Supporting Information for:

C-H Arylation of Thiopyran Derivatives with Aryl Halides

Yangzhe Su, Min Wang, Jianping Xu, Weinan Chen, Gang Zhou*

Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China.

*Corresponding author: E-mail: zhougang@fudan.edu.cn.

Contents:

1. Materials and reagents S	2
2. Characterizations. S	2
3. Synthesis. S	3
4. Optimization of the reaction condition	4
5. X-ray crystallographic data. S1	6
6. Mechanism studies	3
7. NMR spectra of the products. S2	5
8. References. S4	4

EXPERIMENTAL SECTION

1. Materials and reagents.

All chemicals and reagents were purchased from commercial sources and used as received unless otherwise specified. Anhydrous toluene was stilled from sodium benzophenone ketyl. Thiopyran derivatives **1a**, **1b**, and **1c** were synthesized according to previously reported method^{S1} and all aryl bromide compounds were obtained through commercial sources and used without further purification. All reactions and manipulations were carried out with the use of standard inert atmosphere and Schlenk techniques.

2. Characterizations.

¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were measured on a Varian Mercury Plus-400 spectrometer. The splitting patterns are designated as follows: s (singlet); d (doublet); t (triplet); m (multiplet). High resolution mass (HRMS) spectra were recorded on an Agilent QTOF-6550 spectrometer using ESI for ionization. The single crystals suitable for X-ray analysis were obtained by the slow solvent volatilization method. The X-ray measurement of single crystals was recorded on a Bruker Sc XRD D8 venture.

3. Synthetic procedures.

Synthesis of 9,9'-dibutyl-4,4'-dimethyl-2,2'-biindeno[2,1-b]thiopyran (3a).

To a 25 mL Schlenk tube with a magnetic stir bar were sequentially added **1a** (130 mg, 0.5 mmol), pivalic acid (15.3 mg, 0.15 mmol), Ag₂CO₃ (137 mg, 0.5 mmol), Pd(OAc)₂ (5.6 mg, 0.025 mmol), [P(*n*-Bu)Ad₂H]I (24.3 mg, 0.05 mmol), toluene (5 mL). The reaction mixture was purged with nitrogen. Then, Cs₂CO₃ (489 mg, 1.5 mmol) was added to the reaction mixture. The reaction tube was moved to a pre-heated oil bath. After stirring for 22 h at 110 °C, the reaction mixture was cooled to room temperature. The residue was purified by column chromatography on silica gel (eluent: PE) to yield product **3a** (37 mg, 28%) as a green solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.15 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.32 (d, *J* = 7.1 Hz, 1H), 7.25 (s, 1H), 2.91 – 2.84 (m, 5H), 1.73 (d, *J* = 5.1 Hz, 2H), 1.50 – 1.44 (m, 2H), 0.97 (d, *J* = 6.3 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.6, 136.9, 135.4, 130.5, 129.3, 127.5, 124.9, 124.9, 124.0, 121.6, 117.2, 30.4, 26.1, 23.3, 22.8, 14.4. HRMS (ESI) *m/z*: [M]⁺ calcd. for C₃₄H₃₄S₂ 506.2102; found 506.2106.

Scheme S1. Synthetic route for compounds 4a-4k and 4m.

General procedure for the synthesis of 4a-4k and 4m.

To a 25 mL Schlenk tube with a magnetic stir bar were sequentially added thiopyran derivatives **1** (0.5 mmol), bromo-substituted compound **2** (0.55 mmol), pivalic acid (0.15 mmol), Ag₂CO₃ (0.5 mmol), Pd(OAc)₂ (0.025 mmol), [P(n-Bu)Ad₂H]I (0.05 mmol), toluene (5 mL). The reaction mixture was purged with nitrogen. Then, Cs₂CO₃ (1.5 mmol) was added to the reaction mixture. The reaction tube was moved to a preheated oil bath. After stirring for 22 h at 110 °C, the reaction mixture was cooled to room temperature. The residue was purified by column chromatography on silica gel to produce the target product.

