |
|   | 3.7                                                                        | Derivatisations                                                         | 35 |  |  |  |  |
|   | 3.8                                                                        | Synthesis of photocatalysts                                             | 35 |  |  |  |  |
|   | 3.9                                                                        | Multi-mmol batch synthesis and PMB group deprotection                   | 37 |  |  |  |  |
|   | Supplementary Figure 5. 2 mmol reaction scale followed by PMB deprotection |                                                                         |    |  |  |  |  |
|   | Supplei                                                                    | mentary Figure 6. Photoredox Set-up for 2 mmol reaction                 | 37 |  |  |  |  |
|   | Supplei                                                                    | mentary Figure 7. Photoredox Set-up for flow chemistry                  | 37 |  |  |  |  |
| 4 | Mec                                                                        | nanistic studies                                                        | 51 |  |  |  |  |
|   | Supplementary Table 4. Deuterium-labelling studies                         |                                                                         |    |  |  |  |  |
|   | Supplementary Table 5. Control experiments 1                               |                                                                         |    |  |  |  |  |
|   | Supplei                                                                    | mentary Table 6. Control experiments 2                                  | 52 |  |  |  |  |

| 5 | Computational Investigations | 53  |
|---|------------------------------|-----|
| 6 | Unsuccessful Examples        | 59  |
| 7 | NMR spectra                  | 60  |
| 8 | X-ray crystallography        | 145 |
|   | Supplementary Table 7        | 145 |
| 9 | References                   | 147 |

# 1 General Experimental

## 1.1 Reagents and solvents

Reagents were purchased from commercial suppliers and used directly without further purification. Unless indicated, technical grade solvents were purchased from commercial suppliers and used without further purification, except THF which was pre-dried over sodium wire and obtained from a solvent tower, where degassed solvent was passed through two columns of activated alumina and 7-micron filter under a 4-bar pressure. Petrol refers to the fraction of petroleum ether boiling between 40–60 °C. All water was deionised before use and all reactions are conducted under an Ar atmosphere unless otherwise stated.

## 1.2 Analysis and characterisation

Analytical Thin Layer Chromatography (TLC) was performed on Merck aluminium-backed silica-gel plates 60 F254 plates and visualized by ultraviolet (UV) irradiation (254 nm) or by staining with a solution of potassium permanganate. Column chromatography was carried out using Fluorochem silica gel 60 Å (40-63 mesh). Melting points were calculated using a Stuart SMP3 and Fourier Transform Infrared Spectrometry (IR) was carried out using a Bruker Tensor 27 using an Attenuated Total Reflection (ATR) attachment and peaks are reported in terms of frequency of absorption (cm<sup>-1</sup>). High Resolution Mass Spectrometry (HRMS) were measured on a Bruker microTOF II with Electron Spray Ionisation (ESI). <sup>1</sup>H NMR spectra were recorded on either a Bruker AV 400, AV(III) 400HD or AV(III) 500HD in CDCl<sub>3</sub>, DMSO or MeOH-d<sub>4</sub>. <sup>1</sup>H NMR chemical shifts  $(\delta)$  were reported in parts per million (ppm) and coupling constants (J) are given in Hertz (Hz), with residual protic solvent as the internal reference (CDCl<sub>3</sub>  $\delta$  = 7.26 ppm, DMSO  $\delta$  = 2.50 ppm, MeOH-d<sub>4</sub>  $\delta$  = 3.31 ppm). The proton spectra are reported as follows:  $\delta$  (multiplicity, coupling constant J, number of protons). Abbreviations used include s – singlet, d – doublet, t – triplet, q – quartet, sept – septet, m – multiplet, br – broad, app. – apparent. <sup>13</sup>C NMR were recorded on a 400 MHz spectrometer, chemical shifts ( $\delta$ ) were reported in ppm relative to the <sup>13</sup>C signals in the solvent (central peak of CDCl<sub>3</sub>  $\delta$  = 77.16 ppm, DMSO  $\delta$  = 39.52 ppm, MeOH-d<sub>4</sub>  $\delta$  = 49.03 ppm) and coupling constants (J) are given in Hertz (Hz). All <sup>13</sup>C NMR are reported as proton decoupled spectra. <sup>19</sup>F NMR were recorded on a 376 MHz spectrometer, chemical shifts ( $\delta$ ) were reported in ppm relative to CFCl<sub>3</sub> at 0.00 ppm and are reported as proton decoupled spectra. Where appropriate, COSY, HMQC and HMBC experiments were performed to aid assignment. All photoredox reactions were conducted in borosilicate glass disposable culture tubes (approximate wall thickness 0.6 mm), or in a 250 mL borosilicate glass measuring cylinder.

# 2 Reaction Optimisation

Supplementary Table 1. Optimisation of alkynyl amine cyclisation



To a 10 mL culture tube was added *N*-(2-bromo-2,2-difluoroethyl)-*N*-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **3** (0.05 mmol), photocatalyst (as table), base (as table), H-source additive (as table) and solvent (as table). The culture tube was sealed and the mixture was sparged with Ar for 15 minutes. The blue LEDs were switched on and the reaction was stirred at room temperature for 16 hours. 1,3-Benzodioxole (1 equiv.) was added, and the mixture was stirred at room temperature for 5 minutes, then analysed by NMR.

| entry | catalyst (mol%) | base                           | base equiv. | H-source          | H-source<br>equiv. | solvent          | conc/ M | product<br>yield /% | starting<br>material<br>yield /% |
|-------|-----------------|--------------------------------|-------------|-------------------|--------------------|------------------|---------|---------------------|----------------------------------|
| 1     | Ir(ppy)₃ (1)    | DIPEA                          | 10          | none              | -                  | MeCN             | 0.01    | 44                  | 0                                |
| 2     | Ir(ppy)₃ (1)    | Et₃N                           | 10          | none              | -                  | MeCN             | 0.01    | 56                  | 0                                |
| 3     | Ir(ppy)₃ (1)    | Bu₃N                           | 10          | none              | -                  | MeCN             | 0.01    | 25                  | 0                                |
| 4     | lr(ppy)₃ (1)    | DMAP                           | 10          | none              | -                  | MeCN             | 0.01    | 0                   | 100                              |
| 5     | lr(ppy)₃ (1)    | K <sub>2</sub> CO <sub>3</sub> | 10          | none              | -                  | MeCN             | 0.01    | 0                   | 100                              |
| 6     | lr(ppy)₃ (1)    | K₃PO₄                          | 10          | none              | -                  | MeCN             | 0.01    | 0                   | 100                              |
| 7     | lr(ppy)₃ (1)    | Et₃N                           | 1.5         | none              | -                  | MeCN             | 0.01    | 0                   | 70                               |
| 8     | Ir(ppy)₃ (1)    | Et₃N                           | 3           | none              | -                  | MeCN             | 0.01    | 0                   | 33                               |
| 9     | lr(ppy)₃ (1)    | Et₃N                           | 5           | none              | -                  | MeCN             | 0.01    | 34                  | 17                               |
| 10    | lr(ppy)₃ (1)    | Et₃N                           | 10          | none              | -                  | MeCN:MeOH<br>1:1 | 0.01    | 18                  | 0                                |
| 11    | lr(ppy)₃ (1)    | Et₃N                           | 10          | none              | -                  | toluene          | 0.01    | 8                   | 100                              |
| 12    | lr(ppy)₃ (1)    | Et₃N                           | 10          | none              | -                  | THF              | 0.01    | 22                  | _a                               |
| 13    | lr(ppy)₃ (1)    | Et₃N                           | 10          | Hantzsch<br>ester | 1.5                | MeCN             | 0.01    | 7                   | 0                                |
| 14    | lr(ppy)₃ (1)    | Et₃N                           | 10          | нсоон             | 1.5                | MeCN             | 0.01    | 71                  | 0                                |
| 15    | lr(ppy)₃ (1)    | Et₃N                           | 10          | TTMSS             | 1.5                | MeCN             | 0.01    | 12                  | 0                                |
| 16    | lr(ppy)₃ (1)    | Et₃N                           | 5           | Hantzsch<br>ester | 1.5                | MeCN             | 0.01    | 60                  | 0                                |
| 17    | lr(ppy)₃ (1)    | Et₃N                           | 5           | НСООН             | 1.5                | MeCN             | 0.01    | 71                  | 8                                |
| 18    | lr(ppy)₃ (1)    | Et₃N                           | 5           | TTMSS             | 1.5                | MeCN             | 0.01    | 45                  | 0                                |
| 19    | Ir(ppy)₃ (1)    | Et₃N                           | 10          | НСООН             | 3                  | MeCN             | 0.01    | 72                  | 0                                |
| 20    | Ir(ppy)₃ (1)    | Et₃N                           | 10          | НСООН             | 5                  | MeCN             | 0.01    | 77                  | 0                                |
| 21    | lr(ppy)₃ (1)    | Et₃N                           | 10          | НСООН             | 10                 | MeCN             | 0.01    | 5                   | 93                               |
| 22    | lr(ppy)₃ (1)    | none                           | -           | НСООН             | 1.5                | MeCN             | 0.01    | 0                   | 93                               |
| 23    | lr(ppy)₃ (1)    | Et₃N                           | 5           | НСООН             | 3                  | MeCN             | 0.01    | 60                  | 0                                |
| 24    | lr(ppy)₃ (1)    | Et₃N                           | 5           | НСООН             | 5                  | MeCN             | 0.01    | 5                   | 62                               |

| entry | catalyst (mol%)                                                        | base | base equiv. | H-source                           | H-source<br>equiv. | solvent | conc/ M | product<br>yield /% | starting<br>material<br>yield /% |
|-------|------------------------------------------------------------------------|------|-------------|------------------------------------|--------------------|---------|---------|---------------------|----------------------------------|
| 25    | lr(ppy)₃ (1)                                                           | Et₃N | 5           | TRIP thiol                         | 1.5                | MeCN    | 0.01    | 0                   | 56                               |
| 26    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | НСООН                              | 7                  | MeCN    | 0.01    | 38                  | 0                                |
| 27    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | НСООН                              | 6                  | MeCN    | 0.01    | 48                  | 0                                |
| 28    | lr(ppy)₃ (1)                                                           | Et₃N | 5           | Et₃N.HI salt                       | 5                  | MeCN    | 0.01    | 20                  | 92                               |
| 29    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 88                  | 4                                |
| 30    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | C <sub>6</sub> H <sub>5</sub> COOH | 5                  | MeCN    | 0.01    | 0                   | 100                              |
| 31    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | NaOAc                              | 5                  | MeCN    | 0.01    | 70                  | 0                                |
| 32    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | CF₃COOH                            | 5                  | MeCN    | 0.01    | 51                  | 0                                |
| 33    | lr(ppy)₃ (1)                                                           | Et₃N | 15          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 0                   | 100                              |
| 34    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | CH₃COOH                            | 4                  | MeCN    | 0.01    | 16                  | 83                               |
| 35    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.1     | 26                  | 60                               |
| 36    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.0075  | 26                  | 56                               |
| 37    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.005   | 90                  | 0                                |
| 38    | lr(ppy)₃ (1)                                                           | Et₃N | 10          | malonic acid                       | 2.5                | MeCN    | 0.01    | 22                  | 58                               |
| 39    | Eosin Y (1)                                                            | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 13                  | 83                               |
| 40    | Eosin Y (5)                                                            | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 25                  | 58                               |
| 41    | 4CzIPN (1)                                                             | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 29                  | 63                               |
| 42    | 4CzIPN (5)                                                             | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 75                  | 3                                |
| 43    | lr(ppy)₃ (0.5)                                                         | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 69                  | 0                                |
| 44    | lr(ppy)₃ (3)                                                           | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 46                  | 0                                |
| 45    | [Ir(dtbbpy)(ppy) <sub>2</sub> ]PF <sub>6</sub><br>(1)<br>9-Mesityl-10- | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 54                  | 0                                |
| 46    | methylacridinium<br>tetrafluoroborate (5)                              | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 5                   | 95                               |
| 47    | Cu(dap) <sub>2</sub> chloride (1)                                      | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 0                   | 97                               |
| 48    | Ru(bpy) <sub>3</sub> Cl <sub>2</sub> (1)                               | Et₃N | 10          | CH₃COOH                            | 5                  | MeCN    | 0.01    | 7                   | 92                               |

<sup>a</sup>unable to integrate product signals

## Supplementary Table 2. Optimisation of alkenyl amine cyclisation



To a 10 mL culture tube was added *N*-(2-bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-en-1-amine **5** (0.05 mmol), photocatalyst (as table), base (as table), H-source additive (as table) and acetonitrile (100 mL/mmol). The culture tube was sealed and the mixture was sparged with Ar for 15 minutes. The blue LEDs were switched on and the reaction was stirred at room temperature for 16 hours. Trifluorotoluene (1 equiv.) was added and the mixture was stirred at room temperature for 5 minutes, then analysed by NMR.

| entry | catalyst (mol%) | base  | base equiv. | H-source                | H-source<br>equiv. | product yield<br>/% | starting material<br>yield /% |
|-------|-----------------|-------|-------------|-------------------------|--------------------|---------------------|-------------------------------|
| 1     | Ir(ppy)₃ (1)    | DIPEA | 10          | none                    | -                  | 44                  | 0                             |
| 2     | Ir(ppy)₃ (1)    | Et₃N  | 10          | none                    | -                  | 38                  | 0                             |
| 3     | Ir(ppy)₃ (1)    | Et₃N  | 10          | AcOH                    | 5                  | 10                  | 51                            |
| 4     | Ir(ppy)₃ (1)    | DIPEA | 10          | НСООН                   | 5                  | 49                  | 13                            |
| 5     | Ir(ppy)₃ (1)    | DIPEA | 10          | TTMSS                   | 5                  | 97                  | 0                             |
| 6     | 4CzIPN (5)      | DIPEA | 10          | none                    | -                  | 48                  | 0                             |
| 7     | lr(ppy)₃ (1)    | DIPEA | 5           | TTMSS                   | 5                  | 95                  | 0                             |
| 8     | Ir(ppy)₃ (1)    | DIPEA | 10          | TTMSS                   | 10                 | 94                  | 0                             |
| 9     | Ir(ppy)₃ (1)    | DMAP  | 10          | TTMSS                   | 10                 | 93                  | 0                             |
| 10    | Ir(ppy)₃ (5)    | DIPEA | 10          | none                    | -                  | 55                  | 0                             |
| 11    | lr(ppy)₃ (1)    | none  | -           | TTMSS                   | 5                  | 0                   | 0                             |
| 12    | lr(ppy)₃ (1)    | DIPEA | 5           | TTMSS                   | 2                  | 85                  | 0                             |
| 13    | Ir(ppy)₃ (1)    | DIPEA | 2           | TTMSS                   | 2                  | 53                  | 0                             |
| 14    | lr(ppy)₃ (1)    | DIPEA | 10          | TTMSS                   | 2                  | 73                  | 0                             |
| 15    | lr(ppy)₃ (1)    | DIPEA | 5           | TTMSS                   | 1                  | 37                  | 0                             |
| 16    | Ir(ppy)₃ (1)    | DIPEA | 20          | TTMSS                   | 2                  | 93                  | 0                             |
| 17    | Ir(ppy)₃ (1)    | DIPEA | 10          | triethylsilane          | 5                  | 21                  | 14                            |
| 18    | lr(ppy)₃ (1)    | DIPEA | 10          | triethoxysilane         | 5                  | 35                  | 9                             |
| 19    | lr(ppy)₃ (1)    | DIPEA | 10          | triisopropylsilanethiol | 5                  | 77                  | 0                             |
| 20    | 4CzIPN (5)      | DIPEA | 10          | TTMSS                   | 5                  | 97                  | 0                             |
| 21    | 4CzIPN (5)      | DBU   | 10          | TTMSS                   | 5                  | 86                  | 0                             |
| 22    | 4CzIPN (5)      | DABCO | 10          | TTMSS                   | 5                  | 97                  | 0                             |

# 3 Experimental Procedures and Characterisation of Compounds

## 3.1 General procedures

## 1. Amidation reaction using ethyl bromodifluoroacetate

To ethyl bromodifluoroacetate (1.1 equiv.) at 0°C was added the appropriate amine (1 equiv.) dropwise over 10 minutes. The flask was purged with Ar and stirred at room temperature for 16 hours. To the reaction mixture was added ethyl acetate (20 mL/g), water (10 mL/g), HCl (5 mL/g of a 1 M aq. solution), NaHCO<sub>3</sub> (5 mL/g of a sat. aq. solution) and brine (5 mL/g of a sat. aq. solution) and the mixture was extracted with ethyl acetate (3 × 20 mL/g). The combined organics were dried over magnesium sulfate and concentrated to give a residue which was used in the next step without further purification.

## 2. Two-Component Bromodifluoroalkylation Reaction

To an oven-dried flask fitted with a water condenser under an argon atmosphere was added the appropriate secondary amine (1 equiv.), and THF (0.5 mL/mmol). PhSiH<sub>3</sub> (3 equiv.) and bromodifluoroacetic acid (2 equiv.) in THF (0.5 mL/mmol) were added at 70 °C and the reaction mixture was heated at 70 °C until TLC analysis indicated complete secondary amine consumption. The reaction mixture was cooled to room temperature and NaHCO<sub>3</sub> (10 mL/g of a sat. aq. solution) was added. The mixture was extracted with diethyl ether ( $3 \times 10$  mL/g). The combined organics were dried (MgSO<sub>4</sub>) and concentrated to ~2 mL volume, then purified as specified.

## 3. Three-Component Bromodifluoroalkylation Reaction

To an oven-dried flask fitted with a water condenser under an argon atmosphere was added the appropriate primary amine (1 equiv.), aldehyde (1 equiv.) and THF (0.5 mL/mmol), followed by PhSiH<sub>3</sub> (0.5 equiv.). The reaction was stirred at 70 °C for 10 minutes. Further PhSiH<sub>3</sub> (3 equiv.) and bromodifluoroacetic acid (2 equiv.) in THF (0.5 mL/mmol) were added and the reaction mixture was heated at 70 °C until TLC analysis indicated complete consumption. The reaction mixture was cooled to room temperature and NaHCO<sub>3</sub> (10 mL/g of a sat. aq. solution) was added. The mixture was extracted with diethyl ether ( $3 \times 10 \text{ mL/g}$ ). The combined organics were dried (MgSO<sub>4</sub>) and concentrated to ~2 mL volume, then purified as specified.

#### 4. Photoredox Radical Cyclisation Reaction of Alkynyl Amines

To a culture tube was added the appropriate amine (1 equiv.),  $Ir(ppy)_3$  (1 mol%),  $Et_3N$  (10 equiv.), AcOH (5 equiv.) and acetonitrile (100 mL/mmol). The culture tube was sealed and the mixture was sparged with Ar for 20 minutes. The blue LEDs were switched on and the reaction was stirred at room temperature until complete amine consumption, and then concentrated. The crude material was purified as specified.

#### 5. Photoredox Radical Cyclisation Reaction of Alkenyl Amines

To a culture tube was added the appropriate amine (1 equiv.),  $Ir(ppy)_3$  (1 mol%), DIPEA (10 equiv.), TTMSS (5 equiv.) and acetonitrile (100 mL/mmol). The culture tube was sealed and the mixture was sparged with Ar for 20 minutes. The blue LEDs were switched on and the reaction was stirred at room temperature until complete amine consumption. KF on alumina (40 wt%, 6 g/mmol) was added and the mixture was stirred at room temperature for 15 minutes, then filtered and concentrated. The crude material was purified as specified.

3.2 Graphical guide for the photoredox radical cyclisation reaction

Supplementary Figure 1. Photoredox Batch Set up



a) Component parts for the photoredox set-up. b) Reel of LEDs. c) Close-up of LED dish showing the reel of LEDs wrapped inside a crystallising dish in rows and foil on the base.

Supplementary Figure 2. Reaction Set up



a) Choice of culture tube size depending on reaction scale. b) Culture tube with magnetic stirrer bar and amine/amide starting material. c) Addition of catalyst stock solution. d) Addition of tertiary amine base. e) Addition of hydrogen-donor (not required for cyclisation of amides). f) Addition of solvent. g) Culture tube sealed, placed inside LED dish, then sparged with Ar. h) Exit needle removed and LEDs turned on to initiate the reaction.

Supplementary Figure 3. Work-up procedure for cyclisation of alkenyl amines



a) Addition of KF on alumina (40 wt%) to reaction mixture. b) Mixture stirred vigorously for 15 minutes. c) Mixture filtered through a short pad of silica. d) KF on alumina, excess TTMSS and photocatalyst do not pass into the flask below.

Supplementary Figure 4. Reaction Analysis

![](_page_7_Figure_4.jpeg)

a) TLC of reaction mixture (UV light, left to right – amine starting material, co-spot and reaction mixture). b) TLC of reaction mixture (KMnO<sub>4</sub>, left to right – amine starting material, co-spot and reaction mixture).

## How easy is it to replicate the photoredox irradiation set-up?

Very simply. Blue LEDs can be found on many online retailers and often come with the power supply. Most labs will also have access to crystallising dishes of varying size. As can be seen in Section 0, LEDs are wrapped around the inside of a crystallising dish numerous times. The end of the LED reel is pre-attached to a female-connector (although this could also be done manually if required).

#### Does the reaction have to be run under strict anhydrous and inert conditions?

The reaction is not run under anhydrous conditions, but dissolved gases are removed from the reaction mixture *via* sparging and the reaction is conducted under an argon atmosphere. Control experiments (see section 0) were conducted to observe the importance of each of these factors.

## Why is KF on alumina added after cyclisation of alkenyl amines?

Cyclisation of alkenyl amines required addition of TTMSS as a H-source. KF on alumina scavenges the excess silane as otherwise it causes difficulty in purification of the desired product.

## Does reaction continue if the lights are turned off?

No, the reaction only proceeds when the mixture is irradiated.

## Is the glassware used in the reaction important?

We have used borosilicate glass disposable culture tubes (approximate wall thickness 0.6 mm) or a 250 mL borosilicate glass measuring cylinder (see Section 3.2). The key is the capability for light penetration through the glass into the reaction mixture in order to excite the photocatalyst. Thin-walled glass such as that found in culture tubes is therefore ideal. The vessel chosen also needs to be placed under inert atmosphere, so this also needs to be considered.

#### What is the largest scale possible?

In batch, this is dependent on the largest size of culture tube available but also on the dimensions of the LED set-up. Maximising surface area of irradiation is an important factor. Our system has been scaled-up to 2 mmol using a measuring cylinder (see section 3.2), with a continuous flow of nitrogen and LEDs wrapped around the glassware itself. This system could easily be replicated for larger glassware as desired. A flow system would allow further scale-up of the reaction and full details of this will be reported in due course.

## 3.4 Synthesis of tertiary amine starting materials

## N-(2-Bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)prop-2-en-1-amine 5

![](_page_9_Figure_2.jpeg)

Allylamine (75.0  $\mu$ L, 1.00 mmol) and *p*-anisaldehyde (122  $\mu$ L, 1.00 mmol) were subjected to General Procedure 3, stirring for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-5% diethyl ether in petroleum ether) to give **5** (165 mg, 517  $\mu$ mol, 52% yield) as a colourless oil.

**R**<sub>f</sub> (98:2 petroleum ether: ethyl acetate) = 0.26; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3076, 3002, 2935, 2909, 2835, 1612, 1510; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.28 – 7.23 (m, 2H, Ar*H*), 6.89 – 6.85 (m, 2H, Ar*H*), 5.84 (ddt, *J* = 17.7, 9.7, 6.5 Hz, 1H, *H*C=CH<sub>2</sub>), 5.21 – 5.19 (m, 1H, HC=CH<sub>2</sub>), 5.19 – 5.16 (m, 1H, HC=CH<sub>2</sub>), 3.81 (s, 3H, OCH<sub>3</sub>), 3.79 (s, 2H, NCH<sub>2</sub>Ar), 3.32 (t, *J* = 13.4 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 3.26 (d, *J* = 6.5 Hz, 2H, NCH<sub>2</sub>CH); **δ**<sub>C</sub> (126 MHz, CDCl<sub>3</sub>) 159.0 (Ar*C*(OCH<sub>3</sub>)), 134.9 (H*C*=CH<sub>2</sub>), 130.5 (Ar*C*q), 130.2 (Ar*C*H), 124.2 (t, *J* = 310.3 Hz, *C*F<sub>2</sub>Br), 118.6 (HC=CH<sub>2</sub>), 113.9 (Ar*C*H), 62.0 (t, *J* = 22.0 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 58.0 (NCH<sub>2</sub>Ar), 56.7 (NCH<sub>2</sub>CH), 55.4 (OCH<sub>3</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) – 49.55; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>16</sub><sup>79</sup>BrF<sub>2</sub>NO 320.0456; found 320.0457 (+0.40 ppm).

#### Methyl 4-((allyl(2-bromo-2,2-difluoroethyl)amino)methyl)benzoate 34

![](_page_9_Figure_6.jpeg)

Allylamine (748.0  $\mu$ L, 10.0 mmol) and methyl-4-formylbenzoate (1.64 g, 10.0 mmol) were subjected to General Procedure 3, stirring for 17 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 24:1 pentane in diethyl ether) to give **34** (1.98 g, 5.69 mmol, 57% yield) as a colourless oil.

**R**<sub>f</sub> (9:1 pentane: diethyl ether) = 0.35; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3005, 2981, 2951, 1719, 1611, 1434, 1274, 1190, 1100, 922, 756; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 8.03 – 7.97 (m, 2H, Ar*H*), 7.45 – 7.40 (m, 2H, Ar*H*), 5.84 (ddt, *J* = 16.9, 10.3, 6.5 Hz, 1H, *H*C=CH<sub>2</sub>), 5.23 – 5.14 (m, 2H, HC=CH<sub>2</sub>), 3.93 – 3.89 (m, 5H, OCH<sub>3</sub> and NCH<sub>2</sub>Ar), 3.36 (t, *J* = 13.3 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 3.26 (dt, *J* = 6.5, 1.3 Hz, 2H, NCH<sub>2</sub>CH); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 167.1 (Ar*C*(O)OCH<sub>3</sub>)), 144.1 (Ar*C*q), 134.4 (H*C*=CH<sub>2</sub>), 129.9 (Ar*C*H), 129.4 (Ar*C*q), 128.7 (Ar*C*H), 123.8 (t, *J* = 310.0 Hz, *C*F<sub>2</sub>Br), 119.0 (HC=CH<sub>2</sub>), 62.4 (t, *J* = 22.2 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 58.4 (ArC(O)OCH<sub>3</sub>), 57.0 (NCH<sub>2</sub>Ar), 52.2 (NCH<sub>2</sub>CH); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –49.91; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>17</sub><sup>79</sup>BrF<sub>2</sub>NO<sub>2</sub> 348.0405; found 348.0407 (+0.50 ppm).

