Electronic Supplementary Information

Substitution-pattern- and counteranion-dependent ion-pairing assemblies of heteroporphyrin-based π-electronic cations

Masaki Fujita, Yohei Haketa, Shu Seki and Hiromitsu Maeda*

Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525–8577, Japan, Fax: +81 77 561 2659; Tel: +81 77 561 5969; E-mail: maedahir@ph.ritsumei.ac.jp and Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615–8510, Japan

Table of Contents	
1. Synthetic procedures and spectroscopic data	S2
Fig. S1–9 NMR spectroscopic data.	S6
2. X-ray crystallographic data	S23
Fig. S10–16 Ortep drawings.	S25
Fig. S17–30 Packing diagrams.	S30
Fig. S31–40 Hirshfeld surfaces.	S38
3. Theoretical studies	S48
Fig. S41,42 Optimized structures.	S48
Fig. S43–48 Molecular orbitals (HOMO and LUMO).	S49
Fig. S49–54 Theoretical UV/vis absorption spectra.	S53
Fig. S55,56 NICS values and ACID plots.	S56
Fig. S57–59 Electrostatic potential (ESP) mapping.	S57
Fig. S60 Dipole moment in the packing structure.	S58
Fig. S61–67 Single-crystal X-ray structures for EDA calculations.	S58
Cartesian coordination of optimized structures	S62
4. Solution-state properties	S73
Fig. S68 Summarized ¹ H NMR spectra.	S74
Fig. S69–76 VT- ¹ H NMR spectra.	S75
Fig. S77 Summarized UV/vis absorption spectra.	S82
Fig. S78,79 Cyclic voltammograms.	S83
5. Electric conductivities of ion pairs	S84
Fig. S80,81 Conductivity transients in FP-TRMC measurements.	S84

1. Synthetic procedures and spectroscopic data

General procedures. Starting materials were purchased from FUJIFILM Wako Pure Chemical Industries Ltd., Nacalai Tesque Inc., Tokyo Chemical Industry Co., Ltd., and Sigma-Aldrich Co., and were used without further purification unless otherwise stated. **1**,^[S1] 5,10,15,20-Tetraphenyl-21-thiaporphyrin Pd^{II} complex $1pd^+$ as a Cl⁻ ion pair ($1pd^+$ -Cl⁻), ^[S2] and 10, 15bis(pentafluorophenyl)-5,20-diphenyl-21-thiaporphyrin 2^[S3] were prepared according to the literature procedures. NMR spectra used in the characterization of products were recorded on a JEOL ECA-600 600 MHz spectrometer. All NMR spectra were referenced to solvent. UV-visible absorption spectra were recorded on a Hitachi U-3500 spectrometer. High-resolution (HR) electrospray ionization mass spectrometry (ESI-MS) was recorded on a BRUKER microTOF using ESI-TOF method. TLC analyses were carried out on aluminum sheets coated with silica gel 60 (Merck 5554). Column chromatography was performed on Sumitomo alumina KCG-1525 and Wakogel C-300.

Pd^Ⅱ 5,10,15,20-tetraphenyl-21complex of thiaporphyrin as a BF₄⁻ ion pair, 1pd⁺-BF₄⁻. To a MeOH solution (20 mL) of 1pd⁺-Cl^{-[S2]} (13.7 mg, 17.7 µmol) was added AgBF4 (3.44 mg, 17.7 µmol), and the reaction mixture was stirred at r.t. for 30 min, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography (Wakogel C-300; eluent: 5% MeOH/CH2Cl2) and was recrystallized from CH₂Cl₂/*n*-hexane to afford $1pd^+$ -BF₄⁻ (9.20 mg, 11.2 µmol, 63%) as a green solid. $R_f = 0.46 (10\%)$ MeOH/CH2Cl2). ¹H NMR (600 MHz, CDCl3, -60 °C, not fully detected): δ (ppm) 9.83 (s, 2H, β -CH), 9.12 (d, J = 7.2 Hz, 2H, Ph-H), 9.05–9.02 (m, 4H, β -CH), 8.82 (s, 2H, β -CH), 8.21 (d, J = 7.2 Hz, 2H, Ph-H), 8.17 (d, J =6.6 Hz, 2H, Ph-H), 8.11 (t, J = 7.2 Hz, 2H, Ph-H), 7.93– 7.88 (m, 4H, Ph-H), 7.86–7.81 (m, 6H, Ph-H), 7.64 (d, J = 7.2 Hz, 2H, Ph-H). ¹³C{¹H} NMR (151 MHz, CDCl₃, -60 °C): δ(ppm) 212.56, 152.03, 145.30, 143.53, 141.46, 139.46, 139.36, 139.07, 137.27, 136.45, 134.71, 134.69, 134.62, 134.28, 134.02, 131.42, 130.50, 129.32, 129.16, 129.07, 127.41. ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) -157.45 (s, ${}^{10}BF_{4}$), -157.50 (s, ${}^{11}BF_{4}$). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ M⁻¹cm⁻¹)): 418 (0.49), 470 (0.71), 558 (0.074), 630 (0.067). HRMS (ESI-TOF): m/z: calcd for C₄₄H₂₈N₃PdS ([M - BF₄]⁺): 736.1033; found 736.1033. Calcd for $BF_4 ([M - C_{44}H_{28}N_3PdS])$: 87.0035; found 87.0035. This compound was further characterized by single-crystal X-ray analysis.

Pd^Ⅱ complex 5,10,15,20-tetraphenyl-21of thiaporphyrin as a PF_6^- ion pair, $1pd^+$ - PF_6^- . To a MeOH solution (20 mL) of 1pd⁺-Cl^{-[S2]} (12.4 mg, 16.0 µmol) was added AgPF₆ (4.22 mg, 16.7 µmol) and the reaction mixture was stirred at r.t. for 30 min, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography (Wakogel C-300; eluent: 5% MeOH/CH2Cl2) and was recrystallized from CH_2Cl_2/n -hexane to afford $1pd^+$ -PF₆ (9.17 mg, 10.4 μ mol, 65%) as a green solid. $R_f = 0.57$ (10%) MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, -60 °C): δ (ppm) 9.82 (s, 2H, β -CH), 9.12 (d, J = 7.2 Hz, 2H, Ph-H), 9.04–9.02 (m, 4H, β-CH), 8.82 (s, 2H, β-CH), 8.21 (d, J = 6.6 Hz, 2H, Ph-H), 8.17 (d, J = 6.6 Hz, 2H, Ph-H), 8.11 (t, *J* = 7.5 Hz, 2H, Ph-H), 7.93–7.88 (m, 4H, Ph-H), 7.86–7.80 (m, 6H, Ph-H), 7.63 (d, *J* = 7.2 Hz, 2H, Ph-H). ¹³C{¹H} NMR (151 MHz, CDCl₃, -60 °C): δ (ppm) 152.07, 145.32, 143.54, 141.51, 139.49, 139.37, 139.11, 137.29, 137.28, 136.45, 134.74, 134.69, 134.65, 134.31, 134.30, 134.02, 131.40, 130.51, 129.33, 129.21, 129.06, 127.42. ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) – 77.31 (d, J = 712 Hz, 6F). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , $10^5 \text{ M}^{-1}\text{cm}^{-1}$): 417 (0.54), 470 (0.77), 560 (0.081), 632 (0.073). HRMS (ESI-TOF): m/z: calcd for C44H28N3PdS $([M - F_6P]^+)$: 736.1033; found 736.1033. Calcd for F_6P $([M - C_{44}H_{28}N_3PdS]^-): 144.9647;$ found 144.9650. This compound was further characterized by single-crystal Xray analysis.

Pd^Ⅱ complex of 5,10,15,20-tetraphenyl-21thiaporphyrin as a $B(C_6F_5)_4^-$ ion pair, $1pd^+-B(C_6F_5)_4^-$. To a MeOH solution (20 mL) of $1pd^+$ -Cl^{-[S2]} (10.0 mg, 12.9 µmol) was added salt of Li tetrakis(pentafluorophenyl)borate (LiB(C₆F₅)₄) (9.70 mg, 14.1 µmol), and the reaction mixture was stirred at r.t. for 20 min, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography (Wakogel C-300; eluent: 5% MeOH/CH2Cl2) and was recrystallized from acetone/nhexane to afford $1pd^+-B(C_6F_5)_4^-$ (15.3 mg, 10.8 µmol, 84%) as a green solid. $R_f = 0.77 (10\% \text{ MeOH/CH}_2\text{Cl}_2).$ ¹H NMR (600 MHz, CDCl₃, -60 °C): δ(ppm) 9.76 (s, 2H, β -CH), 9.05 (s, 4H, β -CH), 9.02 (d, J = 7.2 Hz, 2H, Ph-H), 8.83 (s, 2H, β -CH), 8.20 (d, J = 6.6 Hz, 2H, Ph-H), 8.15 (d, J = 6.0 Hz, 2H, Ph-H), 8.07 (t, J = 7.2 Hz, 2H, Ph-H), 7.93-7.88 (m, 4H, Ph-H), 7.84-7.81 (m, 6H, Ph-H), 7.62 (d, J = 6.6 Hz, 2H, Ph-H). ¹³C{¹H} NMR (151 MHz, CDCl₃, -60 °C): δ (ppm) 212.50, 152.07, 147.60 (dm, $J_{13C-19F} = 240$ Hz), 145.42, 143.66, 141.22, 139.42, 139.01, 138.96, 137.66 (dm, $J_{13C-19F} = 246$ Hz), 137.20, 135.84 (dm, $J_{13C-19F} = 260$ Hz), 136.00, 134.73, 134.65, 134.60, 134.25, 134.09, 133.91, 131.67, 130.58, 129.38, 129.13, 129.07, 127.43, 123.24. ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –135.84 (s, 8F, Ar-F), –166.47 (t, J = 20.3 Hz, 4F, Ar-F), –170.09 (m, 8F, Ar-F). UV/vis (CH₂Cl₂, λ_{max} [nm] (ε , 10⁵ M⁻¹cm⁻¹)): 418 (0.56), 470 (0.80), 559 (0.086), 631 (0.077). HRMS (ESI-TOF): m/z: calcd for C₄₄H₂₈N₃PdS ([M – C₂₄BF₂₀]⁺): 736.1033; found 736.1034. Calcd for C₂₄BF₂₀ ([M – C₄₄H₂₈N₃PdS]⁻): 678.9779; found 678.9777.

PdⅡ 5,10,15,20-tetraphenyl-21complex of thiaporphyrin as a PCCp⁻ ion pair, 1pd⁺-PCCp⁻. To a MeOH solution (20 mL) of $1pd^+$ -Cl^{-[52]} (10.3 mg, 13.3 µmol) was added sodium pentacyanocyclopentadienide (NaPCCp)^[S4] (2.90 mg, 13.6 µmol), and the reaction mixture was stirred at r.t. for 1 h, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography (Wakogel C-300; eluent: 5% MeOH/CH2Cl2) and was recrystallized from CH₂Cl₂/n-hexane to afford 1pd⁺-PCCp⁻ (8.78 mg, 9.47 µmol, 71%) as a green solid. $R_f = 0.53 (10\%)$ MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 9.82 (s, 2H, β -CH), 9.06 (d, J = 4.8 Hz, 2H, β -CH), 9.05 (d, J = 5.4 Hz, 2H, β -CH), 8.89 (s, 2H, β -CH), 8.45 (br, Ph-H), 8.32 (d, J = 6.0 Hz, Ph-H), 7.96–7.82 (m, Ph-H) (The integrals of Ph-H were not consistent with the actual number due to broadening). ${}^{13}C{}^{1}H$ NMR (151 MHz, CDCl₃, 20 °C, not fully detected): δ (ppm) 152.45, 145.96, 144.11, 140.77, 140.03, 139.52, 139.47, 136.73, 135.75, 135.01, 134.60, 134.36, 131.99, 129.40, 129.02, 127.42, 111.18, 99.59. UV/vis (CH₂Cl₂, λ_{max}[nm] (ε, 10⁵ $M^{-1}cm^{-1}$): 417 (0.54), 470 (0.78), 559 (0.080), 630 (0.072). HRMS (ESI-TOF): m/z: calcd for C44H28N3PdS $([M - C_{10}N_5]^+)$: 736.1033; found 736.1033. Calcd for C₁₀N₅ ([M - C₄₄H₂₈N₃PdS]⁻): 190.0159; found 190.0161. This compound was further characterized by singlecrystal X-ray analysis.

Pd^{II} complex of 10,15-bis(pentafluorophenyl)-5,20diphenyl-21-thiaporphyrin as a Cl⁻ ion pair, 2pd⁺-Cl⁻. To a CHCl₃/MeOH solution (40 mL/60 mL) of $2^{[S3]}$ (42.0

mg, 51.7 µmol) was added PdCl₂ (51.3 mg, 0.266 µmol). The reaction mixture was heated to reflux and was stirred under air for 10 h, followed by filtration and evaporation The residue was purified by silica gel to dryness. column chromatography (Wakogel C-300; eluent: CH₂Cl₂ to 10% MeOH/CH₂Cl₂) and was recrystallized from CH_2Cl_2/n -hexane to afford **2pd**⁺-Cl⁻ (44.8 mg, 47.0 µmol, 91%) as a green solid. $R_f = 0.45 (10\% \text{ MeOH/CH}_2\text{Cl}_2).$ ¹H NMR (600 MHz, CDCl₃, -60 °C): δ (ppm) 10.16 (s, 2H, β -CH), 9.58 (d, J = 5.4 Hz, 2H, Ph-H), 9.21 (d, J =4.2 Hz, 2H, β -CH), 8.98 (d, J = 4.2 Hz, 2H, β -CH), 8.92 (s, 2H, β -CH), 8.12 (t, J = 6.9 Hz, 2H, Ph-H), 7.84 (t, J =7.2 Hz, 2H, Ph-H), 7.76 (t, J = 6.9 Hz, 2H, Ph-H), 7.62 (d, J = 6.6 Hz, 2H, Ph-H). ¹³C{¹H} NMR (151 MHz, CDCl₃, -60 °C): δ (ppm) 212.44, 209.01, 152.05, 146.08 (dm, $J_{13C-19F} = 208$ Hz), 145.85, 145.52, 142.54 (dm, $J_{13C-19F} =$ 259 Hz), 142.61, 142.26, 139.18, 137.49 (dm, $J_{13C-19F} =$ 253 Hz), 137.64, 137.23, 136.35, 136.22, 133.68, 133.05, 130.63, 129.70, 128.63, 121.40, 112.63, 110.05. ¹⁹F NMR (564 MHz, CDCl₃, -60 °C): δ(ppm) -138.92 (s, 8F, Ar-F), -152.26 (s, 4F, Ar-F), -163.09 (s, 8F, Ar-F). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ M⁻¹cm⁻¹)): 413 (0.43), 469 (0.78), 552 (0.089), 624 (0.055), 667 (0.050). HRMS (ESI-TOF): m/z: calcd for C44H18F10N3PdS ([M -Cl]⁺): 916.0091; found 916.0088.

Pd^{II} complex of 10,15-bis(pentafluorophenyl)-5,20diphenyl-21-thiaporphyrin as a BF₄⁻ ion pair, 2pd⁺-BF₄-. A CH₂Cl₂/MeOH solution (10 mL/20 mL) of 2pd⁺-Cl⁻ (15.1 mg, 15.8 µmol) and AgBF₄ (3.70 mg, 19.0 µmol) was stirred at r.t. for 30 min, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography (Wakogel C-300; eluent: 10% MeOH/CH2Cl2) and was recrystallized from CH_2Cl_2/n -hexane to afford $2pd^+$ -BF₄ (9.42 mg, 9.38 µmol, 59%) as a green solid. $R_f = 0.46 (10\%)$ MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ (ppm) 9.95 (s, 2H, β-CH), 9.23-9.00 (m, 8H, β-CH and Ph-H), 8.12 (s, 2H, Ph-H), 7.95 (t, J = 6.9 Hz, 2H, Ph-H), 7.86 (t. J = 6.6 Hz, 2H, Ph-H), 7.71 (s. 2H, Ph-H). ¹³C{¹H} NMR (151 MHz, CDCl₃, -60 °C): δ (ppm) 179.70, 152.20, 146.04 (dm, $J_{13C-19F} = 227$ Hz), 145.82, 145.52, 145.29, 142.74 (dm, $J_{13C-19F} = 250$ Hz), 143.02, 142.99, 139.18, 137.60 (dm, $J_{13C-19F} = 260$ Hz) 137.98, 137.37, 136.30, 134.18, 133.57, 131.06, 129.81, 129.18, 113.48 (m), 110.56 (the signals of C₆F₅ units are overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –138.37 (br, Ar-F (**2pd**⁺)), –151.71 (t, *J* = 20.6 Hz, Ar-F (**2pd**⁺)), -157.00 (s, ¹⁰BF₄⁻), -157.06 (s, ¹¹BF₄⁻), -162.80 (t, J = -18.3 Hz, Ar-F (**2pd**⁺)). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ M⁻¹cm⁻¹)): 412 (0.45), 468 (0.75), 551 (0.087), 627 (0.058), 665 (0.050). HRMS (ESI-TOF):

m/z: calcd for C₄₄H₁₈F₁₀N₃PdS ([M – BF₄]⁺): 916.0091; found 916.0091. Calcd for BF₄ ([M – C₄₄H₁₈F₁₀N₃PdS]⁻): 87.0035; found 87.0035.