Synthesis of 9-butyl-4-methyl-2-phenylindeno[2,1-*b*]thiopyran (4a).

Eluent: PE. Violet oil, 137 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.18 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 6.0 Hz, 2H), 7.59 (d, J = 7.8 Hz, 1H), 7.52 – 7.42(m, 4H), 7.30 (t, J = 7.6 Hz, 1H), 7.02 (s, 1H), 2.88 (d, J = 6.5 Hz, 5H), 1.73 (t, J = 7.8 Hz, 2H), 1.48 – 1.42 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.3, 140.9, 139.0, 138.5, 136.2, 129.5, 129.2, 127.3, 126.9, 124.6, 123.6, 122.1, 121.0, 119.9, 119.8, 117.0, 30.4, 26.1, 23.3, 23.0, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd. for C₂₃H₂₂S 331.1515; found 331.1516.

Synthesis of 9-butyl-4-methyl-2-(thienyl-2-)indeno[2,1-b]thiopyran (4b).

Eluent:PE. Blue oil, 87 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.12 (d, J = 7.8 Hz, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 5.9 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.12 (d, J = 5.1 Hz, 1H), 7.03 (s, 1H), 2.84 (d, J = 11.3Hz, 5H), 1.76 – 1.68 (m, 2H), 1.49 – 1.42 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.3, 141.6, 136.2, 133.8, 130.6, 128.4, 127.7, 127.6, 126.9, 125.6, 124.5, 124.2, 124.1, 121.3, 121.1, 117.1, 30.4, 26.1, 23.9, 22.8, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd. for C₂₁H₂₀S₂ 337.1080; found 337.1087.

Synthesis of 9-butyl-4-methyl-2-(p-tolyl)indeno[2,1-b]thiopyran (4c).

Eluent: PE. Violet oil, 138 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.18 (d, J = 7.7 Hz, 1H), 7.65 – 7.60 (m, 3H), 7.52 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 7.8 Hz, 2H), 7.28 (s, 1H), 7.01 (s, 1H), 2.92 (t, J = 8.2 Hz, 2H), 2.87 (s, 3H), 2.44 (s, 3H), 1.77 (d, J = 7.2 Hz, 2H), 1.53 – 1.42 (m, 2H), 1.03 – 0.96 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.2, 141.2, 139.7, 136.7, 135.7, 130.4, 129.9, 127.1, 126.8, 126.7, 125.4, 124.6, 123.5, 121.5, 121.0, 117.0, 30.5, 26.1, 23.3, 23.0, 21.6, 14.4. HRMS (ESI) m/z: [M]⁺ calcd. for C₂₄H₂₄S 344.1599; found 344.1609.

Synthesis of 9-butyl-2-(4-methoxyphenyl)-4-methylindeno[2,1-b]thiopyran (4d).

Eluent: PE. Violet oil, 63 mg, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.17 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 6.9 Hz, 2H), 7.59 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.03 – 6.93 (m, 3H), 3.88 (s, 3H), 2.88 (d, J = 19.1 Hz, 5H), 1.75 (t, J = 7.6 Hz, 2H), 1.50 – 1.44 (m, 2H), 1.00 – 0.98 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 161.6, 142.1, 140.9, 136.8, 131.0, 130.4, 128.5, 126.7, 126.4, 125.4, 124.5, 123.4, 121.0, 120.3, 117.5, 117.0, 114.6, 54.3, 31.6, 25.3, 23.3, 21.9, 17.7. HRMS (ESI) m/z: [M]⁺ calcd. for C₂₄H₂₄OS 360.1548; found 360.1565.

Synthesisof9-butyl-4-methyl-2-(4-(trifluoromethyl)phenyl)indeno[2,1-b]thiopyran (4e).