#### N-(2-Bromo-2,2-difluoroethyl)-N-(cyclohexylmethyl)prop-2-en-1-amine 35

![](_page_9_Figure_10.jpeg)

Allylamine (748 mg, 10.0 mmol) and bromodifluoroacetic acid (3.5 g, 20.0 mmol) were subjected to General Procedure 3, stirring for 17 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with pentane) to give **35** (1.09 g, 3.68 mmol, 37% yield) as a colourless oil.

**R**<sub>f</sub> (99:1 pentane: diethyl ether) = 0.43; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2922, 2850, 2823, 1449, 1282, 1079, 1013, 919, 775; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 5.82 (ddt, *J* = 16.8, 10.2, 6.5 Hz, 1H, *H*C=CH<sub>2</sub>), 5.21 – 5.12 (m, 2H, HC=CH<sub>2</sub>), 3.31 – 3.22 (m, 4H, NCH<sub>2</sub>CH & NCH<sub>2</sub>CF<sub>2</sub>Br), 2.44 (d, *J* = 7.2 Hz, 2H, CH<sub>2</sub>Cy), 1.83 – 1.62 (m, 5H, Cy), 1.43 (ddt, *J* = 11.1, 7.4, 3.7 Hz, 1H, Cy), 1.28 – 1.09 (m, 3H, Cy), 0.88 – 0.76 (m, 2H, Cy); **δ**<sub>C</sub> (126 MHz, CDCl<sub>3</sub>) 135.3 (HC=CH<sub>2</sub>), 124.3 (t, *J* = 310.5 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 117.9 (HC=CH<sub>2</sub>), 64.0 (t, *J* = 21.7 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 62.0 (NCH<sub>2</sub>CH=CH<sub>2</sub>), 58.1 (NCH<sub>2</sub>Cy), 36.5 (CH<sub>Cy</sub>), 31.5 (CH<sub>2</sub> – Cy), 27.0 (CH<sub>2</sub> – Cy), 26.2 (CH<sub>2</sub> – Cy); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.07; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>21</sub><sup>79</sup>BrF<sub>2</sub>N 296.0820; found 296.0811 (+2.90 ppm).

Methyl (E)-4-((2-bromo-2,2-difluoroethyl)(4-methoxybenzyl)amino)but-2-enoate 36

![](_page_10_Figure_2.jpeg)

To a stirred solution of *N*-(2-bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-en-1-amine (265 mg, 827  $\mu$ mol) and methyl acrylate (0.372 mL, 4.14 mmol) in DCM (1.6 mL) was added nitro-Grela (11.1 mg, 16.5  $\mu$ mol). The mixture was stirred at room temperature for 72 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-20% diethyl ether in pentane) to give **36** (166 mg, 438  $\mu$ mol, 53% yield) as a colourless oil.

**R**<sub>f</sub> (80:20 petroleum ether: diethyl ether) = 0.30; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3000, 2952, 2907, 2837, 1721; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.24 (d, *J* = 8.5 Hz, 2H, ArC*H*), 6.92 (dt, *J* = 15.8, 6.2 Hz, 1H, NH<sub>2</sub>CC(*H*)=CH), 6.87 (d, *J* = 8.5 Hz, 2H, ArC*H*), 6.00 (dt, *J* = 15.8, 1.5 Hz, 1H, H<sub>2</sub>CC(H)=C*H*), 3.81 (br s, 5H, NCH<sub>2</sub>Ar and ArC(OCH<sub>3</sub>)), 3.75 (s, 2H, OCH<sub>3</sub>, ester), 3.43 (d, *J* = 6.2 Hz, 2H, NCH<sub>2</sub>C(H)=CH), 3.34 (t, *J* = 13.3 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 166.6 (*C*=O), 159.2 (ArC(OCH<sub>3</sub>)), 145.0 (NCH<sub>2</sub>C(H)=CH), 130.1 (Ar*C*), 129.8 (ArCq), 123.7 (t, *J* = 310.0 Hz, CF<sub>2</sub>Br), 123.4 (HC=*C*(H)C=O), 114.0 (Ar*C*H), 62.6 (t, *J* = 22.4 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 58.2 (NCH<sub>2</sub>Ar), 55.4 (ArC(OCH<sub>3</sub>)), 54.4 (NCH<sub>2</sub>C(H)=CH), 51.8 (OCH<sub>3</sub>, ester); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –49.96; **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>18</sub><sup>79</sup>BrF<sub>2</sub>NO<sub>3</sub> 400.0330; found 400.0331 (+0.10 ppm).

## (E)-5-(Benzyl(2-bromo-2,2-difluoroethyl)amino)pent-3-en-2-one 37

![](_page_10_Figure_6.jpeg)

To a stirred solution of *N*-benzyl-N-(2,2-difluoroethyl)prop-2-en-1-amine (232 mg, 800  $\mu$ mol) and methyl vinyl ketone (0.330 mL, 4.00 mmol) in DCM (1.6 mL) was added nitro-Grela (10.7 mg, 16.0  $\mu$ mol). The mixture was stirred at 40 °C for 23 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10-20% diethyl ether in pentane) to give **37** (161 mg, 483  $\mu$ mol, 61% yield) as a colourless oil.

**R**<sub>f</sub> (90:10) petroleum ether: diethyl ether) = 0.13; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3087, 3063, 3030, 3006, 2924, 2834, 1698, 1675, 1631; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.39 – 7.31 (m, 4H, Ar*H*), 7.34 – 7.25 (m, 1H, Ar*H*), 6.71 (dt, *J* = 16.1, 6.1 Hz, 1H, *H*C=CHC(O)CH<sub>3</sub>), 6.18 (d, *J* = 16.1 Hz, 1H, HC=CHC(O)CH<sub>3</sub>), 3.90 (s, 2H, NCH<sub>2</sub>Ar), 3.47 (d, *J* = 6.1 Hz, 1H, NCH<sub>2</sub>C(H)=C), 3.38 (t, *J* = 13.2 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 2.24 (s, 3H, CH<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 198.3 (*C*=O), 143.9 (H*C*=CHC(O)CH<sub>3</sub>), 137.9 (Ar*C*q), 132.8 (HC=CHC(O)CH<sub>3</sub>), 128.9 (Ar*C*H), 128.6 (Ar*C*H), 127.7 (Ar*C*H), 123.5 (t, *J* = 309.8 Hz, *C*F<sub>2</sub>Br), 63.1 (t, *J* = 22.4 Hz, *C*H<sub>2</sub>CF<sub>2</sub>Br), 59.3 (NCH<sub>2</sub>Ar), 55.2 (NCH<sub>2</sub>C(H)=C), 27.1 (*C*H<sub>3</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –0.22; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>16</sub><sup>79</sup>BrF<sub>2</sub>NO 332.0456; found 332.0460 (+1.00 ppm).

## N-Benzyl-2-bromo-N-(cyclohex-1-en-1-ylmethyl)-2,2-difluoroethan-1-amine 38

![](_page_11_Picture_0.jpeg)

To a stirred solution of cyclohexene-1-carboxylic acid (1.00 g, 7.93 mmol) and benzylamine (577 μL, 5.28 mmol) in toluene (5.3 mL) at 110 °C was added phenylsilane (489 μL, 3.96 mmol). The reaction mixture was stirred at 110 °C for 16 hours, then Zn(OAc)<sub>2</sub> (969 μg, 528 μmol) and further phenylsilane (1.95 mL, 15.8 mmol) were added. The reaction mixture was stirred at 110 °C for 8 hours, then cooled to room temperature. Ethyl acetate (20 mL) was added and the mixture was extracted with HCl (3 × 10 mL of a 3 M aq. solution) The combined aqueous layers were basified until pH 12 with NaOH (6 M aq. solution). The mixture was extracted with dichloromethane (3 × 15 mL). The combined organics were dried over magnesium sulfate and concentrated. The resulting residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10% methanol in dichloromethane) to give a yellow oil which was dissolved in THF (0.9 mL) and heated to 70 °C. PhSiH<sub>3</sub> (655 μL, 5.31 mmol) was added, followed by bromodifluoroacetic acid (619 mg, 3.54 mmol) in THF (0.9 mL). The reaction mixture was stirred at 70 °C for 21 hours then cooled to room temperature. NaHCO<sub>3</sub> (20 mL of a sat. aq. solution) was added and the mixture was extracted with diethyl ether (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated to ~2 mL volume. The material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in petroleum ether). The mixed fractions were repurified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in pentane) to give **38** (314 mg, 912 µmol, 12% yield) as a colourless oil.

**R**<sub>f</sub> (pentane) = 0.53; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3087, 3064, 3028, 2998, 2926, 2856, 2808, 1668, 1603; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.38 – 7.26 (m, 5H, Ar*H*), 5.60 (app s, 1H, C*H*, alkene), 3.79 (s, 2H, NC*H*<sub>2</sub>), 3.30 (t, *J* = 13.7 Hz, 2H, NC*H*<sub>2</sub>CF<sub>2</sub>Br), 3.09 (s, 2H, NC*H*<sub>2</sub>), 2.06 – 1.93 (m, 4H, C*H*<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>C*H*<sub>2</sub>), 1.67 – 1.49 (m, 4H, CH<sub>2</sub>C*H*<sub>2</sub>C*H*<sub>2</sub>C*H*<sub>2</sub>); **δ**<sub>C</sub> (101 MHz, CDCl<sub>3</sub>) 138.9 (*C*, alkene), 135.4 (Ar*C*, quaternary), 129.0 (Ar*C*), 128.4 (Ar*C*), 127.4 (Ar*C*), 126.2 (*C*H, alkene), 124.3 (t, *J* = 310.8 Hz, *C*F<sub>2</sub>Br), 62.3 (t, *J* = 21.7 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 61.8 (NCH<sub>2</sub>), 58.6 (t, *J* = 1.7 Hz, NCH<sub>2</sub>Ar), 26.9 (HC=C-*C*H<sub>2</sub>), 25.4 (C=CH-*C*H<sub>2</sub>), 22.8 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 22.6 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –48.56; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>20</sub><sup>79</sup>BrF<sub>2</sub>N 344.0820; found 344.0822 (+0.70 ppm).

#### tert-Butyl (4-methoxybenzyl)(prop-2-yn-1-yl)carbamate 39

![](_page_11_Figure_4.jpeg)

To a 0 °C solution of 4-methoxybenzylamine (2.87 mL, 22.0 mmol) in dichloromethane (60 mL) was added  $Boc_2O$  (4.36 g, 20.0 mmol). The mixture was stirred at room temperature for 16 hours. Water (15 mL) was added and the mixture was extracted with dichloromethane (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated to give a residue which was dissolved in DMF (5 mL) and added dropwise over 20 minutes to a 0 °C suspension of NaH (960 mg, 24.0 mmol of a 60% dispersion in mineral oil) in DMF (15 mL). The mixture was stirred at 0 °C for 30 minutes. To the mixture was added propargyl bromide (2.67 mL, 24.0 mmol of 80% w/w solution in toluene) dropwise over 10 minutes. The reaction mixture was stirred at room temperature for 16 hours. To the reaction mixture was added water (100 mL) and brine (50 mL of a sat. aq. solution) and the mixture was extracted with diethyl ether (3 × 30 mL). The combined organics were dried over magnesium sulfate and concentrated. The resulting residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5-10% diethyl ether in pentane) to give **39** (3.53 g, 12.8 mmol, 64% yield) as a yellow oil.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.46; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3291, 3262, 3002, 2976, 2933, 2873, 2837, 1689; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.18 (d, *J* = 8.1 Hz, 2H, Ar*H*), 6.83 (d, *J* = 8.1 Hz, 2H, Ar*H*), 4.46 (s, 2H, NCH<sub>2</sub>Ar), 4.12 – 3.82 (m, 2H, NCH<sub>2</sub>, propargyl), 3.75 (s, 3H, OCH<sub>3</sub>), 2.21 (t, *J* = 2.5 Hz, 1H, CH, alkyne), 1.47 (s, 9H, (C(CH<sub>3</sub>)<sub>3</sub>)); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 159.0 (ArC(OMe)), 154.9 (C=O), 129.4 (ArCH), 129.1 (ArCq), 113.9 (ArCH), 80.4 (C(CH<sub>3</sub>)<sub>3</sub>), 79.4 (Cq, alkyne), 71.7 (CH, alkyne), 55.1 (OCH<sub>3</sub>), 48.4 (NCH<sub>2</sub>Ar), 34.9 (NCH<sub>2</sub>, propargyl), 28.3 (C(CH<sub>3</sub>)<sub>3</sub>); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>16</sub>H<sub>21</sub>NO<sub>3</sub> 276.1594; found 276.1589 (+1.90 ppm).

#### tert-Butyl buta-2,3-dien-1-yl(4-methoxybenzyl)carbamate 40

![](_page_12_Figure_2.jpeg)

*tert*-Butyl (4-methoxybenzyl)(prop-2-yn-1-yl)carbamate **39** (135 mg, 0.491 mmol), CuI (46.8 mg, 0.246 mmol) and (CHO)<sub>n</sub> (73.9 mg, 2.46 mmol) were dissolved in 1,4-dioxane (2.5 mL). Diisopropylamine (138  $\mu$ L, 0.982 mmol) was added and the reaction mixture stirred at 110 °C for 16 h. The reaction mixture was cooled to room temperature, diluted with ethyl acetate (5 mL) and filtered through a silica plug, washing with ethyl acetate (50 mL) and the solvent was evaporated under reduced pressure. The resulting residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10% diethyl ether in pentane) to give **40** (136 mg, 0.470 mmol, 96% yield) as a pale-yellow oil.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.18; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3062, 3032, 2975, 2932, 2871, 2836, 1955, 1687, 1612; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.17 (d, *J* = 8.5 Hz, 2H, Ar*H*), 6.84 (d, *J* = 8.5 Hz, 2H, Ar*H*), 5.08 (d, *J* = 19.2 Hz, 1H, *H*C=C=CH<sub>2</sub>), 4.74 (d, *J* = 3.9 Hz, 2H, HC=C=CH<sub>2</sub>), 4.37 (s, 2H, NCH<sub>2</sub>Ar), 3.90 – 3.63 (m, 5H, OCH<sub>3</sub> and NCH<sub>2</sub>C(H)=C), 1.48 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 209.1 (HC=C=CH<sub>2</sub>), 158.9 (Ar*C*(OMe)), 155.6 (*C*=O), 130.3 (Ar*C*H), 129.4 (Ar*C*q), 113.9 (Ar*C*H), 87.0 (H*C*=C=CH<sub>2</sub>), 79.8 (*C*(CH<sub>3</sub>)<sub>3</sub>), 76.2 (HC=C=CH<sub>2</sub>), 55.2 (OCH<sub>3</sub>), 48.9 (NCH<sub>2</sub>Ar), 44.7 (NCH<sub>2</sub>C(H)=C), 28.5 (C(CH<sub>3</sub>)<sub>3</sub>); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>17</sub>H<sub>23</sub>NO<sub>3</sub> 290.1751; found 290.1741 (+3.50 ppm).

## N-(4-Methoxybenzyl)buta-2,3-dien-1-amine hydrochloride 41

![](_page_12_Figure_6.jpeg)

To a 0 °C solution of *tert*-butyl buta-2,3-dien-1-yl(4-methoxybenzyl)carbamate **40** (128 mg, 0.441 mmol) in dioxane (0.62 mL) was added HCl (0.53 mL of a 4 M solution in dioxane). The mixture was warmed to room temperature and stirred for 18 hours. The reaction mixture was filtered, washing with diethyl ether to give **41** (69.5 mg, 0.308 mmol, 70%) as a white solid.

**m.p.** 145–148 °C; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3065, 2990, 2956, 2936, 2911, 2856, 2836, 2790, 2759, 2717, 2650, 2623, 2480, 1949, 1742, 1614;  $\delta_{H}$  (500 MHz, MeOH- $d_{4}$ ) 7.50 – 7.40 (m, 2H, Ar*H*), 7.07 – 6.96 (m, 2H, Ar*H*), 5.38 (tt, *J* = 7.0, 7.0 Hz, 1H, *H*C=C=CH<sub>2</sub>), 5.07 (dt, *J* = 7.0, 2.5 Hz, 2H, HC=C=CH<sub>2</sub>), 4.18 (s, 2H, NHCH<sub>2</sub>Ar), 3.83 (s, 3H, OCH<sub>3</sub>), 3.65 (dt, *J* = 7.0, 2.5 Hz, 2H, NCH<sub>2</sub>C(H)=C);  $\delta_{C}$  (126 MHz, MeOH- $d_{4}$ ) 211.7 (HC=C=CH<sub>2</sub>), 162.2 (Ar*C*(OMe)), 132.6 (Ar*C*H), 124.1 (Ar*C*q), 115.6 (Ar*C*H), 83.1 (H*C*=C=CH<sub>2</sub>), 78.1 (HC=C=CH<sub>2</sub>), 55.9 (OCH<sub>3</sub>), 51.1 (NHCH<sub>2</sub>Ar), 46.6 (NHCH<sub>2</sub>C(H)=C); HRMS (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>15</sub>NO 190.1226; found 190.1223 (+1.60 ppm).

## N-(2-Bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)buta-2,3-dien-1-amine 42

![](_page_13_Picture_0.jpeg)

*N*-(4-Methoxybenzyl)buta-2,3-dien-1-amine hydrochloride **41** (162 mg, 0.719 mmol) and Et<sub>3</sub>N (100  $\mu$ L, 0.719 mmol) were subjected to General Procedure 2, stirring at 70 °C for 14 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in petroleum ether) to give **42** (218 mg, 0.656 mmol, 91% yield) as a colourless oil.

**R**<sub>f</sub> (95:5 petroleum ether: diethyl ether) = 0.41; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3063, 3034, 2997, 2955, 2935, 2909, 2836, 1953, 1612; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.29 (d, *J* = 8.6 Hz, 2H, Ar*H*), 6.89 (d, *J* = 8.6 Hz, 2H, Ar*H*), 5.15 (tt, *J* = 6.7, 5.0 Hz, 1H, *H*C=C=CH<sub>2</sub>), 4.77 (dt, *J* = 6.7, 2.5 Hz, 2H, HC=C=CH<sub>2</sub>), 3.85 (s, 2H, NCH<sub>2</sub>Ar), 3.82 (s, 3H, OCH<sub>3</sub>), 3.39 (t, *J* = 13.3 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 3.36 – 3.29 (m, 2H, NCH<sub>2</sub>C(H)=C); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 209.9 (HC=*C*=CH<sub>2</sub>), 159.1 (Ar*C*(OMe)), 130.3 (ArCq), 130.2 (ArCH), 124.0 (t, *J* = 309.7 Hz, *C*F<sub>2</sub>Br), 113.8 (Ar*C*H), 86.0 (H*C*=C=CH<sub>2</sub>), 75.3 (HC=C=CH<sub>2</sub>), 62.1 (t, *J* = 22.5 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 57.7 (NCH<sub>2</sub>Ar), 55.3 (OCH<sub>3</sub>), 52.3 (NHCH<sub>2</sub>C(H)=C); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –9.94; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>16</sub><sup>79</sup>BrF<sub>2</sub>NO 332.0456; found 332.0455 (+0.40 ppm).

#### N-Benzylbut-3-yn-1-amine 43

![](_page_13_Figure_4.jpeg)

To a 0 °C suspension of 3-butyn-1-ol (1.51 mL, 20.0 mmol) and Et<sub>3</sub>N (5.58 mL, 40.0 mmol) in dichloromethane (100 mL) was added methane sulfonylchloride (3.10 mL, 40.0 mmol) dropwise over 10 minutes. The mixture was stirred at room temperature for 4 hours, then water (20 mL) was added dropwise over 5 minutes. Dichloromethane (50 mL), water (20 mL) and NaHCO<sub>3</sub> (30 mL of a sat. aq. solution) were added and the mixture was extracted with dichloromethane ( $2 \times 50$  mL). The combined organics were dried over magnesium sulfate and concentrated. The resultant residue was added to a stirred solution of Et<sub>3</sub>N (5.58 mL, 40.0 mmol), benzylamine (4.37 mL, 40.0 mmol) in THF (100 mL). The mixture was stirred at 70 °C for 21 hours. The reaction mixture was cooled to room temperature and ethyl acetate (50 mL), water (30 mL) and brine (20 mL of a sat. aq. solution) were added. The mixture was extracted with ethyl acetate ( $2 \times 50$  mL). The combined organics were dried by flash column chromatography (SiO<sub>2</sub>, eluting with 20-80% ethyl acetate in petroleum ether, then 2-5% methanol in dichloromethane). The mixed fractions were purified again by flash column chromatography (SiO<sub>2</sub>, eluting with 0-10% methanol in dichloromethane). The residues were combined to give **43** (1.36 g, 8.55 mmol, 43% yield) as a yellow/orange oil.

**R**<sub>f</sub> (95:5 dichloromethane/methanol) = 0.42; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3293, 3085, 6062, 3027, 2915, 2835, 2117; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.39 – 7.21 (m, 5H, Ar*H*), 3.82 (s, 2H, NCH<sub>2</sub>Ar), 2.81 (t, *J* = 6.6 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 2.42 (td, *J* = 6.6, 2.7 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 1.99 (t, *J* = 2.7 Hz, 1H, CH, alkyne); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 140.1 (ArCq), 128.4 (ArCH), 128.1 (ArCH), 127.0 (ArCH), 82.5 (Cq, alkyne), 69.6 (CH, alkyne), 53.3 (NCH<sub>2</sub>), 47.3 (NCH<sub>2</sub>), 19.5 (H<sub>2</sub>C-C=CH); **HRMS** (ESI) m/z:  $[M+H]^+$  calcd for C<sub>11</sub>H<sub>13</sub>N 160.1121; found 160.1123 (+1.40 ppm).

Data are consistent with the literature.<sup>1</sup>

#### N-Benzyl-N-(2-bromo-2,2-difluoroethyl)but-3-yn-1-amine 44

![](_page_14_Figure_0.jpeg)

*N*-Benzylbut-3-yn-1-amine **43** (0.203 g, 1.27 mmol) was subjected to General Procedure 2, stirring at 70 °C for 17 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in petroleum ether) to give **44** (290 mg, 961  $\mu$ mol, 75% yield) as a colourless oil.

**R**<sub>f</sub> (98:2 petroleum ether: diethyl ether) = 0.47; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3305, 3087, 3065, 3030, 2919, 2834; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.39 – 7.27 (m, 5H, Ar*H*), 3.93 (s, 2H, NC*H*<sub>2</sub>Ar), 3.46 (t, *J* = 13.3 Hz, 2H, N*CH*<sub>2</sub>CF<sub>2</sub>Br), 2.94 (t, *J* = 7.3 Hz, 2H, N*CH*<sub>2</sub>CH<sub>2</sub>), 2.35 (td, *J* = 7.3, 2.6 Hz, 2H, N*CH*<sub>2</sub>C*H*<sub>2</sub>), 1.97 (t, *J* = 2.6 Hz, 1H, C*H*, alkyne); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 138.4 (ArCq), 128.7 (ArCH), 128.6 (ArCH), 127.6 (ArCH), 123.9 (t, *J* = 310.4 Hz, *C*F<sub>2</sub>Br), 82.4 (*C*q, alkyne), 69.7 (*C*H, alkyne), 63.6 (t, *J* = 22.2 Hz, *C*H<sub>2</sub>CF<sub>2</sub>Br), 58.7 (N*C*H<sub>2</sub>Ar), 52.8 (N*C*H<sub>2</sub>CH<sub>2</sub>), 17.7 (NCH<sub>2</sub>CH<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.56; **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>13</sub>H<sub>14</sub><sup>79</sup>BrF<sub>2</sub>N 324.0170; found 324.0170 (+0.10 ppm).

N-Benzyl-N-(2-bromo-2,2-difluoroethyl)but-3-en-1-amine 45

![](_page_14_Figure_4.jpeg)

3-Buten-1-amine (462  $\mu$ L, 5.00 mmol) and benzaldehyde (510  $\mu$ L, 5.00 mmol) were subjected to General Procedure 3, stirring for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 1% diethyl ether in pentane) to give **45** (673 mg, 221  $\mu$ mol, 44% yield) as a colourless oil.

**R**<sub>f</sub> (99:1 pentane: diethyl ether) = 0.23; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3065, 3029, 2977, 2926, 2831, 1494, 1205, 1079, 908, 697; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.38 – 7.26 (m, 5H, Ar*H*), 5.76 (ddt, *J* = 17.0, 10.3, 6.8, Hz, 1H, *H*C=CH<sub>2</sub>), 5.09 – 4.96 (m, 2H, HC=CH<sub>2</sub>), 3.88 (s, 2H, NCH<sub>2</sub>Ar), 3.38 (t, *J* = 13.6, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 2.76 (td, *J* = 7.4, 1.5 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 2.30 – 2.22 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>); **δ**<sub>C</sub> (126 MHz, CDCl<sub>3</sub>) 138.7 (ArCq), 136.2 (HC=CH<sub>2</sub>), 128.8 (ArCH), 128.5 (ArCH), 127.4 127.4 (ArCH), 124.1 (t, *J* = 310.8 Hz, *C*F<sub>2</sub>Br), 116.1 (HC=CH<sub>2</sub>), 63.3 (t, *J* = 21.9 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 58.9 (NCH<sub>2</sub>Ar), 53.7 (NCH<sub>2</sub>CH<sub>2</sub>), 32.0 (NCH<sub>2</sub>CH<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –49.82; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for  $C_{13}H_{16}^{79}BrF_2N$  304.0507; found 304.0502 (+1.50 ppm).