Pd^{II} complex of 10,15-bis(pentafluorophenyl)-5,20diphenyl-21-thiaporphyrin as a PF6⁻ ion pair, 2pd⁺-PF₆. A CH₂Cl₂/MeOH solution (10 mL/20 mL) of **2pd**⁺-Cl⁻ (16.1 mg, 16.9 µmol) and AgPF₆ (4.50 mg, 17.8 µmol) was stirred at r.t. for 30 min, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography (Wakogel C-300; eluent: 5% MeOH/CH2Cl2) and was recrystallized from CH_2Cl_2/n -hexane to afford **2pd**⁺-PF₆⁻ (10.8 mg, 10.1 μ mol, 60%) as a green solid. $R_f = 0.54$ (10% MeOH/CH₂Cl₂). ¹H NMR (600 MHz, CDCl₃, 20 °C): δ(ppm) 9.92 (s, 2H, β -CH), 9.24 (s, 2H, β -CH), 9.18 (d, J = 6.0 Hz, 2H, Ph-H), 9.06 (s, 2H, β-CH), 9.01 (s, 2H, β-CH), 8.11-8.09 (m, 2H, Ph-H), 7.93 (t, J = 6.9 Hz, 2H, Ph-H), 7.84 (t, J = 6.9Hz, 2H, Ph-H), 7.68 (d, J = 6.0 Hz, 2H, Ph-H). ¹³C{¹H} NMR (151 MHz, CDCl₃, -60 °C): δ(ppm) 152.04, 145.91 (dm, $J_{13C-19F} = 273$ Hz), 146.76, 145.88, 145.86, 144.37 $(dm, J_{13C-19F} = 240 \text{ Hz}), 144.86, 143.18, 141.91, 140.92,$ 139.13, 138.49 (dm, $J_{13C-19F} = 258$ Hz), 136.93 (dm, $J_{13C-19F} = 258$ Hz), 13 $_{19F} = 240 \text{ Hz}$, 137.21, 136.78, 135.20, 134.25 (m), 133.70, 130.94, 129.45, 129.11, 113.25 (m), 110.74 (the signals of C₆F₅ units are overlapped). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) -76.98 (d, J = 716 Hz, 6F, PF₆⁻), -139.36 (brs, 4F, Ar-F (**2pd**⁺)), -151.68 (t, J = 19.5 Hz, 2F, Ar-F (**2pd**⁺)) -162.78 (s, 4F, Ar-F (**2pd**⁺)). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ M⁻¹cm⁻¹)): 412 (0.46), 468 (0.76), 550 (0.093), 626 (0.064), 663 (0.060). HRMS (ESI-TOF): m/z: calcd for C₄₄H₁₈F₁₀N₃PdS ([M - F₆P]⁺): 916.0091; 916.0091. Calcd for F₆P found ([M C₄₄H₁₈F₁₀N₃PdS]⁻): 144.9647; found 144.9647. This compound was further characterized by single-crystal Xray analysis.

Pd^{II} complex of 10,15-bis(pentafluorophenyl)-5,20diphenyl-21-thiaporphyrin as a B(C₆F₅)4⁻ ion pair, 2pd⁺-B(C₆F₅)4⁻. A CH₂Cl₂/MeOH solution (10 mL/20 mL) of 2pd⁺-Cl⁻ (20.4 mg, 21.4 µmol) and LiB(C₆F₅)4 (15.3 mg, 22.3 µmol) was stirred at r.t. for 1 h, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography

(Wakogel C-300; eluent: 10% MeOH/CH₂Cl₂) and was recrystallized from acetone/n-hexane to afford 2pd+- $B(C_6F_5)_4$ (16.4 mg, 10.3 µmol, 48%) as a green solid. R_f $= 0.74 (10\% \text{ MeOH/CH}_2\text{Cl}_2).$ ¹H NMR (600 MHz, CDCl₃, -60 °C): δ (ppm) 9.87 (s, 2H, β -CH), 9.24 (d, J =4.8 Hz, 2H, β-CH), 9.06–9.04 (m, 4H, β-CH and Ph-H), 8.96 (s, 2H, β -CH), 8.09 (t, J = 6.9 Hz, 2H, Ph-H), 7.96 (t, J = 7.5 Hz, 2H, Ph-H), 7.84 (t, J = 7.5 Hz, 2H, Ph-H), 7.65 (d, J = 7.2 Hz, 2H, Ph-H). ¹³C{¹H} NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.48, 148.02 (dm, $J_{13C-19F} = 247$ Hz), 146.48, 145.54 (m), 143.293 (dm, $J_{13C-19F} = 260$ Hz), 143.75, 140.33, 139.12, 138.83 (m), 137.29, 136.41 (dm, $J_{13C-19F} = 236 \text{ Hz}$, 136.09 (dm, $J_{13C-19F} = 236 \text{ Hz}$), 136.51, 134.47, 133.70, 131.36, 129.37, 123.68, 113.54 (m), 111.66 (the signals of C_6F_5 units are overlapped). 19F NMR (564 MHz, CDCl₃, 20 °C): δ (ppm) –135.91 (s, 8F, $B(C_6F_5)_{4^{-}}), -139.46$ (s, 4F, Ar-F (**2pd**⁺)), -151.11 (t, J = 20.6 Hz, 2F, Ar-F (2pd⁺)), -162.47 (s, 4H, Ar-F (2pd⁺)), -166.39 (t, J = 20.6 Hz, 4F, B(C₆F₅)₄), -170.10 (s, 8F, B(C₆F₅)₄⁻). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ M⁻¹cm⁻ ¹)): 412 (0.49), 468 (0.82), 549 (0.095), 625 (0.063), 660 HRMS (ESI-TOF): m/z: calcd (0.054).for $C_{44}H_{18}F_{10}N_{3}PdS$ ([M - $C_{24}BF_{20}$]⁺): 916.0091; found 916.0091. Calcd for $C_{24}BF_{20}$ ([M – C₄₄H₁₈F₁₀N₃PdS]⁻): 678.9779; found 678.9778.

Pd^{II} complex of 10,15-bis(pentafluorophenyl)-5,20diphenyl-21-thiaporphyrin as a PCCp⁻ ion pair, 2pd⁺-PCCp⁻. A CH₂Cl₂/MeOH solution (10 mL/20 mL) of 2pd⁺-Cl⁻ (13.4 mg, 14.1 µmol) and NaPCCp^[S4] (3.21 mg, 15.1 µmol) was stirred at r.t. for 30 min, followed by filtration and evaporation to dryness. The residue was purified by silica gel column chromatography (Wakogel eluent: 10% MeOH/CH2Cl2) and was C-300: recrystallized from CH₂Cl₂/n-hexane to afford 2pd⁺-PCCp⁻ (11.1 mg, 10.0 μ mol, 71%) as a green solid. $R_f =$ 0.64 (10% MeOH/CH2Cl2). ¹H NMR (600 MHz, CDCl3, 20 °C): δ (ppm) 9.94 (s, 2H, β -CH), 9.23 (d, J = 5.4 Hz, 2H, β -CH), 9.07 (d, J = 5.4 Hz, 2H, β -CH), 9.00 (s, 2H, β -CH), 8.47 (br, Ph-H), 8.01–7.97 (m, Ph-H) (The integrals of Ph-H were not consistent with the actual number due to broadening). ${}^{13}C{}^{1}H{}$ NMR (151 MHz, CDCl₃, 20 °C): δ (ppm) 152.62, 146.36 (dm, $J_{13C-19F} = 247$ Hz), 146.56, 143.91, 143.59, 141.12, 139.48, 137.94 (dm, $J_{13C-19F} = 265$ Hz), 137.21, 136.38, 136.25 (m), 134.61, 134.03, 131.16, 129.29, 113.70, 111.63, 111.24, 99.92 (the signals of C₆F₅ units are overlapped). UV/vis (CH₂Cl₂, $\lambda_{max}[nm]$ (ϵ , 10⁵ M⁻¹cm⁻¹)): 414 (0.47), 468 (0.79), 550 (0.092), 624 (0.061), 664 (0.052). ¹⁹F NMR (564 MHz, CDCl₃, 20 °C): δ(ppm) –137.48 (s, Ar-F (**2pd**⁺)), –151.56 (s, 4F, Ar-F $(2pd^+)$), -162.72 (s, 8F, Ar-F $(2pd^+)$). HRMS (ESI-TOF): m/z: calcd for C44H18F10N3PdS ([M -

- [S1] L. Latos-Grażyński, J. Lisowski, M. M. Olmstead and A. L. Balch, *Inorg. Chem.*, 1989, 28, 1183–1188.
- [S2] L. Latos-Grażyński, J. Lisowski, J. P. Chmielewski, M. Grzeszczuk, M. M. Olmstead and A. L. Balch, *Inorg. Chem.*, 1994, 33, 192–197.
- [S3] H. Mori, J.-M. Lim, D. Kim and A. Osuka, *Angew. Chem. Int. Ed.*, 2013, **52**, 12997–13001.
- [S4] (a) O. W. Webster, J. Am. Chem. Soc., 1965, 87, 1820–1821; (b) T. Sakai, S. Seo, J. Matsuoka and Y. Mori, J. Org. Chem., 2013, 78, 10978–10985.

Fig. S1 (a) ¹H NMR, (b) ¹³C NMR, and (c) ¹⁹F NMR spectra of $1pd^+$ -BF₄⁻ in CDCl₃ at -60, -60, and 20 °C, respectively.

Fig. S2 (a) ¹H NMR, (b) ¹³C NMR, and (c) ¹⁹F NMR spectra of $1pd^+$ -PF₆⁻ in CDCl₃ at -60, -60, and 20 °C, respectively.

Fig. S2 (Continued)

(a)

Fig. S3 (a) ¹H NMR, (b) ¹³C NMR, and (c) ¹³F NMR spectra of Ipd $-B(C_6F_5)_4^-$ in CDCl₃ at -60, -60, and 20 °C, respectively.

Fig. S3 (Continued)

Fig. S5 (Continued)

Fig. S6 (Continued)

S17

Fig. S7 (Continued)

respectively.

Fig. S8 (Continued)

Fig. S9 (Continued)

2. X-ray crystallographic data

Method for single-crystal X-ray analysis. Crystallographic data are summarized in Table S1. A single crystal of $1pd^+$ -BF₄ was obtained by vapor diffusion of *n*-hexane into a CHCl₃ solution with a small amount of chlorobenzene. The data crystal was a brown block of approximate dimensions $0.06 \text{ mm} \times 0.03 \text{ mm} \times 0.02 \text{ mm}$. A single crystal of $1pd^+$ -PF₆ was obtained by vapor diffusion of *n*-hexane into a CH₂Cl₂ solution with a small amount of 1-octanol. The data crystal was a green prism of approximate dimensions $0.30 \text{ mm} \times 0.05 \text{ mm} \times 0.05 \text{ mm}$. A single crystal of 1pd⁺- $B(C_6F_5)_4$ was obtained by vapor diffusion of *n*-hexane into a CH₂Cl₂ solution with a small amount of 1-pentanol. The data crystal was a green prism of approximate dimensions 0.03 mm \times 0.03 mm \times 0.01 mm. A single crystal of 1pd⁺-PCCp⁻ was obtained by vapor diffusion of *n*-hexane into a CHCl₃ solution. The data crystal was a green plate of approximate dimensions $0.20 \text{ mm} \times 0.10 \text{ mm} \times 0.02 \text{ mm}$. A single crystal of $2pd^+$ -BF₄⁻ was obtained by vapor diffusion of n-hexane into a CH₂Cl₂ solution with a small amount of 1-butanol. The data crystal was a green prism of approximate dimensions 0.02 mm \times 0.02 mm \times 0.01 mm. A single crystal of **2pd**⁺-PF₆⁻ was obtained by vapor diffusion of *n*-hexane into a CHCl₃ solution with a small amount of chlorobenzene. The data crystal was a green prism of approximate dimensions 0.09 mm \times 0.07 mm \times 0.03 mm. A single crystal of **2pd**⁺-PCCp⁻ was obtained by vapor diffusion of *n*hexane into a CHCl₃ solution with a small amount of chlorobenzene. The data crystal was a green prism of approximate dimensions 0.08 mm \times 0.05 mm \times 0.03 mm. The data of **1pd**⁺-BF₄⁻ and **2pd**⁺-PF₆⁻ were collected at 90 K on a DECTRIS PILATUS3 CdTe 1M diffractometer with Si (311) monochromated synchrotron radiation ($\lambda = 0.41440$ and 0.41360 Å, respectively) at BL02B1 (SPring-8),^[S5] whereas those of $1pd^+-PF_6^-$, $1pd^+-B(C_6F_5)_{4^-}$, $1pd^+-PCCp^-$, $2pd^+-BF_{4^-}$, and 2pd⁺-PCCp[−] were collected at 90, 100, 90, 100, and 100 K, respectively, on a Dectris EIGER X 1M diffractometer with Si (111) monochromated synchrotron radiation ($\lambda = 0.80977, 0.81250, 0.81070, 0.81250, and 0.81200$ Å, respectively) at BL40XU (SPring-8).^[S6] All the structures were solved by dual-space method. The structures were refined by a fullmatrix least-squares method by using a SHELXL 2014^[S7] (Yadokari-XG).^[S8] In each structure, the non-hydrogen atoms were refined anisotropically. CIF files (CCDC-2280002-2280005, 2333278-2333280 (these values correspond to 1pd⁺-BF₄⁻, 1pd⁺-PF₆⁻, 1pd⁺-PCCp⁻, 2pd⁺-PF₆⁻, 1pd⁺-B(C₆F₅)₄⁻, 2pd⁺-BF₄⁻, and 2pd⁺-PCCp⁻, respectively)) can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	$1pd^+-BF_4^-$	1pd ⁺ -PF ₆ ⁻	$1pd^+-B(C_6F_5)_4^-$	1pd ⁺ -PCCp ⁻	2pd ⁺ -BF ₄ ⁻
formula	$C_{44}H_{28}N_3PdS\cdot BF_4\cdot CHCl_3$	$\begin{array}{c} C_{44}H_{28}N_3PdS\!\cdot\!F_6P\!\cdot\\ 2CH_2Cl_2 \end{array}$	$\begin{array}{c} C_{44}H_{28}N_3PdS\!\cdot\!C_{24}BF_{20}\!\cdot\!\\ C_6H_{14} \end{array}$	$\begin{array}{c} C_{44}H_{28}N_3PdS{\cdot}C_{10}N_5{\cdot}\\ CHCl_3 \end{array}$	$\begin{array}{c} C_{44}H_{18}F_{10}N_{3}PdS\!\cdot\!BF_{4}\!\cdot\!\\ 2C_{4}H_{10}O \end{array}$
fw	943.33	1051.97	1502.37	1046.67	1744.36
crystal size, mm	$0.06 \times 0.03 \times 0.02$	$0.30\times 0.05\times 0.05$	$0.03\times0.03\times0.01$	$0.20\times0.10\times0.02$	$0.02\times 0.02\times 0.01$
crystal system	triclinic	monoclinic	monoclinic	triclinic	monoclinic
space group	<i>P</i> 1 (no. 2)	$P2_1/c$ (no. 14)	$P2_1/n$ (no. 14)	<i>P</i> 1 (no. 2)	<i>C</i> 2/ <i>c</i> (no. 15)
<i>a</i> , Å	9.276(8)	13.7700(11)	13.54600(10)	14.7468(4)	21.7683(5)
<i>b</i> , Å	14.42(2)	16.0819(18)	27.1678(3)	17.6065(4)	21.6032(4)
<i>c</i> , Å	15.664(13)	19.035(2)	16.8019(2)	20.5210(4)	22.7133(9)
α, °	112.75(4)	90	90	69.671(2)	90
<i>β</i> , °	91.73(3)	90.479(6)	99.6330(10)	82.618(2)	100.780(3)
γ, °	91.28(3)	90	90	65.328(2)	90
V, Å ³	1930(4)	4215.1(8)	6096.16(11)	4539.3(2)	10492.8(5)
$ ho_{ m calcd},~ m gcm^{-3}$	1.623	1.658	1.637	1.532	1.656
Ζ	2	4	4	4	6
Т, К	90(2)	90(2)	100(2)	90(2)	100(2)
μ , mm ⁻¹	0.730 ^a	0.932 ^a	0.634 ^a	0.962 ^a	0.613 ^a
no. of reflns	52135	43483	74655	49257	62952
no. of unique reflns	8737	7692	14014	16604	12183
variables	593	571	935	1258	559
λ, Å	0.41440 ^a	0.80977 ^a	0.81250 ^a	0.81070 ^{<i>a</i>}	0.81250 ^a
$R_1 (I > 2\sigma(I))$	0.0494	0.0592	0.0467	0.0822	0.1069
$wR_2 (I > 2\sigma(I))$	0.1132	0.1456	0.1175	0.1797	0.3517
GOF	1.038	1.141	1.024	1.039	1.418

^a Synchrotron radiation.

Table S1 (Continued)

	$2pd^+-PF_6^-$	2pd ⁺ -PCCp ⁻
formula	$\begin{array}{l} C_{44}H_{18}F_{10}N_{3}PdS\!\cdot\!F_{6}P\!\cdot\!\\ 0.5C_{6}H_{5}Cl \end{array}$	$\begin{array}{c} C_{44}H_{18}F_{10}N_{3}PdS \!\cdot\! C_{10}N_{5} \!\cdot\! \\ 3.3CH_{2}Cl_{2} \end{array}$
fw	1118.32	1247.59
crystal size, mm	$0.09{\times}~0.07{\times}~0.03$	$0.08 \times 0.05 \times 0.03$
crystal system	orthorhombic	monoclinic
space group	<i>Pna</i> 2 ₁ (no. 33)	<i>P</i> 2 ₁ (no. 4)
<i>a</i> , Å	28.140(11)	13.3831(3)
<i>b</i> , Å	14.513(9)	7.1785(2)
<i>c</i> , Å	20.554(10)	26.0801(5)
α, °	90	90
β, °	90	93.166(2)
γ, °	90	90
<i>V</i> , Å ³	8394(7)	2501.71(10)
$ ho_{ m calcd}, m gcm^{-3}$	1.770	1.656
Ζ	8	2
<i>T</i> , K	90(2)	100(2)
μ , mm ⁻¹	0.659 ^a	0.959 ^{<i>a</i>}
no. of reflns	240860	29396
no. of unique reflns	19243	10962
variables	1252	734
λ, Å	0.41360 ^a	0.81200 ^a
$R_1 (I > 2\sigma(I))$	0.0364	0.0537
$wR_2 (I > 2\sigma(I))$	0.0914	0.1382
GOF	1.017	1.029

^{*a*} Synchrotron radiation.

Fig. S10 Ortep drawing of single-crystal X-ray structure (top and side views) of $1pd^+$ -BF₄⁻. Disordered structures are represented by gray and white bonds for major and minor structures, respectively, in the ratios of 42 : 21 : 21 : 16 and 57 : 43 for the porphyrin inner atoms (according to the existence of sulfur) and a BF₄⁻ unit, respectively. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom color code: black, white (sphere), yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S11 Ortep drawing of single-crystal X-ray structure (top and side views) of $1pd^+$ -PF₆⁻. Disordered structures are represented by gray and white bonds for major and minor structures, respectively, in the ratios of 57 : 27 : 17, 73 : 27, and 66 : 34 for the porphyrin inner atoms (according to the existence of sulfur) and two phenyl groups, respectively. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom color code: black, white (sphere), blue, yellow green, light orange, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, phosphorus, sulfur, and palladium, respectively.