Eluent: PE. Blue-Violet oil, 190 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.17 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 8.1 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 7.60 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.02 (s, 1H), 2.90 (t, J = 7.5 Hz, 2H), 2.86 (s, 3H), 1.79 – 1.72 (m, 2H), 1.50 – 1.45 (m, 2H), 1.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.3, 141.8, 138.8, 135.8, 132.2, 131.2 (q, J = 32.7 Hz), 130.3, 127.8, 127.5, 127.3, 126.1 (q, J = 3.8 Hz), 124.8, 124.5, 124.2 (q, J = 270.7 Hz), 123.2, 121.4, 117.1, 30.4, 26.1, 23.3, 22.8, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -61.80. HRMS (ESI) m/z: [M]⁺ calcd. for C₂₄H₂₁F₃S 398.1316; found 398.1309. Synthesis of 9-butyl-2-(4-fluorophenyl)-4-methylindeno[2,1-b]thiopyran (4f).

Eluent: PE. Blue-violet oil, 159 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.17 (d, J = 7.9 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.62 (d, J = 8.8 Hz, 1H), 7.54 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 8.1 Hz, 1H), 7.16 (d, J = 15.1 Hz, 2H), 6.92 (s, 1H), 2.91 (t, J = 7.5 Hz, 2H), 2.84 (s, 3H), 1.83 – 1.72 (m, 2H), 1.53 – 1.44 (m, 2H), 1.01 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.7 (d, J = 248.7 Hz), 142.2, 139.7, 136.3, 134.7 (d, J = 3.2 Hz), 134.6, 130.4, 129.0 (d, J = 8.4 Hz), 127.0, 125.0, 124.7, 123.9, 122.1, 121.2, 117.1, 116.2 (d, J = 21.7 Hz), 30.5, 26.1, 23.3, 22.9, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -111.08. HRMS (ESI) m/z: [M + H]⁺ calcd. for C₂₃H₂₁FS 349.1421; found 349.1437.

Synthesis of 9-butyl-2-(3-fluorophenyl)-4-methylindeno[2,1-b]thiopyran (4g).

Eluent: PE. Blue-violet oil, 162 mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.16 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.9 Hz, 1H), 7.51 (d, J = 6.1 Hz, 2H), 7.48 – 7.40 (m, 2H), 7.34 – 7.29 (m, 1H), 7.17 – 7.09 (m, 1H), 7.00 (s, 1H), 2.87 (d, J = 13.5 Hz, 5H), 1.80 – 1.69 (m, 2H), 1.51 – 1.43 (m, 2H), 0.99 – 0.96 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.3 (d, J = 245.6 Hz), 142.3, 140.6 (d, J = 7.9 Hz), 139.2 (d, J = 2.4 Hz), 136.0, 130.7 (d, J = 3.0 Hz), 130.4, 127.6, 127.1, 124.7, 124.2, 122.9 (d, J = 5.7 = 8.4 Hz), 122.6, 121.3, 117.1, 116.4, 116.2, 114.2 (d, J = 23.3 Hz), 29.9, 26.4, 23.0, 22.9, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -111.27. HRMS (ESI) m/z: [M]⁺ calcd. for C₂₃H₂₁FS 348.1348; found 348.1355.

Synthesis of 9-butyl-2-(2-fluorophenyl)-4-methylindeno[2,1-b]thiopyran (4h).

