Supporting Information for

NIR-Absorbing and Emitting a,a-Nitrogen-Bridged BODIPY Dimers with

Strong Excitonic Coupling

Long Wang,^a Cheng Cheng,^a Changjiang Yu,^{a,*} Qinghua Wu,^b Zhengxin Kang,^a Hua Wang,^{a,*} Lijuan Jiao,^a and Erhong Hao^{a,*}

^aAnhui Laboratory of Molecule-Based Materials; The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.

^bSchool of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.

*E-mail: yuchj@ahnu.edu.cn, huaw2011@ahnu.edu.cn, haoehong@ahnu.edu.cn

Table of Contents

1. General information	
2. Synthesis and characterization	S4
3. Crystal data	S10
4. Photophysical data	
5. Reactive oxygen species properties	S14
6. Electrochemical data	S16
7. DFT calculation	
8. ¹ H, ¹³ C, ¹¹ B and ¹⁹ F NMR spectra of all new compounds	
9. HRMS spectra of all new compounds	S44
10. Author contribution statement	845
11. References	S45

1. General information

Reagents and solvents were used as received from commercial suppliers (Energy Chemicals) unless noted otherwise. All reactions were performed in oven-dried or flame-dried glassware unless stated otherwise and were monitored by TLC using 0.25 mm silica gel plates with UV indicator (60F-254). Heating mantle was used for all the reaction that required heating. ¹H and ¹³C spectra were recorded on a 400 or 500 MHz NMR spectrometer at room temperature. Chemical shifts (δ) are given in ppm relative to CDCl₃ (7.26 ppm for ¹H and 77.0 ppm for ¹³C). Data for ¹H NMR and ¹³C NMR are reported as follows: multiplicity (s = singlet, d = doublet, m = multiplet), coupling constant (Hz) and integration. High-resolution mass spectra (HRMS) were obtained using APCI-TOF, ESI-TOF or MALDI-TOF in positive mode.

Absorption and emission measurements. UV-visible absorption and fluorescence emission spectra were recorded on commercial spectrophotometers (Shimadzu UV-2450 and Edinburgh FS5 spectrometers). All measurements were made at 25 °C, using 5 × 10 mm cuvettes. Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Relative fluorescence quantum efficiencies of BODIPY derivatives were obtained by comparing the areas under the corrected emission spectrum of the test sample in various organic solvents with Indocyanine Green ($\Phi = 0.12$ in DMSO).¹ Non-degassed, spectroscopic grade solvents and a 10 mm quartz cuvette were used. Dilute solutions (0.01 < A < 0.05) were used to minimize the reabsorption effects. Quantum yields were determined using the following equation:²

$$\Phi_{\rm X} = \Phi_{\rm S} (I_{\rm X}/I_{\rm S}) (A_{\rm S}/A_{\rm X}) (n_{\rm X}/n_{\rm S})^2$$

Where Φ_S stands for the reported quantum yield of the standard, I stands for the integrated emission spectra, A stands for the absorbance at the excitation wavelength and *n* stands for the refractive index of the solvent being used. X subscript stands for the test sample, and S subscript stands for the standard.

X-ray structure analysis. Crystal of compound **2a** suitable for X-ray analysis was obtained via the slow diffusion of petroleum ether into their dichloromethane solution. The vial containing this solution was placed, loosely capped, to promote the crystallization. A suitable crystal was chosen and mounted on a glass fiber using grease. Data were collected using a Bruker APEX-II³ CCD diffractometer operating at T = 293(2) K. The determination of unit cell parameters and data collections were performed with Mo K α radiation (λ) at 0.71073 Å. The total number of runs and images was based on

the strategy calculation from the program APEX2 (Bruker).⁴ The structure was solved by the structure solution program Olex2 (Dolomanov et al., 2009),⁵ and the model was refined with version 2014/7 of ShelXL (Sheldrick, 2015)⁶ using full matrix least squares on F² minimization. CCDC-2333069 (**2a**) containing the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Electron paramagnetic resonance (EPR) experiments. CW X-band EPR spectra for radicals were acquired on Bruker EMX instrument.