Fig. S12 Ortep drawing of single-crystal X-ray structure (top and side views) of $1pd^+$ -FABA⁻. Disordered structures are represented by gray and white bonds for major and minor structures, respectively, in the ratio of 30 : 18 : 12 for the porphyrin inner atoms (according to the existence of sulfur). Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom color code: black, white (sphere), yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S13 Ortep drawing of single-crystal X-ray structure (top and side views) of $1pd^+$ -PCCp⁻ with two independent structures (A and B). Disordered structures are represented by gray and white bonds for major and minor structures, respectively, in the ratios of 55 : 45 and 59 : 41 for the porphyrin inner atoms (according to the existence of sulfur). Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom color code: black, white (sphere), blue, orange, and light gray refer to carbon, hydrogen, nitrogen, sulfur, and palladium, respectively.

Fig. S14 Ortep drawing of single-crystal X-ray structure (top and side views) of $2pd^+$ -BF₄⁻. Disordered structures are represented by gray and white bonds for major and minor structures, respectively, in the ratio of 58 : 42 for a BF₄⁻ unit. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom color code: black, white (sphere), yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S15 Ortep drawing of single-crystal X-ray structure (top and side views) of $2pd^+$ -PF₆⁻ with two independent structures (A and B). Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom color code: black, white (sphere), blue, yellow green, light orange, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, phosphorus, sulfur, and palladium, respectively.

Fig. S16 Ortep drawing of single-crystal X-ray structure (top and side views) of $2pd^+$ -PCCp⁻. Thermal ellipsoids are scaled to the 50% probability level. Solvent molecules are omitted for clarity. Atom color code: black, white (sphere), blue, yellow green, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S17 Crystal structures of **1pd**⁺-BF₄⁻ as (a) top and (b) side views. The dihedral angle between the thiophene plane and the core porphyrin plane (25 atoms) is 28.8°. Mean-plane deviation of the **1pd**⁺ core part (25 atoms) and τ_4 value^[S9] are 0.31 Å and 0.13, respectively. The C(–H)…F distance between **1pd**⁺ and BF₄⁻ is 3.26 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S18 Packing diagram (stacking assembly) of $1pd^+$ -BF₄⁻ as (a) top and (b) side views and (c) enlarged side and (d) stacked dimer views. The stacking distances between two $1pd^+$ (core 25 atoms) and the Pd···Pd distances in the column are 3.90/4.21 and 5.03/5.49 Å, respectively. The S···N distance in two stacked $1pd^+$ units is 3.26 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S19 Crystal structures of $1pd^+$ -PF₆⁻ as (a) top and (b) side views. The dihedral angle between the thiophene plane and the core porphyrin plane (25 atoms) is 27.4°. Mean-plane deviation of the $1pd^+$ core part (25 atoms) and τ_4 value^[S9] are 0.31 Å and 0.093, respectively. The C(-H)…F distance between $1pd^+$ and PF₆⁻ is 3.27 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, yellow green, light orange, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, phosphorus, sulfur, and palladium, respectively.

Fig. S20 Packing diagram (stacking assembly) of $1pd^+$ -PF₆⁻ as (a) top and (b) side views and (c) enlarged side and (d) stacked dimer views. The stacking distances between two $1pd^+$ (core 25 atoms) and the Pd···Pd distances in the column are 3.71/4.01 and 4.72/10.52 Å, respectively. The S···N distance in two stacked $1pd^+$ units is 3.16 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, yellow green, light orange, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, phosphorus, sulfur, and palladium, respectively.

Fig. S21 Crystal structures of $1pd^+$ -B(C₆F₅)₄⁻ as (a) top and (b) side views. The dihedral angle between the thiophene plane and the core porphyrin plane (25 atoms) is 26.3°. Mean-plane deviation of the $1pd^+$ core part (25 atoms) and τ_4 value^[S9] are 0.23 Å and 0.12, respectively. The C(-H)…F distance between $1pd^+$ and B(C₆F₅)₄⁻ is 3.00 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S22 Packing diagram (stacking assembly) of $1pd^+$ -B(C₆F₅)₄⁻ as (a) top and (b) side views and (c) enlarged side and (d) stacked dimer views. The stacking distances between two $1pd^+$ (core 25 atoms) and the Pd···Pd distances in the column are 3.77/5.01 and 4.86/14.10 Å, respectively. The S···N distance in two stacked $1pd^+$ units is 3.23 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S23 Crystal structures of $1pd^+$ -PCCp⁻ as (a) top and (b) side views. The dihedral angle between the thiophene plane and the core porphyrin plane (25 atoms) is 26.2°. Mean-plane deviation of the $1pd^+$ core part (25 atoms) and τ_4 value^[S9] are 0.29 Å and 0.090, respectively. Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, orange, and light gray refer to carbon, hydrogen, nitrogen, sulfur, and palladium, respectively.

Fig. S24 Packing diagram (stacking assembly) of $1pd^+$ -PCCp⁻ as (a) top and (b) side views and (c) an enlarged side view. Two independent structures are labelled as A and B in (b). The stacking distances between $1pd^+$ (core 25 atoms) and PCCp⁻ are 3.45, 3.46, and 3.58 Å. The distances between two $1pd^+$, that between two PCCp⁻, and the Pd^{···}Pd distances in the column are 3.21/3.78/7.04, 7.03, and 7.30/11.65/12.33 Å, respectively. Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, orange, and light gray refer to carbon, hydrogen, nitrogen, sulfur, and palladium, respectively.

Fig. S25 Crystal structures of $2pd^+$ -BF₄⁻ as (a) top and (b) side views. The dihedral angle between the thiophene plane and the core porphyrin plane (25 atoms) is 33.7°. Mean-plane deviation of the $2pd^+$ core part (25 atoms) and τ_4 value^[S9] are 0.30 Å and 0.097, respectively. The C(-H)…F distance between $2pd^+$ and BF₄⁻ is 3.19 Å. Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S26 Packing diagram (stacking assembly) of $2pd^+$ -BF₄⁻ as (a) top and (b) side views and (c) enlarged side and (d) stacked dimer views. The stacking distances between two $2pd^+$ (core 25 atoms) and the Pd···Pd distances in the column are 4.57/8.62 and 4.72/8.62 Å, respectively. $2pd^+$ formed the stacked dimer with nearly perpendicular orientation as seen in the lines through S and counter N in (d). Solvent molecules are omitted for clarity. Atom color code: brown, pink, yellow, blue, yellow green, orange, and light gray refer to carbon, hydrogen, boron, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S27 Crystal structures of $2pd^+$ -PF₆⁻ as (a) top and (b) side views. The dihedral angle between the thiophene plane and the core porphyrin plane (25 atoms) is 33.5°. Mean-plane deviation of the $2pd^+$ core part (25 atoms) and τ_4 value^[S9] are 0.32 Å and 0.097, respectively. Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, yellow green, light orange, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, phosphorus, sulfur, and palladium, respectively.

Fig. S28 Packing diagram (stacking assembly) of $2pd^+$ -PF₆⁻ as (a) top and (b) side views and (c) enlarged side and (d) stacked dimer views. Two independent structures are labelled as A and B in (b)–(d). The distances between two $2pd^+$ and the Pd…Pd distances in the column are 3.93/6.27/10.22 and 3.65/6.68/10.29 Å, respectively. $2pd^+$ formed the stacked dimer with modestly antiparallel orientation as seen in the lines through S and counter N in (d). Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, yellow green, light orange, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, phosphorus, sulfur, and palladium, respectively.

Fig. S29 Crystal structures of $2pd^+$ -PCCp⁻ as (a) top and (b) side views. The dihedral angle between the thiophene plane and the core porphyrin plane (25 atoms) is 25.7°. Mean-plane deviation of the $2pd^+$ core part (25 atoms) and τ_4 value^[S9] are 0.24 Å and 0.13, respectively. Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, yellow green, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S30 Packing diagram (stacking assembly) of $2pd^+$ -PCCp⁻ as (a) top and (b) side views and (c) enlarged side view. The stacking distances between $2pd^+$ (core 25 atoms) and PCCp⁻ are 3.34 and 3.42 Å. The distances between two $2pd^+$, two PCCp⁻ and the Pd···Pd distances in the column are 6.81, 6.72, and 7.18/14.63 Å, respectively. The dihedral angle between the two core porphyrin planes (25 atoms) is 36.8°. Solvent molecules are omitted for clarity. Atom color code: brown, pink, blue, yellow green, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S31 Hirshfeld surface^[S10,11] of $1pd^+$ whose sulfur atom is close to the neighboring $1pd^+$ in the crystal structure of $1pd^+$ -BF₄⁻ (a major disordered structure) mapped over (a) shape-index property and (b) curvedness property: (i) only surface and (ii) surface with a ball-and-stick model of the neighboring $1pd^+$. Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The flat region on the curvedness surface suggested the characteristic mapping pattern for stacking in dimeric $1pd^+$. Atom color code: brown, pink, blue, orange, and light gray refer to carbon, hydrogen, nitrogen, sulfur, and palladium, respectively.

Fig. S32 Hirshfeld surface^[S10,11] of $1pd^+$ whose sulfur atom is far from the neighboring $1pd^+$ in the crystal structure of $1pd^+$ -BF₄⁻ (a major disordered structure) mapped over (a) shape-index property and (b) curvedness property: (i) only surface and (ii) surface with a ball-and-stick model of the neighboring $1pd^+$. Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The flat region on the curvedness surface suggested the characteristic mapping pattern for stacking in dimeric $1pd^+$. Atom color code: brown, pink, blue, orange, and light gray refer to carbon, hydrogen, nitrogen, sulfur, and palladium, respectively.

Fig. S33 Hirshfeld surface^[S10,11] of $1pd^+$ in the crystal structure of $1pd^+$ -PF₆⁻ (a major disordered structure) mapped over (a) shape-index property and (b) curvedness property: (i) only surface and (ii) surface with a ball-and-stick model of the neighboring $1pd^+$. Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The flat region on the curvedness surface suggested the characteristic mapping pattern for stacking in dimeric $1pd^+$. Atom color code: brown, pink, blue, orange, and light gray refer to carbon, hydrogen, nitrogen, sulfur, and palladium, respectively.

Fig. S34 Hirshfeld surface^[S10,11] of **1pd**⁺ in the crystal structure of **1pd**⁺-B(C₆F₅)₄⁻ (a major disordered structure) mapped over (a) shape-index property and (b) curvedness property: (i) only surface and (ii) surface with a ball-and-stick model of the neighboring **1pd**⁺. Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The flat region on the curvedness surface suggested the characteristic mapping pattern for stacking in dimeric **1pd**⁺. Atom color code: brown, pink, blue, orange, and light gray refer to carbon, hydrogen, nitrogen, sulfur, and palladium, respectively.

Fig. S35 Hirshfeld surface^[S10,11] of **1pd**⁺ whose sulfur atom is far from the PCCp⁻ in the crystal structure of **1pd**⁺-PCCp⁻ (a major disordered structure) as (a) independent structure A and (b) structure B mapped over (i) shape-index and (ii) curvedness properties: only surface (top) and surface with a ball-and-stick model of the neighboring PCCp⁻ (bottom). Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The surfaces of **1pd**⁺ showed the red and blue triangles arranged in bow-tie shapes on the shape-index surface and flat region on the curvedness surface, indicating the characteristic mapping pattern for $i\pi$ - $i\pi$ stacking.^[S12] Atom color code: brown and blue refer to carbon and nitrogen, respectively.

Fig. S36 Hirshfeld surface^[S10,11] of $1pd^+$ whose sulfur atom is close to the PCCp⁻ in the crystal structure of $1pd^+$ -PCCp⁻ (a major disordered structure) as (a) independent structure A and (b) structure B mapped over (i) shape-index and (ii) curvedness properties: only surface (top) and surface with a ball-and-stick model of the neighboring PCCp⁻ (bottom). Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The flat region on the curvedness surface suggested the characteristic mapping pattern for stacking in $1pd^+$ -PCCp⁻, whereas bow-tie shapes were not shown in (a) due to the deviated sulfur atom. Atom color code: brown and blue refer to carbon and nitrogen, respectively.

Fig. S37 Hirshfeld surface^[S10,11] of $2pd^+$ whose sulfur atom is far from the neighboring $2pd^+$ in the crystal structure of $2pd^+$ -BF₄⁻ (a major disordered structure) mapped over (a) shape-index property and (b) curvedness property: (i) only surface and (ii) surface with a ball-and-stick model of the neighboring $2pd^+$. Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The flat region on the curvedness surface suggested the characteristic mapping pattern for stacking in dimeric $1pd^+$. Atom color code: brown, pink, blue, yellow green, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S38 Hirshfeld surface^[S10,11] of **2pd**⁺ in the crystal structure of **2pd**⁺-PF₆⁻ (a major disordered structure) as (a) independent structure A and (b) structure B mapped over (i) shape-index and (ii) curvedness properties: only surface (top) and surface with a ball-and-stick model of the neighboring **2pd**⁺ (bottom). Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The surfaces of **2pd**⁺ showed the red and blue triangles arranged in bow-tie shapes on the shape-index surface and flat region on the curvedness surface, indicating the characteristic mapping pattern for ⁱ π -ⁱ π stacking.^[S12] Atom color code: brown, pink, blue, yellow green, orange, and light gray refer to carbon, hydrogen, nitrogen, fluorine, sulfur, and palladium, respectively.

Fig. S39 Hirshfeld surface^[S10,11] of **2pd**⁺ whose sulfur atom is far from the PCCp⁻ in the crystal structure of **2pd**⁺-PCCp⁻ (a major disordered structure) mapped over (a) shape-index property and (b) curvedness property: (i) only surface and (ii) surface with a ball-and-stick model of the neighboring PCCp⁻. Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The surfaces of **2pd**⁺ showed the red and blue triangles arranged in bow-tie shapes on the shape-index surface and flat region on the curvedness surface, indicating the characteristic mapping pattern for $i\pi$ - $i\pi$ stacking.^[S12] Atom color code: brown and blue refer to carbon and nitrogen, respectively.

Fig. S40 Hirshfeld surface^[S10,11] of **2pd**⁺ whose sulfur atom is close to the PCCp⁻ in the crystal structure of **2pd**⁺-PCCp⁻ (a major disordered structure) mapped over (a) shape-index property and (b) curvedness property: (i) only surface and (ii) surface with a ball-and-stick model of the neighboring PCCp⁻. Shape index is a qualitative measure of shape and is sensitive to subtle changes in surface shape, particularly in a flat region by differing by sign represent complementary bumps (blue) and hollows (red), whereas curvedness is a function of the root-mean-square curvature of the surface, and maps of curvedness typically show large regions of green (relatively flat) separated by dark blue edges (large positive curvature). The flat region on the curvedness surface suggested the characteristic mapping pattern for stacking in **2pd**⁺-PCCp⁻, whereas bow-tie shapes were not shown in (a) due to the deviated sulfur atom. Atom color code: brown and blue refer to carbon and nitrogen, respectively.

- [S5] K. Sugimoto, H. Ohsumi, S. Aoyagi, E. Nishibori, C. Moriyoshi, Y. Kuroiwa, H. Sawa and M. Takata, AIP Conf. Proc., 2010, 1234, 887–890.
- [S6] (a) N. Yasuda, H. Murayama, Y. Fukuyama, J. E. Kim, S. Kimura, K. Toriumi, Y. Tanaka, Y. Moritomo, Y. Kuroiwa, K. Kato, H. Tanaka and M. Takata, *J. Synchrotron Rad.*, 2009, 16, 352–357; (b) N. Yasuda, Y. Fukuyama, K. Toriumi, S. Kimura and M. Takata, *AIP Conf. Proc.*, 2010, 1234, 147–150.
- [S7] G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- [S8] (a) Yadokari-XG, Software for Crystal Structure Analyses, K. Wakita, 2001; (b) C. Kabuto, S. Akine, T. Nemoto and E. Kwon, J. Cryst. Soc. Jpn., 2009, **51**, 218–224.
- [S9] L. Yang, D. R. Powell and R. P. Houser, Dalton Trans., 2007, 955-964.
- [S10] P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, J. Appl. Cryst., 2021, 54, 1006–1011.
- [S11] (a) M. A. Spackman and D. Jayatilaka, *CrystEngComm*, 2009, **11**, 19–32; (b) J. J. McKinnon, M. A. Spackman and A. S. Mitchell, *Acta Crystallogr. Sect. B*, 2004, **60**, 627–668.
- [S12] Y. Sasano, H. Tanaka, Y. Haketa, Y. Kobayashi, Y. Ishibashi, T. Morimoto, R. Sato, Y. Shigeta, N. Yasuda, T. Asahi and H. Maeda, *Chem. Sci.*, 2021, 12, 9645–9657.

3. Theoretical studies

DFT calculations. DFT calculations were carried out using Gaussian 16 program.^[S13]

Fig. S41 Optimized structures of (a) **1pd**⁺ and (b) **2pd**⁺ at (i) B3LYP/6-31+G(d,p) with LanL2DZ for Pd and (ii) PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂) as top (top) and side (bottom) views. The dipole moments and the dihedral angles between the thiophene plane and the core porphyrin plane (25 atoms) are 2.26/3.60/12.47/14.68 D and $33.4^{\circ}/33.7^{\circ}/33.8^{\circ}/34.4^{\circ}$, respectively. Mean-plane deviation of the core part (25 atoms) and τ_4 value^[S9] are 0.30/0.30/0.29/0.29 Å and 0.13/0.13/0.12/0.12, respectively.

Fig. S42 Optimized structures of (a) $1pd^+-Cl^-$, (b) $1pd^+-BF_{4^-}$, (c) $1pd^+-PF_{6^-}$, (d) $1pd^+-B(C_6F_5)_{4^-}$, (e) $1pd^+-PCCp^-$, (f) $2pd^+-Cl^-$, (g) $2pd^+-BF_{4^-}$, (h) $2pd^+-PF_{6^-}$, (i) $2pd^+-B(C_6F_5)_{4^-}$, and (j) $2pd^+-PCCp^-$. $1pd^+-X^-$ ($X^- = Cl^-$, BF_{4^-} , PF_{6^-} , $B(C_6F_5)_{4^-}$, $PCCp^-$) and $2pd^+-X$ ($X^- = Cl^-$, BF_{4^-} , PF_{6^-} , $PCCp^-$) were calculated at PCM-B3LYP/6-31+G(d,p) (CH₂Cl₂) with LanL2DZ for Pd (CH₂Cl₂), whereas $2pd^+-B(C_6F_5)_{4^-}$ were calculated at PCM-B3LYP/6-31G(d,p) with LanL2DZ for Pd (CH₂Cl₂). Crystal structures (Fig. S10–16) were used for the initial structures for the optimization of $1pd^+-BF_{4^-}$, $1pd^+-PF_{6^-}$, $1pd^+-PCCp^-$, $1pd^+-B(C_6F_5)_{4^-}$, $2pd^+-BF_{4^-}$, $2pd^+-PF_{6^-}$, and $2pd^+-PCCp^-$, whereas the structure of $1pd^+-BF_{4^-}$, $B(C_6F_5)_{4^-}$ was used for the initial structure for the optimization of $2pd^+-B(C_6F_5)_{4^-}$. The initial structures of $1pd^+-Cl^-$ and $2pd^+-Cl^-$ were arranged based on the geometry of the optimized structure of $1pd^+-PF_{6^-}$.