Eluent: PE. Blue-violet oil, 160 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.20 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 20.5 Hz, 2H), 7.54 (d, J = 8.3 Hz, 1H), 7.45 – 7.35 (m, 1H), 7.37 – 7.31 (m, 1H), 7.26 (s, 1H), 7.19 (d, J = 12.5 Hz, 1H), 7.03 (s, 1H), 2.88 (d, J = 10.6 Hz, 5H), 1.80 – 1.69 (m, 2H), 1.51 – 1.44 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 159.7 (d, J = 249.4 Hz), 142.2, 136.0, 134.2 (d, J = 2.3 Hz), 131.0 (d, J = 2.4 Hz), 130.8 (d, J = 8.4 Hz), 130.4, 127.1, 127.1, 126.3 (d, J = 7.5 Hz), 125.4 (d, J = 5.0 Hz), 125.2, 124.8, 124.7, 123.7, 121.1, 117.0, 116.7 (d, J = 22.1 Hz), 30.4, 26.1, 23.3, 22.9, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -114.02. HRMS (ESI) m/z: [M]⁺ calcd. for C₂₃H₂₁FS 348.1348; found 348.1348.

Synthesis of 9-butyl-2-(2,6-difluorophenyl)-4-methylindeno[2,1-b]thiopyran (4i).

Eluent: PE. Blue-violet oil, 154 mg, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm):

8.21 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.43 – 7.30 (m, 2H), 7.03 (t, J = 8.0 Hz, 2H), 6.83 (s, 1H), 2.87 (d, J = 6.3 Hz, 5H), 1.79 – 1.69 (m, 2H), 1.51 – 1.43 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 160.6 (dd, J = 250.1 Hz, 5.7 Hz), 142.2, 135.5, 131.1 (t, J = 10.3 Hz), 130.4, 127.7, 127.5, 127.2, 126.9, 125.0, 124.8, 123.8, 121.2, 117.0, 112.2 – 111.9 (m), 30.3, 26.1, 23.3, 22.8, 14.3. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -110.48. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd. for C₂₃H₂₀F₂S 366.1254; found 366.1266.

Synthesis of 11-butyl-9-(p-tolyl)benzo[4,5]indeno[2,1-b]thiopyran (4j).

Eluent: PE. Green solid. 168 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.60 (d, J = 8.3 Hz, 1H), 8.16 (d, J = 9.3 Hz, 1H), 8.00 (t, J = 8.2 Hz, 2H), 7.69 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 8.1 Hz, 3H), 7.61 – 7.53 (m, 1H), 7.29 (d, J = 8.7 Hz, 3H), 3.35 (t, J = 7.7 Hz, 2H), 2.44 (s, 3H), 1.96 – 1.86 (m, 2H), 1.66 – 1.56 (m, 2H), 1.04 (t, J = 6.9 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm): 144.0, 140.6, 137.3, 135.9, 134.7, 130.0, 129.1, 129.0, 128.0, 127.4, 126.6, 125.7, 125.5, 125.4, 125.1, 124.8, 124.3, 121.6, 119.3, 115.5, 31.4, 29.2, 23.3, 21.6, 15.0. HRMS (ESI) m/z: [M + H]⁺ calcd. for C₂₇H₂₄S 381.1672; found 381.1673.

Synthesis of 11-butyl-9-(4-fluorophenyl)benzo[4,5]indeno[2,1-b]thiopyran (4k).

Eluent: PE. Green solid. 173 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.58 (d, J = 8.3 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.73 – 7.54 (m, 5H), 7.15 (d, J = 9.0 Hz, 3H), 3.31 (t, J = 7.8 Hz, 2H), 1.91 (d, J = 15.5 Hz, 2H), 1.60 (t, J = 11.4 Hz, 2H), 1.03 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 163.8 (d, J = 249.0 Hz), 142.4, 137.4, 134.8 (d, J = 3.4 Hz), 134.8, 129.4, 129.3, 129.3, 129.2, 128.0, 126.6, 126.1, 125.6 (d, J = 5.8 Hz), 125.0, 124.3, 123.9, 121.8, 119.3, 116.3 (d, J = 21.7 Hz), 116.0, 31.3, 29.2, 23.3, 14.4. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm): -110.91. HRMS (ESI) m/z: [M + H]⁺ calcd. for C₂₆H₂₁FS 385.1421; found 385.1438.

Synthesis of 9-butyl-2-(3-methoxyphenyl)-4-methylindeno[2,1-b]thiopyran (4m).