#### *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)but-3-en-1-amine 46

![](_page_14_Figure_8.jpeg)

But-3-en-1-amine (0.46 mL, 5.00 mmol) and *p*-anisaldehyde (0.61 mL, 5.00 mmol) were subjected to General Procedure 3, stirring for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 1-2% diethyl ether in pentane) to give **46** (299 mg, 895  $\mu$ mol, 18% yield) as a colourless oil.

**R**<sub>f</sub> (19:1 pentane: diethyl ether) = 0.31; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2936, 2835,1612, 1463, 1301, 1246, 1074; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.27 – 7.21 (m, 2H, Ar*H*), 6.90 – 6.83 (m, 2H, Ar*H*), 5.75 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H, *H*C=CH<sub>2</sub>), 5.09 – 4.95 (m, 2H, HC=CH<sub>2</sub>), 3.81 (s, 3H, OCH<sub>3</sub>), 3.80 (s, 2H, NCH<sub>2</sub>Ar), 3.34 (t, *J* = 13.6 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 2.77 – 2.69 (m, 2H, NCH<sub>2</sub>CH), 2.29 – 2.20 (m, 2H, NCH<sub>2</sub>CH<sub>2</sub>); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 159.0 (Ar*C*(OCH<sub>3</sub>)), 136.3 (H*C*=CH<sub>2</sub>), 130.6 (Ar*C*q), 130.0 (Ar*C*H), 124.2 (t, *J* = 312.4 Hz, *C*F<sub>2</sub>Br), 116.1 (HC=CH<sub>2</sub>), 113.8

(ArCH), 63.1 (t, J = 21.9 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 58.2 (NCH<sub>2</sub>Ar), 55.4 (OCH<sub>3</sub>), 53.5 (NCH<sub>2</sub>CH), 32.0 (NCH<sub>2</sub>CH);  $\delta_F$  (376 MHz, CDCl<sub>3</sub>) –49.72; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>19</sub><sup>79</sup>BrF<sub>2</sub>NO 334.0613; found 334.0612 (+0.10 ppm).

## 2-Bromo-N-(2-(cyclohex-1-en-1-yl)ethyl)-2,2-difluoro-N-(4-methoxybenzyl)ethan-1-amine 47

![](_page_15_Picture_2.jpeg)

2-(Cyclohex-1-en-1-yl)ethan-1-amine (0.7 mL, 5.00 mmol) and *p*-anisaldehyde (0.61 mL, 5.00 mmol) were subjected to General Procedure 3, stirring for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 2% diethyl ether in pentane) to give **47** (782 mg, 2.02 mmol, 40% yield) as a colourless oil.

**R**<sub>f</sub> (49:1 pentane: diethyl ether) = 0.28; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2996, 2926, 2935, 2854, 2834, 1611, 1510, 1244, 1070; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.26 – 7.23 (m, 2H, Ar*H*), 6.88 – 6.84 (m, 2H, Ar*H*), 5.42 – 5.36 (m, 1H, C*H*, alkene), 3.81 (s, 3H, OC*H*<sub>3</sub>), 3.79 (s, 2H, NC*H*<sub>2</sub>Ar), 3.33 (t, *J* = 13.6 Hz, 2H, NC*H*<sub>2</sub>CF<sub>2</sub>Br), 2.79 – 2.69 (m, 2H, NC*H*<sub>2</sub>CH<sub>2</sub>), 2.17 – 2.06 (m, 2H, C*H*<sub>2</sub>CH<sub>2</sub>N), 1.99 – 1.91 (m, 2H, C*H*HCH<sub>2</sub>CH<sub>2</sub>C*H*H), 1.89 – 1.80 (m, 2H, CH*H*CH<sub>2</sub>CH<sub>2</sub>CH*H*), 1.62 – 1.49 (m, 4H, CH<sub>2</sub>C*H*<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 158.9 (Ar*C*(OCH<sub>3</sub>)), 135.6 (*C*, alkene, quaternary), 130.8 (Ar*C*, quaternary), 130.0 (Ar*C*), 124.4 (t, *J* = 311.5 Hz, *C*F<sub>2</sub>Br), 122.6(*C*H, alkene), 113.8 (Ar*C*), 63.0 (t, *J* = 21.9 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 58.1 (NCH<sub>2</sub>), 55.4 (OCH<sub>3</sub>), 52.5 (NCH<sub>2</sub>CH<sub>2</sub>), 35.7 (CH<sub>2</sub>CH<sub>2</sub>N), 28.5 (HC=C-CH<sub>2</sub>), 25.4 (C=CH-CH<sub>2</sub>), 23.1(CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 22.5 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –49.59; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>25</sub><sup>79</sup>BrF<sub>2</sub>NO 410.0902; found 410.0898 (+0.90 ppm).

#### (E)-N-(2-Bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)-3-phenylprop-2-en-1-amine 48

![](_page_15_Picture_6.jpeg)

4-Methoxybenzylamine (261  $\mu$ L, 2.00 mmol) and cinnamaldehyde (252  $\mu$ L, 2.00 mmol) were subjected to General Procedure 3, stirring for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 2-5% ethyl acetate in petroleum ether) to give **48** (451 mg, 1.14 mmol, 57% yield) as a pale yellow oil.

**R**<sub>f</sub> (95:5 petroleum ether: ethyl acetate) = 0.43; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3103, 3081, 3060, 3026, 3003, 2954, 2933, 2909, 2835, 1611; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.42 – 7.22 (m, 7H, Ar*H*), 6.94 – 6.84 (m, 2H, Ar*H*), 6.52 (d, *J* = 15.8 Hz, 1H, *H*C=CH(CH<sub>2</sub>)), 6.31 – 6.18 (m, 1H, HC=CH(CH<sub>2</sub>)), 3.86 (d, *J* = 2.5 Hz, 2H, NCH<sub>2</sub>), 3.82 (app d, *J* = 1.9 Hz, 3H, OCH<sub>3</sub>), 3.44 (d, *J* = 6.7 Hz, 2H, NCH<sub>2</sub>), 3.38 (td, *J* = 13.4, 2.5 Hz, 2H, CH<sub>2</sub>CF<sub>2</sub>Br); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 159.16 (Ar*C*(OCH<sub>3</sub>)), 137.0 (Ar*C*q), 133.5 (H*C*=CH(CH<sub>2</sub>)), 130.5 (Ar*C*q), 130.2 (Ar*C*H), 128.7 (Ar*C*H), 127.8 (Ar*C*H), 126.5 (Ar*C*H), 126.4 (HC=CH(CH<sub>2</sub>)), 124.2 (t, *J* = 310.3 Hz, CF<sub>2</sub>Br), 113.9 (Ar*C*H), 62.1 (t, *J* = 22.1 Hz, CH<sub>2</sub>CF<sub>2</sub>Br), 58.2 (NCH<sub>2</sub>), 56.1 (NCH<sub>2</sub>), 55.4 (OCH<sub>3</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –9.47; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>20</sub><sup>79</sup>BrF<sub>2</sub>NO 396.0769; found 396.0767 (+0.60 ppm).

## N-(2-((tert-Butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine 49

![](_page_15_Figure_10.jpeg)

To a solution of ethanolamine (0.604 mL, 10.0 mmol) and imidazole (1.02 g, 15.0 mmol) in dichloromethane (5 mL) was added a solution of TBSCI (1.81 g, 12.0 mmol) in dichloromethane (10 mL) dropwise over 5 minutes. The reaction mixture was stirred at room temperature for 17 hours. The reaction mixture was poured into water (20 mL). The mixture was extracted with dichloromethane ( $3 \times 20$  mL). The combined organics were dried over magnesium sulfate and concentrated. To the resultant residue was added DIPEA (1.16 mL, 6.67 mmol) and dichloromethane (50 mL). Propargyl bromide (0.743 mL, 6.67 mmol of an 80% w/w solution in toluene) was added dropwise at 0 °C over 2 hours. The reaction mixture was stirred at room temperature for a further 3 hours. The reaction mixture was poured into NaHCO<sub>3</sub> (30 mL of a sat. aq. solution). The mixture was extracted with dichloromethane ( $3 \times 30$  mL). The combined organics were dried over magnesium sulfate and concentrated in petroleum ether) to give **49** (523 mg, 2.45 mmol, 37% yield) as a yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: ethyl acetate) = 0.28; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3311, 2954, 2929, 2886, 2857, 1462; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 3.74 (t, *J* = 5.2 Hz, 2H, OCH<sub>2</sub>), 3.46 (d, *J* = 2.4 Hz, 2H, NCH<sub>2</sub>C≡CH), 2.79 (t, *J* = 5.2 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 2.21 (t, *J* = 2.4 Hz, 1H, CH, alkyne), 0.90 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 0.06 (s, 6H, Si(CH<sub>3</sub>)<sub>2</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 82.3 (Cq, alkyne), 71.4 (CH, alkyne), 62.5 (OCH<sub>2</sub>), 50.7 (NCH<sub>2</sub>CH<sub>2</sub>), 38.3 (NCH<sub>2</sub>C≡CH), 26.0 (SiC(CH<sub>3</sub>)<sub>3</sub>), 18.4 (SiC(CH<sub>3</sub>)<sub>3</sub>), -5.2 Si(CH<sub>3</sub>)<sub>2</sub>; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>14</sub>F<sub>2</sub>NO<sub>2</sub> 254.0987; found 254.0985 (+1.00 ppm).

Data are consistent with the literature.<sup>2</sup>

## N-(2-Bromo-2,2-difluoroethyl)-N-(2-((tert-butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine 3

![](_page_16_Figure_4.jpeg)

N-(2-((tert-Butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **49** (1.72 g, 8.07 mmol) was subjected to General Procedure 2, stirring at 70 °C for 15 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in petroleum ether) to give **3** (1.68 g, 4.73 mmol, 59% yield) as a colourless oil.

**R**<sub>f</sub> (98:2 petroleum ether: ethyl acetate) = 0.41; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3309, 2954, 2930, 2897, 2886, 2858, 1472; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 3.76 (t, *J* = 5.9 Hz, 2H, OCH<sub>2</sub>), 3.58 (d, *J* = 2.4 Hz, 2H, CH<sub>2</sub>C≡CH), 3.45 (t, *J* = 13.0 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 2.86 (t, *J* = 5.9 Hz, 2H, NCH<sub>2</sub>CH<sub>2</sub>), 2.23 (t, *J* = 2.4 Hz, 1H, CH, alkyne), 0.90 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 0.06 (s, 6H, Si(CH<sub>3</sub>)<sub>2</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 123.4 (t, *J* = 307.8 Hz, CF<sub>2</sub>Br), 79.1 (Cq, alkyne), 73.1 (CH, alkyne), 63.8 (t, *J* = 22.8 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 62.5 (OCH<sub>2</sub>), 57.2 (NCH<sub>2</sub>CH<sub>2</sub>), 44.8 (t, *J* = 1.6 Hz, NCH<sub>2</sub>C≡CH), 26.0 (SiC(CH<sub>3</sub>)<sub>3</sub>), 18.4 (SiC(CH<sub>3</sub>)<sub>3</sub>), -5.3 (Si(CH<sub>3</sub>)<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) -51.63; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>24</sub><sup>79</sup>BrF<sub>2</sub>NOSi 356.0851; found 356.0847 (+1.10 ppm).

#### N-(2-Bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)prop-2-yn-1-amine 29

![](_page_16_Figure_8.jpeg)

Propargylamine (0.448 mL, 7.00 mmol) and *p*-anisaldehyde (0.850 mL, 7.00 mmol) were subjected to General Procedure 3, stirring for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 2-5% ethyl acetate in petroleum ether) to give **29** (1.26 g, 3.96 mmol, 56% yield) as a colourless oil.

**R**<sub>f</sub> (90:10 petroleum ether: ethyl acetate) = 0.40; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3299, 3000, 2956, 2935, 2908, 2836; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.35 – 7.31 (m, 2H, Ar*H*), 6.92 – 6.87 (m, 2H, Ar*H*), 3.83 (s, 2H, NCH<sub>2</sub>Ar), 3.82 (s, 3H, OCH<sub>3</sub>), 3.42 (d, *J* = 2.5 Hz, 2H, NCH<sub>2</sub>), 3.39 (t, *J* = 12.6 Hz, 2H, CH<sub>2</sub>CF<sub>2</sub>Br), 2.29 (t, *J* = 2.5 Hz, 1H, CH, alkyne); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 159.2 (ArC(OCH<sub>3</sub>)), 130.4 (ArCH), 129.7 (ArCq), 123.4 (t, *J* = 307.8 Hz, CF<sub>2</sub>Br), 113.9 (ArCH), 78.3 (Cq, alkyne), 73.6 (CH, alkyne), 62.6 (t, *J* = 23.3 Hz, CH<sub>2</sub>CF<sub>2</sub>Br), 58.2 (NCH<sub>2</sub>Ar), 55.3 (OCH<sub>3</sub>), 42.3 (NCH<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.69; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>14</sub><sup>79</sup>BrF<sub>2</sub>NO 318.0300; found 318.0295 (+1.30 ppm).

#### N-Benzyl-N-(2-bromo-2,2-difluoroethyl)prop-2-yn-1-amine 50

![](_page_17_Figure_2.jpeg)

Propargylamine (320  $\mu$ L, 5.00 mmol) and benzaldehyde (508  $\mu$ L, 5.00 mmol) were subjected to General Procedure 3, stirring for 14 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in pentane). The mixed fractions were repurified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-0.5% diethyl ether in pentane). The residues were combined to give **50** (546 mg, 1.89 mmol, 38% yield) as a colourless oil.

**R**<sub>f</sub> (98:2 petroleum ether: ethyl acetate) = 0.39; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3303, 3088, 3065, 2932, 2897, 2843; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.43 – 7.37 (m, 2H, Ar*H*), 7.37 – 7.31 (m, 2H, Ar*H*), 7.31 – 7.27 (m, 1H, Ar*H*), 3.88 (s, 2H, NC*H*<sub>2</sub>Ar), 3.41 (d, *J* = 2.5 Hz, 2H, NC*H*<sub>2</sub>), 3.39 (t, *J* = 12.5 Hz, 2H, C*H*<sub>2</sub>CF<sub>2</sub>Br), 2.27 (t, *J* = 2.5 Hz, 1H, C*H*, alkyne); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 137.7 (ArCq), 129.2 (ArCH), 128.6 (ArCH), 127.8 (ArCH), 123.4 (t, *J* = 307.8 Hz, CF<sub>2</sub>Br), 78.3 (Cq, alkyne), 73.6 (CH, alkyne), 62.8 (t, *J* = 23.4 Hz, CH<sub>2</sub>CF<sub>2</sub>Br), 58.9 (NCH<sub>2</sub>), 42.5 (t, *J* = 1.7 Hz, NCH<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.77; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>12</sub><sup>79</sup>BrF<sub>2</sub>N 288.0194; found 288.0184 (+3.40 ppm).

#### Methyl 2-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate hydrochloride 51

![](_page_17_Picture_6.jpeg)

To a -78 °C solution of diisopropylamine (2.24 mL, 16.0 mmol) in THF (15 mL) was added *n*-BuLi (6.81 mL, 15.0 mmol of a 2.2M solution in hexanes) dropwise over 15 minutes. The mixture was stirred at -78 °C for 30 minutes after which time a solution of *N*-Boc proline methyl ester (2.29 g, 10.0 mmol) in THF (5 mL) was added dropwise over 10 minutes. The mixture was stirred at -78 °C for 30 minutes, then a solution of propargyl bromide (2.00 mL, 18 mmol of an 80% w/w solution in toluene) was added dropwise over 10 minutes. The mixture was stirred at -78 °C for 4 hours. Isopropanol (1.91 mL, 25.0 mmol) was added and the mixture was warmed to room temperature. NH<sub>4</sub>Cl (20 mL of a sat. aq. solution) was added and the mixture was extracted with diethyl ether (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5-10% ethyl acetate in pentane) to give a residue which was dissolved in dioxane (10 mL). HCl (8.9 mL of a 4 M solution in dioxane) was added at 0 °C. The mixture was warmed to room temperature and stirred for 23 hours. The reaction mixture was filtered, then triturated with diethyl ether to give **51** (1.29 g, 6.33 mmol, 63%) as a light brown solid.

m.p. 172–174 °C (literature m.p. 180 °C); v<sub>max</sub> (thin film)/cm<sup>-1</sup> 3171, 2999, 2945, 2917, 2877, 2848, 2779, 2742, 2676, 2649, 2594, 2528, 2471, 2413, 2393, 1757, 1561; δ<sub>H</sub> (500 MHz, methanol-d<sub>4</sub>) 3.91 (s, 3H, *H*-9), 3.48 (dd, *J* = 8.0, 5.7 Hz, 2H, *H*-1), 3.15 (dd, *J* = 17.6, 2.7 Hz, 1H, *H*-5), 2.93 (app ddd, *J* = 17.6, 2.7, 2.7 Hz, 1H,

*H*-5), 2.74 (dd, *J* = 2.7, 2.7 Hz, 1H, *H*-7), 2.51 – 2.41 (m, 1H, *H*-3), 2.28 – 2.09 (m, 2H, *H*-3 and *H*-2), 2.09 – 1.98 (m, 1H, *H*-2);  $\delta_{c}$  (126 MHz, MeOD) 171.1 (*C*-8), 77.2 (*C*-6), 75.2 (*C*-7), 72.9 (*C*-4), 54.7 (*C*-9), 47.6 (*C*-1), 35.5 (*C*-3), 26.2 (*C*-5), 24.2 (*C*-2); **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>9</sub>H<sub>13</sub>NO<sub>2</sub> 190.0838; found 190.0836 (+1.10 ppm).

Data are consistent with the literature.<sup>3</sup>

## Methyl 1-(2-bromo-2,2-difluoroethyl)-2-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate 52

![](_page_18_Picture_3.jpeg)

Methyl 2-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate hydrochloride **51** (407 mg, 2.00 mmol) and Et<sub>3</sub>N (279  $\mu$ L, 2.00 mmol) were subjected to General Procedure 2, stirring at 70 °C for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 2% diethyl ether in pentane) to give **52** (188 mg, 606  $\mu$ mol, 30% yield) as a colourless oil.

**R**<sub>f</sub> (95:5 petroleum ether: diethyl ether) = 0.26; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3306, 2954, 2917, 2871, 2841, 1729; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 3.78 - 3.65 (m, 4H, *H*-9 and *H*-10), 3.46 - 3.35 (m, 2H, *H*-1 and *H*-10), 2.95 (ddd, *J* = 8.5, 8.5, 6.7 Hz, 1H, *H*-1), 2.72 - 2.61 (m, 2H, *H*-5), 2.26 (ddd, *J* = 12.9, 7.9, 5.2 Hz, 1H, *H*-3), 2.09 - 1.98 (m, 2H, *H*-3 and *H*-7), 1.94 - 1.82 (m, 2H, *H*-2); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 174.0 (*C*-8), 123.5 (t, *J* = 308.2 Hz, *C*-11), 80.4 (*C*-8), 70.9 (*C*-7), 70.7 (*C*-4), 60.7 (t, *J* = 23.7 Hz, *C*-10), 54.7 (*C*-1), 52.1 (*C*-9), 35.8 (*C*-3), 26.9 (*C*-5), 22.2 (*C*-2); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) -51.04, -51.08; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>11</sub>H<sub>15</sub><sup>79</sup>BrF<sub>2</sub>NO<sub>2</sub> 310.0249; found 310.0250 (+0.30 ppm).

#### N-Benzyl-2-methylbut-3-yn-2-amine 53

![](_page_18_Figure_7.jpeg)

To a solution at 0 °C of 1,1-dimethyl prop-2-ynylamine (2.10 mL, 20.0 mmol) was added DIPEA (348  $\mu$ L, 5.00 mmol) and dichloromethane (30 mL). was added a solution of benzyl bromide (595  $\mu$ L, 5.00 mmol) in dichloromethane (5 mL) was added dropwise over 1 hour. The mixture was stirred at room temperature for 21 hours. The reaction mixture was poured into NaHCO<sub>3</sub> (20 mL of a sat. aq. solution) and extracted with dichloromethane (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10-20% diethyl ether in pentane) to give **53** (506 mg, 2.92 mmol, 58%) as a colourless solid.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.21; **m.p.** 42–44 °C; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3302, 3121, 3031, 2980, 2911, 2860, 2832, 2080; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.39 – 7.22 (m, 5H, Ar*H*), 3.88 (s, 2H, NC*H*<sub>2</sub>), 2.36 (s, 1H, *CH*, alkyne), 1.43 (s, 6H,  $C(CH_3)_2$ ); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 140.7 (Ar*C*q), 128.6 (Ar*C*H), 128.5 (Ar*C*H), 127.1 (Ar*C*H), 89.1 (*C*q, alkyne), 70.0 (*C*H, alkyne), 50.1 (*C*(CH<sub>3</sub>)<sub>2</sub>), 49.1 (NCH<sub>2</sub>), 29.7 (C(*C*H<sub>3</sub>)<sub>2</sub>); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>15</sub>N 174.1277; found 174.1266 (+6.70 ppm).

Data are consistent with the literature.<sup>4</sup>

## N-Benzyl-N-(2-bromo-2,2-difluoroethyl)-2-methylbut-3-yn-2-amine 54

![](_page_19_Picture_0.jpeg)

To an oven-dried flask fitted with a water condenser under an argon atmosphere was added *N*-benzyl-2methylbut-3-yn-2-amine **53** (436 mg, 2.52 mmol) and THF (1.25 mL). Then bromodifluoroacetic acid (881 mg, 5.04 mmol) in THF (1.25 mL) and PhSiH<sub>3</sub> (933  $\mu$ L, 7.56 mmol) were added at 70 °C and the reaction was heated at 70 °C for 16 hours. The reaction mixture was charged with further bromodifluoroacetic acid (881 mg, 5.04 mmol) and PhSiH<sub>3</sub> (933  $\mu$ L, 7.56 mmol) and stirred at 70 °C for 86 hours. The reaction mixture was cooled to room temperature. Diethyl ether (15 mL) and NaHCO<sub>3</sub> (15 mL of a sat. aq. solution) were added. The mixture was extracted with diethyl ether (3 × 15 mL). The combined organics were dried (MgSO<sub>4</sub>) and concentrated to ~2 mL volume. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in pentane) to give **54** (245 mg, 774 µmol, 31% yield) as a colourless oil.

**R**<sub>f</sub> (98:2 petroleum ether: diethyl ether) = 0.70; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3301, 3088, 3064, 3028, 2987, 2938, 2855; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.42 – 7.37 (m, 2H, Ar*H*), 7.33 – 7.27 (m, 2H, Ar*H*), 7.24 – 7.17 (m, 1H, Ar*H*), 4.06 (s, 2H, NC*H*<sub>2</sub>Ar), 3.54 (t, *J* = 13.6 Hz, 2H, NC*H*<sub>2</sub>CF<sub>2</sub>Br), 2.32 (s, 1H, C*H*, alkyne), 1.36 (s, 6H, C(C*H*<sub>3</sub>)<sub>2</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 141.5 (ArCq), 128.3 (ArCH), 127.5 (ArCH), 126.7 (ArCH), 123.5 (t, *J* = 309.0 Hz, *C*F<sub>2</sub>Br), 86.7 (Cq, alkyne), 70.6 (*C*H, alkyne), 62.9 (t, *J* = 21.7 Hz, *C*H<sub>2</sub>CF<sub>2</sub>Br), 57.9 (NCH<sub>2</sub>Ar), 56.0 (*C*(CH<sub>3</sub>)<sub>2</sub>), 29.9 (C(*C*H<sub>3</sub>)<sub>2</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.52; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>16</sub><sup>79</sup>BrF<sub>2</sub>N 316.0507; found 316.0504 (+0.90 ppm).

#### tert-Butyl (2-(prop-2-yn-1-ylamino)ethyl)carbamate 55

![](_page_19_Picture_4.jpeg)

To a 0 °C solution of ethylene diamine (6.69 mL, 10.0 mmol) in dichloromethane (12 mL) was added a solution of Boc<sub>2</sub>O (2.18 g, 10.0 mmol) in dichloromethane (6 mL). The mixture was stirred at room temperature for 17 hours after which water (20 mL) was added and the mixture was extracted with dichloromethane (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated. To the residue was dissolved in dichloromethane (16 mL) and to this solution was added DIPEA (528  $\mu$ L, 3.03 mmol). At 0 °C, a solution of propargyl bromide (338  $\mu$ L, 3.03 mmol of an 80% w/w solution in toluene) in dichloromethane (5 mL) was added dropwise over 1.5 hours. The mixture was stirred at room temperature for 6 hours. The reaction mixture was poured into NaHCO<sub>3</sub> (20 mL of a sat. aq. solution) and extracted with dichloromethane (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 70-100% ethyl acetate in pentane) to give **55** (290 mg, 1.46 mmol, 48%) as a yellow oil.

**R**<sub>f</sub> (70:30 petroleum ether: ethyl acetate) = 0.13; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3303, 3254, 2975, 2931, 2853, 2836, 1688; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 4.98 (s, 1H, N*H*, amine), 3.40 (d, *J* = 2.4 Hz, 2H, NHCH<sub>2</sub>C), 3.21 (dt, *J* = 5.8, 5.8 Hz, 2H, NHCH<sub>2</sub>CH<sub>2</sub>NHBoc), 2.79 (t, *J* = 5.8 Hz, 2H, NHCH<sub>2</sub>CH<sub>2</sub>NHBoc), 2.20 (t, *J* = 2.4 Hz, 1H, C*H*, alkyne), 1.42 (s, 9H, C(CH<sub>3</sub>)<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 156.2 (*C*=O), 82.1 (*C*q, alkyne), 79.3 (*C*(CH<sub>3</sub>)<sub>3</sub>), 71.6 (*C*H, alkyne), 48.0 (NHCH<sub>2</sub>CH<sub>2</sub>NHBoc), 40.1 (NHCH<sub>2</sub>CH<sub>2</sub>NHBoc), 37.9 (NHCH<sub>2</sub>C), 28.5 (C(CH<sub>3</sub>)<sub>3</sub>); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for  $C_{10}H_{18}N_2O_2$  199.1441; found 199.1443 (+0.80 ppm).