Fig. S43 Molecular orbitals (HOMO/LUMO) of $1pd^+$ (left) and $2pd^+$ (right) estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

HOMO-8 -7.45979 eV

Fig. S44 Molecular orbitals (HOMO/LUMO) of $1pd^+$ -Cl⁻ (left) and $2pd^+$ -Cl⁻ (right) estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S45 Molecular orbitals (HOMO/LUMO) of $1pd^+-BF_4^-$ (left) and $2pd^+-BF_4^-$ (right) estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

HOMO-12 -7.59612 eV

Fig. S46 Molecular orbitals (HOMO/LUMO) of $1pd^+-PF_6^-$ (left) and $2pd^+-PF_6^-$ (right) estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S47 Molecular orbitals (HOMO/LUMO) of $1pd^+$ -B(C₆F₅)₄⁻ (left) and $2pd^+$ -B(C₆F₅)₄⁻ (right) estimated at PCM-B3LYP/6-31+G(d,p) and B3LYP/6-31G(d,p), respectively, with LanL2DZ for Pd (CH₂Cl₂).

Fig. S48 Molecular orbitals (HOMO/LUMO) of **1pd**⁺-PCCp⁻ (left) and **2pd**⁺-PCCp⁻ (right) estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S49 TD-DFT-based UV/vis absorption stick spectra of $1pd^+$ (left) and $2pd^+$ (right) with the transitions correlated with molecular orbitals estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S50 TD-DFT-based UV/vis absorption stick spectra of $1pd^+$ -Cl⁻ (left) and $2pd^+$ -Cl⁻ (right) with the transitions correlated with molecular orbitals estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S51 TD-DFT-based UV/vis absorption stick spectra of $1pd^+$ -BF₄⁻ (left) and $2pd^+$ -BF₄⁻ (right) with the transitions correlated with molecular orbitals estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S52 TD-DFT-based UV/vis absorption stick spectra of $1pd^+$ -PF₆⁻ (left) and $2pd^+$ -PF₆⁻ (right) with the transitions correlated with molecular orbitals estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S53 TD-DFT-based UV/vis absorption stick spectra of $1pd^+$ -B(C₆F₅)₄⁻ (left) and $2pd^+$ -B(C₆F₅)₄⁻ (right) with the transitions correlated with molecular orbitals estimated at PCM-B3LYP/6-31+G(d,p) and B3LYP/6-31G(d,p), respectively, with LanL2DZ for Pd (CH₂Cl₂).

Fig. S54 TD-DFT-based UV/vis absorption stick spectra of $1pd^+$ -PCCp⁻ (left) and $2pd^+$ -PCCp⁻ (right) with the transitions correlated with molecular orbitals estimated at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂).

Fig. S55 NICS values $(ppm)^{[S14]}$ of $1pd^+$ (top) and $2pd^+$ (bottom) based on the optimized structures at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂) (Fig. S41): the sides with the deviated sulfur atoms (NICS (1)) and the sides without the deviated sulfur atoms (NICS (-1)).

Fig. S56 Anisotropy of the induced current density $(ACID)^{[S15]}$ of (a) $1pd^+$ and (b) $2pd^+$ (top and side views) at isosurface value of $\delta = 0.015$ based on the optimized structures at PCM-B3LYP/6-31+G(d,p) with LanL2DZ for Pd (CH₂Cl₂) (Fig. S41). Current density vectors are plotted on to the ACID isosurface based on the vector of the magnetic field (H_0) which is orthogonal with respect to the molecule. The theoretical results were consistent with the NICS values (Fig. S55).

Fig. S57 Electrostatic potential (ESP) mapping ($\delta = 0.01$) of (a) **1pd**⁺ and (b) **2pd**⁺ at B3LYP/6-31+G(d,p) with LanL2DZ for Pd.

Fig. S58 Electrostatic potential (ESP) mapping (top and side views, $\delta = 0.01$) of (a) $1pd^+$ -Cl⁻, (b) $1pd^+$ -BF₄⁻, (c) $1pd^+$ -PF₆⁻, (d) $1pd^+$ -B(C₆F₅)₄⁻, and (e) $1pd^+$ -PCCp⁻. $1pd^+$ -X⁻ (X⁻ = Cl⁻, BF₄⁻, PF₆⁻, PCCp⁻) and $1pd^+$ -B(C₆F₅)₄⁻ were calculated at B3LYP/6-31+G(d,p) with LanL2DZ for Pd and B3LYP/6-31G(d,p) with LanL2DZ for Pd, respectively. Crystal structures (Fig. S10–13) were used for the calculations of $1pd^+$ -X⁻ (X⁻ = BF₄⁻, PF₆⁻, B(C₆F₅)₄⁻, PCCp⁻), whereas optimized structures (Fig. S42) were used for the calculations of $1pd^+$ -Cl⁻.

Fig. S59 ESP mapping (top and side views, $\delta = 0.01$) of (a) $2pd^+$ -Cl⁻, (b) $2pd^+$ -BF₄⁻, (c) $2pd^+$ -PF₆⁻, (d) $2pd^+$ -B(C₆F₅)₄⁻, and (e) $2pd^+$ -PCCp⁻. $2pd^+$ -X⁻ (X⁻ = Cl⁻, BF₄⁻, PF₆⁻, PCCp⁻) and $2pd^+$ -B(C₆F₅)₄⁻ were calculated at B3LYP/6-31+G(d,p) and B3LYP/6-31G(d,p), respectively, with LanL2DZ for Pd. Crystal structures (Fig. S14–16) were used for the calculations of $2pd^+$ -BF₄⁻, $2pd^+$ -PF₆⁻ and $2pd^+$ -PCCp⁻, whereas optimized structures (Fig. S42) were used for the calculations of $2pd^+$ -BF₄⁻, $2pd^+$ -PF₆⁻ and $2pd^+$ -PCCp⁻, whereas optimized structures (Fig. S42) were used for the calculations of $2pd^+$ -X⁻ (X⁻ = Cl⁻, B(C₆F₅)₄⁻).

Fig. S60 Selected packing structure of $2pd^+$ -PCCp⁻ (Fig. S29,30) showing the direction of dipole moment (1.97 D/ π -sip) calculated at B3LYP/6-31+G(d,p) with LanL2DZ for Pd.

Fig. S61 Energy decomposition analysis $(EDA)^{[S16]}$ of $1pd^+$ -BF₄⁻: (a) single-crystal X-ray structure and (b) intermolecular interaction energies (kcal/mol) between selected ions estimated at an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17–19] The labels (c1–3 and a1,2) correspond to the fragments shown in Table S2.

Table S2 Energies between selected fragments in $1pd^+$ -BF₄⁻ (Fig. S61) estimated by EDA calculations^[S16] based on an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17-19]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (E_{es})	energy (E_{disp})	energy $(E_{ct + mix})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
c1-c2	-147.190	4.859	-188.450	-23.426	59.832
c2-a2	-76.484	-62.458	-13.480	-2.542	1.996
c2-c3	-129.060	23.537	-164.640	-12.771	24.811
c2-a1	-61.634	-51.086	-10.977	-1.087	1.516
c1-c3	18.093	26.279	-8.166	-0.021	0.000

Fig. S62 EDA^[S16] of **1pd**⁺-PF₆⁻: (a) single-crystal X-ray structure and (b) intermolecular interaction energies (kcal/mol) between selected ions estimated at an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17–19] The labels (c1–3 and a1,2) correspond to the fragments shown in Table S3. The negative E_{es} value of c1-c2 was derived from the orientation of **1pd**⁺.

Table S3 Energies between selected fragments in $1pd^+$ -PF₆⁻ (Fig. S62) estimated by EDA calculations^[S16] based on an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17–19]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (<i>E</i> _{es})	energy (E_{disp})	energy $(E_{\rm ct + mix})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
c1-c2	-155.515	-5.585	-196.931	-31.837	78.837
c2-c3	-37.725	19.711	-66.925	-6.398	15.888
c1-a1	-76.196	-58.325	-17.870	-2.547	2.546
c1-a2	-70.731	-57.666	-12.745	-1.706	1.386

Fig. S63 EDA^[S16] of **1pd**⁺-B(C₆F₅)₄⁻: (a) single-crystal X-ray structure and (b) intermolecular interaction energies (kcal/mol) between selected ions estimated at an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17-19] The labels (c1–3 and a1,2) correspond to the fragments shown in Table S4.

Table S4 Energies between selected fragments in $1pd^+$ -B(C₆F₅)₄⁻ (Fig. S63) estimated by EDA calculations^[S16] based on an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17–19]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (E_{es})	energy (E_{disp})	energy $(E_{ct + mix})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
c1-c2	-146.390	4.292	-187.533	-24.341	61.192
c2-c3	-10.329	22.371	-38.298	-2.896	8.495
c1-a1	-101.218	-40.898	-65.670	-5.841	11.191
c1-a2	-29.924	-26.893	-2.967	-0.066	0.002

Fig. S64 EDA^[S16] of **1pd**⁺-PCCp⁻: (a) single-crystal X-ray structure and (b) intermolecular interaction energies (kcal/mol) between selected ions estimated at an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17-19] The labels (c1–3 and a1–3) correspond to the fragments shown in Table S5.

Table S5 Energies between selected fragments in **1pd**⁺-PCCp⁻ (Fig. S64) estimated by EDA calculations^[S16] based on an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17–19]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (E_{es})	energy (Edisp)	energy $(E_{ct + mix})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
cl-al	-159.430	-62.171	-109.640	-10.755	23.141
c2-a1	-144.170	-62.079	-95.547	-10.079	23.533
c1-a3	-63.000	-41.435	-22.807	-2.307	3.549
c1-c3	-33.365	18.145	-56.463	-4.660	9.614
a1-a2	34.462	34.462	0.000	0.000	0.000

Fig. S65 EDA^[S16] of **2pd**⁺-BF₄⁻: (a) single-crystal X-ray structure and (b) intermolecular interaction energies (kcal/mol) between selected ions estimated at an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17-19] The labels (c1–3 and a1,2) correspond to the fragments shown in Table S6.

Table S6 Energies between selected fragments in $2pd^+$ -BF₄⁻ (Fig. S65) estimated by EDA calculations^[S16] based on an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17–19]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (E_{es})	energy (E_{disp})	energy $(E_{ct + mix})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
c1-c2	-111.26	16.804	-142.74	-11.703	26.383
c2-c3	23.352	27.925	-4.566	-0.007	0
c1-a1	-81.95	-64.443	-19.133	-3.888	5.514
c1-a2	-27.844	-27.844	0	0	0

Fig. S66 EDA^[S16] of **2pd**⁺-PF₆⁻: (a) single-crystal X-ray structure and (b) intermolecular interaction energies (kcal/mol) between selected ions estimated at an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17-19] The labels (c1–3 and a1) correspond to the fragments shown in Table S7.

Table S7 Energies between selected fragments in $2pd^+$ -PF₆⁻ (Fig. S66) estimated by EDA calculations^[S16] based on an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17–19]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (E_{es})	energy (E_{disp})	energy $(E_{\text{ct}+\text{mix}})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
c1-c2	-134.820	11.462	-171.290	-21.045	46.050
c3-c2	-51.090	27.832	-80.915	-4.766	6.759
a1-c1	-74.191	-57.133	-19.360	-2.976	5.277
c1-c3	24.801	24.801	0.000	0.000	0.000

Fig. S67 EDA^[S16] of $2pd^+$ -PCCp⁻: (a) single-crystal X-ray structure and (b) intermolecular interaction energies (kcal/mol) between selected ions estimated at an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd.^[S17-19] The labels (c1–3 and a1–3) correspond to the fragments shown in Table S8.

Table S8 Energies between selected fragments in **2pd**⁺-PCCp⁻ (Fig. S67) estimated by EDA calculations^[S16] based on an FMO2-MP2 using mixed basis sets including NOSeC-V-DZP with MCP with TZP for Pd^[S17–19]

fragments	total interaction energy	electrostatic interaction	dispersion interaction	charge-transfer interaction	exchange repulsion
	(E_{tot})	energy (E_{es})	energy (E_{disp})	energy $(E_{ct + mix})$	interaction energy (E_{ex})
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)
cl-al	-166.090	-68.244	-116.390	-12.499	31.044
c2-a1	-160.850	-70.365	-111.290	-12.336	33.143
c1-a3	-29.954	-23.803	-6.486	-0.231	0.567
c1-c2	-3.317	31.093	-34.068	-1.120	0.778
a1-a2	34.846	34.846	0.000	0.000	0.000
c1-c3	-11.611	14.570	-28.408	-2.428	4.655

Cartesian coordination of optimized structures

Cartesian Coordination of 1pd⁺

-2382.6872403 hartree

H,13.2120359881,27.2462002076,12.5551180935 H,11.3444731679,26.1649837913,13.7958748226 C.10.7149331083.21.1526980041.19.8141839523 C,10.3388209473,21.5867814088,21.0881571436 C.11.0595135313.21.1729500279.22.213028101 C.12.154635886.20.3166589288.22.0590546124 C,12.5246063138,19.8714887477,20.7872162204 C,11.8106635016,20.288816796,19.6514859884 H,10.1499187806,21.4733957404,18.9438050479 H,9.4842047553,22.2475347088,21.1999520797 H,10.7696561638,21.5146433552,23.2022710523 H.12.721556931.19.993670262.22.9272309175 H,13.3769236528,19.2081376551,20.671963616 H.10.9575188015.17.7080775454.19.8537885429 C,12.9570002333,22.1509829786,17.7218000355 C,13.3549058268,22.7788539955,16.5808925166 C.13.4054708079.21.7875787559.15.5323120753 C,13.657326965,22.1226777473,14.1663246601 C,13.5339110779,23.5459425394,13.7405322957 C,12.3687523316,24.2859538942,14.0148292629 C,12.2534624068,25.6093076906,13.5856662686 C,13.3014932488,26.2152534978,12.8843505862 C,14.4642196475,25.4886303902,12.6071402387 C,14.5775545864,24.1611916199,13.024939342 C,13.9281223637,21.1780819775,13.1729679986 C,13.7460199854,21.2168196322,11.7677079642 C,13.8210147455,19.9774788008,11.1448089189 H,12.8266952603,22.5863500939,18.7009301492 H,13.6129951194,23.8199437262,16.4579059524 H,11.5473570378,23.8171694045,14.5479206858 H,15.2836588034,25.9546325646,12.0681292973 H,15.4853967351,23.6031985001,12.8152966746 H,13.4627038868,22.1252322954,11.2506727102 H,13.6017849202,19.8261140169,10.0951320624 C,12.2101957225,19.8108390273,18.2893223674 C,12.7363751325,20.7613538285,17.3923254161 C,14.066361969,18.8935418572,12.0247695652 C,13.9362153417,17.5134280174,11.8497499524 C,13.9297924343,16.999594019,10.4503968214 C,14.9919389957,17.3081851112,9.5806914643 C,14.9866373983,16.8456711097,8.2632878307 C.13.9138537575.16.0819492761.7.7914573609 C,12.8475378141,15.7788601948,8.6449732196 C,12.8557221217,16.2300599292,9.9659903382 C,13.7198133304,16.5945353925,12.922358866 C,13.8158770393,15.1638007137,12.7536010179 C,13.4151853949,14.5842417135,13.9188325502 C,13.0461345175,15.6492683505,14.8231727377 C,12.4748824553,15.4435455462,16.0945046938 C,12.1898478027,14.0321532255,16.5071358441 C,11.1917080187,13.2848167498,15.8601470037 C,10.9214646106,11.972208687,16.2562854505 C,11.6525917695,11.3867126293,17.2948558498 C,12.6512432158,12.1225337216,17.9410058768 C,12.9144186767,13.4393954026,17.5547089915 C,12.138187356,16.4603109968,17.0145129681

C,11.4726488059,16.2610369955,18.283706293 C,11.3988332211,17.478561238,18.8955655576 C.12.0181600916.18.4402865622.18.0095610156 H,15.8307832599,17.8935128611,9.9456768063 H,15.820073521,17.0797995355,7.6077427556 H,13.9080797666,15.7263981642,6.765398354 H,12.0073612598,15.1943358944,8.2821255331 H,12.0197850717,16.0021482587,10.6201322858 H,14.1668013062,14.6707619872,11.8595254487 H.13.3751769091.13.5304953614.14.1495657442 H,10.6186965215,13.7368294531,15.0557903797 H,10.1410034906,11.4091181704,15.753027306 H,11.4453745802,10.3649387169,17.5988533395 H,13.2257982601,11.6738158185,18.7459847505 H,13.6921753751,14.0065657158,18.0578669036 H.11.1025564583.15.3158928405.18.6516204987 N,13.0566840329,20.5556735235,16.0657349971 N,13.2804058218,16.8633823567,14.2101518779 N,12.4240534568,17.7908802269,16.8760385804 Pd,13.2128788139,18.6677136046,15.2264541735 8,14,5053775822,19,567415915,13,5920013272