Eluent: PE. Violet oil, 41 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.18 (d, J = 9.0 Hz, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H), 7.27 (d, J = 2.5 Hz, 1H), 7.03 (s, 1H), 6.99 (d, J = 9.4 Hz, 1H), 3.91 (s, 3H), 2.91 (t, J = 7.5 Hz, 2H), 2.87 (s, 3H), 1.76 (m, 2H), 1.48 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 160.2, 142.2, 140.8, 139.9, 136.4, 130.4, 130.2, 127.1, 126.9, 125.3, 124.6, 123.7, 122.2, 121.1, 119.8, 117.0, 115.0, 112.9, 55.7, 30.5, 26.1, 23.3, 22.9, 14.4. MALDI-TOF MS m/z: [M]⁺ calcd. for S10 C₂₄H₂₄OS 360.1548; found 360.1550.

Synthesis of 4,4'-methyl-2,2'-(p-toly)7,14-dioctylnaphtho[2,1-f:6,5-f']bis-

To a 25 mL Schlenk tube with a magnetic stir bar were sequentially added 4,4'7,14dioctylnaphtho[2,1-f:6,5-f]bis-(cyclopenta[b]thiopyran) 1b (100 mg, 0.18 mmol), 4bromotoluene (32 mg, 0.38 mmol), pivalic acid (6 mg, 0.15 mmol), Ag₂CO₃ (49 mg, 0.18 mmol), Pd(OAc)₂ (1.5 mg, 0.01 mmol), [P(n-Bu)Ad₂H]I (8.8 mg, 0.02 mmol), toluene (5 mL). The reaction mixture was purged with nitrogen. Then, Cs₂CO₃ (176 mg, 1.5 mmol) was added to the reaction mixture. The reaction tube was moved to a pre-heated oil bath. After stirring for 22 h at 110 °C, the reaction mixture was cooled to room temperature. The residue was purified by column chromatography on silica gel (PE/DCM = 8/1). to yield product 4I (24 mg, 44%) as a green solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.48 (t, J = 14.0 Hz, 2H), 7.69 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 7.20 (s, 1H), 3.43 (s, 2H), 3.08 (s, 3H), 2.44 (s, 3H), 2.00 – 1.95 (m, 2H), 1.67 – 1.61 (m, 2H), 1.50 – 1.41 (m, 2H), 1.37 – 1.27 (m, 6H), 0.94 – 0.84 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ (ppm): 142.7, 140.1, 139.0, 138.1, 136.2, 130.3, 127.8, 127.7, 126.6, 125.8, 125.0, 122.5, 122.2, 118.4, 32.6, 30.6, 30.5, 30.2, 30.0, 29.4, 24.0, 23.3, 21.9, 14.8. HRMS (ESI) m/z: [M]⁺ calcd. for C₅₄H₆₀S₂ 772.4136; found 772.4140.

General procedure for the synthesis of 4n and 4o.

To a 25 mL Schlenk tube with a magnetic stir bar were sequentially added thiopyran derivatives **1c** (0.5 mmol), dibromo-substituted compounds (0.55 mmol), pivalic acid (0.15 mmol), Ag_2CO_3 (0.5 mmol), $Pd(OAc)_2$ (0.025 mmol), $[P(n-Bu)Ad_2H]I$ (0.05 mmol), toluene (5 mL). The reaction mixture was purged with nitrogen. Then, Cs_2CO_3 (1.5 mmol) was added to the reaction mixture. The reaction tube was moved to a preheated oil bath. After stirring for 22 h at 110 °C, the reaction mixture was cooled to room temperature. The residue was purified by column chromatography on silica gel to produce the target product.

Synthesis of 8-butylacenaphtho[1,2-b]benzo[4,5]indeno[1,2-e]thiopyran (4n).