![](_page_20_Picture_1.jpeg)

*tert*-Butyl (2-(prop-2-yn-1-ylamino)ethyl)carbamate **55** (0.290 g, 1.46 mmol) was subjected to General Procedure 2, stirring at 70 °C for 16 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5-10% diethyl ether in pentane). The material was purified again by flash column chromatography (SiO<sub>2</sub>, eluting with 2-15% diethyl ether in pentane) to give **56** (37.7 mg, 110  $\mu$ mol, 8% yield) as a colourless oil.

**R**<sub>f</sub> (80:20 petroleum ether: diethyl ether) = 0.40; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3434, 3306, 2978, 2932, 2850, 1697, 1503; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 4.94 (br s, 1H, N*H*, carbamate), 3.52 (d, *J* = 2.4 Hz, 2H, *CH*<sub>2</sub>, propargyl), 3.31 (t, *J* = 12.6 Hz, 2H, *CHC*F<sub>2</sub>Br), 3.21 (dt, *J* = 5.8, 5.8 Hz, 2H, BocHNCH<sub>2</sub>CH<sub>2</sub>), 2.82 (t, *J* = 5.8 Hz, 2H, BocHNCH<sub>2</sub>CH<sub>2</sub>), 2.23 (t, *J* = 2.4 Hz, 1H, *CH*, alkyne), 1.43 (s, 9H, C(*CH*<sub>3</sub>)<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 156.1 (*C*=O), 123.2 (t, *J* = 307.5 Hz, *C*F<sub>2</sub>Br), 79.4 (*C*(CH<sub>3</sub>)<sub>3</sub>), 78.1 (*C*q, alkyne), 73.6 (*C*H, alkyne), 63.3 (t, *J* = 23.4 Hz, *C*H<sub>2</sub>CF<sub>2</sub>Br), 54.7 (BocHNCH<sub>2</sub>CH<sub>2</sub>), 43.5 (*C*H<sub>2</sub>, propargyl), 38.3 (BocHNCH<sub>2</sub>CH<sub>2</sub>), 28.5 (*C*(*C*H<sub>3</sub>)<sub>3</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –51.42; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for  $C_{12}H_{19}^{79}BrF_2N_2O_2$  341.0671; found 341.0674 (+1.00 ppm).

#### 2-((2-Bromo-2,2-difluoroethyl)(prop-2-yn-1-yl)amino)ethan-1-ol 57

![](_page_20_Figure_5.jpeg)

*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(2-((tert-butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **3** was dissolved in dioxane (2.8 mL). HCl (2.4 mL of a 4 M solution in dioxane) was added at 0 °C. The mixture was warmed to room temperature and stirred for 16 hours. The reaction mixture was poured into NaHCO<sub>3</sub> (20 mL of a sat. aq. solution) and extracted with ethyl acetate ( $3 \times 10$  mL). The combined organics were dried over sodium sulfate and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5-20% ethyl acetate in pentane) to give **57** (365 mg, 1.51 mmol, 75%) as a colourless oil.

**R**<sub>f</sub> (50:50 petroleum ether: ethyl acetate) = 0.54; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3424, 3302, 2946, 2883, 2847; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 3.62 (t, *J* = 5.2 Hz, 2H, CH<sub>2</sub>OH), 3.55 (d, *J* = 2.4 Hz, 2H, NCH<sub>2</sub>, propargyl), 3.34 (t, *J* = 12.5 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br), 2.88 (t, *J* = 5.2 Hz, 2H, CH<sub>2</sub>CH<sub>2</sub>OH), 2.43 (br s, 1H, OH), 2.25 (t, *J* = 2.4 Hz, 1H, CH, alkyne); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 123.1 (t, *J* = 307.2 Hz, CF<sub>2</sub>Br), 78.1 (Cq, alkyne), 73.7 (CH, alkyne), 63.1 (t, *J* = 23.5 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 59.2 (CH<sub>2</sub>OH), 57.2 (CH<sub>2</sub>CH<sub>2</sub>OH), 43.8 (t, *J* = 1.4 Hz, NCH<sub>2</sub>, propargyl); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –51.29; **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>7</sub>H<sub>10</sub><sup>79</sup>BrF<sub>2</sub>NO 241.9987; found 241.9985 (+0.50 ppm).

#### N-Benzylbut-2-yn-1-amine 58

![](_page_20_Figure_9.jpeg)

To a solution at 0 °C of benzylamine (5.46 mL, 50.0 mmol), DIPEA (1.74 mL, 10.0 mmol) and dichloromethane (40 mL) was added a solution of 1-bromo-2-butyne (1.33 g, 10.0 mmol) in dichloromethane (10 mL) dropwise over 20 minutes. The mixture was stirred at room temperature for 8 hours. The reaction mixture was poured into NaHCO<sub>3</sub> (20 mL of a sat. aq. solution) and extracted with dichloromethane (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 20-50% ethyl acetate in pentane) to give **58** (1.04 g, 6.53 mmol, 65%) as a pale yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: ethyl acetate) = 0.10; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3315, 3085, 3062, 3027, 2918, 2840, 2809; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.42 – 7.20 (m, 5H, Ar*H*), 3.86 (s, 2H, NHC*H*<sub>2</sub>Ar), 3.38 (q, *J* = 2.4 Hz, 2H, NHC*H*<sub>2</sub>), 1.85 (t, *J* = 2.4 Hz, 3H, C*H*<sub>3</sub>); **δ**<sub>C</sub> (101 MHz, CDCl<sub>3</sub>) 139.8 (Ar*C*q), 128.5 (Ar*C*H), 128.5 (Ar*C*H), 127.2 (Ar*C*H), 79.4 (Cq, alkyne), 77.4 (Cq, alkyne), 52.6 (NHCH<sub>2</sub>Ar), 38.0 (NHCH<sub>2</sub>), 3.7 (CH<sub>3</sub>); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for  $C_{11}H_{13}N$  160.1121; found 160.1116 (+3.10 ppm).

Data are consistent with the literature.<sup>5</sup>

## N-Benzyl-N-(2-bromo-2,2-difluoroethyl)but-2-yn-1-amine 59

![](_page_21_Figure_3.jpeg)

*N*-Benzyl-2-methylbut-3-yn-2-amine **58** (638 mg, 4.00 mmol) was subjected to General Procedure 2, stirring at 70 °C for 20 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in pentane) to give **59** (721 mg, 2.38 mmol, 60% yield) as a yellow oil.

**R**<sub>f</sub> (98:2 petroleum ether: diethyl ether) = 0.29; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3088, 3064, 3031, 2922, 2895, 2842; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.43 – 7.37 (m, 2H, Ar*H*), 7.37 – 7.30 (m, 2H, Ar*H*), 7.30 – 7.27 (m, 1H, Ar*H*), 3.85 (s, 2H, NCH<sub>2</sub>Ar), 3.53 – 3.16 (m, 4H, NCH<sub>2</sub> and NCH<sub>2</sub>), 1.88 (t, *J* = 2.3 Hz, 3H, CH<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 138.1 (ArCq), 129.2 (ArC*H*), 128.5 (ArC*H*), 127.6 (ArC*H*), 123.6 (t, *J* = 308.0 Hz, *C*F<sub>2</sub>Br), 81.3 (Cq, alkyne), 73.5 (Cq, alkyne), 62.9 (t, *J* = 23.1 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 59.0 (NCH<sub>2</sub>Ar), 43.1 (t, *J* = 1.7 Hz, NCH<sub>2</sub>), 3.6 (CH<sub>3</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) – 50.50; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>14</sub><sup>79</sup>BrF<sub>2</sub>N 302.0350; found 302.0352 (+0.40 ppm).

## N-Benzyl-3-(trimethylsilyl)prop-2-yn-1-amine 60

![](_page_21_Figure_7.jpeg)

To a solution at 0 °C of benzylamine (5.46 mL, 50.0 mmol), DIPEA (1.74 mL, 10.0 mmol) and dichloromethane (40 mL) was added a solution of 3-bromo-1-(trimethylsilyl)-1-propyne (1.91 g, 10.0 mmol) in dichloromethane (10 mL) dropwise over 20 minutes. The mixture was stirred at room temperature for 8 hours. The reaction mixture was poured into NaHCO<sub>3</sub> (20 mL of a sat. aq. solution) and extracted with dichloromethane (3 × 20 mL). The combined organics were dried over magnesium sulfate and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10-20% ethyl acetate in pentane) to give **60** (1.65 g, 7.62 mmol, 76%) as a pale yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: ethyl acetate) = 0.22; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3067, 3028, 2959, 2899, 2838, 2164; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.42 – 7.16 (m, 5H, Ar*H*), 3.88 (s, 2H, NHC*H*<sub>2</sub>Ar), 3.44 (s, 2H, NHC*H*<sub>2</sub>), 0.19 (s, 9H, Si(*CH*<sub>3</sub>)<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 139.5 (Ar*C*q), 128.6 (Ar*C*H), 128.6 (Ar*C*H), 127.3 (Ar*C*H), 104.3 (*C*q, alkyne), 88.5 (*C*q, alkyne), 52.5 (NH*C*H<sub>2</sub>Ar), 38.6 (NH*C*H<sub>2</sub>), 0.2 (Si(*C*H<sub>3</sub>)<sub>3</sub>); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>19</sub>NSi 218.1360; found 218.1364 (+2.10 ppm).

## N-Benzyl-N-(2-bromo-2,2-difluoroethyl)-3-(trimethylsilyl)prop-2-yn-1-amine 61

![](_page_21_Figure_11.jpeg)

*N*-Benzyl-3-(trimethylsilyl)prop-2-yn-1-amine **60** (870 mg, 4.00 mmol) was subjected to General Procedure 2, stirring at 70 °C for 20 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in pentane) to give **61** (732 mg, 2.03 mmol, 51% yield) as a yellow oil.

**R**<sub>f</sub> (98:2 petroleum ether: diethyl ether) = 0.33; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3088, 3065, 3031, 2960, 2927, 2899, 2841; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.41 – 7.37 (m, 2H, Ar*H*), 7.36 – 7.31 (m, 2H, Ar*H*), 7.31 – 7.27 (m, 1H, Ar*H*), 3.86 (s, 2H, NC*H*<sub>2</sub>Ar), 3.40 (s, 2H, NC*H*<sub>2</sub>C≡C), 3.37 (t, *J* = 12.4 Hz, 2H, NC*H*<sub>2</sub>CF<sub>2</sub>Br), 0.21 (s, 9H, Si(C*H*<sub>3</sub>)<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 137.8 (ArCq), 129.2 (ArCH), 128.6 (ArCH), 127.7 (ArCH), 123.5 (t, *J* = 307.9 Hz, CF<sub>2</sub>Br), 100.4 (Cq, alkyne), 90.7 (Cq, alkyne), 62.9 (t, *J* = 23.3 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 58.9 (NCH<sub>2</sub>Ar), 43.6 (NCH<sub>2</sub>C≡C), 0.2 (Si(CH<sub>3</sub>)<sub>3</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.59; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>15</sub>H<sub>20</sub><sup>79</sup>BrF<sub>2</sub>NSi 360.0589; found 360.0577 (+3.30 ppm).

#### N-Benzyl-N-(2-bromo-2,2-difluoroethyl)-3-phenylprop-2-yn-1-amine 62

![](_page_22_Figure_3.jpeg)

To a solution of 3-phenyl-2-propyn-1-ol (902 mg, 6.82 mmol) and Et<sub>3</sub>N (1.90 mL, 13.6 mmol) in dichloromethane (35 mL) was added MsCl (1.05 mL, 13.6 mmol). The mixture was stirred at room temperature for 16 hours. NaHCO<sub>3</sub> (15 mL of a sat. aq. solution) was added. The mixture was extracted with dichloromethane ( $3 \times 15$  mL). The combined organics were dried (MgSO<sub>4</sub>) and concentrated. To the residue was added benzylamine (3.72 mL, 34.1 mmol), Et<sub>3</sub>N (1.90 mL, 13.6 mmol) and THF (35 mL). The mixture was stirred at room temperature for 16 hours. NaHCO<sub>3</sub> (20 mL of a sat. aq. solution) was added. The mixture was extracted with diethyl ether ( $3 \times 20$  mL). The combined organics were dried (MgSO<sub>4</sub>) and concentrated. The mixture was extracted with diethyl ether ( $3 \times 20$  mL). The combined organics were dried (MgSO<sub>4</sub>) and concentrated. The material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10-50% diethyl ether in pentane) to give a yellow residue (1.02 g). To a portion of the residue (448 mg) in THF (1 mL) was added bromodifluoroacetic acid (700 mg, 4.00 mmol) in THF (1 mL) and PhSiH<sub>3</sub> (740 µL, 6.00 mmol) were added at 70 °C and the reaction was heated at 70 °C for 16 hours. The reaction mixture was cooled to room temperature. NaHCO<sub>3</sub> (15 mL of a sat. aq. solution) was added. The mixture was cooled to room temperature and organics were dried (MgSO<sub>4</sub>) and concentrated to ~2 mL volume. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in pentane) to give **62** (363 mg, 996 µmol, 34% yield) as a colourless oil.

**R**<sub>f</sub> (95:5 petroleum ether: diethyl ether) = 0.50; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3084, 3062, 3031, 2992, 2926, 2897, 2840; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.52 – 7.41 (m, 4H, Ar*H*), 7.39 – 7.27 (m, 6H, Ar*H*), 3.97 (s, 2H, NCH<sub>2</sub>C≡C), 3.65 (s, 2H, NCH<sub>2</sub>Ar), 3.48 (t, J = 12.6 Hz, 2H, NCH<sub>2</sub>CF<sub>2</sub>Br); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 137.7 (ArCq), 132.0 (ArCH), 129.3 (ArCH), 128.6 (ArCH), 128.5 (ArCH), 127.8 (ArCH), 125.7 (ArCq), 123.3 (t, J = 307.8 Hz,  $CF_2Br$ ), 123.0 (ArCH), 86.0 (Cq, alkyne), 83.7 (Cq, alkyne), 62.9 (t, J = 23.4 Hz, NCH<sub>2</sub>CF<sub>2</sub>Br), 59.1 (NCH<sub>2</sub>C≡C), 43.5 (NCH<sub>2</sub>Ar); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.52; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>16</sub><sup>79</sup>BrF<sub>2</sub>N 364.0507; found 364.0505 (+0.50 ppm).

#### N-Benzylpent-3-yn-1-amine 63

![](_page_22_Figure_7.jpeg)

To a suspension of 3-pentyn-1-ol (0.92 mL, 10.0 mmol) and  $Et_3N$  (2.09 mL, 15.0 mmol) in dichloromethane (20 mL) was added methane sulfonylchloride (0.74 mL, 10.0 mmol) dropwise over 10 minutes at 0 °C. The mixture was stirred at room temperature for 2 hours. Then water (30 mL) was added, and it was extracted with dichloromethane (3 × 30 mL). The combined organic extractions were washed aq. 1.0 M HCl (1 × 30 mL), NaHCO<sub>3</sub> (1 × 30 mL of a sat. aq. solution) and brine solution (1 × 30 mL). The organic phase was then dried

over magnesium sulfate, filtered, and concentrated. The resultant residue was added dropwise over 10 minutes to a stirred benzylamine (6.55 mL, 60.0 mmol). The neat reaction mixture was stirred vigorously at room temperature for 18 hours. 2.0 M NaOH (30 mL) was added to the reaction and extracted with diethyl ether ( $3 \times 40$  mL). The combined organics were washed with brine ( $1 \times 50$  mL), and subsequently dried over magnesium sulfate and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 20% ethyl acetate in cyclohexane) to give **63** (1.44 g, 8.30 mmol, 83% yield) as a pale-yellow oil.

**R**<sub>f</sub> (4:1 cyclohexane: diethyl ether) = 0.11; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3062, 3026, 2917, 1494, 1453, 1175, 1118, 963, 734; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.37 – 7.28 (m, 4H, Ar*H*), 7.28 – 7.23 (m, 1H, Ar*H*), 3.82 (s, 2H, NHC*H*<sub>2</sub>Ar), 2.75 (t, *J* = 6.6 Hz, 2H, NHC*H*<sub>2</sub>), 2.40 – 2.30 (m, 2H, *CH*<sub>2</sub>CC), 1.78 (t, *J* = 2.5 Hz, 3H, *CH*<sub>3</sub>), 1.70 (br s, 1H, N*H*); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 140.4 (ArCq), 128.5 (ArCH), 128.2 (ArCH), 127.1(ArCH), 78.5 (Cq, alkyne), 77.0 (Cq, alkyne), 53.6 (NHCH<sub>2</sub>Ar), 48.0 (NHCH<sub>2</sub>), 19.9 (CH<sub>2</sub>CC), 3.7 (CH<sub>3</sub>); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>16</sub>N 174.1277; found 174.1276 (+0.60 ppm).

Data are consistent with the literature.<sup>6</sup>

## N-Benzyl-N-(2-bromo-2,2-difluoroethyl)pent-3-yn-1-amine 64

![](_page_23_Figure_4.jpeg)

*N*-Benzylpent-3-yn-1-amine **63** (433 mg, 2.50 mmol) and bromodifluoroacetic acid (875 mg, 5.00 mmol) were subjected to General Procedure 2, stirring for 18 hours. The crude material was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 49:1, pentane: diethyl ether) to give **64** (676 mg, 2.14 mmol, 86% yield) as a colourless oil.

**R**<sub>f</sub> (19:1 pentane: diethyl ether) = 0.31; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2918, 2847,1494, 1453, 1371, 1081, 1012, 736, 698; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.38 – 7.30 (m, 4H, Ar*H*), 7.30 – 7.23 (m, 1H, Ar*H*), 3.91 (s, 2H, NHC*H*<sub>2</sub>Ar), 3.44 (t, *J* = 13.3 Hz, 2H, NHC*H*<sub>2</sub>CF<sub>2</sub>Br), 2.86 (t, *J* = 7.4 Hz, 2H, NHC*H*<sub>2</sub>), 2.33 – 2.25 (m, 2H, CH<sub>2</sub>CC), 1.76 (t, *J* = 2.5 Hz, 3H, CH<sub>3</sub>); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 138.6 (ArCq), 128.7 (ArCH) , 128.5 (ArCH), 127.5 (ArCH), 124.0 (t, *J* = 310.5 Hz, CF<sub>2</sub>Br), 77.1 (Cq, alkyne), 77.0 (Cq, alkyne), 63.6 (t, *J* = 22.1 Hz), 58.7 (NHCH<sub>2</sub>Ar), 53.2 (NHCH<sub>2</sub>), 17.9 (CH<sub>2</sub>CC), 3.6 (CH<sub>3</sub>); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –50.53; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>17</sub><sup>79</sup>BrF<sub>2</sub>N 316.0507; found 316.0513 (+2.10 ppm).

3.5 Cyclised alkenyl amines

## 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylpyrrolidine 6

![](_page_23_Figure_9.jpeg)

*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-en-1-amine **5** (79.6 mg, 249  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (Al<sub>2</sub>O<sub>3</sub>, eluting with 5-20% ethyl acetate in pentane) to give **6** (47.3 mg, 196  $\mu$ mol, 79% yield) as a yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: ethyl acetate) = 0.53; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3073, 3034, 2971, 2936, 2887, 2835, 2804, 2754; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.25 – 7.17 (m, 2H, Ar*H*), 6.91 – 6.82 (m, 2H, Ar*H*), 3.81 (s, 3H, *H*-11), 3.61 – 3.46 (m, 2H, *H*-6), 3.17 (ddd, *J* = 18.4, 13.6, 10.7 Hz, 1H, *H*-1), 3.04 (dd, *J* = 9.2, 7.3 Hz, 1H, *H*-5), 2.66 (ddd, *J* = 18.4, 13.6, 11.3 Hz, 1H, *H*-1), 2.57 – 2.37 (m, 1H, *H*-3), 2.17 (dd, *J* = 9.1, 9.1 Hz, 1H, *H*-5), 1.06 (app dd, *J* = 7.1, 2.2 Hz, 3H, *H*-4); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 159.0 (*C*-10), 130.0 (*C*-7), 130.0 (Ar*C*H), 129.5 (dd, *J* = 250.6, 250.6 Hz, *C*-2), 113.9 (Ar*C*H), 61.7 (dd, *J* = 29.3, 29.3 Hz, *C*-1), 59.9 (dd, *J* = 6.0, 1.3 Hz, *C*-5), 59.4 (*C*-11), 55.4 (*C*-6), 40.9 (dd, *J* = 24.3, 21.7 Hz, *C*-3), 10.9 (app d, *J* = 10.3 Hz, *C*-4); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –94.36 (d, *J* = 228.6 Hz), –106.63 (d, *J* = 228.6 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>17</sub>F<sub>2</sub>NO 242.1351; found 242.1350 (+0.30 ppm).

#### Methyl 4-((3,3-difluoro-4-methylpyrrolidin-1-yl)methyl)benzoate 7

![](_page_24_Figure_2.jpeg)

Methyl 4-((allyl(2-bromo-2,2-difluoroethyl)amino)methyl)benzoate **34** (87.0 mg, 250  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 18 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub> eluting with 0-10% diethyl ether in pentane) to give **7** (52.6 mg, 195  $\mu$ mol, 78% yield) as a colourless oil.

**R**<sub>f</sub> (9:1 pentane: diethyl ether) = 0.19; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2976, 2953, 2809, 2757, 1719, 1612, 1435, 1274, 1178, 1107, 758; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 8.03 – 7.96 (m, 2H, Ar*H*), 7.42 – 7.35 (m, 2H, Ar*H*), 3.91 (s, 3H, *H*-12), 3.71 – 3.59 (m, 2H, *H*-6), 3.17 (dt, *J* = 13.6, 10.7 Hz, 1H, *H*-1), 3.08 – 3.00 (m, 1H, *H*-5), 2.77 – 2.62 (m, 1H, *H*-1), 2.58 – 2.38 (m, 1H, *H*-3), 2.21 (t, *J* = 9.0 Hz, 1H, *H*-5), 1.06 (dd, *J* = 7.1, 2.2 Hz, 3H, *H*-4); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 167.1 (*C*-11), 143.4 (*C*-10), 131.8 (*C*-7), 129.9 (Ar*C*H), 129.4 (dd, *J* = 250.7, 250.0 Hz, *C*-2), 128.6 (Ar*C*H), 61.8 (app t, *J* = 29.6 Hz, *C*-1), 60.0 (d, *J* = 6.3 Hz, *C*-5) 59.7 (*C*-12), 52.2 (*C*-6), 40.9 (dd, *J* = 26.1, 21.7 Hz, *C*-3), 10.9 (app d, *J* = 10.1 Hz, *C*-4); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –94.64 (d, *J* = 229.0 Hz), –106.78 (d, *J* = 229.0 Hz).; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>17</sub>F<sub>2</sub>NNaO<sub>2</sub> 292.1120; found 292.1120 (+0.30 ppm).

#### 1-(Cyclohexylmethyl)-3,3-difluoro-4-methylpyrrolidine 8

![](_page_24_Figure_6.jpeg)

*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(cyclohexylmethyl)prop-2-en-1-amine **35** (74.1 mg, 250  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 17 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 2% diethyl ether in cyclohexane) to give **8** (41.3 mg, 190  $\mu$ mol, 76% yield) as a colourless oil.

**R**<sub>f</sub> (49:1 cyclohexane: diethyl ether) = 0.42; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2973, 2921, 2850, 2796, 1449, 1326, 1221, 1185, 1112, 917, 876 **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 3.17 (dt, *J* = 13.9, 10.7 Hz, 1H, *H*-1), 3.02 (dd, *J* = 9.0, 7.2 Hz, 1H, *H*-4), 2.65 – 2.53 (m, 1H, *H*-1), 2.53 – 2.36 (m, 1H, *H*-3), 2.28 – 2.14 (m, 2H, *H*-6), 2.10 (t, *J* = 9.0 Hz, 1H, *H*-4), 1.83 – 1.62 (m, 5H, *H*-9 & *H*-8), 1.45 – 1.31 (m, 1H, *H*-7), 1.28 – 1.09 (m, 3H, *H*-9 & *H*-8), 1.05 (dd, *J* = 7.1, 2.2 Hz, 3H, *H*-5), 0.93 – 0.80 (m, 2H, *H*-10); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 129.6 (app t, *J* = 250.4 Hz, *C*-2), 63.3 (*C*-6), 62.4 (t, *J* = 29.0 Hz, *C*-1), 60.7 (app d, *J* = 6.4 Hz, *C*-4), 40.8 (dd, *J* = 24.3, 21.6 Hz, *C*-3), 36.6 (*C*-7), 31.9 (*C*-9), 31.8 (*C*-8), 26.9 (*C*-10), 26.2 (*C*-9),10.9 (app d, *J* = 10.3 Hz, *C*-5); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) -94.61 (d, *J* = 228.2 Hz), -106.81 (d, *J* = 228.2 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>22</sub>F<sub>2</sub>N 218.1715; found 218.1716 (+0.60 ppm).

![](_page_25_Figure_1.jpeg)

Methyl (*E*)-4-((2-bromo-2,2-difluoroethyl)(4-methoxybenzyl)amino)but-2-enoate **36** (94.5 mg, 250  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10-20% diethyl ether in pentane) to give **9** (62.7 mg, 209  $\mu$ mol, 84% yield) as a yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: diethyl ether) = 0.29; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3067, 3033, 2998, 2955, 2913, 2836, 2807, 1737, 1613; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.20 (d, *J* = 8.5 Hz, 2H, *H*-11), 6.85 (d, *J* = 8.5 Hz, 2H, *H*-10), 3.80 (s, 3H, *H*-13), 3.68 (s, 3H, *H*-7), 3.61 – 3.48 (m, 2H, *H*-8), 3.16 – 3.02 (m, 2H, *H*-1 and *H*-4), 2.97 – 2.78 (m, 1H, *H*-3), 2.79 – 2.61 (m, 2H, *H*-1 and *H*-5), 2.39 (dddd, *J* = 16.8, 9.5, 1.4, 1.4 Hz, 1H, *H*-5), 2.30 (app t, *J* = 8.7 Hz, 1H, *H*-4); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 172.2 (dd, *J* = 1.4, 1.4 Hz, *C*-6), 159.0 (*C*-12), 129.9 (*C*-11), 129.7 (*C*-9), 128.8 (dd, *J* = 252.3, 252.3 Hz, *C*-2), 113.9 (*C*-10), 61.5 (dd, *J* = 28.9, 28.9 Hz, *C*-1), 59.1 (*C*-8), 58.0 (app d, *J* = 5.5 Hz, *C*-4), 55.4 (*C*-13), 52.0 (*C*-7), 42.5 (dd, *J* = 25.3, 19.9 Hz, *C*-3), 31.8 (app d, *J* = 9.9 Hz, *C*-5); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) – 93.53 (d, *J* = 230.9 Hz), –104.76 (d, *J* = 230.9 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>15</sub>H<sub>19</sub>F<sub>2</sub>NO<sub>3</sub> 300.1406; found 300.1407 (+0.50 ppm).