Cartesian Coordination of 1pd⁺ in CH₂Cl₂

-2382.6872403 hartree

H,13.2120359881,27.2462002076,12.5551180935 H,11.3444731679,26.1649837913,13.7958748226 C,10.7149331083,21.1526980041,19.8141839523 C,10.3388209473,21.5867814088,21.0881571436 C,11.0595135313,21.1729500279,22.213028101 C,12.154635886,20.3166589288,22.0590546124 C,12.5246063138,19.8714887477,20.7872162204 C,11.8106635016,20.288816796,19.6514859884 H,10.1499187806,21.4733957404,18.9438050479 H,9.4842047553,22.2475347088,21.1999520797 H.10.7696561638.21.5146433552.23.2022710523 H,12.721556931,19.993670262,22.9272309175 H,13.3769236528,19.2081376551,20.671963616 H,10.9575188015,17.7080775454,19.8537885429 C,12.9570002333,22.1509829786,17.7218000355 C,13.3549058268,22.7788539955,16.5808925166 C,13.4054708079,21.7875787559,15.5323120753 C,13.657326965,22.1226777473,14.1663246601 C,13.5339110779,23.5459425394,13.7405322957 C,12.3687523316,24.2859538942,14.0148292629 C,12.2534624068,25.6093076906,13.5856662686 C,13.3014932488,26.2152534978,12.8843505862 C,14.4642196475,25.4886303902,12.6071402387 C,14.5775545864,24.1611916199,13.024939342 C,13.9281223637,21.1780819775,13.1729679986 C,13.7460199854,21.2168196322,11.7677079642 C,13.8210147455,19.9774788008,11.1448089189 H,12.8266952603,22.5863500939,18.7009301492 H,13.6129951194,23.8199437262,16.4579059524 H,11.5473570378,23.8171694045,14.5479206858 H,15.2836588034,25.9546325646,12.0681292973 H,15.4853967351,23.6031985001,12.8152966746 H,13.4627038868,22.1252322954,11.2506727102 H,13.6017849202,19.8261140169,10.0951320624 C,12.2101957225,19.8108390273,18.2893223674 C,12.7363751325,20.7613538285,17.3923254161

C,14.066361969,18.8935418572,12.0247695652 C,13.9362153417,17.5134280174,11.8497499524 C.13.9297924343.16.999594019.10.4503968214 C,14.9919389957,17.3081851112,9.5806914643 C,14.9866373983,16.8456711097,8.2632878307 C,13.9138537575,16.0819492761,7.7914573609 C,12.8475378141,15.7788601948,8.6449732196 C,12.8557221217,16.2300599292,9.9659903382 C,13.7198133304,16.5945353925,12.922358866 C.13.8158770393.15.1638007137.12.7536010179 C,13.4151853949,14.5842417135,13.9188325502 C,13.0461345175,15.6492683505,14.8231727377 C,12.4748824553,15.4435455462,16.0945046938 C,12.1898478027,14.0321532255,16.5071358441 C,11.1917080187,13.2848167498,15.8601470037 C,10.9214646106,11.972208687,16.2562854505 C,11.6525917695,11.3867126293,17.2948558498 C,12.6512432158,12.1225337216,17.9410058768 C,12.9144186767,13.4393954026,17.5547089915 C,12.138187356,16.4603109968,17.0145129681 C.11.4726488059.16.2610369955.18.283706293 C.11.3988332211.17.478561238.18.8955655576 C,12.0181600916,18.4402865622,18.0095610156 H,15.8307832599,17.8935128611,9.9456768063 H,15.820073521,17.0797995355,7.6077427556 H,13.9080797666,15.7263981642,6.765398354 H,12.0073612598,15.1943358944,8.2821255331 H,12.0197850717,16.0021482587,10.6201322858 H,14.1668013062,14.6707619872,11.8595254487 H,13.3751769091,13.5304953614,14.1495657442 H,10.6186965215,13.7368294531,15.0557903797 H,10.1410034906,11.4091181704,15.753027306 H,11.4453745802,10.3649387169,17.5988533395 H,13.2257982601,11.6738158185,18.7459847505 H,13.6921753751,14.0065657158,18.0578669036 H,11.1025564583,15.3158928405,18.6516204987 N,13.0566840329,20.5556735235,16.0657349971 N,13.2804058218,16.8633823567,14.2101518779 N,12.4240534568,17.7908802269,16.8760385804 Pd,13.2128788139,18.6677136046,15.2264541735 S,14.5053775822,19.567415915,13.5920013272

Cartesian Coordination of $1pd^{+}\text{-}Cl^{-}$

-2843.0641312 hartree

C,3.6842043094,3.5316677568,0.1273925981 C.3.8451314048.4.5212306992.-0.8567042131 C,4.5193547,3.552152655,1.2568697652 C,2.6305830327,2.4773464631,-0.0233633895 C,3.0600350723,1.1505805266,-0.2256153666 C,-2.7003441303,-1.0707191616,-0.6533705167 C,-4.0493608521,-0.6017077127,-0.8655120364 C,-4.0260348647,0.7576345593,-0.8058714207 C,-2.6617526795,1.151908969,-0.535765072 C,-2.2579661097,2.4781024467,-0.285383068 C,-3.3224929555,3.5304283829,-0.2412215382 C,-4.2826308932,3.5310684312,0.7845879237 C,-5.2673108334,4.5216224372,0.8302235044 C,-5.3123219242,5.515175699,-0.1530802196 C,-4.3632469294,5.5181372671,-1.1806169079 C,-3.3700638254,4.5359652714,-1.2214519384

C,-0.9300785056,2.8985379217,-0.0529419459 C,-0.5204468002,4.2415731699,0.2964024495 C.0.8422716891.4.241876854.0.3674807699 C,1.28630324,2.898480061,0.0645534854 H,3.2078019962,4.5119068863,-1.736190857 H,4.3961132523,2.7983638283,2.0290114457 H,-4.2498805264,2.7634240733,1.5519433077 H,-5.9978723991,4.5141130674,1.6336950677 H,-6.0811524185,6.2815595369,-0.1190062432 H.-4.3941139892.6.283625664.-1.9505429886 H,-2.6364401815,4.5402648713,-2.0225052005 H,-1.1894246098,5.0696029766,0.4763850692 H,1.4884346495,5.0704697686,0.6156953422 H,-4.9016929025,-1.2388059812,-1.0467975365 H,-4.8571430108,1.4353774628,-0.9272955917 N,0.1864779556,2.1157356552,-0.1579111839 N,-1.8663383578,0.0258855197,-0.494252589 Pd,0.2020164913,0.1083227192,-0.4465825216 C,4.4449436585,0.7567775208,-0.3487150228 C,4.4750080148,-0.6034871934,-0.4072191765 C.3.1114123172.-1.0736268156.-0.3391629115 C,2.7780393435,-2.4587847799,-0.2369992574 C,3.8454370156,-3.4315139981,0.1345136649 C,4.6303166417,-3.2432338119,1.2870486973 C,5.6070018901,-4.1769304865,1.6385034344 C,5.8195733525,-5.3069365182,0.8414684374 C,5.0445098515,-5.5036133693,-0.3062904181 C,4.0592356919,-4.5772362334,-0.6536653172 C,1.4803342921,-2.9575881384,-0.3784671461 C,0.8654971189,-4.1329456893,0.1207722489 C,-0.521995291,-4.131880296,0.0444438404 C,-1.0766004876,-2.9561766301,-0.5194406077 C,-2.3813013639,-2.4559425367,-0.5156259714 C,-3.4834862142,-3.4263798507,-0.2601178776 C,-3.6172001423,-4.5646714339,-1.0771246941 C,-4.6371346336,-5.4886743164,-0.8429337408 C,-5.525341349,-5.2961577185,0.2209371262 C,-5.3896743158,-4.1748597669,1.0462940503 C,-4.3791042932,-3.2401540532,0.8094760323 H,5.342022844,-1.2393103002,-0.5057783532 H,4.4605957545,-2.3751840058,1.9165276502 H.6.1978324894,-4.0238926362,2.5367005856 H,6.5822796513,-6.0302732562,1.1142771785 H,5.2068633207,-6.376278034,-0.9319197987 H,3.4643440843,-4.7296158159,-1.5494797491 H.1.4321266967.-4.9092100493.0.6199564132 H,-1.1421469668,-4.9058481844,0.4792931153 H,-2.9329587588,-4.7121191776,-1.9078107464 H,-4.7382838944,-6.3550727677,-1.4900345962 H,-6.3160138561,-6.0172591696,0.4070919074 H,-6.0667833016,-4.0266319039,1.8820378836 H,-4.2732224962,-2.385834658,1.4741949818 H,5.2835084524,1.4354309102,-0.3869383314 N,2.2653309204,0.0234738337,-0.2664053733 S,0.2445255532,-2.024575972,-1.2163787508 C,4.8270193148,5.5058696643,-0.7175948626 C,5.6514759126,5.5216398334,0.412119417 C,5.492768222,4.5445705041,1.4001792099 H,4.9457450617,6.2592402086,-1.4908496284 H,6.4108247447,6.2902462049,0.522285632

H,6.1249460742,4.5532620389,2.2832569451 Cl,-4.4219830153,-0.854018897,3.921767496

Cartesian Coordination of 1pd⁺-BF₄⁻ -2807.3421427 hartree

C,-0.7060513717,4.1449147101,0.0031464016 C.-0.9686411359.2.7669843168.-0.351668229 C,-2.2328983165,2.2290696931,-0.6777657913 C,-3.385693809,3.1836490384,-0.7318851209 C.-3.4457389289.4.1669261635.-1.7337924126 C.-4.5210825413.5.0576427634.-1.7880198997 C,-5.4831092851,4.0128577532,0.1705647301 C,-4.4155519697,3.1116563538,0.2216131132 C,-2.4972520436,0.8713403601,-0.943390817 C,-3.7963430715,0.3568775974,-1.3139460414 C,-3.6938200901,-0.9991888274,-1.36590573 C,-2.3286189317,-1.3455563715,-1.0469432699 C,-1.8989427437,-2.697037503,-0.8757215195 C,-2.927641381,-3.7611208042,-0.6943968017 C,-4.8468748372,-4.6715430901,0.4854865665 C -4.8287254088 -5.800516111 -0.3406293236 C,-3.8572011376,-5.9150364024,-1.3408643633 C,-2.9073583749,-4.9059603888,-1.5119554254 F,-2.1908378097,0.5678822007,2.9061167518 F,-4.4843432294,0.8256074045,2.799784833 F,-3.5526521809,-1.2857113181,2.6911283679 H,3.1244672896,4.7143289009,-1.777778597 H,-1.4574793034,4.9109550742,0.1216485874 H,-2.6561876695,4.2251567302,-2.4776508069 H,-4.560007019,5.8065519781,-2.5738179473 H,-4.3738449404,2.3630377941,1.0078480499 H.-4.6723428154.0.9584183765.-1.5026906079 H,-4.4691834231,-1.7101579814,-1.608288238 H,-5.5647450827,-6.5874699442,-0.2040054693 H,-3.8390909887,-6.7870245446,-1.988070959 H,-2.158427389,-4.9937646779,-2.2938153788 N,-1.6107061617,-0.1792182968,-0.8326639058 C,-5.5413483423,4.9843426413,-0.8338700514 H.-6.374846737.5.679758939.-0.8727602037 H,-6.2686862132,3.9534618345,0.9182664797 B,-3.4327116422,0.0017239034,3.2689164863 F,-3.5120075012,-0.1063700006,4.6763561605 C,4.3172573502,-3.1089031258,0.2717180515 C,5.726959982,-5.068974135,-0.0395291009 C,6.3858280447,-4.7943907736,1.1634988663 C.6.0102910811.-3.6811828217.1.9231680808 C,4.9863964263,-2.8417073872,1.4803367136 C,5.1591433341,5.0063126999,1.513608595 H,7.1849019695,-5.4442714075,1.5077628843 H,6.5105788287,-3.468152396,2.8631751291 H,4.6899592106,-1.9872063704,2.0807040355 H,4.1764903373,3.1802974448,2.1035011287 H,5.7209097963,5.087050435,2.439591615 C,0.0528146363,-4.2016082476,-0.1635495722 C,1.4242070377,-4.0780548675,0.0209024225 C,1.9688501615,-2.851729766,-0.4365729786 C,3.2010520625,-2.2385035769,-0.1974309753 C,4.6951518701,-4.237131124,-0.4790939599 C,3.4181074103,-0.8293372323,-0.2905688681 C,4.7362195759,-0.24054218,-0.2637059233

```
C,4.5820748793,1.1122347016,-0.2280132423
C,3.1625710893,1.3820125628,-0.2133339779
C.2.6033326773.2.6666320931 -0.0638767455
C.3.5458960463.3.8135635652.0.1385052203
C,4.2900318611,3.9283763792,1.3243873043
C,5.3039854624,5.9761944505,0.516388294
C.4.5701010673,5.8668814759,-0.6692167092
C,3.6916010525,4.796044079,-0.8550233966
C,1.2241887357,2.9664067533,-0.0769367894
C.0.6425045228.4.2680752046.0.1705080803
C,-3.9065577658,-3.6536031833,0.3110233903
C,-0.5593106565,-3.07935563,-0.7757137404
H,-0.5274706209,-5.0289356811,0.2258570362
H.2.0173306133.-4.8007633489.0.567441643
H,4.190950479,-4.4491926236,-1.417379348
H.6.0162975441.-5.9286818022.-0.6366234449
H,5.6607194751,-0.7976964088,-0.2885836523
H,5.358043011,1.8625304117,-0.2139185729
H,5.9824877697,6.8115245583,0.6626027911
H,4.6789624443,6.6142316791,-1.4497630892
H.1.1932702145.5.1536535621.0.450013976
H,-3.9107798631,-2.7903341165,0.9696663524
H,-5.5906875787,-4.5831797121,1.2718464513
N.2.4758296224,0.1881962068,-0.2959802108
N.0.2169559866.2.0860128747.-0.3625761709
Pd,0.4319139285,0.0872272565,-0.6247418092
S,0.7233494252,-2.0327447414,-1.3746064011
```

Cartesian Coordination of $1pd^{\text{+}}\text{-}PF_{6}^{\text{-}}$

-3323.4817583 hartree C,-1.0757152018,18.1262373916,16.7047360067 C.-0.6376700349.17.1374205233.15.8081632875 C,-0.2322405308,19.2141695865,16.9845541411 C,-2.4270146034,18.0240075862,17.343546748 C,-2.475874951,17.7915008317,18.7323674428 C,-8.6590049017,17.6205969966,18.8896007942 C,-9.7800296244,17.4748298736,17.9911666713 C,-9.3002973667,17.5525773487,16.719957819 C,-7.8735764565,17.7659784106,16.8122849347 C,-7.0390886731,18.0101660058,15.7042129605 C,-7.6865696893,18.1118881858,14.3576580579 C,-8.5425116257,19.185102215,14.0573719439 C,-9.13491734,19.280358098,12.7948979458 C,-8.8900401946,18.3034402684,11.8245023589 C,-8.0426190065,17.2301839313,12.1188743422 C.-7.4387519763.17.138015188.13.3756527282 C,-5.6383441386,18.1807502744,15.7575904933 C,-4.7875112702,18.5168679354,14.6366499356 C,-3.501497046,18.5176434536,15.0928061346 C,-3.5472515147,18.1841090319,16.5000436462 F,-7.3072880451,22.2826559673,17.1490701343 F,-9.3846725979,21.8444995077,16.1929063362 F,-8.8141094472,24.0208586585,16.7927170952 F.-10.4312097386.22.8665237247.18.0044691473 F,-8.3543935517,23.304973161,18.9597364139 F,-8.9246240058,21.1277275736,18.3616262829 H,-1.2803748316,16.2898568257,15.5882094964 H,-0.5659471781,19.9899174547,17.6674849376 H,-8.7321448183,19.9501558694,14.8043676898 H,-9.787166981,20.119719705,12.5721691274

H,-9.3553581683,18.3778904494,10.8459060172 H,-7.8500834794,16.4649873868,11.3724198067 H,-6.7827644156,16.3021482106,13.6015000974 H,-5.1322907937,18.736638879,13.6374793674 H,-2.60449946,18.7378090706,14.5336886083 H,-10.8025860722,17.3214525449,18.3015305843 H,-9.8594206582,17.4776240774,15.7998121748 N,-4.854522987,18.0143273608,16.8656097375 N,-7.5009078106,17.7566200906,18.1402511532 P.-8.8685145025.22.5748870148.17.5768997493 Pd,-5.5245259631,17.7041236396,18.7542109757 C,-1.3095379682,17.6019211411,19.5640421006 C,-1.7397051327,17.5346347625,20.8545209941 C,-3.1778312544,17.6620579048,20.8422621625 C,-3.9520973062,17.7695847403,22.0381678065 C,-3.2579717354,18.0917755672,23.3180695229 C,-2.4154388925,19.2137840558,23.4231504864 C,-1.7945643525,19.5215101739,24.6351903199 C,-1.9994550613,18.7106119969,25.7567221631 C,-2.8353500819,17.5929170536,25.6628151995 C.-3.4664556417.17.2893942571.24.4547646172 C,-5.3456237335,17.6793041807,22.0717791786 C,-6.2988757147,18.1915242046,22.9875538128 C,-7.6074872397,18.178072435,22.5215924792 C,-7.7579020261,17.6551040542,21.2128389014 C,-8.8172664972,17.726311285,20.3053311237 C,-10.1693336444,18.0276663044,20.8563446698 C,-10.7178350148,17.212030371,21.8630322678 C,-11.9776668239,17.4944648922,22.3946777306 C,-12.6981542939,18.6038999784,21.9391419977 C,-12.1540812105,19.4278742547,20.9479713649 C,-10.8996481261,19.1426890033,20.404868646 H,-1.1411110436,17.3931857776,21.7418823736 H,-2.2636448291,19.854173616,22.5597576288 H,-1.1553575031,20.3966806194,24.7041749033 H,-1.5127513917,18.949432593,26.697707703 H,-2.9954286232,16.9565546388,26.5281233518 H,-4.108856737,16.4165588796,24.3836335281 H,-6.0057558978,18.6546642793,23.9215686168 H,-8.4334305343,18.630866363,23.0560020329 H,-10.1634235742,16.3460193076,22.213107285 H,-12.3958078233,16.8486112719,23.1611893263 H,-13.6760911238,18.8263812877,22.3559749873 H,-12.703104047,20.2973786837,20.5990831542 H,-10.4717609735,19.79490635,19.6501677348 H,-0.2942313601,17.5296738981,19.2046402044 N,-3.6035100216,17.7799065036,19.5274920135 S,-6.2294607083,16.9090067665,20.7576533476 C,0.622095883,17.2308529121,15.210482569 C,1.4540694336,18.3195690454,15.4910916246 C,1.0222639524,19.3123008943,16.3765991909 H,0.9510578629,16.4543152041,14.5261005148 H,2.4307067152,18.3945559369,15.0220030282 H,1.6597457481,20.164032246,16.5950240106