Eluent: PE/DCM = 15/1. Brown solid, 107 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.49 (d, J = 8.2 Hz, 1H), 8.36 (s, 1H), 8.16 (d, J = 8.3 Hz, 1H), 7.97 (d, J =7.9 Hz, 1H), 7.83 (t, J = 8.5 Hz, 2H), 7.75 (d, J = 6.8 Hz, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.58 – 7.50 (m, 4H), 3.24 (t, J = 7.8 Hz, 2H), 1.93 – 1.85 (m, 2H), 1.65 – 1.59 (m, 2H), 1.06 – 1.02 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 138.0, 137.1, 136.7, 134.6, 130.0, 129.7, 129.2, 129.1, 128.9, 128.4, 128.3, 128.0, 128.0, 127.4, 126.5, 126.4, 125.4, 125.2, 124.9, 122.9, 121.7, 121.5, 119.7, 119.2, 119.2, 31.3,
29.3, 23.4, 14.4. HRMS (ESI) *m/z*: [M]⁺ calcd. for C₃₀H₂₂S 414.1442; found 414.1442.

Synthesis of 6-butyl-1,2-dihydrobenzo[4,5]indeno[2,1-*b*]cyclopenta[5,6]acenaphtho[1,2-*e*]thiopyran (40).

Eluent: PE/DCM = 12/1. Brown solid, 105 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.52 (d, J = 8.3 Hz, 1H), 8.42 (s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.98 (d, J =7.9 Hz, 1H), 7.89 (d, J = 6.9 Hz, 1H), 7.80 (d, J = 6.7 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.37 (d, J = 7.1 Hz, 2H), 3.36 (s, 4H), 3.28 (d, J = 7.8 Hz, 2H), 1.93 (t, J = 7.8 Hz, 2H), 1.69 – 1.63 (m, 2H), 1.08 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 149.4, 146.0, 138.0, 136.8, 135.7, 134.5, 132.8, 132.5, 129.0, 129.0, 128.5, 128.0, 127.2, 125.8, 125.4, 125.1, 124.9, 124.1, 123.2, 122.1, 121.4, 121.2, 121.2, 120.9, 119.1, 33.0, 32.5, 31.3, 29.3, 23.4, 14.5. HRMS (ESI) m/z: [M]⁺ calcd. for C₃₂H₂₄S 440.1599; found 440.1592.

3. Optimization of the C-H arylation conditions.

Table S1. Optimization of the amount of Pd(OAc)₂, Ag₂CO₃, and PivOH in the C-H arylation reaction (the amount of the ligand is 2 equiv. of [Pd]).

	C ₄ H ₉ S H 1a R ₂	+ Br - 2a Pd(OAc) ₂ / [P(n-Bu)/ PivO Cs ₂ CO ₃ (3 toluene, 1	$\begin{array}{c} Ag_2CO_3 \\ Ad2H]I \\ H \\ equiv.) \\ 10 \ ^{\circ}C \end{array} \begin{array}{c} C_4H_9 \\ S \\ 4a \end{array}$	\rightarrow
Entry	[Pd]	[Ag]	[PivOH]	Viald (0/)
Linu y	(mol %)	(equiv.)	(equiv.)	i leid (%)
1	2	1.0	0.3	58
2	5	1.0	0.3	83
3	10	1.0	0.3	82
4	5	0	0.3	0
5	5	0.5	0.3	72
6	5	0.8	0.3	79
7	5	1.5	0.3	82
8	5	1.0	0.1	41
9	5	1.0	0.2	69
10	5	1.0	0.4	81
11	5	1.0	0.5	80

C ₄ H ₅	H + Br - C	I(OAc) ₂ (5 mol%) g ₂ CO ₃ (1 equiv.) (P(n-Bu)Ad ₂ H]I (10 mol%) ivOH (0.3 equiv.) s ₂ CO ₃ (3 equiv.) 4a	4H9
Entry	Solvent	<i>T</i> (°C)	Yield (%)
1	Toluene	80	47
2	Toluene	90	62
3	Toluene	100	74
4	Toluene	110	83
5	o-Xylene	140	66
6	Mesitylene	160	80
7	DMF	110	0
8	DMA	110	0
9	DMSO	110	0
10	1,4-Dioxane	110	11

Table S2. Optimization of the solvent and the reaction temperature in the C-H arylation.