Singlet oxygen generation efficiency. A comparative study of the relative singlet oxygen generating efficiency of these dyes was performed in air-saturated solvents under light at 660 nm laser irradiation (10 mW/cm^2) condition using 1,3-diphenylisobenzofuran (DPBF, 4×10^{-5} M) as a trap molecule.⁷ A commercial photosensitizer against 1,7-diphenyl-2,6-dibromo-3,5-di(4-methoxyphenyl)-azaBODIPY (azaBDP) ($\Phi_{\Delta} = 0.74$ in toluene) was used as reference.^{7c} The absorbance of BODIPY dyes and the reference azaBDP at 660 nm was kept around 0.1. The decrease of the absorbance band of DPBF at 415 nm was monitored. Singlet oxygen quantum yield (Φ_{Δ}) determinations were carried out using the chemical trapping method, and the Φ_{Δ} value was obtained by the relative method using azaBDP as the reference as shown in following equation:

$$\Phi_{\Delta sam} = \Phi_{\Delta ref} \left[(m_{sam}/m_{ref})(L_{ref}/L_{sam}) \right]$$

Where $\Phi_{\Delta ref}$ and $\Phi_{\Delta sam}$ are the singlet oxygen quantum yields for the standard azaBDP and photosensitizer (**2a-c**). m_{sam} and m_{ref} are the slope of the difference ($\Delta O.D.$) in the change in the absorption maximum wavelength of DPBF (415 nm), which are plotted against the photoirradiation time, L_{ref} and L_{sam} are the light harvesting efficiency, which is given by L = 1-10^{-A} ("A" is the absorbance at the laser irradiation wavelength 660 nm).

Electrochemical measurements. Cyclic voltammograms and differential pulse voltammograms of 1.0 mM **2a-c** and **1aNH**₂ were measured in dichloromethane solution, containing 0.1 M TBAPF₆ as the supporting electrolyte, glassy carbon electrode as a working electrode, Pt wire as a counter electrode, and saturated calomel electrode (SCE) as reference electrode at 100 mV s⁻¹ of scanning rate at room temperature.

2. Synthesis and characterization

BODIPYs 1,⁸ 1a2Cl,⁹ 1aCl,¹⁰ 1aNH₂,¹⁰ 2,⁸ 1b,¹¹ 1bH,¹² 1bCl,¹⁰ 1bNH₂¹⁰ were synthesized according to the previously reported literatures.

Syntheses of BODIPY **1a**: To a dry round-bottom flask loaded with **1** (462 mg, 1.75 mmol) and DDQ (398 mg, 1.75 mmol) was added CH₂Cl₂ (50 mL). The reaction mixture was stirred at 0 °C for 10 min. After that, triethylamine (4 mL), BF₃·Et₂O (4 mL) were added subsequently. Then the reaction mixture was warmed to room temperature and stirred for additional 2 h. Then the reaction mixture was washed with water, and 0.2 M aqueous solution of NaOH, and water. The organic layer was dried over anhydrous Na2SO4, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on silica gel with dichloromethane / petroleum ether (1 : 2) as eluent to give the desired **1a** (201 mg, 37%) as an orange amorphous solid. ¹H NMR (300 MHz, CDCl₃) δ 7.91 (s, 2H), 6.95 (s, 2H), 6.68 (d, *J* = 4.2 Hz, 2H), 6.47 (d, *J* = 4.0 Hz, 2H), 2.36 (s, 3H), 2.10 (s, 6H); ¹¹B NMR (128 MHz, CDCl₃) δ 0.32 (t, *J* = 29.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -145.67 (q, *J* = 30.1 Hz).