#### 1-(1-Benzyl-4,4-difluoropyrrolidin-3-yl)propan-2-one 10

![](_page_25_Figure_5.jpeg)

(*E*)-5-(Benzyl(2-bromo-2,2-difluoroethyl)amino)pent-3-en-2-one **37** (83.0 mg, 250  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 20% diethyl ether in pentane) to give **10** (54.9 mg, 217  $\mu$ mol, 86% yield) as a yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: diethyl ether) = 0.13; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3088, 3064, 3029, 3006, 2964, 2914, 2804, 1718; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.36 – 7.23 (m, 5H, Ar*H*), 3.67 – 3.52 (m, 2H, *H*-8), 3.20 – 3.01 (m, 2H, *H*-4 and *H*-1), 2.99 – 2.81 (m, 2H, *H*-3 and *H*-5), 2.74 (ddd, *J* = 17.6, 11.6, 11.6 Hz, 1H, *H*-1), 2.50 (dddd, *J* = 18.2, 9.4, 2.4, 2.4 Hz, 1H, *H*-5), 2.24 (dd, *J* = 8.4, 8.4 Hz, 1H, *H*-4), 2.17 (s, 3H, *H*-7); **δ**<sub>C</sub> (101 MHz, CDCl<sub>3</sub>) 206.2 (*C*-6), 137.7 (*C*-9), 129.3 (dd, *J* = 252.0, 252.0 Hz, *C*-4), 128.8 (ArCH), 128.5 (ArCH), 127.5 (*C*-12), 61.5 (dd, *J* = 29.1, 29.1 Hz, *C*-1), 59.8 (*C*-8), 58.3 (dd, *J* = 5.5, 1.5 Hz, *C*-4), 41.5 (dd, *J* = 24.9, 20.0 Hz, *C*-3), 41.1 (dd, *J* = 7.7 Hz, *C*-5), 30.2 (*C*-7); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –93.72 (d, *J* = 230.3 Hz), –103.90 (d, *J* = 230.3 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>17</sub>F<sub>2</sub>NO 254.1351; found 254.1353 (+0.60 ppm).

## 2-Benzyl-4,4-difluoro-2-azaspiro[4.5]decane 11

![](_page_25_Figure_9.jpeg)

*N*-Benzyl-2-bromo-*N*-(cyclohex-1-en-1-ylmethyl)-2,2-difluoroethan-1-amine **38** (86.6 mg, 252  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-1% diethyl ether in pentane) to give **11** (46.7 mg, 176  $\mu$ mol, 70% yield) as a pale yellow oil.

**R**<sub>f</sub> (95:5 petroleum ether: diethyl ether) = 0.33; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3087, 3064, 3029, 2933, 2859, 2798, 2753; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.42 – 7.16 (m, 5H, Ar*H*), 3.63 (s, 2H, *H*-10), 2.96 (dd, *J* = 14.2, 14.2 Hz, 2H, *H*-1), 2.66 (s, 2H, *H*-9), 1.84 – 1.52 (m, 7H, CH<sub>2</sub>, cyclohexane), 1.39 – 1.09 (m, 3H, CH<sub>2</sub>, cyclohexane); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 138.4 (*C*-11), 129.7 (t, *J* = 254.4 Hz, *C*-2), 128.6 (Ar*C*H), 128.5 (Ar*C*H), 127.3 (Ar*C*H), 62.5 (*C*-9), 61.1 (t, *J* = 29.5 Hz, *C*-1), 60.1 (*C*-10), 47.0 (t, *J* = 19.6 Hz, *C*-3), 30.0 (t, *J* = 5.7 Hz, *H*-4 and *H*-8), 25.9 (*H*-6), 23.1 (t, *J* = 1.6 Hz, *H*-5 and *H*-7); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –107.39; **HRMS** (ESI) m/z:  $[M+H]^+$  calcd for C<sub>16</sub>H<sub>21</sub>F<sub>2</sub>N 266.1715; found 266.1723 (+3.00 ppm).

#### 3,3-Difluoro-1-(4-methoxybenzyl)-4-vinylpyrrolidine 12

![](_page_26_Figure_3.jpeg)

To a 50 mL culture tube was added *N*-(2-bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)buta-2,3-dien-1amine **42** (82.5 mg, 248 mmol),  $Ir(ppy)_3$  (1.64 mg, 2.50 µmol), DIPEA (0.871 mL, 5.00 mmol), TTMSS (154 µL, 500 µmol) and acetonitrile (25 mL). The culture tube was sealed and the mixture was sparged with Ar for 20 minutes. The blue LEDs were switched on and the reaction was stirred at room temperature for 4.5 hours. KF on alumina (40 wt%, 1.5 g) was added and the mixture was stirred for 20 minutes, then filtered and concentrated. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5-10% diethyl ether in pentane) to give **12** (528 mg, 209 µmol, 84% yield) as a yellow oil.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.17; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3082, 3034, 2997, 2957, 2937, 2912, 2835, 2810, 2751; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.23 (d, *J* = 8.6 Hz, 2H, Ar*H*), 6.87 (d, *J* = 8.6 Hz, 2H, Ar*H*), 5.89 – 5.71 (m, 1H, *H*-5), 5.25 – 5.13 (m, 2H, *H*-6), 3.81 (s, 3H, *H*-12), 3.66 – 3.50 (m, 2H, *H*-7), 3.20 (ddd, *J* = 13.5, 11.2, 11.0 Hz, 1H, *H*-1), 3.14 – 2.95 (m, 2H, *H*-3 and *H*-4), 2.72 (ddd, *J* = 19.1, 12.9, 11.2 Hz, 1H, *H*-1), 2.51 – 2.37 (m, 1H, *H*-4); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 159.1 (*C*-11), 131.4 (app d, *J* = 8.6 Hz, *C*-5), 130.0 (Ar*C*H), 129.9 (Ar*C*q), 128.6 (dd, *J* = 253.4, 250.3 Hz, *C*-2), 119.1 (*C*-6), 113.9 (Ar*C*H), 61.7 (dd, *J* = 29.0, 29.0 Hz, *C*-1), 59.3 (*C*-7), 57.6 (app d, *J* = 5.9 Hz, *C*-4), 55.4 (*C*-12), 50.8 (dd, *J* = 24.7, 20.7 Hz, *C*-3); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –93.68 (d, *J* = 230.7 Hz), – 102.27 (d, *J* = 230.7 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>17</sub>F<sub>2</sub>NO 254.1351; found 254.1351 (+0.20 ppm).

#### 1-Benzyl-3,3-difluoro-4-methylpiperidine 13

![](_page_26_Figure_7.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-3-en-1-amine **45** (76.2 mg, 251  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-4% diethyl ether in pentane) to give **13** (37.8 mg, 168  $\mu$ mol, 67% yield) as a colourless oil.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.32; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3087, 3064, 3029, 2975, 2943, 2926, 2885, 2858, 2813, 2772, 2937, 2682; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.52 – 7.10 (m, 5H, Ar*H*), 3.69 – 3.50 (m, 2H, *H*-7), 3.06 (dddd, *J* = 11.7, 9.8, 5.8, 1.6 Hz, 1H, *H*-1), 2.86 (ddd, *J* = 11.5, 3.1, 2.6 Hz, 1H, *H*-6), 2.21 (ddd, *J* = 27.6,

11.8, 2.4 Hz, 1H, *H*-1), 2.11 (ddd, *J* = 11.6, 2.9, 1.7 Hz, 1H, *H*-6), 1.90 – 1.73 (m, 1H, *H*-3), 1.73 – 1.51 (m, 2H, *H*-5), 1.07 (d, *J* = 6.7 Hz, 3H, *H*-4);  $\delta_c$  (101 MHz, CDCl<sub>3</sub>) 137.5 (*C*-8), 129.1 (ArCH), 128.5 (ArCH), 127.4 (ArCH), 121.3 (dd, *J* = 247.7, 240.4 Hz, *C*-2), 62.2 (*C*-7), 58.3 (dd, *J* = 31.1, 25.0 Hz, *C*-1), 52.2 (*C*-6), 37.1 (dd, *J* = 23.2, 21.1 Hz, *C*-3), 30.5 (app d, *J* = 8.4 Hz, *C*-5), 12.2 (dd, *J* = 4.9, 2.4 Hz, *C*-4);  $\delta_F$  (376 MHz, CDCl<sub>3</sub>) –105.13 (d, *J* = 239.2 Hz), –117.38 (d, *J* = 241.9 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>17</sub>F<sub>2</sub>N 226.1402; found 226.1407 (+2.20 ppm).

#### 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylpiperidine 14

![](_page_27_Figure_2.jpeg)

*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)but-3-en-1-amine **46** (84 mg, 250  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 17 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5% diethyl ether in cyclohexane) to give **14** (52.3 mg, 210  $\mu$ mol, 82% yield) as a colourless oil.

**R**<sub>f</sub> (9:1 cyclohexane: diethyl ether) = 0.17; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2943, 2834, 2811, 1712, 1512, 1464, 1372, 1285, 913; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.25 – 7.18 (m, 2H, Ar*H*), 6.90 – 6.82 (m, 2H, Ar*H*), 3.80 (s, 3H, OCH<sub>3</sub>), 3.57 (d, J = 13.1 Hz, 1H, *H*-7), 3.49 (d, J = 13.1 Hz, 1H. *H*-7), 3.09 – 2.97 (m, 1H, *H*-1), 2.89 – 2.78 (m, 1H, *H*-1), 2.23 – 2.02 (m, 2H, *H*-5), 1.86 – 1.70 (m, 1H, *H*-3), 1.70 – 1.49 (m, 2H, *H*-4), 1.05 (d, J = 6.7 Hz, 3H, CH<sub>3</sub>); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 159.0 (*C*-11), 130.3 (ArCH), 129.4 (*C*-8), 121.3 (dd, J = 247.6, 240.3 Hz, *C*-2),113.8 (ArCH), 61.6 (*C*-7), 58.1(dd, J = 31.1, 24.9 Hz, *C*-1), 55.4 (*C*-12), 52.1 (*C*-5), 37.1 (dd, J = 23.2, 21.2 Hz, *C*-3), 30.5 (app d, J = 8.4 Hz, *C*-4), 12.2, (dd, J = 5.0, 2.4 Hz, *C*-6); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –105.11 (d, J = 239.0 Hz), –117.35 (d, J = 239.1 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>20</sub>F<sub>2</sub>NO 256.1507; found 256.1507 (+0.20 ppm).

#### 1,1-Difluoro-3-(4-methoxybenzyl)-3-azaspiro[5.5]undecane 15

![](_page_27_Figure_6.jpeg)

2-Bromo-*N*-(2-(cyclohex-1-en-1-yl)ethyl)-2,2-difluoro-*N*-(4-methoxybenzyl)ethan-1-amine **47** (97.1 mg, 250  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5% diethyl ether in cyclohexane) to give **15** (40.4 mg, 130  $\mu$ mol, 52% yield) as a colourless oil.

**R**<sub>f</sub> (9:1 cyclohexane: diethyl ether) = 0.20; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2937, 2863, 2833, 1611, 1511, 1455, 1302, 1240, 1035; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 7.25 – 7.18 (m, 2H, Ar*H*), 6.89 – 6.82 (m, 2H, Ar*H*), 3.80 (s, 3H, OC*H*<sub>3</sub>), 3.53 (s, 2H, *H*-9), 2.61 (t, *J* = 12.0 Hz, 2H, *H*-1), 2.47 (t, *J* = 5.6 Hz, 2H, *H*-5), 1.75 (t, *J* = 5.8 Hz, 2H, *H*-4), 1.64 – 1.49 (m, 7H, cyclohexane), 1.40 – 1.29 (m, 2H, cyclohexane), 1.23 – 1.12 (m, 1H, cyclohexane); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 159.0 (*C*-13), 130.4 (Ar*C*H), 129.4 (*C*-10), 123.3 (t, *J* = 247.2 Hz, *C*-2), 113.8 (Ar*C*H), 61.6 (*C*-9), 55.4 (*C*-14), 53.9 (t, *J* = 28.8 Hz, *C*-1), 47.7 (*C*-5), 39.1 (t, *J* = 19.6 Hz, *C*-3), 29.2 (t, *J* = 2.7 Hz, *C*-4), 28.1 (d, *J* = 4.1 Hz, *C*-6), 26.0 (C-7), 20.9 (*C*-8); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) – 112.99; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>26</sub>F<sub>2</sub>NO 310.1977; found 310.1977 (+0.10 ppm).

#### 4-Benzyl-3,3-difluoro-1-(4-methoxybenzyl)pyrrolidine 16

![](_page_28_Picture_0.jpeg)

(*E*)-*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)-3-phenylprop-2-en-1-amine **48** (99.4 mg, 251  $\mu$ mol) was subjected to General Procedure 5, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5-7% diethyl ether in pentane) to give **16** (30.0 mg, 94.4  $\mu$ mol, 38% yield) as a pale yellow oil.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.26; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3087, 3063, 3029, 3002, 2955, 2935, 2913, 2863, 2834, 2807, 2798, 1612, 1511; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.42 – 7.09 (m, 7H, Ar*H*), 6.84 (d, *J* = 8.3 Hz, 2H, Ar*H*), 3.80 (s, 3H, *H*-15), 3.63 – 3.43 (m, 2H, *H*-10), 3.18 (ddd, *J* = 13.8, 10.7, 10.7 Hz, 1H, *H*-1), 3.04 (dd, *J* = 13.7, 5.0 Hz, 1H, *H*-5), 2.89 (dd, *J* = 9.3, 7.0 Hz, 1H, *H*-4), 2.80 – 2.65 (m, 2H, *H*-1 and *H*-3), 2.60 (dd, *J* = 13.8, 10.2 Hz, 1H, *H*-5), 2.30 (dd, *J* = 9.0, 9.0 Hz, 1H, *H*-4); **δ**<sub>C</sub> (101 MHz, CDCl<sub>3</sub>) 159.0 (*C*-14), 139.5 (*C*-6), 129.9 (ArCH), 129.1 (dd, *J* = 250.3, 250.3 Hz, *C*-2), 128.8 (ArCH), 128.7 (ArCH), 128.1 (ArCq), 126.43 (ArCH), 113.9 (ArCH), 62.0 (dd, *J* = 29.1, 29.1 Hz, *C*-1), 59.4 (*C*-10), 58.1 (app d, *J* = 5.9, *C*-4), 55.4 (*C*-15), 47.8 (dd, *J* = 230.0 Hz), -104.96 (d, *J* = 230.0 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>19</sub>H<sub>21</sub>F<sub>2</sub>NO 318.1664; found 318.1663 (+0.40 ppm).

## 3.6 Cyclised alkynyl amines

## 1-(2-((tert-Butyldimethylsilyl)oxy)ethyl)-3,3-difluoro-4-methylenepyrrolidine 4

![](_page_28_Figure_5.jpeg)

*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(2-((tert-butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **3** (89.8 mg, 250  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 16 hours. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-5% diethyl ether in pentane) to give **4** (39.4 mg, 142  $\mu$ mol, 56% yield) as a colourless oil.

**R**<sub>f</sub> (90:10 petroleum ether: ethyl acetate) = 0.43; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2955, 2929, 2907, 2887, 2857, 2812, 2777, 2714; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 5.58 (dt, *J* = 5.5, 2.8 Hz, 1H, *H*-5), 5.30 (dt, *J* = 5.5, 2.8 Hz, 1H, *H*-5), 3.76 (t, *J* = 5.9 Hz, 2H, *H*-7), 3.44 (m, 2H, *H*-4), 3.08 (t, *J* = 11.4 Hz, 2H, *H*-1), 2.65 (t, *J* = 5.9 Hz, 2H, *H*-6), 0.89 (s, 9H, *H*-10), 0.06 (s, 6H, *H*-8); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 142.9 (t, *J* = 20.9 Hz, *C*-3), 122.8 (t, *J* = 246.0 Hz, *C*-2), 112.0 (t, *J* = 2.1 Hz, *C*-5), 62.2 (*C*-7), 62.1 (t, *J* = 27.0 Hz, *C*-1), 57.9 (*C*-6), 57.8 (t, *J* = 3.1 Hz, *C*-4), 26.0 (*C*-10), 18.4 (*C*-9), – 5.3 (*C*-8); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –98.23; **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>13</sub>H<sub>25</sub>F<sub>2</sub>NOSi 300.1566; found 300.1564 (+0.40 ppm).

#### 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine 17

![](_page_28_Figure_9.jpeg)

*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-yn-1-amine **29** (80.2 mg, 252  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 80:20 pentane/diethyl ether) to give **17** (35.4 mg, 148  $\mu$ mol, 59% yield) as a colourless oil.

**R**<sub>f</sub> (80:20 petroleum ether:ethyl acetate) = 0.49; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2924, 2837, 2808, 1512; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.35 – 7.18 (m, 2H, Ar*H*), 6.94 – 6.81 (m, 2H, Ar*H*), 5.59 (m, 1H, *H*-5), 5.29 (m, 1H, *H*-5), 3.82 (s, 3H, *H*-11), 3.62 (s, 2H, *H*-6), 3.34 (t, *J* = 2.2 Hz, 2H, *H*-4), 2.99 (t, *J* = 12.0 Hz, 2H, *H*-1); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 159.1 (*C*-10), 143.1 (t, *J* = 20.9 Hz, *C*-3), 130.1 (Ar*C*H), 129.5 (*C*-5), 122.8 (t, *J* = 246.5 Hz, *C*-2), 113.9 (Ar*C*H), 112.1 (t, *J* = 2.4 Hz, *C*-5), 61.0 (t, *J* = 27.0 Hz, *C*-1), 59.4 (*C*-6), 56.60 (t, *J* = 3.1 Hz, *C*-4), 55.4 (*C*-11); **δ**<sub>F</sub>(376 MHz, CDCl<sub>3</sub>) – 97.63; **HRMS** (ESI) m/z:  $[M+H]^+$  calcd for C<sub>13</sub>H<sub>15</sub>F<sub>2</sub>NO 240.1194; found 2440.1192 (+1.10 ppm).

#### 1-Benzyl-3,3-difluoro-4-methylenepyrrolidine 18

![](_page_29_Figure_3.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)prop-2-yn-1-amine **50** (72.0 mg, 250  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 24 hours. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-5% diethyl ether in pentane) to give **18** (35.4 mg, 169  $\mu$ mol, 67% yield) as a colourless oil.

**R**<sub>f</sub> (95:5 petroleum ether: diethyl ether) = 0.48; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3107, 3064, 2957, 2923, 2805; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.37 – 7.26 (m, 5H, Ar*H*), 5.59 (m, 1H, *H*-5), 5.29 (m, 1H, *H*-5), 3.67 (s, 2H, *H*-6), 3.36 (t, *J* = 2.0 Hz, 2H, *H*-4), 3.01 (t, *J* = 11.3 Hz, 2H, *H*-1); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 143.1 (t, *J* = 21.0 Hz, *C*-3), 137.4 (Ar*C*H), 128.9 (Ar*C*H), 128.6 (Ar*C*H), 127.6 (Ar*C*q), 122.8 (t, *J* = 246.5 Hz, *C*-2), 112.1 (t, *J* = 2.5 Hz, *C*-5), 61.1 (t, *J* = 27.1 Hz, *C*-1), 60.0 (*C*-6), 56.7 (t, *J* = 3.1 Hz, *C*-4); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –97.69; **HRMS** (ESI) m/z:  $[M+H]^+$  calcd for C<sub>12</sub>H<sub>13</sub>F<sub>2</sub>N 210.1089; found 210.1087 (+0.70 ppm).

#### 1-Benzyl-3,3-difluoro-4-methylenepiperidine 19

![](_page_29_Figure_7.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-3-yn-1-amine **44** (75.6 mg, 250  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 17.5 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-5% diethyl ether in pentane) to give **19** (28.3 mg, 0.127  $\mu$ mol, 51% yield) as a colourless oil.

**R**<sub>f</sub> (95:5 petroleum ether: diethyl ether) = 0.43; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3088, 3064, 3029, 3004, 2951, 2917, 2879, 2813, 2773, 2743; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.40 – 7.33 (m, 4H, Ar*H*), 7.31 (t, *J* = 4.3 Hz, 1H, Ar*H*), 5.40 (d, *J* = 1.0 Hz, 1H, *H*-4), 5.09 (d, *J* = 1.0 Hz, 1H, *H*-4), 3.66 (s, 2H, *H*-7), 2.77 (t, *J* = 11.1 Hz, 2H, *H*-1), 2.58 (t, *J* = 5.7 Hz, 2H, *H*-6), 2.50 (t, *J* = 5.7 Hz, 2H, *H*-5); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 140.2 (t, *J* = 20.7 Hz, *C*-3), 137.3 (ArCq), 129.0 (ArCH), 128.4 (ArCH), 127.4 (ArCH), 117.2 (t, *J* = 242.6 Hz, *C*-2), 111.5 (t, *J* = 7.4 Hz, *C*-4), 61.6 (*C*-7), 59.5 (t, *J* = 28.7 Hz, *C*-1), 53.3 (*C*-6), 31.9 (t, *J* = 2.2 Hz, *C*-5); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –105.54; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>15</sub>F<sub>2</sub>N 224.1245; found 224.1245 (+0.10 ppm).

![](_page_30_Figure_1.jpeg)

Methyl 1-(2-bromo-2,2-difluoroethyl)-2-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate **52** (78.7 mg, 254  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 17 hours. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 5-10% diethyl ether in pentane) to give **20** (43.1 mg, 186  $\mu$ mol, 73% yield) as a colourless oil.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.20; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2953, 2916, 2884, 2854, 1730; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 5.40 – 5.36 (m, 1H, *H*-4), 5.11 – 5.07 (m, 1H, *H*-4), 3.68 (s, 3H, *H*-11), 3.32 – 3.22 (m, 2H, *H*-1), 3.21 – 3.09 (m, 2H, *H*-9), 2.93 (dd, *J* = 13.3, 3.8 Hz, 1H, *H*-5), 2.46 (ddddd, *J* = 13.3, 1.9, 1.9, 1.9, 1.9 Hz, 1H, *H*-5), 2.18 – 2.07 (m, 1H, *H*-7), 2.00 – 1.91 (m, 1H, *H*-8), 1.91 – 1.77 (m, 2H, *H*-7 and *H*-8); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 174.1 (*C*-10), 138.3 (dd, *J* = 23.1, 19.8 Hz, *C*-3), 117.8 (dd, *J* = 249.8, 241.7 Hz, *C*-2), 113.8 (dd, *J* = 9.2, 6.0 Hz, *C*-4), 69.0 (*C*-6), 53.1 (dd, *J* = 31.9, 25.6 Hz, *C*-1), 51.9 (*C*-11), 50.4 (*C*-9), 39.2 (d, *J* = 4.1 Hz, *C*-5), 36.4 (d, *J* = 1.3 Hz, *C*-7), 21.9 (*C*-8); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –95.30 (d, *J* = 240.4 Hz), –115.57 (d, *J* = 240.4 Hz); **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>15</sub>F<sub>2</sub>NO<sub>2</sub> 254.0963; found 254.0962 (+0.30 ppm).

#### 1-Benzyl-4,4-difluoro-2,2-dimethyl-3-methylenepyrrolidine 21

![](_page_30_Figure_5.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-2-methylbut-3-yn-2-amine **54** (79.0 mg, 250  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 24 hours. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 0-2% diethyl ether in pentane) to give **21** (37.3 mg, 157  $\mu$ mol, 63% yield) as a colourless solid.

**R**<sub>f</sub> (95:5 petroleum ether: ethyl acetate) = 0.56; **m.p.** 55–57 °C; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3088, 3067, 3033, 2989, 2971, 2928, 2901, 2870, 2847, 2814, 2712; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.46 – 7.17 (m, 5H, Ar*H*), 5.63 – 5.57 (m, 1H, *H*-5), 5.33 – 5.22 (m, 1H, *H*-5), 3.64 (s, 2H, *H*-8), 2.99 (tt, *J* = 11.9, 1.7 Hz, 2H, *H*-1), 1.30 (s, 3H, *H*-6), 1.29 (s, 3H, *H*-7); **δ**<sub>C</sub> (101 MHz, CDCl<sub>3</sub>) 153.6 (t, *J* = 19.6 Hz, *C*-3), 139.0 (*C*-9), 128.5 (Ar*C*H), 128.4 (Ar*C*H), 127.2 (*C*-12), 122.6 (t, *J* = 245.0 Hz, *C*-2), 110.8 (t, *J* = 2.7 Hz, *C*-5), 62.8 (t, *J* = 2.9 Hz, *C*-4), 56.8 (t, *J* = 27.5 Hz, *C*-1), 51.6 (*C*-8), 23.6 (*C*-6 and *C*-7); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –96.22; **HRMS** (ESI) m/z:  $[M+H]^+$  calcd for C<sub>14</sub>H<sub>17</sub>F<sub>2</sub>N 238.1402; found 238.1404 (+1.00 ppm).

#### tert-Butyl (2-(3,3-difluoro-4-methylenepyrrolidin-1-yl)ethyl)carbamate 22

![](_page_30_Figure_9.jpeg)

*tert*-Butyl (2-((2-bromo-2,2-difluoroethyl)(prop-2-yn-1-yl)amino)ethyl)carbamate **56** (30.0 mg, 87.9 μmol) was subjected to General Procedure 4, stirring at room temperature for 17 hours. The resultant residue after

concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 20-50% diethyl ether in pentane) to give **22** (11.2 mg, 42.7  $\mu$ mol, 48% yield) as a yellow oil.