5. X-ray crystallographic data.

Fig. S1 ORTEP drawing of 3a with ellipsoid contour probability level of 50%.

Fig. S2 ORTEP drawing of 4j with ellipsoid contour probability level of 50%.

Fig. S3 ORTEP drawing of 4n with ellipsoid contour probability level of 50%.

	3 a	4j	4n
CCDC No.	2310535	2310536	2310537
formula	$C_{34}H_{34}S_2$	$C_{27}H_{24}S$	$C_{30}H_{22}S$
formula wt.	506.73	380.52	414.57
<i>T</i> (K)	170	100	100
wavelength (Å)	0.71073	1.54178	1.54184
crystal size(mm)	$0.12 \times 0.07 \times 0.04$	$0.15 \times 0.09 \times 0.08$	$0.25 \times 0.04 \times 0.01$
crystal syst.	trigonal	triclinic	monoclinic
space group	R3	Pī	$P2_{1}/C$
<i>a</i> (Å)	37.256(6)	12.0192(7)	14.9168(3)
<i>b</i> (Å)	37.256(6)	13.1986(7)	5.12150(10)
<i>c</i> (Å)	5.1212(11)	13.5978(7)	80.8465(18)
α (deg.)	90	91.326(2)	90
β (deg.)	90	92.661(3)	92.323(2)
γ (deg.)	120	113.371(3)	90
$V(Å^3)$	6156(2)	1975.96(19)	6171.3(2)
$Z \ / \ D_{calcd.} \ (mg/m^3)$	9/1.230	4/1.279	12/1.338
$\mu \text{ (mm}^{-1}\text{)}$	0.216	1.501	1.494
<i>F</i> (000)	2430	808	2616
D	R1 = 0.0694	R1 = 0.1065	RI = 0.0778
K indices	wR2 = 0.1313	wR2 = 0.2886	wR2 = 0.1630
[I > 20(D)]	R1 = 0.1364	RI = 0.1175	R = 0.1025
$[I \geq 2\theta(I)]$	wR2 = 0.1663	wR2 = 0.2967	wR2 = 0.1717

Table S3. Single crystal data and structure refinements for 3a, 4j, and 4n.

Bond	Length/Å	Bond	Length/Å
S1-C9	1.739(3)	C8-C1	1.391(5)
S1-C12	1.740(3)	C6-C14	1.501(5)
C9-C7	1.465(4)	C11-C12	1.363(5)
C9-C6	1.361(4)	C12-C12	1.478(6)
C7-C10	1.369(4)	C1-C2	1.399(5)
C7-C8	1.467(4)	C14-C15	1.538(5)
C5-C8	1.409(5)	C4-C3	1.388(5)
C5-C6	1.466(5)	C3-C2	1.382(5)
C5-C4	1.394(4)	C15-C16	1.492(5)
C10-C11	1.445(4)	C16-C17	1.537(5)
C10-C13	1.505(4)		

Table S4. Selected bond lengths for 3a.

Bond	Length/Å	Bond	Length/Å
S1-C23	1.726(6)	C20-C15	1.435(8)
S1-C8	1.731(5)	C20-C15	1.424(8)
C4-C6	1.370(8)	C1-C8	1.480(8)
C7-C6	1.388(8)	C7-C1	1.408(8)
C4-C5	1.508(8)	C1-C2	1.390(8)
C4-C3	1.403(8)	C15-C16	1.424(8)
C25-C24	1.534(7)	C15-C14	1.421(8)
C25-C26	1.530(7)	C13-C14	1.355(8)
C12-C13	1.411(8)	C16-C17	1.356(9)
C23-C22	1.338(8)	C10-C9	1.412(8)
C21-C20	1.424(8)	C8-C9	1.373(8)
C21-C12	1.417(7)	C3-C2	1.387(8)
C21-20	1.463(8)	C24-C22	1.514(7)
C11-C12	1.447(8)	C26-C27	1.525(7)
C11-C23	1.493(7)	C19-C18	1.362(9)
C11-C10	1.352(8)	C18-C17	1.416(9)

Table S5. Selected bond lengths for 4j.