Cartesian Coordination of 1pd⁺-B(C₆**F**₅)₄⁻ -5319.0405135 hartree

C,3.4915317915,-1.761836124,-3.7999785769 C,3.9650156698,-3.6410289861,1.5241421266 C,7.4448479177,0.8178212883,0.7744610256 C,7.7733357227,1.7393962555,-0.2092700607 F,4.3506274093,-2.1036571457,-4.7826728497 F,5.2883707104,-0.893025472,-2.6273915838 F,4.7624858331,-4.7129880492,1.3364464403 F,5.1274013515,-2.5282049038,-0.1530236519 F,8.3543948941,0.4964123505,1.7180841195 F,8.9913586927,2.31050116,-0.2372448381 F,7.106785908,2.9666640362,-2.1245702566 B,3.6099052491,-0.0512122969,-0.1437797119 C.-3.382864024.-0.2286795294.-3.3319488191 C,-3.5537204687,-0.3414807448,-4.8159971265 C,-2.5958425459,-1.0177871177,-5.5897679966 C,-2.7533733004,-1.125591157,-6.9740834572 C,-3.8741287184,-0.5703787312,-7.6000514383 C,-4.8355674292,0.0984169528,-6.8355469902 C,-4.6743770817,0.2171995631,-5.4524405468 C,-3.5017840261,-1.4187927058,-2.5820925137 C,-3.8477249691,-2.7189164861,-3.1149546657 C,-3.7869280915,-3.6071998774,-2.0810821115 C,-3.4041289739,-2.86301321,-0.900517371 C.-3.170286443.-3.4139401868.0.3779951165 C,-3.2484452125,-4.905202165,0.4997485826 C,-2.2753942216,-5.7174360139,-0.1058318045 C,-2.3444618317,-7.1085501284,0.0072580136 C,-3.3919790853,-7.7052008921,0.7163872123 C,-4.3683687178,-6.9036774173,1.3166144949 C,-4.2948360912,-5.5118484588,1.2139151801 C,-2.879739724,-2.6793310682,1.5441639341 C,-2.6153510989,-3.2770243524,2.8332697658 C,-2.4964585601,-2.2621405077,3.7325995934 C,-2.667148801,-1.0207961732,3.0148592572 C,-2.7337957512,0.2452407466,3.6726637135 C,-2.9505274686,0.2807657272,5.1475473667 C,-4.0333834472,-0.3947057882,5.7397010751 C,-4.238799922,-0.3297126401,7.1191258059 C,-3.3625963373,0.4030124132,7.9271076428 C,-2.2826490549,1.0775657162,7.3480223828 C,-2.0815755495,1.0237682717,5.9673735112 C,-2.6914297622,1.4717087638,3.0048372972 C,-3.1856265548,2.7519299483,3.3611995075 C,-3.2480788691,3.6558122434,2.3081118162 C,-2.8059853747,3.1373709759,1.0646745793 C,-2.9629117277,3.6064139406,-0.2419759674 C,-3.283373919,5.0523849353,-0.4141217878 C,-2.4426630247,6.0319625131,0.1454964822 C,-2.7441331315,7.3880671291,0.0051465921 C,-3.8958397162,7.784517232,-0.6826170169 C,-4.7436468747,6.8177239111,-1.2339461171 C,-4.4389776687,5.4613748684,-1.1048463743 C,-2.9201575201,2.7670898051,-1.3971322421 C,-2.859360532,3.294198898,-2.7400709479 C,-2.9742234472,2.2445599401,-3.5994692671 C,-3.1261742231,1.05011377,-2.8001042969 C,2.7716611859,1.33148469,0.2670708087 C,1.9780600864,2.1121167549,-0.5782164126 C,1.3918662425,3.3215452269,-0.2014009147 C,1.5914934847,3.8184985595,1.0781382253 C,2.3892798779,3.0954323246,1.9575062787 C,2.9553710801,1.8982094758,1.5351392593 C,3.1271633178,-0.7196191704,-1.5936133177

C,1.784479036,-1.0749300924,-1.7744708704 C,1.2805294917,-1.721156233,-2.8967814397 C.2.1446405131-2.0680136548-3.929079352 C,3.9506727815,-1.112250577,-2.6526851764 C,3.3619648845,-1.3239115208,0.9048686989 C,2.3546856432,-1.4382002623,1.8667192203 C,2.1494203079,-2.5739830623,2.6517117166 C,2.96017268,-3.6871891511,2.4840223217 C,4.1322213008,-2.4862921741,0.7687588998 C.5.1804174248.0.5093685626.-0.1542276267 C,6.1755104295,0.2370282571,0.7886821205 C,6.8151083811,2.0671169814,-1.1620697531 C,5.565405633,1.4614905113,-1.1067791656 F,1.7295658106,1.7420885688,-1.8588013889 F,0.6321747271,4.015286071,-1.0749630679 F,1.0270019806,4.980237065,1.4602471844 F,2.6027652719,3.5609405173,3.2061361355 F,3.7358505765,1.2658226139,2.4473362578 F,0.876227413,-0.7834965874,-0.8081568575 F,-0.0331565043,-2.0166331895,-2.9951471692 F.1.683344767.-2.6956256675.-5.0268601812 F,1.4793918076,-0.4274183256,2.099203866 F,1.1599639382,-2.6013769668,3.5689883481 F,2.7731957978,-4.7922813366,3.2289850176 F,5.9618514062,-0.6243659513,1.814378854 F,4.6840232582,1.8468552858,-2.0647021148 H,-1.7229887104,-1.4471507669,-5.1072562845 H,-2.0000880783,-1.6427564041,-7.5611128003 H,-3.9974730486,-0.6584950386,-8.6754639944 H,-5.7110486593,0.528278464,-7.3134212025 H,-5.4250920582,0.7341289031,-4.8616919383 H,-4.1082443932,-2.921544832,-4.142935744 H,-3.9894277897,-4.667305876,-2.1107082718 H,-1.4586245549,-5.258067496,-0.6547755366 H,-1.5797566362,-7.7236230923,-0.45791778 H,-3.4469486638,-8.7865549632,0.8005513791 H,-5.1872677389,-7.3594496795,1.865492731 H,-5.05688526,-4.8929914447,1.6787811911 H,-2.5248148646,-4.3361310611,3.0209062752 H,-2.2861415511,-2.3393490253,4.7886507733 H,-4.7224683368,-0.9559616404,5.1160700204 H,-5.0840261212,-0.848558183,7.5615141887 H,-1.5948429471,1.6427920536,7.9698214987 H,-1.2365448412,1.540654131,5.5223731652 H,-3.5792160463,2.9612288545,4.3481704479 H.-3.6943983571.4.6387960124.2.3942753863 H,-1.5410146194,5.7297216829,0.6694358115 H,-2.0777041545,8.133126472,0.4293793336 H,-5.1061583091,4.7149792874,-1.5249059445 H,-2.7212180741,4.336073699,-2.9869978272 H,-2.9515927111,2.2719189402,-4.6783055261 N,-3.0477718297,1.3878454103,-1.464456912 N,-3.2696609606,-1.5451402342,-1.2404095644 N,-2.8659680728,-1.3056185188,1.672083532 Pd,-2.8887531052,-0.024079964,0.0442719253 S,-2.0272666522,1.5903569097,1.3795506337 H,-4.1314952258,8.8393697996,-0.7880947463 H,-5.6438287691,7.1184033364,-1.7617720818 H,-3.5208241948,0.4482621912,9.0005391026

Cartesian Coordination of 1pd⁺-PCCp⁻ -3037.6159064 hartree

N.7.0203817745.20.7295454288.17.9645813455 H.13.1827021898.27.1624470992.12.4266272802 H,11.2950282899,25.9863073286,13.5448089393 C,10.7958747009,20.9951067788,19.7298131215 C.10.4131649573.21.4178051869.21.0059507328 C,11.1691022761,21.0523298665,22.1241569102 C.12.3070296653.20.2551134156.21.9618309472 C.12.6849173107.19.8225153962.20.6879414213 C,11.9350224347,20.1926617715,19.5590790043 H,10.1994709263,21.2752961642,18.8670535566 H,9.5236695115,22.0295926256,21.1231738884 H,10.8725851247,21.3841514336,23.1148153489 H,12.9006863901,19.9678770136,22.8247874105 H,13.5691763479,19.2036709716,20.5654803173 H,11.1419979284,17.5954627815,19.7524311631 C.12.9972693826.22.0950859922.17.6203777278 C,13.3852772248,22.7309595409,16.4804595709 C,13.503771117,21.7338258776,15.4430460711 C 13.7811923884.22.0698130434.14.0819527766 C.13.6144104324.23.485768164.13.6441925575 C,12.396533099,24.1629585479,13.8399574441 C,12.2439248196,25.4789073859,13.39859475 C,13.3033800971,26.1376364067,12.7653652057 C,14.5171955439,25.4714480619,12.5658040541 C,14.6698412113,24.1512662039,12.994543662 C,14.1187124316,21.1334864188,13.1028213089 C,13.992508605,21.1619396828,11.6908372693 C,14.1307367516,19.9235904035,11.077052987 C,8.8687113587,21.2606487226,14.5991761248 H.12.8238132783.22.5328200658.18.5917065102 H,13.5911828034,23.7827560103,16.3499886336 H,11.5638869662,23.6502959506,14.3121408274 H,15.3447297368,25.9781104681,12.0780796995 H,15.6153992441,23.6382450679,12.8444709905 H,13.7000011071,22.0588381501,11.1589688554 H,13.9566634408,19.761575049,10.020587851 N,9.0894084875,22.3891589734,14.4047231884 C,12.3487170047,19.7278310102,18.1955366451 C,12.8471242874,20.6940192714,17.300247233 C,14.3714768574,18.8498715114,11.97105191 C,14.2823858692,17.4664108108,11.7990276009 C,14.3438678434,16.9491966521,10.4016372056 C,15.4414776443,17.2676193413,9.5811755875 C.15.5014470814.16.8034610964.8.2655824843 C,14.4590021927,16.0282874826,7.7468158913 C,13.3577487139,15.7160080398,8.5512403887 C,13.300360782,16.1691796059,9.8704800367 C,14.0468885823,16.5446209269,12.8650619575 C,14.163598384,15.1150089741,12.6964998115 C.13.7309978104.14.5282473004.13.8464418642 C,13.3270519095,15.5872447762,14.7428243253 C,12.728856022,15.3703784661,15.999549844 C,12.4425231774,13.9533245363,16.3936903385 C,11.4303828764,13.2261195695,15.7459393514 C,11.1584734243,11.9076577154,16.1220943687 C,11.8995785645,11.2982906163,17.1395981399 C,12.9108851777,12.0160384645,17.7866223324 C,13.1773885911,13.3381897765,17.4205468191

C,12.3641690934,16.3777413643,16.9179337237 C,11.6959311452,16.1620506615,18.1829758836 C,11.594774883,17.3762968134,18.7970866095 C,12.1966309861,18.352868697,17.9150951394 C,8.9576316215,18.8083357055,13.9946025277 C,9.6215123727,18.9097833777,12.7480349973 C.8.6072496892.19.8906051718.14.8424443544 C,7.9527177585,19.3591465016,15.9844582452 C.7.4404614122.20.1087069322.17.0711894394 C.7.9010397.17.9482612442.15.8433717215 C,7.3285369224,17.0406737541,16.7677434632 C,8.5236671742,17.607450034,14.6139186419 C,8.6864965345,16.2984770726,14.099286439 H,16.2559233181,17.8629392345,9.9834348371 H,16.3612209752,17.0460866493,7.6480748694 H,14.5032019737,15.6715579363,6.7220293377 H,12.5400796424,15.1239871731,8.1511792613 H,12.4367369811,15.9359061357,10.4851950861 H,14.5422557533,14.6276447756,11.8106672462 H,13.6877869493,13.4734364828,14.071569254 H.10.8449166307.13.6986888563.14.9624606684 H.10.3664393287.11.3598446014.15.6199717548 H,11.6891122288,10.2726056147,17.4280050211 H,13.4921685817,11.5496463939,18.5767246966 H,13.9639291452,13.8922849975,17.9248225926 H,11.3412337951,15.2088943717,18.5453998099 N,13.1996234407,20.4924154651,15.9811348598 N,13.5682911561,16.8047814859,14.14052255 N,10.1642466894,18.9935573519,11.7192640695 N,6.8569446232,16.2943913886,17.5295876492 N,8.8258547569,15.2200202998,13.6775034977 N.12.622826548.17.7141910679.16.7828995626 Pd,13.4231358031,18.6081075008,15.1486756729 S,14.727660235,19.5425914938,13.5496929285

Cartesian Coordination of 2pd⁺

-3375.0021169 hartree

C,9.5641910127,14.3915664442,7.4870557646 C.10.8412576634.13.7374165621.7.30572982 C,10.989869812,12.3730767247,6.9934039633 C,9.7325326009,11.5786396207,6.8076693347 C,9.0098351034,11.6217703654,5.611384086 C,7.8434729275,10.8854298776,5.4239197823 C,7.3699434855,10.0765024579,6.4542166589 C,8.0648927261,10.0110022581,7.6593517316 C.9.2296383753.10.7565346215.7.8202974183 C,12.2037370476,11.685663019,6.8252515969 C,12.3455947203,10.2868813856,6.4702501674 C,13.6768414526,10.0018735198,6.4909065957 C,14.3682134345,11.2221990274,6.8590662678 C,15.7514870635,11.3535055321,7.067838429 C,16.5783826298,10.1128394231,6.9144838492 C,16.6702514457,9.1632952567,7.9362949624 C,17.4320709797,8.0053469196,7.8053176873 C,18.1285628571,7.7730723017,6.6218764567 C,18.0585637177,8.6984445296,5.583176249 C,17.2907677342,9.8488564542,5.740572771 C,16.4362112395,12.5393759763,7.3933133785 C,17.8631137038,12.6144908101,7.6169409823 C,18.1736801731,13.926768151,7.7894708364

F,9.4432686621,12.3898575791,4.5957235527 F,7.1767411175,10.9484751449,4.2623313579 F.6.2498733325.9.3649806055.6.2867001173 F.7.6093887609.9.2351534565.8.6534170678 F,9.8752387654,10.6750432072,8.9974807978 F,16.0130789457,9.3606139102,9.0931822685 F,17.5002259467,7.1173074469,8.8074832086 F,18.8637382969,6.66439454,6.4831971023 F,18.7270304693,8.4757599097,4.4424039464 F.17.2402115134.10.7206678276.4.7174516334 H,8.6037473263,13.8974945553,7.488110162 H,11.5340634542,9.6137038027,6.2349746116 H,14.148297989,9.0540013148,6.2755671397 H,18.536612239,11.7705380031,7.6435076176 H,19.1455778679,14.352903266,7.9870327705 N.13.4462850152.12.2161244592.7.027064276 N,15.8933010822,13.799524071,7.4793273384 Pd.13.8525036218.14.1474905024.7.4972692952 C,15.7363310147,16.8596427054,7.7601668213 C,15.4270536969,18.1565932093,7.2965598214 C.14.0641081029.18.4484493568.7.2751841081 C.13.237222049.17.3947838638.7.7209463933 C,11.8548036678,17.1905419934,7.5917291216 C,11.0112468329,18.3907385897,7.3338966513 C.11.0697454485.19.4941098932.8.2056041987 C,10.2950389621,20.6294984256,7.9623853435 C,9.4655021483,20.6860096681,6.8372634339 C,9.4102018167,19.5995365791,5.9577243052 C,10.1736657245,18.4574270436,6.2046293551 C,11.2463583109,15.9045992591,7.5955020551 C,9.8130865682,15.717074821,7.6584048967 C.16.9454074591.14.6842461504.7.6848604419 C,16.9171734889,16.1065281719,7.6711580189 C,18.1854749102,16.8544885303,7.4464608649 C,19.0104815515,16.5650500537,6.343363844 C,20.1816498758,17.2928701817,6.1268048617 C,20.549572461,18.3124908666,7.0111542012 C,19.7361959131,18.607886711,8.1104214294 C,18.5576448303,17.8907728302,8.3230051675 H,16.181867871,18.8176586368,6.8891393555 H,13.6586815414,19.3579562512,6.849548572 H,11.7059050423,19.4508029869,9.084673679 H,10.3381658517,21.4676049954,8.6513498764 H,8.8675699863,21.5720047817,6.6459252958 H,8.7763951552,19.6418048458,5.0770874838 H.10.1383897455.17.6233128.5.5107126137 H,9.095391171,16.505025857,7.8294317809 H,18.7220324189,15.7850750711,5.6455457089 H,20.8033702504,17.066205654,5.2659302006 H,21.4632713048,18.8747861512,6.8435249062 H,20.019280207,19.3946778398,8.8030813592 H,17.9334024674,18.1174360642,9.1822385645 N,11.8496632752,14.6653550126,7.4160381131 S,14.270352567,16.1683693079,8.4485341028

Cartesian Coordination of 2pd⁺ in CH₂Cl₂ -3374.9451742 hartree

C,4.2441060386,0.1172047994,-0.415095261 C,2.8623920393,-0.2720043434,-0.2453047686 C,2.4377010504,-1.59652076,-0.0290631118

C,3.4999652801,-2.6500483985,0.0551942371 C,4.2488591526,-2.8416408021,1.2214778221 C.5.2346051412 - 3.8220529258 1.3145662069 C,5.4920543436,-4.6420509507,0.2151841264 C,4.7635398891,-4.4762142552,-0.9633489396 C,3.7814592879,-3.4894985285,-1.0283648063 C.1.1078801028.-2.0232853787.0.1265583994 C,0.6809170689,-3.3819338243,0.3952864336 C,-0.6800455081,-3.3821184369,0.3952514815 C.-1.1073633679.-2.0235815028.0.1265234414 C,-2.4372937004,-1.5971727052,-0.0291398943 C,-3.4992773523,-2.6509864476,0.0550741407 C,-3.7805034258,-3.4905095436,-1.0284980651 C,-4.7623205204,-4.4774900588,-0.9635226947 C,-5.4908353081,-4.6435266714,0.2149820667 C.-5.2336488957.-3.8234629215.1.3143765861 C,-4.2481637755,-2.8427846736,1.2213287142 C,-2.8623318864,-0.2727694762,-0.2453927665 C,-4.2441437045,0.1160708872,-0.41523258 C,-4.275266883,1.4733648709,-0.4867842326 F 4 0171679949 -2 0671285584 2 2948494647 F.5.9298067877.-3.9803338404.2.4442906377 F,6.4327934996,-5.5819779564,0.2907246323 F,5.010287182,-5.2584299372,-2.017346803 F,3.0969455377,-3.3463656248,-2.1749398369 F,-3.0959844828,-3.3471886075,-2.175046477 F,-5.0088167267,-5.2597691836,-2.0175322024 F,-6.4313237457,-5.5837076609,0.2904837406 F,-5.9288505914,-3.981934859,2.4440741715 F,-4.0167219233,-2.0682138928,2.2947119487 H,5.0810922958,-0.5626113282,-0.474955947 H.1.3382486606.-4.2225739892.0.5622839183 H,-1.3371577128,-4.2229362677,0.5622180526 H,-5.08094615,-0.5639687105,-0.4751245669 H,-5.1384822328,2.1073848671,-0.6220706884 N,0.0001547621,-1.2337631423,-0.0047309768 N,-2.0679932118,0.850451407,-0.2606998956 Pd,-0.0001074626,0.7653367505,-0.3214329454 C,-1.2813717488,3.8280056668,-0.3339449665 C,-0.6977783574,4.9989722801,0.1984554938 C,0.6964189466,4.9991587613,0.1984756682 C,1.2803410144,3.828348043,-0.3339073366 C,2.5905545689,3.3315236531,-0.2631133066 C,3.6717150672,4.3099559124,0.0396917647 C,3.8357357001,5.4505705767,-0.7687270941 C,4.8368514585,6.3803920891,-0.4855289864 C,5.6746478729,6.1947310382,0.6187988109 C,5.5111568789,5.0721372618,1.4366476379 C,4.5207172838,4.1323709043,1.1483807827 C,2.9140197091,1.9492388416,-0.3707174368 C,4.2748683873,1.4745064452,-0.4866575561 C,-2.9145479687,1.9484601477,-0.3708051 C,-2.5914545941,3.3308311128,-0.2631899388 C,-3.6728848482,4.3089749616,0.0395845495 C,-4.5218696403,4.1311645944,1.1482508263 C,-5.5125676604,5.0706670315,1.4364899374 C,-5.6763358137,6.1932164585,0.6186356643 C,-4.8385587934,6.3791001118,-0.485669363 C,-3.8371873098,5.4495454091,-0.7688394107 H,-1.2941632017,5.7741136386,0.6643219232