Synthesis of BODIPY **1a2Cl**: To a dry round-bottom flask loaded with **1a** (62 mg, 0.2 mmol) and CuCl₂·2H₂O (102 mg, 0.6 mmol) was added CH₃CN (5 mL). The reaction mixture was stirred at 80°C for 6 h. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The residue was purified by column chromatography on silica gel with ethyl acetate / petroleum ether (1 : 40) as eluent to give the desired **1a2Cl** (50 mg, 66%). ¹H NMR (300 MHz, CDCl₃) δ 6.95 (s, 2H), 6.61 (d, *J* = 4.2 Hz, 2H), 6.37 (d, *J* = 4.3 Hz, 2H), 2.35 (s, 3H), 2.09 (s, 6H); ¹¹B NMR (128 MHz, CDCl₃) δ 0.51 (t, *J* = 28.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -148.60 (q, *J* = 26.3 Hz).

Synthesis of BODIPY **1aCl**: To a dry round-bottom flask loaded with **1a2Cl** (75 mg, 0.2 mmol), 4methoxyphenylboric acid (30 mg, 0.2 mmol), Na₂CO₃ (2 mL, 1M, aqueous solution), and Pd (PPh₃)₄ (23 mg, 0.02 mmol) was added toluene (2 mL). The freeze-pump-thaw cycle was carried out three times. After that, the reaction mixture was stirred at 80 °C under an argon atmosphere for 2 h. After cooling to room temperature, the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The residue was purified by column chromatography on silica gel with petroleum ether / dichloromethane (3 : 1) to give the desired **1aCl** (47 mg, 53%). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.5 Hz, 2H), 7.02 (d, *J* = 9.0 Hz, 2H), 6.96 (s, 2H), 6 .69 (d, *J* = 4.0 Hz, 1H), 6.65 (d, *J* = 4.0 Hz, 1H), 6.48 (d, *J* = 4.0 Hz, 1H), 6.29 (d, *J* = 4.0 Hz, 1H), 3.88 (s, 3H), 2.36 (s, 3H), 2.14 (s, 6H); ¹¹B NMR (128 MHz, CDCl₃) δ 1.10 (t, *J* = 30.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -140.99 (q, *J* = 30.1 Hz).

Syntheses of BODIPY **1aNH2**: To 10 mL DMSO in a reaction tube were added **1aCl** (180 mg, 0.4 mmol) and NH₃·H₂O (2 mL). The reaction mixture was stirred at room temperature for 2 h. Then the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The residue was purified by column chromatography on silica gel with ethyl acetate / petroleum ether (1 : 1) as eluent to give the desired **1aNH**₂ (124 mg, 72%) as an orange amorphous solid. ¹H **NMR** (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.5 Hz, 2H), 6.97 (d, *J* = 8.5 Hz, 2H), 6.94 (s, 2H), 6.58 (d, *J* = 4.5 Hz, 1H), 6.31 (d, *J* = 3.3

Hz, 1H), 6.21 (d, J = 3.7 Hz, 1H), 5.94 (d, J = 4.2 Hz, 1H), 5.67 (s, 2H), 3.86 (s, 3H), 2.35 (s, 3H), 2.15 (s, 6H); ¹¹B NMR (128 MHz, CDCl₃) δ 1.50 (t, J = 34.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -142.74 (q, J = 37.6Hz).

Syntheses of BODIPY **1b**: To a dry round-bottom flask loaded with **2** (580 mg, 2.0 mmol) and DDQ (454 mg, 2.0 mmol) was added CH₂Cl₂ (50 mL). The reaction mixture was stirred at 0 °C for 10 min. After that, triethylamine (4 mL), BF₃·Et₂O (4 mL) were added subsequently. Then the reaction mixture was warmed to room temperature and stirred for additional 2 h. Then the reaction mixture was washed with water, and 0.2 M aqueous solution of NaOH, and water. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on silica gel with dichloromethane / petroleum ether (1 : 2) as eluent to give the desired **1b** (298 mg, 43%) as an orange amorphous solid. ¹H NMR (300 MHz, CDCl₃): δ = 7.95 (s, 2 H), 7.53 - 7.41 (m, 3 H), 6.71 (d, *J* = 3.9 Hz, 2 H), 6.52 (d, *J* = 3.6 Hz, 2 H); ¹¹B NMR (128 MHz, CDCl₃) δ 0.30 (t, *J* = 28.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -145.45 (q, *J* = 57.4, 30.1 Hz).