**R**<sub>f</sub> (50:50 petroleum ether: diethyl ether) = 0.31; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3434, 3350, 2976, 2932, 2814, 1698, 1503; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 5.73 – 5.58 (m, 1H, *H*-4), 5.43 – 5.27 (m, 1H, *H*-4), 3.42 (t, *J* = 2.1 Hz, 2H, *H*-5), 3.27 (dt, *J* = 5.9, 5.1 Hz, 2H, *H*-7), 3.05 (t, *J* = 11.3 Hz, 2H, *H*-1), 2.65 (t, *J* = 5.9 Hz, 2H, *H*-6), 1.47 (s, 9H, *H*-10); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 156.0 (*C*-8), 142.3 (t, *J* = 21.0 Hz, *C*-3), 122.4 (t, *J* = 246.4 Hz, *C*-2), 112.3 (t, *J* = 2.3 Hz, *C*-4), 79.4, 61.0 (t, *J* = 27.3 Hz, *C*-9), 56.5 (t, *J* = 3.1 Hz, *C*-5), 54.9 (*C*-6), 38.1 (*C*-7), 28.4 (*C*-10); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) -97.89; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>12</sub>H<sub>20</sub>F<sub>2</sub>N<sub>2</sub>O<sub>2</sub> 263.1566; found 263.1569 (+1.20 ppm).

#### 2-(3,3-Difluoro-4-methylenepyrrolidin-1-yl)ethan-1-ol 23

![](_page_31_Figure_3.jpeg)

2-((2-Bromo-2,2-difluoroethyl)(prop-2-yn-1-yl)amino)ethan-1-ol **57** (60.6 mg, 250  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 16 hours. The resultant residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10-20% acetone in pentane) to give **23** (30.2 mg, 185  $\mu$ mol, 74% yield) as a yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: acetone) = 0.15; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3362, 2930, 2883, 2810; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 5.72 – 5.51 (m, 1H, *H*-4), 5.39 – 5.14 (m, 1H, *H*-4), 3.65 (t, *J* = 5.3 Hz, 2H, *H*-7), 3.44 (s, 2H, *H*-5), 3.27 (br s, 1H, *H*-8), 3.07 (t, *J* = 11.3 Hz, 2H, *H*-1), 2.69 (t, *J* = 5.3 Hz, 2H, *H*-6); **δ**<sub>C</sub> (101 MHz, CDCl<sub>3</sub>) 142.4 (t, *J* = 21.0 Hz, *C*-3), 122.5 (t, *J* = 246.5 Hz, *C*-2), 112.5 (t, *J* = 2.5 Hz, *C*-4), 61.2 (t, *J* = 27.3 Hz, *C*-1), 59.4 (*C*-7), 57.4 (*C*-6), 56.8 (t, *J* = 3.1 Hz, *C*-5); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –97.97; **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>7</sub>H<sub>11</sub>F<sub>2</sub>NO 164.0881; found 164.0878 (+1.90 ppm).

#### 1-Benzyl-4-ethylidene-3,3-difluoropyrrolidine 24

![](_page_31_Figure_7.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-2-yn-1-amine **59** (75.5 mg, 250  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 2-5% diethyl ether in pentane) to give **24** (421  $\mu$ g, 189  $\mu$ mol, 75% yield, 53:47 *E:Z*) as a colourless oil. The following data is for the 53:47 mixture of *E* and *Z* products. The stereochemistry of each component was determined by NOE interactions.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.31; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3087, 3064, 3030, 2921, 2804, 2765; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.39 – 7.25 (m, 10H, Ar*H*), 6.11 – 5.99 (m, 1H, *H*-5), 5.80 – 5.69 (m, 1H, *H*-16), 3.70 (s, 2H, *H*-7), 3.63 (s, 2H, *H*-18), 3.41 – 3.31 (m, 2H, *H*-4), 3.31 – 3.17 (m, 2H, *H*-15), 3.00 (app t, *J* = 11.2 Hz, 4H, *H*-1 and *H*-12), 1.92 – 1.84 (m, 3H, *H*-17), 1.72 – 1.63 (m, 3H, *H*-6); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 137.6 (Ar*C*q), 137.5 (Ar*C*q), 135.2 (t, *J* = 20.5 Hz, *C*-3), 133.6 (t, *J* = 19.2 Hz, *C*-14), 128.9 (Ar*C*H), 128.9 (Ar*C*H), 128.6 (Ar*C*H), 128.5 (Ar*C*H), 127.5 (Ar*C*H), 126.3 (*C*-16), 124.6 (t, *J* = 246.0 Hz, *C*-13), 123.8 (t, *J* = 2.5 Hz, *C*-5), 123.2 (t, *J* = 244.9 Hz, *C*-2), 62.7 (t, *J* = 27.7 Hz, *C*-12), 61.3 (t, *J* = 27.3 Hz, *C*-1), 60.2 (*C*-7), 60.0 (*C*-18), 57.9 (t, *J* = 3.8 Hz, *C*-

15), 54.3 (t, J = 3.2 Hz, C-4), 14.7 (t, J = 2.1 Hz, C-6), 13.9 (C-17);  $\delta_F$  (376 MHz, CDCl<sub>3</sub>) –96.12, –96.58; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>15</sub>F<sub>2</sub>N 224.1245; found 224.1243 (+1.20 ppm).

1-Benzyl-3,3-difluoro-4-((trimethylsilyl)methylene)pyrrolidine 25

![](_page_32_Figure_2.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-3-(trimethylsilyl)prop-2-yn-1-amine **61** (90.1 mg, 250  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 88 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 2-5% diethyl ether in pentane) to give **25** (450  $\mu$ g, 160  $\mu$ mol, 64% yield, 55:45 *E:Z*) as a pale yellow oil. The following data is for the 55:45 mixture of *E* and *Z* products. The stereochemistry of each component was determined by NOE interactions.

**R**<sub>f</sub> (95:5 petroleum ether: diethyl ether) = 0.35; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3088, 3065, 3030, 2956, 2922, 2900, 2802, 2760, 2701; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.38 – 7.27 (m, 10H, Ar*H*), 6.16 (tt, *J* = 2.7, 2.7 Hz, 1H, *H*-4), 5.86 (tt, *J* = 2.7, 2.4 Hz, 1H, *H*-15), 3.70 (s, 2H, *H*-7), 3.64 (s, 2H, *H*-18), 3.41 (d, *J* = 2.7 Hz, 2H, *H*-6), 3.35 (d, *J* = 2.7 Hz, 2H, *H*-17), 3.01 (t, *J* = 11.5 Hz, 2H, *H*-12), 2.94 (t, *J* = 11.1 Hz, 2H, *H*-1), 0.17 (s, 9H, *H*-16), 0.13 (s, 9H, *H*-5); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 149.4 (t, *J* = 21.1 Hz, *C*-3), 148.6 (t, *J* = 21.1 Hz, *C*-14), 137.4 (*C*-19), 137.4 (*C*-8), 130.5 (*C*-15), 129.0 (Ar*C*H), 128.9 (Ar*C*H), 128.6 (Ar*C*H), 128.6 (Ar*C*H), 127.6 (*C*-11), 127.6 (*C*-22), 126.9 (t, *J* = 2.0 Hz, *C*-4), 123.1 (t, *J* = 247.5 Hz, *C*-13), 122.1 (t, *J* = 246.6 Hz, *C*-2), 62.1 (t, *J* = 27.8 Hz, *C*-12), 60.4 (t, *J* = 3.9 Hz, *C*-17), 60.1 (*C*-7), 60.1 (*C*-18), 60.0 (t, *J* = 27.2 Hz, *C*-1), 56.7 (t, *J* = 2.9 Hz, *C*-6), -0.2 (t, *J* = 2.4 Hz, *C*-16), -0.90 (*C*-5); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –94.50, –97.55; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>15</sub>H<sub>21</sub>F<sub>2</sub>NSi 282.1484; found 282.1487 (+0.90 ppm).

#### (E)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine 26

![](_page_32_Figure_6.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-3-phenylprop-2-yn-1-amine **62** (91.5 mg, 251 µmol) was subjected to General Procedure 4, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 1-3% diethyl ether in pentane) to give **26** (24.4 mg, 85.5 µmol, 34% yield) as a colourless oil. The *E* stereochemistry was assigned on the basis of a NOE interaction between *H*-7 and *H*-4.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.16; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3129, 3106, 3087, 3061, 3029, 2958, 2923, 2884, 2804; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.46 – 7.22 (m, 10H, Ar*H*), 6.92 (t, *J* = 2.8 Hz, 1H, *H*-5), 3.78 (s, 2H, *H*-10), 3.75 – 3.70 (m, 2H, *H*-4), 3.08 (t, *J* = 10.8 Hz, 2H, *H*-1); **δ**<sub>C</sub> (101 MHz, CDCl<sub>3</sub>) 137.4 (*C*-11), 135.5 (t, *J* = 2.4 Hz, (*C*-6), 134.4 (t, *J* = 20.0 Hz, *C*-3), 129.0 (Ar*C*H), 128.9 (Ar*C*H), 128.8 (Ar*C*H), 128.7 (Ar*C*H), 128.5 (Ar*C*H), 127.6 (Ar*C*H), 127.4 (t, *J* = 2.9 Hz, *C*-5), 124.4 (t, *J* = 246.2 Hz, *C*-2), 60.3 (d, *J* = 27.1 Hz, *C*-1), 60.0 (*C*-10), 56.1

(t, J = 2.9 Hz, C-4);  $\delta_F$  (376 MHz, CDCl<sub>3</sub>) –95.66; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>17</sub>F<sub>2</sub>N 286.1402; found 286.1399 (+1.10 ppm).

#### (Z)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine 27

![](_page_33_Figure_2.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-3-phenylprop-2-yn-1-amine **62** (91.5 mg, 251  $\mu$ mol) was subjected to General Procedure 4, stirring at room temperature for 16 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 1-3% diethyl ether in pentane) to give **27** (8.47 mg, 29.7  $\mu$ mol, 12% yield) as a colourless oil. The *Z* stereochemistry was assigned on the basis of a NOE interaction between *H*-5 and *H*-4.

**R**<sub>f</sub> (90:10 petroleum ether: diethyl ether) = 0.10; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3090, 3063, 3032, 2962, 2936, 2922, 2884, 2854, 2828, 1795; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.54 (d, *J* = 7.2 Hz, 2H, Ar*H*), 7.42 – 7.26 (m, 8H, Ar*H*), 6.60 (t, *J* = 2.6 Hz, 1H, *H*-5), 3.70 (s, 2H, *H*-10), 3.51 (s, 2H, *H*-4), 3.11 (t, *J* = 11.7 Hz, 2H, *H*-1); **δ**<sub>c</sub> (126 MHz, CDCl<sub>3</sub>) 137.2 (C-6), 134.3 (C-11), 130.1 (C-5), 129.4 (t, *J* = 4.1 Hz, C-3), 129.1 (ArCH), 128.7 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 127.7 (ArCH), 125.7 (ArCH), 123.6 (t, *J* = 247.1 Hz, C-2), 62.9 (t, *J* = 28.4 Hz, C-1), 60.0 (C-10), 59.6 (t, *J* = 4.2 Hz, C-4); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –95.35; **HRMS** (ESI) m/z:  $[M+H]^+$  calcd for C<sub>18</sub>H<sub>17</sub>F<sub>2</sub>N 286.1402; found 286.1403 (+0.50 ppm).

#### 1-Benzyl-4-ethylidene-3,3-difluoropiperidine 28

![](_page_33_Figure_6.jpeg)

*N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)pent-3-yn-1-amine **64** (79.1 mg, 250 µmol) was subjected to General Procedure 4, stirring at room temperature for 17 hours. The resultant residue after concentration was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 4% diethyl ether in cyclohexane) to give **28** (452 µg, 190 µmol, 76% yield, 50:42 *E:Z*) as a colourless oil. The following data is for the 50:42 mixture of *E* and *Z* products. The stereochemistry of each component was determined by NOE interactions.

**R**<sub>f</sub> (90:10 cyclohexane: diethyl ether) = 0.28; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3063, 3028, 2947, 2918, 2810, 1495, 1453, 1434, 1320, 1177, 1149, 1088, 1046, 915; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.36 – 7.26 (m, 9H, Ar*H*), 6.02 – 5.93 (m, 1H, *H*-18), 5.58 – 5.48 (m, 1H, *H*-6), 3.63 (s, 2H, *H*-20), 3.62 (s, 2H, *H*-1), 2.72 (td, *J* = 11.4, 7.4 Hz, 4H, *H*-1 and *H*-13), 2.51 (q, *J* = 6.6 Hz, 4H, *H*-5 and *H*-17 ), 2.47 – 2.41 (m, 2H, *H*-4 and *H*-16), 2.37 (ddt, *J* = 5.3, 4.0, 1.5 Hz, 2H, *H*-4 and *H*-16), 1.91 – 1.77 (m, 3H, *H*-7), 1.67 (dt, *J* = 6.9, 2.9 Hz, 3H, *H*-19); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 137.5 (*C*-9), 137.4 (*C*-21), 131.4 (t, *J* = 19.3 Hz, *C*-15), 130.4 (t, *J* = 19.6 Hz, *C*-3), 129.1 (Ar*C*H), 128.5 (Ar*C*H), 127.4 (Ar*C*H), 125.6 (t, *J* = 2.9 Hz, *C*-6), 121.0 (t, *J* = 8.4 Hz, *C*-18), 120.0 (t, *J* = 245.0 Hz, *C*F<sub>2</sub>-2), 117.7 (t, *J* = 241.3 Hz, *C*F<sub>2</sub>-14) , 61.9 (*C*-8), 61.8 (*C*-20), 60.0 (m, *C*-1 and *C*-13), 53.5 (*C*-5) , 52.9 (*C*-17), 33.9 (t, *J* = 3.6 Hz, *C*-4), 25.4 (t, *J* = 2.1 Hz, *C*-16), 13.8 (t, *J* = 4.3 Hz, *C*-7), 12.5 (*C*-19); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –96.96, –103.61; **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>14</sub>H<sub>18</sub>F<sub>2</sub>N 238.1402; found 238.1402 (+0.20 ppm).

## 3.7 Derivatisations

#### 3,3-Difluoro-4-methylenepyrrolidine hydrochloride 30

![](_page_34_Figure_2.jpeg)

To a 0 °C solution of 3,3-difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine **17** (121 mg, 500  $\mu$ mol) in 1,2-DCE (1.25 mL) was added 1-chloroethyl chloroformate (59.3  $\mu$ L, 550  $\mu$ mol) in 1,2-DCE (0.5 mL) dropwise over 5 minutes. The mixture was stirred at 0 °C for 15 minutes, then warmed to room temperature and stirred for 30 minutes, then heated to 85 °C and stirred for 1 hour. The reaction was cooled to room temperature and concentrated. The residue was dissolved in MeOH (1 mL) and stirred at 75 °C for 1 hour. The reaction was cooled to room temperature and concentrated. The solid residue was filtered and washed with Et<sub>2</sub>O (10 mL) to give **30** (54.7 mg, 0.352 mmol, 69%) as a colourless solid.

**m.p.** 152–155 °C; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 2971, 2885, 2802, 2730, 2673, 2600, 2541, 2466, 2327; **\delta**<sub>H</sub> (400 MHz, Methanol-*d*<sub>4</sub>) 5.97 – 5.87 (m, 1H, *H*-4), 5.84 – 5.74 (m, 1H, *H*-4), 4.27 (t, *J* = 2.5 Hz, 2H, *H*-5), 3.89 (t, *J* = 10.9 Hz, 2H, *H*-1); **\delta**<sub>c</sub> (101 MHz, Methanol-*d*<sub>4</sub>) 137.5 (t, *J* = 21.9 Hz, *C*-3), 122.1 (t, *J* = 246.0 Hz, *C*-2), 117.4 (t, *J* = 2.9 Hz, *C*-4), 52.0 (t, *J* = 33.6 Hz, *C*-1), 48.4 (t, *J* = 2.7 Hz, *C*-5); **\delta**<sub>F</sub> (376 MHz, Methanol-*d*<sub>4</sub>) –100.68; **HRMS** (ESI) m/z: [M+Na]<sup>+</sup> calcd for C<sub>5</sub>H<sub>7</sub>F<sub>2</sub>N 142.0439; found 142.0435 (+2.50 ppm).

#### 4,4-Difluoro-1-(4-methoxybenzyl)-3-methylpyrrolidin-3-ol 31

![](_page_34_Figure_6.jpeg)

To a solution of 3,3-difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine **17** (23.9 mg, 100  $\mu$ mol) and Mn(dpm)<sub>3</sub> (3.02 mg, 5.00  $\mu$ mol) in isopropanol (0.5 mL) under O<sub>2</sub> was added PhSiH<sub>3</sub> (24.7  $\mu$ L, 200  $\mu$ mol). The reaction mixture was stirred at room temperature for 24 hours, then concentrated. The residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with 10-20% ethyl acetate in pentane) to give **31** (17.3 mg, 67.0  $\mu$ mol, 67% yield) as a pale yellow oil.

**R**<sub>f</sub> (80:20 petroleum ether: ethyl acetate) = 0.19; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3431, 2993, 2957, 2936, 2917, 2836, 2815, 1612, 1513; **δ**<sub>H</sub> (400 MHz, CDCl<sub>3</sub>) 7.23 – 7.16 (m, 2H, Ar*H*), 6.92 – 6.78 (m, 2H, Ar*H*), 3.80 (s, 3H, *H*-11), 3.60 (s, 2H, *H*-6), 3.18 (ddd, *J* = 15.3, 13.6, 11.5 Hz, 1H, *H*-1), 2.89 – 2.72 (m, 2H, *H*-1 and *H*-4), 2.63 – 2.53 (m, 1H, *H*-4), 1.33 (d, *J* = 3.1 Hz, 3H, *H*-5); **δ**<sub>c</sub> (101 MHz, CDCl<sub>3</sub>) 159.1 (*C*-10), 130.0 (Ar*C*H), 129.5 (*C*-7), 126.4 (dd, *J* = 258.8, 255.5 Hz, *C*-2), 114.0 (Ar*C*H), 77.0 (dd, *J* = 47.9, 27.8 Hz, *C*-3), 64.3 (dd, *J* = 1.5, 1.5 Hz, *C*-4), 59.7 (dd, *J* = 28.5, 28.5 Hz, *C*-1), 59.1 (*C*-6), 55.4 (*C*-11), 18.1 (app d, *J* = 5.9 Hz, *C*-5); **δ**<sub>F</sub> (376 MHz, CDCl<sub>3</sub>) –105.33 (d, *J* = 231.2 Hz), –117.28 (d, *J* = 231.2 Hz); **HRMS** (ESI) m/z: [M+H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>17</sub>F<sub>2</sub>NO<sub>2</sub> 258.1300; found 258.1297 (+1.10 ppm).

## 3.8 Synthesis of photocatalysts

## *fac*-Ir(ppy)₃65

![](_page_35_Picture_0.jpeg)

IrCl<sub>3</sub>.3H<sub>2</sub>O (210 mg, 597 µmol) and 2-phenylpyridine (256 µL, 1.79 mmol) were suspended in 2-ethoxyethanol (12 mL) and water (4.2 mL). The mixture was heated at 150 °C for 7 hours. The precipitate was filtered and washed with ethanol (15 mL) and acetone (15 mL). The solid residue was dissolved in dichloromethane (30 mL), filtered and concentrated to give [ $\mu$ -Cl Ir(ppy)<sub>2</sub>]<sub>2</sub> as a yellow solid. To this solid was added potassium carbonate (309 mg, 2.34 mmol), 2-phenylpyridine (107 µL, 746 µmol) and glycerol (7.5 mL). The mixture was heated at 220 °C under Ar for 18 hours. The reaction was cooled to room temperature. Water (15 mL) was added and the precipitate was filtered and washed with methanol (15 mL), diethyl ether (15 mL) and hexane (15 mL). The solid residue was dissolved in dichloromethane (40 mL), filtered and concentrated to give a residue which was purified by flash column chromatography (SiO<sub>2</sub>, eluting with dichloromethane) to give **65** (266 mg, 406 µmol, 68% yield) as a yellow solid.

 $v_{max}$  (thin film)/cm<sup>-1</sup> 3037, 2991, 2981, 2925, 2847, 1697, 1600, 1580, 1561;  $\delta_H$  (400 MHz, DMSO-d<sub>6</sub>) 8.13 (d, J = 8.2 Hz, 3H), 7.79 (t, J = 7.7 Hz, 3H), 7.75 (d, J = 7.7 Hz, 3H), 7.48 (d, J = 5.3 Hz, 3H), 7.13 (t, J = 6.4 Hz, 3H), 6.83 - 6.76 (m, 3H), 6.83 - 6.76 (m, 6H);  $\delta_C$  (101 MHz, DMSO-d<sub>6</sub>) 165.6, 160.8, 146.8, 143.8, 136.9, 136.3, 129.1, 124.2, 122.8, 119.6, 119.1.

Data are consistent with the literature.<sup>7</sup>

#### 4CzIPN 66

![](_page_35_Picture_5.jpeg)

NaH (600 mg, 15.0 mmol of a 60% dispersion in mineral oil) was added portionwise to a stirred solution of carbazole (1.67 g, 10.0 mmol) in THF (40 mL) over 15 minutes under Ar. The mixture was stirred at room temperature for 30 minutes after which tetrafluoroisophthalonitrile (0.403 g, 2.00 mmol) was added and the mixture was stirred at room temperature for 20 hours. Water (2 mL) was added to the reaction mixture which was then concentrated under reduced pressure. The solid was filtered, washing with water (15 mL) and ethanol (15 mL). The resulting residue was purified by flash column chromatography (SiO<sub>2</sub>, eluting with dichloromethane: petroleum ether 50:50). The resultant solid was triturated with ethanol to give **64** (1.25 g, 1.59 mmol, 79% yield) as a yellow solid.

**R**<sub>f</sub> (50:50 DCM: petroleum ether) = 0.37; **v**<sub>max</sub> (thin film)/cm<sup>-1</sup> 3081, 3050, 3028, 2972, 2924; **δ**<sub>H</sub> (500 MHz, CDCl<sub>3</sub>) 8.22 (dt, J = 7.7, 1.2 Hz, 2H), 7.76 – 7.65 (m, 8H), 7.49 (ddd, J = 8.2, 6.8, 1.4 Hz, 2H), 7.33 (dt, J = 7.7, 1.2 Hz, 2H), 7.24 – 7.19 (m, 4H), 7.13 – 7.03 (m, 8H), 6.87 – 6.78 (m, 4H), 6.63 (ddd, J = 8.2, 7.5, 1.2 Hz, 2H); **δ**<sub>H</sub> (400 MHz, DMSO) 8.37 (d, J = 7.7 Hz, 2H), 8.20 (d, J = 8.2 Hz, 2H), 7.87 (dd, J = 7.3, 1.5 Hz, 4H), 7.80 – 7.70 (m, 6H), 7.61 – 7.43 (m, 6H), 7.20 – 7.06 (m, 8H), 6.82 (t, J = 7.5 Hz, 2H), 6.71 (ddd, J = 8.2, 7.3, 1.5 Hz, 2H); **δ**<sub>C</sub>
(126 MHz, CDCl<sub>3</sub>) 145.4, 144.8, 140.1, 138.3, 137.1, 134.9, 127.1, 125.9, 125.1, 124.9, 124.7, 124.0, 122.5, 122.1, 121.5, 121.1, 120.6, 119.8, 116.5, 111.8, 110.1, 109.6, 109.6.

Data are consistent with the literature.<sup>8,9</sup>

3.9 Multi-mmol batch synthesis and PMB group deprotection

Supplementary Figure 5. 2 mmol reaction scale followed by PMB deprotection



Supplementary Figure 6. Photoredox Set-up for 2 mmol reaction



A 250 mL borosilicate glass measuring cylinder was wrapped in blue LEDs and foil, then sealed. The reactions using this set-up were conducted under a continuous flow of nitrogen.

Supplementary Figure 7. Photoredox Set-up for flow chemistry



## N-(2-Bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)prop-2-yn-1-amine 29

To a 1 L conical flask equipped with a magnetic stir bar, Claisen adapter, additional funnel and air-condenser were added dry THF (250 mL), 4-methoxybenzaldehyde (30.00 g, 0.22 mol, 1.00 equiv) and propargylamine (12.14 g, 0.22 mol, 1.00 equiv) under argon at room temperature. The mixture was stirred for 10 min, and PhSiH<sub>3</sub> (12.00 g, 0.11 mol, 0.50 equiv) was added dropwise (ca. 10 min). The mixture was stirred for 10 min at room temperature, and then heated under reflux for 30 min. The heating was turned off, and a second portion of PhSiH<sub>3</sub> (71.00 g, 0.657 mol, 3.00 equiv) was added in one portion. Then and 2-bromo-2,2-difluoroacetic acid (77.09 g, 0.44 mol, 2.00 equiv) in THF (250 mL) was slowly added dropwise (vigorous gas

evolution!) to control gas evolution and exotherm (addition time: minimum 30 min or more). The resulting solution was heated under reflux overnight, cooled to a room temperature and concentrated under a reduced pressure. The residue was purified by column chromatography (SiO<sub>2</sub>, EtOAc/hexane, 1:10, R<sub>f</sub> = 0.4). Yield: 29.16 g, 0.0917 mol, 42%, colorless oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.32 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 3.82 (s, 3H), 3.81 (s, 2H), 3.42 (s, 2H), 3.37 (t, *J* = 12.6 Hz, 2H), 2.29 – 2.26 (m, 1H) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (151 MHz, CDCl<sub>3</sub>):  $\delta$  159.3, 130.4, 129.8, 123.4 (t, *J* = 307.8 Hz), 114.0, 78.4, 73.5, 62.6 (t, *J* = 23.4 Hz), 58.3, 55.4, 42.4 ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -51.2 (s) ppm. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>15</sub>BrF<sub>2</sub>NO, 318.0305; found 318.0291.