H,1.2925829561,5.7744596633,0.664359252 H,3.1952524269,5.5918734986,-1.6346475046 H,4.9651578546,7.2460797014,-1.1281256471 H,6.4499141342,6.9214741591,0.8414733554 H,6.151838018,4.9297780012,2.3015519818 H,4.3885028497,3.2702480915,1.7951700534 H,5.1379184134,2.1087564544,-0.6219208265 H,-4.3894427158,3.269077746,1.7950445463 H,-6.153234265,4.928137762,2.3013770547 H,-6.4518018485,6.9197530292,0.8412886119 H,-4.9670784529,7.2447530061,-1.1282701826 H,-3.1967179858,5.5910185884,-1.6347423347 N,2.0677542542,0.8510047558,-0.260635426 S,-0.0003791368,2.8944961848,-1.1018062598

Cartesian Coordination of 2pd⁺-Cl[−] -3835.3790387 hartree

C,-3.9257702081,-2.2597132816,0.1017841117 C,-4.3897700428,-3.0218230609,-0.9744312028 C,-4.6096300847,-2.3968437534,1.3136289461 C,-2.7462236745,-1.3444386796,-0.0366522435 C,-3.0182213485,0.0191448236,-0.2562710724 C,2.9772871055,1.5206061043,-0.6136174701 C.4.2745100368.0.8858358702.-0.7077822643 C,4.0859152511,-0.4542746833,-0.5898703083 C,2.6657914142,-0.671661484,-0.4155592262 C,2.0874709571,-1.9310170365,-0.1716565787 C,3.0180703497,-3.1048181539,-0.0955378893 C,3.6058723876,-3.4989826031,1.1103111185 C,4.4679896514,-4.5899183341,1.1898771476 C,4.761693337,-5.3180932692,0.0397618275 C,4.1919393749,-4.9524955231,-1.1772309729 C,3.331999199,-3.8591804267,-1.2295057086 C,0.7210505224,-2.1988312512,0.0137182704 C,0.1419377189,-3.4995120015,0.2888846444 C,-1.2089884533,-3.3356033757,0.3287882018 C,-1.4755719504,-1.9327159131,0.0757028886 H,0.6969175017,-4.4149560244,0.433030727 H,-1.9566630311,-4.0932166752,0.5129512137 H,5.2071966445,1.4100244203,-0.849562878 H,4.840028403,-1.227112911,-0.6113342337 N,-0.2858935967,-1.2822125747,-0.0875711355 N,2.0090291891,0.5344179417,-0.4671423439 Pd,-0.0548807789,0.6983867136,-0.4593592401 C,-4.3507479057,0.5707951755,-0.3654014194 C.-4.219189118.1.9196980232.-0.471846114 C,-2.8055688591,2.2259912524,-0.4375275931 C,-2.3110514576,3.5589001592,-0.3919499399 C,-3.2522475512,4.6716743365,-0.0799689295 C,-4.0574536645,4.638357679,1.0735035989 C,-4.9138286511,5.7008149385,1.3680004657 C.-4.9841241498.6.8056766367.0.512801022 C,-4.1866249616,6.8485749219,-0.6357627331 C,-3.3197779129,5.793633011,-0.9265119853 C,-0.9555447674,3.891642676,-0.5335453039 C,-0.2173032822,5.0016955824,-0.0687917424 C,1.1659271619,4.8334931339,-0.1208821159 C,1.5793569345,3.5821819212,-0.6261083599 C,2.8209765111,2.9325648973,-0.5662051846 C,4.0206684383,3.7900249694,-0.3460480995

C,4.3216588281,4.8138562798,-1.2634346659 C,5.4380794232,5.629226495,-1.0699589651 C,6.2535403088,5.4446879038,0.0521161239 C,5.9478758599,4.4419208539,0.9782544584 C,4.8406088435,3.6129023684,0.7833814361 H,-5.0058515456,2.6511548101,-0.5779936198 H,-0.6939177094,5.8577821893,0.3924010043 H,1.8677417619,5.5444965902,0.2969794912 H,-5.2671750506,-0.0006123329,-0.3613520615 N.-2.0954914837.1.0348732461.-0.338461649 S,0.169695008,2.7873672401,-1.3153893891 C,-5.4800488452,-3.8798863925,-0.85969832 C,-6.1380314677,-3.9928671359,0.3624550935 C,-5.7015847288,-3.248743143,1.4557625576 Cl,3.7628593092,1.8737077467,4.0819051413 H,-3.9951904587,3.790471448,1.7485388893 H,-5.5212966709,5.667223102,2.2673868559 H,-5.653684279,7.6294072698,0.741709665 H,-4.2391873962,7.7016944922,-1.3055046713 H,-2.7071568361,5.827507571,-1.8226596111 H.3.6920341331.4.9545250895.-2.1374460153 H,5.669850978,6.4057398848,-1.7929652641 H,7.1186678831,6.0829978932,0.2064373881 H.6.5665019148,4.306706749,1.8602886189 H,4.5917896527,2.8597163406,1.5273045305 F,-4.2118219321,-1.6947458564,2.3890014911 F,-6.3333047496,-3.3569982838,2.6337619009 F,-7.1872095934,-4.8140933209,0.4859535779 F,-5.8996974755,-4.5946484767,-1.914359916 F,-3.778283648,-2.9334959421,-2.1696528098 F,2.7970580333,-3.5312941847,-2.4202763404 F,4.4734471425,-5.6534250516,-2.2861845932 F,5.5891227142,-6.3680914824,0.1037649643 F,5.0141727297,-4.9436977284,2.3621319879 F,3.3401617069,-2.8189794039,2.2372348206

Cartesian Coordination of 2pd⁺-BF₄⁻

-3799.6573281 hartree

C.9.0061928811.-0.0368904276.13.8562031931 C,10.2176375493,-1.6357317959,15.8051611803 C,10.1840492825,-0.2493378956,15.9648338877 C,9.6540182816,-2.2254922749,14.6686684199 C,9.0527476423,-1.4225788328,13.6935285854 H,10.6817954554,-2.2537936902,16.5678061471 H,9.685231511,-3.3036110217,14.5425881998 H.8.6234585226.-1.8735934133.12.8039364575 B,12.9422757647,12.9988048937,16.047000709 C,9.4069281086,10.5096607435,14.0619930345 C,8.8928083218,11.382321236,15.0249024307 C,8.8467916541,12.7588491495,14.826339271 C,9.326009783,13.2958170959,13.6348884764 C,9.8456931494,12.4547748719,12.6551696375 C,9.8815942332,11.0824641067,12.8791120525 C,9.5542499625,2.045806437,15.1697027943 C,2.3427226677,5.74064543,14.5892796104 C,7.0388123419,2.0742038679,15.0579929461 C,6.0871180432,3.0036993711,14.7761752461 C,8.3204663604,2.7446373795,15.0537345419 C,6.7664284128,4.2661994631,14.5856676272 C,12.5291019656,4.5561044564,15.3993343315

C,4.165249884,4.8623975709,12.6957263969 C,6.128194578,5.4529395792,14.1768125387 C.4.6570557222.5.3728081198.13.9009771064 C,3.7116089426,5.808392573,14.834482668 C,13.0692908985,5.8460507063,15.2815338011 C,6.7382747407,6.7043874758,13.9879518407 C,12.8448092892,8.3540964876,15.2410265526 C,9.5693178785,0.5658932276,14.9963773168 C,6.0780027207,7.9109336936,13.5286683211 C.10.7935008242.2.6798143519.15.3454250094 C,12.2785792565,7.0239492004,15.1779529696 C,12.1021426028,2.2710944369,15.0076016099 C,13.0485906414,3.2942739455,15.0372837195 C,15.1483551703,6.6019445797,14.068375285 C,9.437021484,9.0276225367,14.2841253652 C,16.7650094393,5.4506016566,16.0392678788 C,2.8020514679,4.7849821549,12.4247959224 C,16.538315429,6.6713234321,13.9607764889 C,17.3496423096,6.100434101,14.9470652037 C,1.8874344246,5.2262883257,13.3778382869 C.10.6562677706.8.4684644763.14.7081402039 C,8.2426347198,8.3286780307,14.0364512281 C,11.854608512,9.2413355632,14.9581611732 C,14.5506067722,5.9515856591,15.163885991 C.7.0031546909.8.9096613439.13.558421426 C,15.3755866237,5.3683782523,16.1436825768 F,10.3850646608,10.294574643,11.9098032518 F,13.1536636193,14.3850543855,15.8892104357 F,4.1180168535,6.3043856864,16.0165855186 F,12.0028248819,12.7716990634,17.0777519472 F,5.0223079253,4.4317964147,11.7523192462 F.10.3093813918.12.970488192.11.5064697402 F,9.2890150321,14.6179659302,13.4322954945 F,8.3464339444,13.5677268623,15.7719053486 F,12.4414118858,12.4571798654,14.833087211 F,8.4207380274,10.8930425253,16.1863792581 F,1.4634326133,6.1636643129,15.5091304705 F,2.3656530601,4.2915634128,11.2564908799 F.0.574567548.5.1558006118.13.1301280527 F,14.1632784101,12.363562721,16.3695474137 H,8.5514049649,0.5825950316,13.08941861 H,6.8923796511,1.0251562386,15.2660437034 H,5.0204619195,2.8485689747,14.7066087471 H,13.8717609829,8.5759324186,15.4884991995 H,5.0443305564,7.983345731,13.2229367039 H,12.3190026349,1.2721580592,14.6500200666 H,14.0714248993,3.1668787358,14.7051001362 H,10.6160140375,0.2041329154,16.8520203246 H,14.5239935967,7.0371344974,13.29433056 H,17.3892880454,5.0114642851,16.8115938404 H,16.9863478328,7.1703477387,13.1068907482 H.18.4306947879.6.1617521163.14.8650349583 H,11.9315877569,10.3200131123,14.9249584464 H,6.8613619479,9.9444144474,13.2821897178 H,14.9252980335,4.8726752435,16.9985742078 N,8.1142418053,4.0952754115,14.7969007348 N,8.0452514681,6.9958518338,14.2598126679 N,10.9238469727,7.1303839618,14.8836475799 Pd,9.4512643152,5.6759143945,14.8880448656 S,10.8908152498,4.3132095961,15.9934442525

Cartesian Coordination of 2pd⁺-PF₆⁻ -4315.7965118 hartree

C.12.411799275,-2.3755618836,18.0407559495 C,12.7096562778,-3.6798058243,17.5903681658 C,14.0700266556,-3.9851742499,17.5746909308 C,14.9064797429,-2.9353597217,18.011476023 C,16.2915447444,-2.7456189746,17.8868225205 C.17.1226946872.-3.960750798.17.6557935092 C.17.050300672.-5.0414614591.18.554348275 C,17.8132593523,-6.1910156603,18.3422713158 C,18.6451789956,-6.2845238881,17.2214344565 C,18.7132634419,-5.2214159462,16.314666765 C,17.9611146412,-4.0652844689,16.5303768778 C,16.9132714718,-1.4666441361,17.8767643677 C, 18.3489835481, -1.2946171721, 17.9263840605C,11.2234321548,-0.1889819009,17.9451550559 C,11.2387814443,-1.6111656427,17.9452784779 C, 9.9636767094, -2.3515555243, 17.7299802892C,9.1437574057,-2.075462968,16.6200096434 C.7.9660894703.-2.7963117986.16.4146858737 C,7.5868973956,-3.7958769003,17.3169365449 C,8.3957890506,-4.0786287251,18.4228060906 C,9.5805604698,-3.3684041033,18.6242652707 H,11.9491422359,-4.3379106668,17.1888273016 H,14.4670750398,-4.9034026252,17.1599927413 H,16.4112821875,-4.9693417215,19.4294894925 H,17.7591816284,-7.0109121818,19.0521529747 H,19.2347110979,-7.1810240896,17.0542286704 H,19.3484124051,-5.2927071669,15.4368510975 H,18.0068052296,-3.249738609,15.8153533273 H,19.0598695211,-2.0896933516,18.0926598395 H,9.4405955521,-1.3108095531,15.9089366783 H,7.3479934229,-2.5795436088,15.54867244 H,6.6680430861,-4.3523934209,17.1581313697 H,8.1044113394,-4.850015042,19.1292938506 H,10.2016773408,-3.585519635,19.4882323187 N,16.3227973348,-0.2208394137,17.6960407578 S,13.8831211844,-1.6934321733,18.7240698488 C,18.6115625389,0.0270016481,17.7455488937 C,17.3401935717,0.6956001739,17.5752417405 C,17.2030296746,2.0621593346,17.2656654266 C,18.4656536478,2.8508485262,17.0885465073 C,19.1634566208,2.853468924,15.8773263618 C,20.3307924524,3.5901517797,15.6970342648 C,20.8304588556,4.351896422,16.7504172392 C,20.1609879339,4.3702758796,17.9714721295 C,18.9945092896,3.6260419774,18.1247134863 C,15.996224586,2.7602757511,17.0953751558 C,15.8680247297,4.1611434691,16.741249747 C,14.5404862331,4.4611098821,16.7563704969 C,13.8378808621,3.2452449274,17.1210307634 C,12.4532476766,3.1295201392,17.3231844301 C,11.6412218542,4.3809599673,17.175381072 C,11.4991919891,5.2864447173,18.2301244226 C,10.738845336,6.4455345399,18.1120621374 C,10.0979707397,6.7259430504,16.9084447399 C,10.2235992059,5.8480764701,15.8356968635 C,10.9888761444,4.6951997486,15.9801787877 C,11.7541699204,1.950079998,17.6440081602

C,10.3234899851,1.8876903629,17.8475515756 C,10.0003969237,0.5794314882,18.02756916 F 18 7052902148 2 1296191934 14 840326213 F,20.9746494481,3.5707286381,14.5208517887 F,21.9528129629,5.0622555696,16.5903959171 F,20.6430022094,5.0998146495,18.9881870449 F.18.3734888992.3.6609896644.19.3173865887 F,12.0999997982,5.0383116164,19.4097605628 F,10.619186141,7.2907819964,19.1476093754 F.9.3621892716.7.8358419794.16.7850928872 F,9.6113300941,6.1176744905,14.6742903331 F,11.0919783678,3.8658272718,14.9254952385 F,13.544993568,8.7315714139,13.1938656527 F,15.1295978968,7.7728250985,14.6044574163 F,13.1109339747,6.6820453764,14.2157240619 F.13.9732129826.9.675510756.15.2793849951 F,11.9540420759,8.586126692,14.8888111529 F.13.5393309175.7.6256736162.16.2984693495 H,19.578931344,0.5071696303,17.7301009599 H,16.6858708698,4.8271001092,16.5077777835 H.14.0810764532.5.4144818452.16.5369488078 H,9.6547688194,2.7358716627,17.8528357635 H,9.022122649,0.1629109025,18.2136465742 N,14.7482516997,2.2403085372,17.2914959388 N,12.2853533939,0.6862162638,17.745776846 P,13.5411881804,8.1824796297,14.7427621457 Pd,14.3234507846,0.3196692256,17.7751498683

Cartesian Coordination of $2pd^+-B(C_6F_5)_4^-$

-5319.0405135 hartree C,3.4915317915,-1.761836124,-3.7999785769 C,3.9650156698,-3.6410289861,1.5241421266 C,7.4448479177,0.8178212883,0.7744610256 C,7.7733357227,1.7393962555,-0.2092700607 F.4.3506274093.-2.1036571457.-4.7826728497 F,5.2883707104,-0.893025472,-2.6273915838 F,4.7624858331,-4.7129880492,1.3364464403 F,5.1274013515,-2.5282049038,-0.1530236519 F.8.3543948941.0.4964123505.1.7180841195 F,8.9913586927,2.31050116,-0.2372448381 F,7.106785908,2.9666640362,-2.1245702566 B,3.6099052491,-0.0512122969,-0.1437797119 C,-3.382864024,-0.2286795294,-3.3319488191 C,-3.5537204687,-0.3414807448,-4.8159971265 C,-2.5958425459,-1.0177871177,-5.5897679966 C,-2.7533733004,-1.125591157,-6.9740834572 C,-3.8741287184,-0.5703787312,-7.6000514383 C,-4.8355674292,0.0984169528,-6.8355469902 C,-4.6743770817,0.2171995631,-5.4524405468 C,-3.5017840261,-1.4187927058,-2.5820925137 C,-3.8477249691,-2.7189164861,-3.1149546657 C,-3.7869280915,-3.6071998774,-2.0810821115 C,-3.4041289739,-2.86301321,-0.900517371 C,-3.170286443,-3.4139401868,0.3779951165 C,-3.2484452125,-4.905202165,0.4997485826 C,-2.2753942216,-5.7174360139,-0.1058318045 C,-2.3444618317,-7.1085501284,0.0072580136 C,-3.3919790853,-7.7052008921,0.7163872123 C,-4.3683687178,-6.9036774173,1.3166144949 C,-4.2948360912,-5.5118484588,1.2139151801