Bond	Length/Å	Bond	Length/Å
S1-C16	1.714(5)	C12-C13	1.372(6)
S1-C12	1.751(4)	C13-C10	1.472(6)
C16-C18	1.483(6)	C10-C9	1.406(7)
C18-C17	1.365(6)	C9-C11	1.451(6)
C17-C22	1.417(6)	С9-С8	1.414(6)
C22-C21	1.376(6)	C8-C7	1.366(7)
C21-C20	1.425(6)	C7-C4	1.427(6)
C20-C19	1.396(6)	C4-C5	1.428(6)
C19-C18	1.414(6)	C5-C10	1.437(6)
C20-C26	1.425(6)	C4-C3	1.423(6)
C26-C25	1.378(6)	C3-C2	1.367(7)
C25-C24	1.434(6)	C2-C1	1.395(6)
C24-C23	1.373(6)	C1-C6	1.377(7)
C23-C19	1.411(6)	C6-C5	1.413(6)
C23-C15	1.475(7)	C12-C27	1.497(6)
C15-C16	1.388(6)	C27-C28	1.543(6)
C15-C14	1.432(7)	C28-C29	1.524(7)
C14-C11	1.354(6)	C29-C30	1.528(6)
C11-C12	1.463(6)		

Table S6. Selected bond lengths for 4n.

6. Mechanism studies.

Fig. S4 ¹H NMR spectra of (a) L•HI, PdL₂, ArBr, mixture of ArBr and PdL₂, ArPdL₂Br, and (b) the zoomed aromatic region ($L = [P(n-Bu)Ad_2]$, Ar = *p*-CF₃Ph).

Fig. S5 Proposed mechanism of the dimerization.

7. NMR spectra of the products.

Fig. S6 ¹H NMR spectrum of 3a in CDCl₃.

Fig. S8 ¹H NMR spectrum of 4a in CDCl₃.

Fig. S10 ¹H NMR spectrum of 4b in CDCl₃.

Fig. S12 ¹H NMR spectrum of 4c in CDCl₃.

Fig. S14 ¹H NMR spectrum of **4d** in CDCl₃.

Fig. S16 ¹H NMR spectrum of 4e in CDCl₃.

Fig. S18¹⁹F NMR spectrum of 4e in CDCl₃.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

Fig. S19 ¹H NMR spectrum of 4f in CDCl₃.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

Fig. S24 ¹⁹F NMR spectrum of 4g in CDCl₃.

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

Fig. S28 ¹H NMR spectrum of 4i in CDCl₃.

Fig. S30 ¹⁹F NMR spectrum of 4i in CDCl₃.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

Fig. S31 ¹H NMR spectrum of 4j in CDCl₃.

Fig. S33 ¹H NMR spectrum of 4k in CDCl₃.

Fig. S35¹⁹F NMR spectrum of 4k in CDCl₃.

--110.91

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

Fig. S36 ¹H NMR spectrum of 4l in CDCl₃.

Fig. S37 ¹³C NMR spectrum of 4l in CDCl₃.

Fig. S40 ¹H NMR spectrum of 4n in CDCl₃.

Fig. S42 ¹H NMR spectrum of 40 in CDCl₃.

8. Reference.

S1. Y. Lu, Y. Qiao, H. Xue and G. Zhou, Org. Lett., 2018, 20, 6632-6635.