The compound slowly decomposes at room temperature under storage (ca. 10% impurity after 3 days) and must be used directly in the next step.



Photo of the set-up (photochemistry in flow).



### 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine 17

A solution of compound **29** (21.00 g, 0.066 mol, 1.00 equiv), tris(2-phenylpyridine) iridium (0.434 g, 0.00066 mol, 0.01 equiv), Et<sub>3</sub>N (66.79 g, 0.66 mol, 10.00 equiv), CH<sub>3</sub>CO<sub>2</sub>H (19.82 g, 0.33 mol, 5.00 equiv) in acetonitrile (7 L) was pumped (flow rate: 50 mL/min) through a coil (50 mL) that was cooled to -45  $^{\circ}$ C using a Huber "Unistat 510" chiller. The cooled solution was passed through a cooled coil (160 mL; -45  $^{\circ}$ C with Huber "Unistat 510" chiller) that was irradiated with 450 nm using blue LEDs (2kW).

That solution was passed through another coil (50 mL) that was cooled to -45 °C using a Huber "Unistat 510" chiller. The cooled solution was passed through a second cooled coil (160 mL; -45 °C with Huber "Unistat 510" chiller) that was irradiated again with 450 nm using blue LEDs (2kW). At the end of the second coil the measured temperature was ca. -20 °C. The solution was combined in two 5 L cans (10 L total volume) and concentrated under reduced pressure. The residue was dissolved in  $CH_2Cl_2$  (300 mL), washed with a sat.

solution of Na<sub>2</sub>CO<sub>3</sub> (1 × 100 mL) and passed through plug of SiO<sub>2</sub> (100 g). The silica gel was additionally washed with 300 mL of EtOAc/hexane (1:3). The combined solution was concentrated under reduced pressure. Yield: 9.80 g, 0.041 mol, 62%, colorless oil. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.24 (d, *J* = 8.1 Hz, 2H), 6.86 (d, *J* = 8.2 Hz, 2H), 5.58 (s, 1H), 5.28 (s, 1H), 3.81 (s, 3H), 3.61 (s, 2H), 3.33 (s, 2H), 2.98 (t, *J* = 11.3 Hz, 2H) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  159.2, 143.1 (t, *J* = 20.9 Hz), 130.1, 129.5, 122.8 (t, *J* = 246.4 Hz), 114.0, 112.1, 61.0 (t, *J* = 27.1 Hz), 59.4, 56.6 (t, *J* = 2.9 Hz), 55.4 ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -98.2 (s) ppm. LCMS (M+H)<sup>+</sup>: 240. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>13</sub>H<sub>16</sub>F<sub>2</sub>NO, 240.1200; found 240.1185.

For irradiation with blue LED light, we used commercially available diodes SST-20-B-B120-S450 (Luminus Devices Inc.)

https://www.digikey.com/en/products/detail/luminus-devices-inc/SST-20-B-B120-S450/15903652 https://download.luminus.com/datasheets/Luminus\_SST-20-B\_Datasheet.pdf



## **Typical Spectra**

For the coil, we used commercially available tubes 200-0375-062-OC

https://www.altaflo.com/products/fep-altafluor-200/

https://www.altaflo.com/wp-content/uploads/2017/03/altaflo-orderinginfo-v1.pdf



### 3,3-Difluoro-4-methylenepyrrolidine hydrochloride 30

To a solution of **17** (6.00 g, 0.0251 mol, 1.00 equiv) in DCE (50 mL) was added a solution of 1-chloroethyl chloroformate (3.94 g, 0.0276 mol, 1.10 equiv) in 50 mL of DCE dropwise at 0 °C (ca. 15 min). The resulting mixture was stirred for 10 min and heated under reflux for 1 h. The solution was cooled to a room temperature and concentrated under a reduced pressure. The residue was dissolved in MeOH (150 mL), heated under reflux for 1 h and then concentrated under a reduced pressure. The residue was mashed in dry Et<sub>2</sub>O (50 mL), the formed solid was filtered off, washed with dry Et<sub>2</sub>O (50 mL) and dried under air to give the desired product. Yield: 3.48 g, 0.0223 mol, 89%, beige solid, mp = 159-160 °C. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>):  $\delta$  10.48 (s, 2H), 5.76 (dd, *J* = 30.5, 2.2 Hz, 2H), 4.09 (d, *J* = 2.0 Hz, 2H), 3.79 (t, *J* = 11.7 Hz, 2H) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (126 MHz, DMSO-d<sub>6</sub>):  $\delta$  136.8 (t, *J* = 21.6 Hz), 121.6 (t, *J* = 245.7 Hz), 116.1, 49.8 (t, *J* = 32.6 Hz), 46.3 ppm. <sup>19</sup>F{<sup>1</sup>H} NMR (376 MHz, DMSO-d<sub>6</sub>):  $\delta$  -97.7 (s) ppm. LCMS (M+H)<sup>+</sup>: 120. HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> calcd for C<sub>5</sub>H<sub>8</sub>F<sub>2</sub>N, 120.0625; found 120.0617.

The compound (EN300-39913178) is commercially available at Enamine from stock: <u>https://enaminestore.com/catalog/EN300-39913178</u>

### *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-yn-1-amine 29



41



*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-yn-1-amine (29) after 3 days at a room temperature.



Мdd

R3231591\_F19{H}

-51.20

Br

R3231591\_F19{H}C13H14BrF2NO318.16

|                   |                |                | 500          |            |                   |         |      |       |        |      |      |
|-------------------|----------------|----------------|--------------|------------|-------------------|---------|------|-------|--------|------|------|
| 출<br>100 80       | 60 40          | 20 0           | -20 -40      | -60 -80    | -100 -1           | 20 -140 | -160 | -180  | -200   | -220 | -240 |
| R3231591_F19{H}   | Honchar        | SF: 376.4986 N | MHz NSC:     | PW: 0.00   | 0 usec, RG: 912   |         |      | SI: 2 | 262144 |      |      |
| Date: 02-Nov-2022 | Solvent: CDCl3 | SW: 138889 H   | Hz TE: 300 K | AQ: 0.94 s | sec, RD: 0.00 sec |         | R32  | 3159  | 1_F1   | 9{H} | }    |

### 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine (17)



45





#### 3,3-Difluoro-4-methylenepyrrolidine hydrochloride (30)





 $^{19}\mathsf{F}\{^1\mathsf{H}\}$  NMR (376 MHz, DMSO-d\_6)

R3228297\_F19{H}  $= \underbrace{F - F}_{NH} + HCI$ 

|     |    |    | -  |    |    |    |    |    |    |   | <br> | _ |     |   |    |   |   |    | <br> | _ |      | <br> |   |     | - |     |   |      | + |     |   |     | - |
|-----|----|----|----|----|----|----|----|----|----|---|------|---|-----|---|----|---|---|----|------|---|------|------|---|-----|---|-----|---|------|---|-----|---|-----|---|
| 110 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -20  |   | -40 | ) | -6 | ) | - | 80 | -100 |   | -120 | -140 | - | 160 |   | -18 | 0 | -200 | - | 220 | - | 240 |   |

## 4 Mechanistic studies

|              | N CF <sub>2</sub> Br                                                            | lr(pp<br>Et <sub>3</sub> N or E    | y) <sub>3</sub><br>t <sub>3</sub> N-d <sub>15</sub> |                             |                                     | ,F<br>≻⊑                              |
|--------------|---------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------|-----------------------------|-------------------------------------|---------------------------------------|
| Me           | eo H                                                                            | AcOH or<br>MeCN or N<br>blue LEDs, | AcOD<br>/eCN-d <sub>3</sub><br>r.t., 16 h           | MeO                         | D or H                              | <sup>−</sup> H or D                   |
| <u>entry</u> | source of deuterium                                                             | Z signal<br>integration            | <u>E signal</u><br>integration                      | total alkene<br>integration | <sup>2</sup> H NMR<br><u>signal</u> | <u><sup>2</sup>H</u><br>incorporation |
| 1            | none                                                                            | 0.998                              | 0.999                                               | 1.997                       | no                                  | 0%                                    |
| 2            | AcOH-d1                                                                         | 0.743                              | 0.809                                               | 1.552                       | yes                                 | 45%                                   |
| 3            | AcOH-d <sub>4</sub>                                                             | 0.765                              | 0.786                                               | 1.551                       | yes                                 | 45%                                   |
| 4            | $Et_3N	ext{-}d_{15}$                                                            | 0.868                              | 0.776                                               | 1.644                       | yes                                 | 36%                                   |
| 5            | MeCN-d <sub>3</sub>                                                             | 0.924                              | 0.902                                               | 1.826                       | yes                                 | 17%                                   |
| 6            | AcOH-d1 and MeCN-d3                                                             | 0.884                              | 0.865                                               | 1.749                       | yes                                 | 25%                                   |
| 7            | $Et_3N\text{-}d_{15}$ and $AcOH\text{-}d^1$                                     | 0.731                              | 0.674                                               | 1.405                       | yes                                 | 59%                                   |
| 8            | $Et_3N\text{-}d_{15}$ and $MeCN\text{-}d_3$                                     | 0.757                              | 0.513                                               | 1.270                       | yes                                 | 73%                                   |
| 9            | Et <sub>3</sub> N-d <sub>15</sub> , AcOH-d <sub>1</sub> and MeCN-d <sub>3</sub> | 0.683                              | 0.459                                               | 1.142                       | yes                                 | 86%                                   |
| 10           | $Et_3N-d_{15}$ , AcOH-d <sub>4</sub> and MeCN-d <sub>3</sub>                    | 0.668                              | 0.481                                               | 1.149                       | yes                                 | 85%                                   |

Supplementary Table 4. Deuterium-labelling studies

### Supplementary Table 5. Control experiments 1



| entry                 | base | base equiv. | H-source | H-source equiv. | product yield /% | starting material<br>yield /% |
|-----------------------|------|-------------|----------|-----------------|------------------|-------------------------------|
| 1 <sup>a</sup>        | Et₃N | 10          | AcOH     | 5               | 88               | 4                             |
| 2                     | Et₃N | 10          | none     | -               | 56               | 0                             |
| 3                     | none | -           | AcOH     | 5               | 0                | 100                           |
| <b>4</b> <sup>b</sup> | Et₃N | 10          | AcOH     | 5               | 0                | 100                           |
| 5°                    | Et₃N | 10          | AcOH     | 5               | 46               | 0                             |
| 6 <sup>d</sup>        | Et₃N | 10          | AcOH     | 5               | 51               | 0                             |
| 7 <sup>e</sup>        | Et₃N | 10          | AcOH     | 5               | 62               | 0                             |
| <b>8</b> <sup>f</sup> | Et₃N | 10          | AcOH     | 5               | 0                | 100                           |
| 9 <sup>g</sup>        | Et₃N | 10          | AcOH     | 5               | 73               | 0                             |

<sup>a</sup>optimised conditions (non-dry glassware, solvents degassed via sparging, under Ar); <sup>b</sup>no blue light irradiation; <sup>c</sup>dry glassware, solvents degassed via freeze-pump-thaw, under Ar; <sup>d</sup>dry glassware, solvents degassed via sparging, under Ar; <sup>e</sup>non-dry glassware, solvents not

degassed, under Ar; <sup>f</sup>non-dry glassware, solvents not degassed, open to air; <sup>g</sup>non-dry glassware, solvents degassed via freeze-pump-thaw, under Ar.

## Supplementary Table 6. Control experiments 2

| TBSO N CF <sub>2</sub> Br | lr(ppy) <sub>3</sub> (1 mol%)<br>Et <sub>3</sub> N (10 eq.)<br>AcOH (5 eq.)<br>MeCN (0.01 M) |  |
|---------------------------|----------------------------------------------------------------------------------------------|--|
|                           | 1,3-benzodioxole<br>r.t., blue LEDs                                                          |  |

| entry | blue LEDs | duration /h | product yield /% |
|-------|-----------|-------------|------------------|
| 1     | on        | 1           | 27               |
| 2     | off       | 1           | 25               |
| 3     | on        | 1           | 54               |
| 4     | off       | 60          | 53               |

## 5 Computational Investigations

Quantum chemical calculations were carried out using the Macintosh version of Spartan 2018.<sup>10</sup> Equilibrium geometries and transition structures were confirmed by either the absence or presence of an imaginary frequency respectively. Starting points for equilibrium geometry calculations were obtained by performing a molecular mechanics equilibrium conformer search also implemented in Spartan 2018. The theoretical model chosen was wB97X-D/6-31G\* and Figure 7 summarises the relative free energies obtained with this method at 298K *in vacuo*. Other theoretical models were explored for comparison and the M06-2X/6-31+G\* model gave a barrier of 8.2 kcal/mol for the 5-exo-dig cyclisation – essentially the same as the less expensive wB97X-D/6-31G\* method.



### Figure 7. Relative free energies.

#### Coordinates and energies:

#### **Starting radical**

| Н | 0.808258  | 1.548149  | -0.690576 |
|---|-----------|-----------|-----------|
| С | -0.131277 | 1.935568  | -0.287811 |
| н | 0.095883  | 2.849535  | 0.269772  |
| С | -1.003091 | 2.319344  | -1.456404 |
| F | -1.228777 | 1.359460  | -2.364093 |
| F | -2.165742 | 2.910198  | -1.142285 |
| Ν | -0.669767 | 0.949657  | 0.640804  |
| С | -1.841000 | 1.407612  | 1.382663  |
| н | -1.688010 | 2.460556  | 1.644322  |
| н | -2.767073 | 1.368493  | 0.784267  |
| С | -0.838775 | -0.393756 | 0.088747  |
| н | -1.585547 | -0.421849 | -0.721296 |
| н | -1.227582 | -1.016342 | 0.902178  |
| С | 0.472357  | -0.966829 | -0.393234 |
| С | 2.918007  | -2.024771 | -1.248087 |

| С   | 0.652699      | -1.346084 | -1.721939     |       |
|-----|---------------|-----------|---------------|-------|
| С   | 1.533253      | -1.112592 | 0.504750      |       |
| С   | 2.748078      | -1.638183 | 0.081097      |       |
| С   | 1.868797      | -1.877481 | -2.148605     |       |
| н   | -0.161463     | -1.216693 | -2.429749     |       |
| н   | 1.395486      | -0.800032 | 1.536377      |       |
| н   | 3.564941      | -1.749923 | 0.788327      |       |
| н   | 1.995438      | -2.169847 | -3.186870     |       |
| н   | 3.867074      | -2.436118 | -1.578976     |       |
| С   | -2.036407     | 0.634863  | 2.614383      |       |
| н   | -2.363184     | -0.566517 | 4.513832      |       |
| С   | -2.212575     | -0.006418 | 3.618405      |       |
| No  | imaginary fre | quencies  |               |       |
| Lab | el Energy (l  | kcal/mol) | ZPE (kJ/mol)  | Gº (a |
| M0  | 001 -         | 450903.78 | 533.74 -718.4 | 02764 |
| 5-e | xo-dig T.S.   |           |               |       |
| н   | -2.316406     | 0.844171  | 1.895091      |       |
| С   | -2.189675     | 1.121287  | 0.831751      |       |
| н   | -3.049337     | 0.732869  | 0.268911      |       |
| С   | -2.131179     | 2.615618  | 0.753680      |       |
| F   | -2.733208     | 3.264721  | 1.754295      |       |
| F   | -2.502092     | 3.150408  | -0.410147     |       |
| Ν   | -0.964209     | 0.589813  | 0.256439      |       |
| С   | 0.196407      | 1.204959  | 0.894710      |       |
| н   | 0.298598      | 0.876210  | 1.948753      |       |
| н   | 1.097296      | 0.881960  | 0.364073      |       |
| С   | -0.924845     | -0.862592 | 0.352571      |       |
| н   | -1.857434     | -1.242310 | -0.084553     |       |
| Н   | -0.912866     | -1.195682 | 1.409835      |       |
| С   | 0.253399      | -1.465897 | -0.377197     |       |
| С   | 2.409248      | -2.608180 | -1.748991     |       |

| С   | 0.503523       | -1.126964    | -1.709791     |       |
|-----|----------------|--------------|---------------|-------|
| С   | 1.097930       | -2.373018    | 0.260195      |       |
| С   | 2.169417       | -2.946237    | -0.421408     |       |
| С   | 1.574486       | -1.694143    | -2.390725     |       |
| н   | -0.142001      | -0.403231    | -2.199704     |       |
| н   | 0.917955       | -2.633458    | 1.300689      |       |
| н   | 2.819156       | -3.651514    | 0.088565      |       |
| н   | 1.759942       | -1.423297    | -3.426082     |       |
| н   | 3.245170       | -3.051083    | -2.282287     |       |
| С   | 0.125289       | 2.683003     | 0.868665      |       |
| Н   | 0.699895       | 4.884593     | 0.910711      |       |
| С   | 0.555542       | 3.827995     | 0.891951      |       |
| One | e imaginary fr | equency i373 | 3             |       |
| Lab | el Energy (l   | kcal/mol)    | ZPE (kJ/mol)  | Gº (a |
| M0  | 001 -          | 450895.15    | 528.07 -718.3 | 89598 |
| 6-e | ndo-dig T.S.   |              |               |       |
| Н   | -1.258961      | -2.593385    | -1.210984     |       |
| С   | -1.701935      | -1.619255    | -0.939145     |       |
| Н   | -2.020830      | -1.135392    | -1.873034     |       |
| С   | -2.945295      | -1.893752    | -0.126725     |       |
| F   | -3.711512      | -2.846207    | -0.685587     |       |
| F   | -3.691966      | -0.811161    | 0.110998      |       |
| Ν   | -0.767315      | -0.732494    | -0.263715     |       |
| С   | -0.007138      | -1.403619    | 0.800891      |       |
| Н   | 0.738856       | -2.108256    | 0.382931      |       |
| Н   | 0.550328       | -0.641906    | 1.355442      |       |
| С   | 0.138008       | -0.082775    | -1.206908     |       |
| Н   | -0.477554      | 0.357653     | -2.000708     |       |
| Н   | 0.814624       | -0.811444    | -1.694795     |       |
| С   | 0.959517       | 1.008852     | -0.558574     |       |
| С   | 2.457698       | 3.059881     | 0.615627      |       |

| С    | 0.329891     | 1.999895     | 0.199459      |       |
|------|--------------|--------------|---------------|-------|
| С    | 2.343468     | 1.052698     | -0.715197     |       |
| С    | 3.091256     | 2.075071     | -0.134489     |       |
| С    | 1.074060     | 3.018040     | 0.783610      |       |
| Н    | -0.746497    | 1.950455     | 0.339103      |       |
| Н    | 2.842978     | 0.279216     | -1.294060     |       |
| Н    | 4.169419     | 2.096421     | -0.264293     |       |
| Н    | 0.574794     | 3.782436     | 1.371898      |       |
| Н    | 3.038505     | 3.855566     | 1.072702      |       |
| С    | -0.918719    | -2.135686    | 1.682983      |       |
| Н    | -2.846542    | -3.109330    | 2.364717      |       |
| С    | -2.029139    | -2.611524    | 1.887852      |       |
| One  | imaginary fr | equency i407 | 7             |       |
| Labe | el Energy (H | kcal/mol)    | ZPE (kJ/mol)  | Gº (a |
| M00  | -4           | 50891.36     | 529.66 -718.3 | 82627 |
| 1,6- | HAT T.S.     |              |               |       |
| Н    | 2.124030     | 0.043696     | -0.649844     |       |
| С    | 1.590876     | 0.914269     | -0.236920     |       |
| Ν    | 0.234245     | 1.031429     | -0.756384     |       |
| С    | 0.104350     | 2.043767     | -1.802775     |       |
| Н    | 0.684285     | 1.787797     | -2.710165     |       |
| Н    | -0.948386    | 2.081738     | -2.103889     |       |
| С    | -0.730271    | -1.203472    | -0.083406     |       |
| С    | -1.495059    | -3.071742    | 1.883694      |       |
| С    | -1.592955    | -2.263933    | -0.391765     |       |
| С    | -0.277549    | -1.126131    | 1.223406      |       |
| С    | -0.632888    | -2.026899    | 2.211369      |       |
| С    | -1.970330    | -3.186036    | 0.578153      |       |
| Н    | -1.977761    | -2.362657    | -1.405293     |       |
|      |              |              |               |       |

- H -0.246391 -1.923222 3.221480
- H -2.643326 -3.996580 0.314807

| Н     | -1.793822    | -3.791603    | 2.640132             |
|-------|--------------|--------------|----------------------|
| С     | 0.504748     | 3.377998     | -1.349859            |
| Н     | 1.143605     | 5.446531     | -0.665504            |
| С     | 0.850567     | 4.474766     | -0.994188            |
| н     | 2.169229     | 1.811836     | -0.478647            |
| F     | 1.186193     | 1.911737     | 1.881414             |
| F     | 2.742269     | 0.374435     | 1.764691             |
| С     | -0.339893    | -0.237157    | -1.189001            |
| Н     | 0.338157     | -0.759474    | -1.893394            |
| Н     | -1.249006    | -0.009571    | -1.756198            |
| Н     | 0.675173     | -0.114316    | 1.480097             |
| С     | 1.549911     | 0.772795     | 1.267988             |
| One   | imaginary fr | equency i149 | 98                   |
| Labe  | el Energy (ł | cal/mol)     | ZPE (kJ/mol) Gº (a   |
| M00   | 001          | -450875.12   | 2 517.98 -718.361302 |
| 1,4-I | HAT T.S.     |              |                      |
| Н     | 1.178404     | 1.815277     | -2.372743            |
| С     | 1.411513     | 1.656442     | -1.304511            |
| Ν     | 0.309855     | 1.057873     | -0.561116            |
| С     | -0.949478    | 1.780065     | -0.640225            |
| Н     | -1.320128    | 1.841923     | -1.681645            |
| Н     | -1.694492    | 1.214927     | -0.068862            |
| С     | 0.212425     | -0.337613    | -0.915497            |
| Н     | -0.189446    | -0.538459    | -1.923581            |
| С     | -0.290748    | -1.247610    | 0.125086             |
| С     | -1.182445    | -3.022070    | 2.102936             |
| С     | -0.946087    | -2.436401    | -0.224318            |
| С     | -0.087218    | -0.961303    | 1.483116             |
| С     | -0.533013    | -1.841412    | 2.460852             |
| С     | -1.385905    | -3.317110    | 0.756106             |
| н     | -1.113521    | -2.665502    | -1.274412            |

57

| н   | 0.423657       | -0.040738    | 1.748680       |
|-----|----------------|--------------|----------------|
| н   | -0.369632      | -1.608138    | 3.509121       |
| н   | -1.894673      | -4.233295    | 0.470405       |
| Н   | -1.528910      | -3.708782    | 2.869690       |
| С   | -0.844879      | 3.135666     | -0.090981      |
| Н   | -0.690391      | 5.244280     | 0.738265       |
| С   | -0.761327      | 4.255907     | 0.342712       |
| Н   | 1.708043       | 2.610280     | -0.858860      |
| Н   | 1.527780       | -0.437564    | -1.116162      |
| С   | 2.487291       | 0.598225     | -1.215464      |
| F   | 3.211875       | 0.643927     | -0.088159      |
| F   | 3.311451       | 0.541205     | -2.270432      |
| On  | e imaginary fr | equency i183 | 30             |
| Lab | el Energy (k   | cal/mol)     | ZPE (kJ/mol)   |
| M0  | 001 -450881.   | 73 518.2     | 21 -718.372298 |
| Pro | duct radical   |              |                |
| Н   | -2.327397      | 0.869511     | 1.865451       |
| С   | -2.170171      | 1.135554     | 0.803110       |
| Н   | -3.066324      | 0.876257     | 0.232976       |
| С   | -1.862053      | 2.625761     | 0.728285       |
| F   | -2.514122      | 3.330440     | 1.689577       |
| F   | -2.254448      | 3.150065     | -0.464350      |
| Ν   | -0.977844      | 0.532661     | 0.236081       |
| С   | 0.158159       | 1.258508     | 0.803637       |

- H 0.407803 0.896987 1.821015
- H 1.047138 1.145176 0.178540
- C -0.907675 -0.905321 0.399682
- H -1.844865 -1.326085 0.012431
- \_\_\_\_\_

-0.849876 -1.188765

Н

\_\_\_\_\_

1.469777

- C 0.262676 -1.505655 -0.347146
- C 2.400786 -2.636777 -1.756700

| C 0.503789 -1.145940 -1.67595 | С | 0.503789 | -1.145940 | -1.675955 |
|-------------------------------|---|----------|-----------|-----------|
|-------------------------------|---|----------|-----------|-----------|

- C 1.107551 -2.428033 0.267608
- C 2.169627 -2.996087 -0.433062
- C 1.565797 -1.706887 -2.375555
- Н -0.142594 -0.410164 -2.146953
- H 0.935762 -2.704765 1.305378
- H 2.819772 -3.713953 0.059372
- H 1.744050 -1.418229 -3.407522
- Н 3.230112 -3.074903 -2.304155
- C -0.339851 2.687782 0.875536
- H 0.124415 4.846993 1.123429
- C 0.341425 3.790114 1.038770

No imaginary frequencies

| Label | Energy (kcal/mol) | ZPE (kJ/mol)  | Gº (au) |
|-------|-------------------|---------------|---------|
| M0001 | -450927.72        | 535.96 -718.4 | 37879   |

## 6 Unsuccessful Examples



# 7 NMR spectra

Supplementary Figure 8. <sup>1</sup>H NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-en-1-amine **5** 



Supplementary Figure 9. <sup>13</sup>C NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-en-1-amine **5** 



Supplementary Figure 10. <sup>19</sup>F NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-en-1-amine **5** 



Supplementary Figure 11. <sup>1</sup>H Methyl 4-((allyl(2-bromo-2,2-difluoroethyl)amino)methyl)benzoate **34** 





Supplementary Figure 12. <sup>13</sup>C NMR Methyl 4-((allyl(2-bromo-2,2-difluoroethyl)amino)methyl) benzoate **34** 

Supplementary Figure 13. <sup>19</sup>F Methyl 4-((allyl(2-bromo-2,2-difluoroethyl)amino)methyl) benzoate **34** 