C,-2.879739724,-2.6793310682,1.5441639341 C,-2.6153510989,-3.2770243524,2.8332697658 C,-2.4964585601,-2.2621405077,3.7325995934 C,-2.667148801,-1.0207961732,3.0148592572 C,-2.7337957512,0.2452407466,3.6726637135 C,-2.9505274686,0.2807657272,5.1475473667 C,-4.0333834472,-0.3947057882,5.7397010751 C,-4.238799922,-0.3297126401,7.1191258059 C,-3.3625963373,0.4030124132,7.9271076428 C.-2.2826490549.1.0775657162.7.3480223828 C,-2.0815755495,1.0237682717,5.9673735112 C,-2.6914297622,1.4717087638,3.0048372972 C,-3.1856265548,2.7519299483,3.3611995075 C,-3.2480788691,3.6558122434,2.3081118162 C,-2.8059853747,3.1373709759,1.0646745793 C.-2.9629117277.3.6064139406.-0.2419759674 C,-3.283373919,5.0523849353,-0.4141217878 C,-2.4426630247,6.0319625131,0.1454964822 C,-2.7441331315,7.3880671291,0.0051465921 C,-3.8958397162,7.784517232,-0.6826170169 C -4.7436468747.6.8177239111 -1.2339461171 C.-4.4389776687.5.4613748684.-1.1048463743 C,-2.9201575201,2.7670898051,-1.3971322421 C,-2.859360532,3.294198898,-2.7400709479 C,-2.9742234472,2.2445599401,-3.5994692671 C,-3.1261742231,1.05011377,-2.8001042969 C,2.7716611859,1.33148469,0.2670708087 C,1.9780600864,2.1121167549,-0.5782164126 C,1.3918662425,3.3215452269,-0.2014009147 C,1.5914934847,3.8184985595,1.0781382253 C,2.3892798779,3.0954323246,1.9575062787 C,2.9553710801,1.8982094758,1.5351392593 C,3.1271633178,-0.7196191704,-1.5936133177 C,1.784479036,-1.0749300924,-1.7744708704 C.1.2805294917.-1.721156233.-2.8967814397 C,2.1446405131,-2.0680136548,-3.929079352 C,3.9506727815,-1.112250577,-2.6526851764 C,3.3619648845,-1.3239115208,0.9048686989 C,2.3546856432,-1.4382002623,1.8667192203 C,2.1494203079,-2.5739830623,2.6517117166 C,2.96017268,-3.6871891511,2.4840223217 C,4.1322213008,-2.4862921741,0.7687588998 C,5.1804174248,0.5093685626,-0.1542276267 C,6.1755104295,0.2370282571,0.7886821205 C,6.8151083811,2.0671169814,-1.1620697531 C.5.565405633.1.4614905113.-1.1067791656 F,1.7295658106,1.7420885688,-1.8588013889 F,0.6321747271,4.015286071,-1.0749630679 F,1.0270019806,4.980237065,1.4602471844 F,2.6027652719,3.5609405173,3.2061361355 F,3.7358505765,1.2658226139,2.4473362578 F,0.876227413,-0.7834965874,-0.8081568575 F,-0.0331565043,-2.0166331895,-2.9951471692 F,1.683344767,-2.6956256675,-5.0268601812 F,1.4793918076,-0.4274183256,2.099203866 F,1.1599639382,-2.6013769668,3.5689883481 F,2.7731957978,-4.7922813366,3.2289850176 F,5.9618514062,-0.6243659513,1.814378854 F,4.6840232582,1.8468552858,-2.0647021148 H,-1.7229887104,-1.4471507669,-5.1072562845 H,-2.0000880783,-1.6427564041,-7.5611128003 H,-3.9974730486,-0.6584950386,-8.6754639944 H-5.7110486593.0.528278464-7.3134212025 H,-5.4250920582,0.7341289031,-4.8616919383 H,-4.1082443932,-2.921544832,-4.142935744 H,-3.9894277897,-4.667305876,-2.1107082718 H,-1.4586245549,-5.258067496,-0.6547755366 H,-1.5797566362,-7.7236230923,-0.45791778 H,-3.4469486638,-8.7865549632,0.8005513791 H.-5.1872677389.-7.3594496795.1.865492731 H,-5.05688526,-4.8929914447,1.6787811911 H,-2.5248148646,-4.3361310611,3.0209062752 H,-2.2861415511,-2.3393490253,4.7886507733 H,-4.7224683368,-0.9559616404,5.1160700204 H,-5.0840261212,-0.848558183,7.5615141887 H.-1.5948429471.1.6427920536.7.9698214987 H,-1.2365448412,1.540654131,5.5223731652 H,-3.5792160463,2.9612288545,4.3481704479 H,-3.6943983571,4.6387960124,2.3942753863 H,-1.5410146194,5.7297216829,0.6694358115 H,-2.0777041545,8.133126472,0.4293793336 H,-5.1061583091,4.7149792874,-1.5249059445 H,-2.7212180741,4.336073699,-2.9869978272 H,-2.9515927111,2.2719189402,-4.6783055261 N,-3.0477718297,1.3878454103,-1.464456912 N,-3.2696609606,-1.5451402342,-1.2404095644 N,-2.8659680728,-1.3056185188,1.672083532 Pd,-2.8887531052,-0.024079964,0.0442719253 S,-2.0272666522,1.5903569097,1.3795506337 H,-4.1314952258,8.8393697996,-0.7880947463 H,-5.6438287691,7.1184033364,-1.7617720818 H,-3.5208241948,0.4482621912,9.0005391026

Cartesian Coordination of 2pd⁺-PCCp⁻ -4029.9303782 hartree

```
N,-6.1872973592,-2.4032826303,3.2429742334
C,-4.151168479,-0.8183177257,3.3434321632
C,-4.2007015763,0.5998256691,3.3467408406
C,-5.2670094862,-1.6885829992,3.2897206746
C,-5.3746803926,1.3902392983,3.2971549654
N,-6.3427760146,2.038949167,3.2538774694
C,-4.2880276095,-0.8249046278,-1.2644515677
C,-5.422453687,-5.0001270316,-2.1600757825
C,-4.4868939937,-3.9727147947,-2.2925864684
C,-3.500812775,-3.7752138345,-1.3080901295
H.-1.1877082214.-5.1851014324.-1.5788493721
H,-5.1838837976,1.1385505447,-0.9257074935
H,-6.1689943257,-5.1510554551,-2.9340361899
H,-4.5049406132,-3.3334765043,-3.1704295418
C,-3.484603318,-4.6148912372,-0.1788779266
C,-4.4302514954,-5.6329052359,-0.0440062485
C,-5.3974065416,-5.8312900486,-1.0349645818
H,-5.1097577945,-1.441526785,-0.9216782051
H,-2.749497739,-4.4541568125,0.6037140416
H,-4.4149709616,-6.2647866315,0.8387793712
H,-6.1300555877,-6.6257586468,-0.9287976776
C,-5.7000310364,4.6687374052,-2.1770787418
H,-6.453555017,4.7738199287,-2.9518543648
C,-4.7473098527,5.3645787389,-0.0626766964
C,-5.7236959502,5.5036069648,-1.054688866
```

H,-4.769023741,5.9991673393,0.8180303839 H,-6.5010317491,6.2548142663,-0.9514343192 C,-2.868211537,1.0850679652,3.4079796797 C,-2.7881213574,-1.2098151284,3.402735227 C,-0.5816002083,0.0157350313,3.5142486755 C,-1.9952862104,-0.0334146055,3.4442838209 C,-3.7444087685,4.4023944104,-0.1938022899 C,-2.3060805704,-2.5412740394,3.4118309934 C,-2.4796823992,2.4466940798,3.4227603467 H.-3.0017553419.4.2871154015.0.589666704 N,0.5822039915,0.0561003892,3.5732403871 N,-1.912974666,-3.6391965856,3.4120439378 N,-2.162871227,3.5690017171,3.4274224125 C,-2.6646959154,2.5087627971,-1.4627961698 C,-1.1279099209,-2.9532503912,-1.3399707028 C,-2.5161992198,-2.6666007265,-1.4546687408 C,2.6147146341,1.1790083609,-0.2727095734 C,3.9791216102,-0.5690794258,0.1731709705 C,-1.2951274764,2.8748039602,-1.3489010312 C,3.3703561752,-3.4063501836,-0.2354068222 C,4.3065761238,-3.7330451822,-1.2206114357 C,-0.605158034,-4.3022108774,-1.3639633375 C,2.1713862529,2.4948605195,-0.485101845 C,2.6778428973,-1.0334196547,-0.2679295902 C,5.3762359742,-5.3386833473,0.2155178296 C,3.9403321355,0.7914778364,0.1701863606 C,3.1716575706,3.5871113832,-0.2511597944 C,0.7233690308,-4.2333479218,-1.0851941139 C,-4.3280847604,0.5690775813,-1.2666691953 C,3.4740487151,-4.081483636,0.9846289267 C,-0.8504372694,4.2513882543,-1.3770128705 C,1.0444846456,-2.8382853008,-0.8777645928 C,4.4596707784,-5.0366751754,1.2196065696 C,5.300222182,-4.6853031368,-1.0119230769 C,4.0901840442,3.9584380879,-1.2372576618 C,3.2363098967,4.2745214663,0.9646769016 C,-3.1057096558,1.1847544045,-1.6121235242 C,5.0300161391,4.9647906354,-1.033234326 C,-3.0323197212,-1.3705190364,-1.6081015649 C,5.0682863826,5.6289007117,0.1901999538 C,0.8805927718,2.885705658,-0.8876755641 C,4.1679179296,5.2835456614,1.1949508889 C,0.4799952138,4.2595187485,-1.0988941649 C,2.3103911036,-2.373199601,-0.475175943 C,-3.7114642804,3.5594563504,-1.3202048466 C,-4.7066586328,3.696606276,-2.3058034535 F,4.2584076779,-3.120888333,-2.4179974892 F,4.0776144758,3.3371125294,-2.4308305186 F,4.5331892125,-5.6642409318,2.4022356804 F,2.6069598564,-3.8106934114,1.9744560776 F,6.1808418009,-4.9764675496,-1.9811818108 F,6.3273011833,-6.2554434573,0.4290493462

F,4.2051172537,5.92145947,2.3737358811 F,5.8949955278,5.2976228376,-2.0031600661 F,2.3838802193,3.9627651649,1.9551946034 F,5.9675678239,6.5975029173,0.3991670172 H,4.809971836,-1.2011385407,0.450752146 H,4.7338066079,1.4709643218,0.4450961881 H,1.4243896267,-5.0526797364,-1.0247944224 H,-1.4826311447,5.0988888826,-1.5940529433 H,1.132794103,5.1179522997,-1.0411435687 H,-4.6872327065,3.0544974164,-3.1815243415 N,-0.0826288827,-2.0761627751,-1.0736010687 N,-0.2012862408,2.0598027932,-1.0802032342 N,1.8814130248,0.0504726987,-0.504351115 Pd,-0.0506438727,-0.0055897584,-1.1207512095 S,-2.0294272935,-0.0639864592,-2.2288014772

[S13 (Complete ref. 10)] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[S14] Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta and P. v. R. Schleyer, *Chem. Rev.*, 2005, **105**, 3842–3888.

[S15] R. Herges and D. Geuenich, J. Phys. Chem. A, 2001, 105, 3214–3220.

[S16] M. J. S. Phipps, T. Fox, C. S. Tautermann and C.-K. Skylaris, *Chem. Soc. Rev.*, 2015, 44, 3177–3211.

[S17] Articles for *GAMESS*: (a) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, *J. Comput. Chem.*, 1993, 14, 1347–1363; (b) M. S. Gordon and M. W. Schmidt, in *Theory and Applications of Computational Chemistry: the first forty years*, eds. C. E. Dykstra, G. Frenking, K. S. Kim and G. E. Scuseria, Elsevier, 2005, pp.1167–1189.

[S18] Report for FMO: K. Kitaura, E. Ikeo, T. Asada, T. Nakano and M. Uebayasi, *Chem. Phys. Lett.*, 1999, **313**, 701–706.

[S19] Report for pair interaction energy decomposition analysis (PIEDA): D. G. Fedorov and K. Kitaura, *J. Comput. Chem.*, 2007, **28**, 222–237.
4. Solution-state properties

Electrochemical analysis. Cyclic voltammograms (CVs) were measured under Ar atmosphere in CH_2Cl_2 solutions containing the sample and TBAPF₆ or TBACl (0.1 M) as a supporting electrolyte using an ALS/CH Instruments 619E electrochemical analyzer with a glassy-carbon disk working electrode (3-mm diameter), an Ag/AgNO₃ (0.010 M) reference electrode, and a Pt counter electrode.

Fig. S68 Summarized ¹H NMR spectra of (a) $1pd^+-X^-$ and (b) $2pd^+-X^-$ ($X^- = Cl^-$, BF_4^- , PF_6^- , $B(C_6F_5)_4^-$ (30 mM, -60 °C for each), PCCp⁻ (1 mM, 20 °C)) in CDCl₃ (600 MHz) (Fig. S1–9). The differences of signals in these spectra are related with the interactions between the cations and anions in solution (Fig. S69–76).

Fig. S69 VT-¹H NMR spectra of $1pd^+$ -Cl⁻ from 20 to -60 °C in CDCl₃ (30 mM). Broad signals were exhibited at higher temperature (Fig. S69–76) due to i) fast chemical exchange between ion-pairing and ion-unpairing states and ii) rotation of phenyl groups.

Fig. S70 VT-¹H NMR spectra of $1pd^+$ -BF₄⁻ from 20 to -60 °C in CDCl₃ (30 mM).

Fig. S71 VT-¹H NMR spectra of $1pd^+$ -PF₆⁻ from 20 to -60 °C in CDCl₃ (30 mM).

Fig. S72 VT-¹H NMR spectra of $1pd^+$ -B(C₆F₅)₄⁻ from 20 to -60 °C in CDCl₃ (30 mM).

Fig. S73 VT-¹H NMR spectra of $2pd^+$ -Cl⁻ from 20 to -60 °C in CDCl₃ (30 mM).

Fig. S74 VT-¹H NMR spectra of $2pd^+$ -BF₄⁻ from 20 to -60 °C in CDCl₃ (30 mM).

Fig. S75 VT-¹H NMR spectra of $2pd^+$ -PF₆⁻ from 20 to -60 °C in CDCl₃ (30 mM).

Fig. S76 VT-¹H NMR spectra of 2pd⁺-B(C₆F₅)₄⁻ from 20 to -60 °C in CDCl₃ (30 mM).

Fig. S77 UV/vis absorption spectra of (a) $1pd^+-X^-$ and (b) $2pd^+-X^-$ ($X^- = Cl^-$, BF_{4^-} , PF_{6^-} , $B(C_6F_5)_{4^-}$, $PCCp^-$) in CH₂Cl₂ (1 × 10⁻⁵ M) as (i) wide-range and (ii) enlarged versions. $2pd^+-X^-$ show blue-shifted Soret and Q bands due to the C₆F₅ groups.

Fig. S78 Cyclic voltammograms (CVs) of (a) $1ni^+-PF_6^-$, (b) $1pd^+-PF_6^-$ and (c) $2pd^+-PF_6^-$ in CH₂Cl₂ (1.0 mM) containing TBAPF₆ (0.1 M) as an electrolyte under Ar atmosphere at a scan rate of 100 mV/s. The small peaks at 0–0.5 V in (a) have not been clearly assigned.

Fig. S79 CVs of (a) $1pd^+$ -Cl⁻ and (b) $2pd^+$ -Cl⁻ in CH₂Cl₂ (1.0 mM) containing TBACl (0.1 M) as an electrolyte under Ar atmosphere at a scan rate of 100 mV/s. The Cl⁻ ion pairs showed no significant differences in reduction potentials compared to PF₆⁻ ion pairs (Fig. S78), suggesting the absence of axial coordination.

5. Electric conductivities of ion pairs

Method for Time-Resolved Microwave Conductivity and Electric Conductivity measurements. All the single/poly-crystals of the compounds were placed onto quartz substrates (for quantitative analysis) and/or columnar quarts rods (8 mm ϕ for anisotropic measurements), and overcoated by Cytop®. The overcoated crystals were dried and evaluated in vacuo for 30 min prior to the measurement at 25 °C. Crystals on the quartz plate or rods were inserted into a TE-102 mode microwave cavity at Q-value of 2500 (quartz plates) or of 1300 (quartz rods), and were fixed at the position of electric field maximum. Excitation of the crystals was carried out through the quartz at 355 nm by 3rd harmonic generation from a Spectra-Physics INDI Nd:YAG laser. The power of probing microwave was set at 3 mW. The excitation light intensity (I_0) through the crystal and quartz was monitored by an Ophir VEGA power meter with a PE-25 head. Microwave reflection signals (P_R and $\Delta P_R(t)$) from the cavity were evolved through a Schottky diode, amplified, and monitored by a Tektronics TDS3054 digital oscilloscope. Inside of the cavity was filled with dry N₂, and the measurements were performed at 25 °C. The evolved microwave reflection signal from the diode reflecting the power of microwave was converted into pseudo transient conductivity ($\phi \Sigma \mu$) as,

$$\phi \sum \mu(t) = \frac{\Delta P_{\rm R}(t)}{e I_0 A F_{\rm L} P_{\rm R}},$$

where e, A, and F_{L} are elementary charge, sensitivity factor, and filling factor, respectively. The latter two were estimated by numerical calculation from the overlap of excitation light absorption profile in the sample and electric field strength distribution in the cavity.

Fig. S80 FP-TRMC photoconductivity transients recorded for the crystalline-state $1pd^+$ -BF₄⁻ upon excitation at 355 nm, 1.8×10^{16} photons cm⁻² pulse⁻¹. A crystal of the compound was fixed onto quartz substrate and overcoated with Cytop® thin film, back-excited with the excitation light pulses. Sensitivity factor was calculated via numerical calculation with the geometry of homogeneous thin film at 22 µm thick; calibrated light transmittance of a polycrystalline film (Transmittance > 0.98).

Fig. S81 FP-TRMC photoconductivity transients recorded for the crystalline-state $1pd^+$ -PF₆⁻ upon excitation at 355 nm, 9.1×10^{15} photons cm⁻² pulse⁻¹. A crystal of the compound was fixed onto quartz substrate and overcoated with Cytop® thin film, back-excited with the excitation light pulses. Sensitivity factor was calculated via numerical calculation with the geometry of homogeneous thin film at 18 µm thick; calibrated light transmittance of a polycrystalline film (Transmittance > 0.98).