Supplementary Figure 14. <sup>1</sup>H NMR *N*-(2-Bromo-2,2-difluoroethyl)-N-(cyclohexylmethyl)prop-2-en-1-amine **35** 



Supplementary Figure 15. <sup>13</sup>C NMR *N*-(2-Bromo-2,2-difluoroethyl)-N-(cyclohexylmethyl)prop-2-en-1-amine **35** 



Supplementary Figure 16. <sup>19</sup>F NMR *N*-(2-Bromo-2,2-difluoroethyl)-N-(cyclohexylmethyl)prop-2-en-1-amine **35** 



Supplementary Figure 17. <sup>1</sup>H NMR Methyl (*E*)-4-((2-bromo-2,2-difluoroethyl)(4-methoxybenzyl)amino)but-2-enoate **36** 



Supplementary Figure 18. <sup>13</sup>C NMR Methyl (*E*)-4-((2-bromo-2,2-difluoroethyl)(4-methoxybenzyl)amino)but-2-enoate **36** 



Supplementary Figure 19. <sup>19</sup>F NMR Methyl (*E*)-4-((2-bromo-2,2-difluoroethyl)(4-methoxybenzyl)amino)but-2-enoate **36** 



Supplementary Figure 20. <sup>1</sup>H NMR (*E*)-5-(Benzyl(2-bromo-2,2-difluoroethyl)amino)pent-3-en-2-one **37** 



Supplementary Figure 21. <sup>13</sup>C NMR (*E*)-5-(Benzyl(2-bromo-2,2-difluoroethyl)amino)pent-3-en-2-one **37** 





Supplementary Figure 22. <sup>19</sup>F NMR (*E*)-5-(Benzyl(2-bromo-2,2-difluoroethyl)amino)pent-3-en-2-one

Supplementary Figure 23. <sup>1</sup>H NMR *N*-Benzyl-2-bromo-*N*-(cyclohex-1-en-1-ylmethyl)-2,2-difluoroethan-1-amine **38** 



Supplementary Figure 24. <sup>13</sup>C NMR *N*-Benzyl-2-bromo-*N*-(cyclohex-1-en-1-ylmethyl)-2,2-difluoroethan-1-amine **38** 



difluoroethan-1-amine 38





Supplementary Figure 26. <sup>1</sup>H NMR *tert*-Butyl (4-methoxybenzyl)(prop-2-yn-1-yl)carbamate **39** 

Supplementary Figure 27. <sup>13</sup>C NMR *tert*-Butyl (4-methoxybenzyl)(prop-2-yn-1-yl)carbamate **39** 





Supplementary Figure 28. <sup>1</sup>H NMR *tert*-Butyl buta-2,3-dien-1-yl(4-methoxybenzyl)carbamate 40

Supplementary Figure 29. <sup>13</sup>C NMR *tert*-Butyl buta-2,3-dien-1-yl(4-methoxybenzyl)carbamate 40





Supplementary Figure 30. <sup>1</sup>H NMR *N*-(4-Methoxybenzyl)buta-2,3-dien-1-amine hydrochloride **41** 

Supplementary Figure 31. <sup>13</sup>C NMR *N*-(4-Methoxybenzyl)buta-2,3-dien-1-amine hydrochloride **41** 



Supplementary Figure 32. <sup>1</sup>H NMR *N*-(2-bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)buta-2,3-dien-1-amine **42** 



Supplementary Figure 33. <sup>13</sup>C NMR *N*-(2-bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)buta-2,3dien-1-amine **42** 


Supplementary Figure 34. <sup>19</sup>F NMR *N*-(2-bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)buta-2,3-dien-1-amine **42** 



### Supplementary Figure 36. <sup>13</sup>C NMR *N*-Benzylbut-3-yn-1-amine **43**



Supplementary Figure 37. <sup>1</sup>H NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-3-yn-1-amine **44** 





Supplementary Figure 38. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-3-yn-1-amine 44

Supplementary Figure 39. <sup>19</sup>F NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-3-yn-1-amine **44** 





Supplementary Figure 40. <sup>1</sup>H NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-3-en-1-amine 45

Supplementary Figure 41. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-3-en-1-amine **45** 







Supplementary Figure 43. <sup>1</sup>H NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)but-3-en-1-amine **46** 





Supplementary Figure 44. <sup>13</sup>C NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)but-3-en-1-amine **46** 

Supplementary Figure 45. <sup>19</sup>F NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)but-3-en-1-amine **46** 





Supplementary Figure 46. <sup>1</sup>H NMR 2-Bromo-*N*-(2-(cyclohex-1-en-1-yl)ethyl)-2,2-difluoro-*N*-(4-methoxybenzyl)ethan-1-amine **47** 

Supplementary Figure 47. <sup>13</sup>C NMR 2-Bromo-*N*-(2-(cyclohex-1-en-1-yl)ethyl)-2,2-difluoro-*N*-(4-methoxybenzyl)ethan-1-amine **47** 







Supplementary Figure 49. <sup>1</sup>H NMR (*E*)-*N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)-3-phenylprop-2-en-1-amine **48** 



Supplementary Figure 50. <sup>13</sup>C NMR (E)-N-(2-Bromo-2,2-difluoroethyl)-N-(4-methoxybenzyl)-3phenylprop-2-en-1-amine 48



phenylprop-2-en-1-amine 48





Supplementary Figure 52. <sup>1</sup>H NMR *N*-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **49** 

Supplementary Figure 53. <sup>13</sup>C NMR *N*-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **49** 





## Supplementary Figure 54. <sup>1</sup>H NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **3**

butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **3** 



Supplementary Figure 56. <sup>19</sup>F NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(2-((*tert*-butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine **3** 



<sup>20</sup> 10 0 -10 -20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Supplementary Figure 57. <sup>1</sup>H NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-yn-1amine **29** 



Supplementary Figure 58. <sup>13</sup>C NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-yn-1-amine **29** 



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Supplementary Figure 59. <sup>19</sup>F NMR *N*-(2-Bromo-2,2-difluoroethyl)-*N*-(4-methoxybenzyl)prop-2-yn-1-amine **29** 





Supplementary Figure 60. <sup>1</sup>H NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)prop-2-yn-1-amine **50** 

Supplementary Figure 61. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)prop-2-yn-1-amine **50** 





Supplementary Figure 62. <sup>19</sup>F NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)prop-2-yn-1-amine **50** 

Supplementary Figure 63. <sup>1</sup>H NMR Methyl 2-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate hydrochloride **51** 



# Supplementary Figure 64. <sup>13</sup>C NMR Methyl 2-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate hydrochloride **51**



yl)pyrrolidine-2-carboxylate **52** 



Supplementary Figure 66. <sup>13</sup>C NMR Methyl 1-(2-bromo-2,2-difluoroethyl)-2-(prop-2-yn-1-yl)pyrrolidine-2-carboxylate **52** 



yl)pyrrolidine-2-carboxylate **52** 





Supplementary Figure 68. <sup>1</sup>H NMR *N*-Benzyl-2-methylbut-3-yn-2-amine **53** 

Supplementary Figure 69. <sup>13</sup>C NMR *N*-Benzyl-2-methylbut-3-yn-2-amine **53** 



Supplementary Figure 70. <sup>1</sup>H NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-2-methylbut-3-yn-2amine **54** 



Supplementary Figure 71. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-2-methylbut-3-yn-2amine **54** 



Supplementary Figure 72. <sup>19</sup>F NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-2-methylbut-3-yn-2-amine **54** 





Supplementary Figure 74. <sup>13</sup>C NMR *tert*-Butyl (2-(prop-2-yn-1-ylamino)ethyl)carbamate 55

Supplementary Figure 75. <sup>1</sup>H NMR *tert*-Butyl (2-((2-bromo-2,2-difluoroethyl)(prop-2-yn-1-yl)amino)ethyl)carbamate **56** 











Supplementary Figure 78. <sup>1</sup>H NMR 2-((2-Bromo-2,2-difluoroethyl)(prop-2-yn-1-yl)amino)ethan-1-ol **57** 

Supplementary Figure 79. <sup>13</sup>C NMR2-((2-Bromo-2,2-difluoroethyl)(prop-2-yn-1-yl)amino)ethan-1-ol **57** 











### Supplementary Figure 82. <sup>13</sup>C NMR *N*-Benzylbut-2-yn-1-amine **58**



Supplementary Figure 83. <sup>1</sup>H NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-2-yn-1-amine **59** 





Supplementary Figure 84. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-2-yn-1-amine **59** 

Supplementary Figure 85. <sup>19</sup>F NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)but-2-yn-1-amine 59





#### Supplementary Figure 86. <sup>1</sup>H NMR *N*-Benzyl-3-(trimethylsilyl)prop-2-yn-1-amine 60

Supplementary Figure 87. <sup>13</sup>C NMR *N*-Benzyl-3-(trimethylsilyl)prop-2-yn-1-amine 60



Supplementary Figure 88. <sup>1</sup>H NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-3-(trimethylsilyl)prop-2yn-1-amine **61** 



Supplementary Figure 89. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-3-(trimethylsilyl)prop-2-yn-1-amine **61** 



Supplementary Figure 90. <sup>19</sup>F NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-3-(trimethylsilyl)prop-2yn-1-amine **61** 



amine 62



Supplementary Figure 92. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)-3-phenylprop-2-yn-1-amine **62** 







Supplementary Figure 94. <sup>1</sup>H NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)pent-3-yn-1-amine 63

Supplementary Figure 95. <sup>13</sup>C NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)pent-3-yn-1-amine **63** 





Supplementary Figure 96. <sup>19</sup>F NMR *N*-Benzyl-*N*-(2-bromo-2,2-difluoroethyl)pent-3-yn-1-amine **63** 

Supplementary Figure 97. <sup>1</sup>H NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylpyrrolidine **6** 





Supplementary Figure 98. <sup>13</sup>C NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylpyrrolidine 6



Supplementary Figure 100. <sup>1</sup>H NMR Methyl 4-((3,3-difluoro-4-methylpyrrolidin-1yl)methyl)benzoate **7** 

Supplementary Figure 101. <sup>13</sup>C NMR Methyl 4-((3,3-difluoro-4-methylpyrrolidin-1-yl)methyl)benzoate **7** 





Supplementary Figure 102. <sup>19</sup>F NMR Methyl 4-((3,3-difluoro-4-methylpyrrolidin-1-yl)methyl)benzoate **7** 

Supplementary Figure 103. <sup>1</sup>H NMR 1-(Cyclohexylmethyl)-3,3-difluoro-4-methylpyrrolidine 8





Supplementary Figure 104. <sup>13</sup>C NMR 1-(Cyclohexylmethyl)-3,3-difluoro-4-methylpyrrolidine 8

Supplementary Figure 105. <sup>19</sup>F NMR 1-(Cyclohexylmethyl)-3,3-difluoro-4-methylpyrrolidine 8






Supplementary Figure 107. <sup>13</sup>C NMR Methyl 2-(4,4-difluoro-1-(4-methoxybenzyl)pyrrolidin-3yl)acetate **9** 



## Supplementary Figure 108. <sup>19</sup>F NMR Methyl 2-(4,4-difluoro-1-(4-methoxybenzyl)pyrrolidin-3-yl)acetate **9**



10.0 8.0 7.5 7.0 6,5 4.0 3.5 3,0 2.5 1,5 0.5 9,5 9.0 8.5 6.0 5.5 5.0 45 2.0 1.0 0.0

11

100



Supplementary Figure 110. <sup>13</sup>C NMR 1-(1-Benzyl-4,4-difluoropyrrolidin-3-yl)propan-2-one **10** 

Supplementary Figure 111. <sup>19</sup>F NMR 1-(1-Benzyl-4,4-difluoropyrrolidin-3-yl)propan-2-one **10** 





Supplementary Figure 112. <sup>1</sup>H NMR 2-Benzyl-4,4-difluoro-2-azaspiro[4.5]decane **11** 

Supplementary Figure 113. <sup>13</sup>C NMR 2-Benzyl-4,4-difluoro-2-azaspiro[4.5]decane 11





Supplementary Figure 114. <sup>19</sup>F NMR 2-Benzyl-4,4-difluoro-2-azaspiro[4.5]decane **11** 

Supplementary Figure 115. <sup>1</sup>H NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-vinylpyrrolidine **12** 





Supplementary Figure 116. <sup>13</sup>C NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-vinylpyrrolidine **12** 

Supplementary Figure 117. <sup>19</sup>F NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-vinylpyrrolidine **12** 





Supplementary Figure 118. <sup>1</sup>H NMR 1-Benzyl-3,3-difluoro-4-methylpiperidine **1213** 

Supplementary Figure 119. <sup>13</sup>C NMR 1-Benzyl-3,3-difluoro-4-methylpiperidine 13





Supplementary Figure 120. <sup>19</sup>F NMR 1-Benzyl-3,3-difluoro-4-methylpiperidine 13

Supplementary Figure 121. <sup>1</sup>H NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylpiperidine 14





Supplementary Figure 122. <sup>13</sup>C NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylpiperidine 14

Supplementary Figure 123. <sup>19</sup>F NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylpiperidine 14





Supplementary Figure 124. <sup>1</sup>H NMR 5,5-Difluoro-2-(4-methoxybenzyl)-2-azaspiro[5.5]undecane 15

Supplementary Figure 125. <sup>13</sup>C NMR 5,5-Difluoro-2-(4-methoxybenzyl)-2-azaspiro[5.5]undecane 15



Supplementary Figure 126. <sup>19</sup>F NMR 5,5-Difluoro-2-(4-methoxybenzyl)-2-azaspiro[5.5]undecane **15** 



Supplementary Figure 126. <sup>1</sup>H NMR 4-Benzyl-3,3-difluoro-1-(4-methoxybenzyl)pyrrolidine 16





Supplementary Figure 128. <sup>13</sup>C NMR 4-Benzyl-3,3-difluoro-1-(4-methoxybenzyl)pyrrolidine 16

Supplementary Figure 129. <sup>19</sup>F NMR 4-Benzyl-3,3-difluoro-1-(4-methoxybenzyl)pyrrolidine 16





Supplementary Figure 130. <sup>1</sup>H NMR 1-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-3,3-difluoro-4-methylenepyrrolidine **4** 

<sup>10.0</sup> 9.5 9.0 1.5 1.0 7.5 7.0 5.5 5.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Supplementary Figure 131. <sup>13</sup>C NMR 1-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-3,3-difluoro-4methylenepyrrolidine **4** 



## Supplementary Figure 132. <sup>19</sup>F NMR 1-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-3,3-difluoro-4-methylenepyrrolidine **4**



<sup>20</sup> 10 0 -10 -20 -30 -40 -50 -60 -70 -40 -90 -100 -110 -120 -130 -140 -150 -180 -170 -180 -200 Supplementary Figure 133. <sup>1</sup>H NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine **17** 





Supplementary Figure 134. <sup>13</sup>C NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine 17

Supplementary Figure 135. <sup>19</sup>F NMR 3,3-Difluoro-1-(4-methoxybenzyl)-4-methylenepyrrolidine 17





Supplementary Figure 136. <sup>1</sup>H NMR 1-Benzyl-3,3-difluoro-4-methylenepyrrolidine **18** 

Supplementary Figure 137. <sup>13</sup>C NMR 1-Benzyl-3,3-difluoro-4-methylenepyrrolidine **18** 







Supplementary Figure 139. <sup>1</sup>H NMR 1-Benzyl-3,3-difluoro-4-methylenepiperidine **19** 





Supplementary Figure 140. <sup>13</sup>C NMR 1-Benzyl-3,3-difluoro-4-methylenepiperidine **19** 

Supplementary Figure 141. <sup>19</sup>F NMR 1-Benzyl-3,3-difluoro-4-methylenepiperidine **19** 





Supplementary Figure 142. <sup>1</sup>H NMR Methyl 6,6-difluoro-7-methylenehexahydroindolizine-8a(1*H*)carboxylate **20** 

Supplementary Figure 143. <sup>13</sup>C NMR Methyl 6,6-difluoro-7-methylenehexahydroindolizine-8a(1*H*)carboxylate **20** 



Supplementary Figure 144. <sup>19</sup>F NMR Methyl 6,6-difluoro-7-methylenehexahydroindolizine-8a(1*H*)-carboxylate **20** 









Supplementary Figure 146. <sup>13</sup>C NMR 1-Benzyl-4,4-difluoro-2,2-dimethyl-3-methylenepyrrolidine **21** 

Supplementary Figure 147. <sup>19</sup>F NMR 1-Benzyl-4,4-difluoro-2,2-dimethyl-3-methylenepyrrolidine **21** 



## Supplementary Figure 148. <sup>1</sup>H NMR *tert*-Butyl (2-(3,3-difluoro-4-methylenepyrrolidin-1-yl)ethyl)carbamate **22**



Supplementary Figure 149. <sup>13</sup>C NMR NMR *tert*-Butyl (2-(3,3-difluoro-4-methylenepyrrolidin-1-yl)ethyl)carbamate **22** 



## Supplementary Figure 150. <sup>19</sup>F NMR NMR *tert*-Butyl (2-(3,3-difluoro-4-methylenepyrrolidin-1-yl)ethyl)carbamate **22**



-950

5.5

5.0

4.5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

16

2.5

2.0

1.5

1.0 0.5

3.0

SEE.

3.5

4.0

0.0



Supplementary Figure 152. <sup>13</sup>C NMR 2-(3,3-Difluoro-4-methylenepyrrolidin-1-yl)ethan-1-ol **23** 

Supplementary Figure 153. <sup>19</sup>F NMR 2-(3,3-Difluoro-4-methylenepyrrolidin-1-yl)ethan-1-ol **23** 





Supplementary Figure 154. <sup>1</sup>H NMR 1-Benzyl-4-ethylidene-3,3-difluoropyrrolidine **24** 

Supplementary Figure 155. <sup>13</sup>C NMR 1-Benzyl-4-ethylidene-3,3-difluoropyrrolidine 24







Supplementary Figure 157. <sup>1</sup>H NMR 1-Benzyl-3,3-difluoro-4-((trimethylsilyl)methylene)pyrrolidine **25** 





Supplementary Figure 158. <sup>13</sup>C NMR 1-Benzyl-3,3-difluoro-4-((trimethylsilyl)methylene)pyrrolidine **25** 





Supplementary Figure 160. <sup>1</sup>H NMR (E)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine 26

Supplementary Figure 161. <sup>13</sup>C NMR (*E*)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine 26





Supplementary Figure 162. <sup>19</sup>F NMR (*E*)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine **26** 

Supplementary Figure 163. <sup>1</sup>H NMR (Z)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine 27





Supplementary Figure 164. <sup>13</sup>C NMR (Z)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine **27** 

220 210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 80 50 40 30 20 10 0 Supplementary Figure 165. <sup>19</sup>F NMR (*Z*)-1-Benzyl-4-benzylidene-3,3-difluoropyrrolidine **27** 





Supplementary Figure 166. <sup>1</sup>H NMR 1-Benzyl-4-ethylidene-3,3-difluoropiperidine 28

Supplementary Figure 167. <sup>13</sup>C NMR 1-Benzyl-4-ethylidene-3,3-difluoropiperidine 28





Supplementary Figure 168. <sup>19</sup>F NMR 1-Benzyl-4-ethylidene-3,3-difluoropiperidine 28

Supplementary Figure 169. <sup>1</sup>H NMR 3,3-Difluoro-4-methylenepyrrolidine hydrochloride **30** 





Supplementary Figure 170. <sup>13</sup>C NMR 3,3-Difluoro-4-methylenepyrrolidine hydrochloride **30** 

Supplementary Figure 171. <sup>19</sup>F NMR 3,3-Difluoro-4-methylenepyrrolidine hydrochloride **30** 





Supplementary Figure 172. <sup>1</sup>H NMR 4,4-Difluoro-1-(4-methoxybenzyl)-3-methylpyrrolidin-3-ol **31** 

Supplementary Figure 173. <sup>13</sup>C NMR 4,4-Difluoro-1-(4-methoxybenzyl)-3-methylpyrrolidin-3-ol **31** 





Supplementary Figure 174. <sup>19</sup>F NMR 4,4-Difluoro-1-(4-methoxybenzyl)-3-methylpyrrolidin-3-ol **31** 





Supplementary Figure 177. <sup>1</sup>H NMR 4CzIPN 66


## Supplementary Figure 178. <sup>13</sup>C NMR 4CzIPN 66



## 8 X-ray crystallography

The structure is disordered over a mirror plane where the ring carbon atoms lie on the plane and the nitrogen and fluorine lie above it. For clarity only one structure from the mirror plane is depicted in the manuscript.

Supplementary Table 7. Crystal data and structure refinement for 30



| a/Å                                         | 10.0074(7)                                                   |
|---------------------------------------------|--------------------------------------------------------------|
| b/Å                                         | 7.0673(5)                                                    |
| c/Å                                         | 9.5009(6)                                                    |
| α/°                                         | 90                                                           |
| β/°                                         | 90                                                           |
| γ/°                                         | 90                                                           |
| Volume/Å <sup>3</sup>                       | 671.95(8)                                                    |
| Z                                           | 4                                                            |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.538                                                        |
| µ/mm⁻¹                                      | 4.681                                                        |
| F(000)                                      | 320.0                                                        |
| Crystal size/mm <sup>3</sup>                | 0.24 × 0.04 × 0.023                                          |
| Radiation                                   | Cu Kα (λ = 1.54184)                                          |
| 20 range for data collection/°              | 12.848 to 145.26                                             |
| Index ranges                                | -12 ≤ h ≤ 12, -7 ≤ k ≤ 8, -11 ≤ l ≤ 11                       |
| Reflections collected                       | 4429                                                         |
| Independent reflections                     | 714 [R <sub>int</sub> = 0.0526, R <sub>sigma</sub> = 0.0265] |
| Data/restraints/parameters                  | 714/2/61                                                     |
| Goodness-of-fit on F <sup>2</sup>           | 1.084                                                        |
| Final R indexes [I>=2σ (I)]                 | R <sub>1</sub> = 0.0318, wR <sub>2</sub> = 0.0811            |
| Final R indexes [all data]                  | R <sub>1</sub> = 0.0331, wR <sub>2</sub> = 0.0819            |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.34/-0.26                                                   |
| CCDC Deposit Number                         | 2083564                                                      |

## Single crystal X-ray diffraction measurement and refinement of 30

A single crystal of **30** was selected and mounted using Fomblin<sup>®</sup> (YR-1800 perfluoropolyether oil) on a polymer-tipped MiTeGen MicroMountTM and cooled rapidly to 120 K in a stream of cold N<sub>2</sub> using an Oxford Cryosystems open flow cryostat.<sup>11</sup> Single crystal X-ray diffraction data were collected on an Oxford Diffraction GV1000 (TitanS2 CCD area detector, mirror-monochromated Cu-K $\alpha$  radiation source;  $\lambda = 1.54184$  Å,  $\omega$  scans). Cell parameters were refined from the observed positions of all strong reflections and absorption corrections were applied using a Gaussian numerical method with beam profile correction (CrysAlisPro).<sup>12</sup> Structures were solved within Olex2<sup>13</sup> by dual space iterative methods (SHELXT)<sup>14</sup> and all non-hydrogen atoms refined by full-matrix least-squares on all unique F2 values with anisotropic displacement parameters (SHELXL).<sup>15</sup> Structures were checked with checkCIF.<sup>16</sup> CCDC-2083564 contains the supplementary data for this compound. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* <u>www.ccdc.cam.ac.uk/data request/cif</u>.

Ammonium nitrogen atom N8 is disordered across a mirror plane which is coincident with the ring system of the main residue. It has been placed in disorder "part -1" to prevent a bond in the connectivity list between the symmetrically equivalent counterparts.

All hydrogen atoms were observed in the electron density map. Hydrogen atoms on the carbon atoms were geometrically placed and refined with a riding model. The two hydrogen atoms on nitrogen atom N8 are refined with the N-H bond distances restrained to target values of 0.91 Å, and their isotropic displacement parameters fixed at 1.2 time Ueq of the parent nitrogen atom.

## 9 References

- 1 M. Azuma, T. Yoshikawa, N. Kogure, M. Kitajima and H. Takayama, *J. Am. Chem. Soc.*, 2014, **136**, 11618–11621.
- 2 T. C. Efthymiou, V. Huynh, J. Oentoro, B. Peel and J.-P. Desaulniers, *Bioorg. Med. Chem. Lett.*, 2012, **22**, 1722–1726.
- 3 P. J. Crick, N. S. Simpkins and A. Highton, *Org. Lett.*, 2011, **13**, 6472–6475.
- 4 K. Sekine, R. Kobayashi and T. Yamada, *Chem. Lett.*, 2015, **44**, 1407–1409.
- 5 L. Buzzetti, M. Puriņš, P. D. G. Greenwood and J. Waser, *J. Am. Chem. Soc.*, 2020, **142**, 17334– 17339.
- 6 W. Hess and J. W. Burton, *Chem. Eur. J.* 2010, **16**, 12303 12306.
- 7 J. Zhang, Y. Li, F. Zhang, C. Hu and Y. Chen. *Angew. Chem. Int. Ed.*, 2016, **55**, 1872–1875.
- 8 J. Luo and J. Zhang, ACS Catal., 2016, **6**, 873–877.
- 9 C. Lévêque, L. Chenneberg, V. Corcé, C. Ollivier and L. Fensterbank, *Chem. Commun.*, 2016, **52**, 9877–9880
- Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V Slipchenko, S. V Levchenko, D. P. O'Neill, R. A. DiStasio Jr, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Yeh Lin, T. Van Voorhis, S. Hung Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. Min Rhee, J. Ritchie, E. Rosta, C. David Sherrill, A. C. Simmonett, J. E. Subotnik, H. Lee Woodcock III, W. Zhang, A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel, W. J. Hehre, H. F. Schaefer III, J. Kong, A. I. Krylov, P. M. W. Gill and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2006, **8**, 3172–3191.
- 11 J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, **19**, 105–107.
- 12 Rigaku Oxford Diffraction, CrysAlisPro Software System, 2018, version 1.171.40.45a, Rigaku Corporation, Oxford, UK.
- 13 O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 14 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3–8.
- 15 G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, **71**, 3–8.
- 16 'Check CIF' can be found under <u>http://checkcif.iucr.org</u>.