Syntheses of BODIPY **1bH**: To a dry Schlenk tube loaded with **1b** (34mg, 0.1 mmol) and 4cyanobenzenediazonium tetrafluoroborate (26mg, 0.12 mmol) was add acetone (2.0 mL). The reaction mixture was irradiated with 1 W blue LED at room temperature for 1 h. Then the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The crude product was purified by column chromatography on silica gel with dichloromethane / petroleum ether (1 : 2) as eluent to give the desired **1bH** (24 mg, 54%) as a red amorphous solid. ¹**H NMR** (300 MHz, CDCl₃) δ : 8.10 (d, *J* = 8.5 Hz, 2H), 7.95 (s, 1H), 7.79 (d, J = 8.5 Hz, 2H), 7.59 - 7.40 (m, 3H), 6.74 (t, J = 4.5 Hz, 2H), 6.67 (d, J = 4.0 Hz, 1H), 6.56 (d, J = 3.0 Hz, 1H); ¹¹**B** NMR (128 MHz, CDCl₃) δ 0.80 (t, J = 30.4 Hz); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -139.25 (q, J = 30.1 Hz).

Syntheses of BODIPY **1bCl**: To a dry Schlenk tube loaded with **1bH** (219 mg, 0.5 mmol), and CuCl₂· 2H₂O (512 mg, 3.0 mmol) was added CH₃CN (20 mL). The reaction mixture was stirred at 80 °C for 2 h. After cooling down to room temperature, the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel with dichloromethane / petroleum ether (1 : 2) as eluent to give the desired **1bCl** (168 mg, 71%) as a red amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.59 - 7.39 (m, 3H), 6.81 - 6.62 (m, 3H), 6.43 (d, *J* = 4.4 Hz, 1H); ¹¹B NMR (128 MHz, CDCl₃) δ 0.93 (t, *J* = 29.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -140.23 (q, *J* = 30.08 Hz).

Syntheses of BODIPY **1bNH**₂: To 10 mL DMSO in a reaction tube were added BODIPY **1bCl** (236 mg, 0.5 mmol) and NH₃·H₂O (2 mL). The reaction mixture was stirred at room temperature for 2 h. Then the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purified by column chromatography on silica gel with ethyl acetate / petroleum ether (1 : 1) as eluent to give the desired **1bNH**₂ (183 mg, 81%) as an orange amorphous solid. ¹H **NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.49 - 7.44 (m, 2H), 7.41 - 7.33 (m, 1H),

6.68 (d, J = 4.8 Hz, 1H), 6.45 (d, J = 4.0 Hz, 1H), 6.21 (d, J = 4.0 Hz, 1H), 6.13 (d, J = 4.8 Hz, 1H), 6.02 (s, 2H); ¹¹B NMR (128 MHz, CDCl₃) δ 1.44 (t, J = 34.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -141.67 (q, J = 33.8 Hz).

Synthesis of BODIPY **2a**: To a dry Schlenk tube loaded with **1aCl** (225 mg, 0.5 mmol), **1aNH**₂ (237 mg, 0.55 mmol) and Cs₂CO₃ (325 mg, 1.0 mmol) was added DMF (5 mL). The reaction mixture was stirred at room temperature for 1 h. Then the reaction mixture was diluted with dichloromethane, washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under vacuum. The residue was purified by column chromatography on silica gel with dichloromethane / petroleum ether (1 : 1) as eluent to give the desired **2a** (245 mg, 58%) as a green amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 9.46 (s, 1H), 7.93 (d, *J* = 9.2 Hz, 4H), 7.00 - 6.94 (m, 8H), 6.61 (d, *J* = 4.4 Hz, 2H), 6.51 (d, *J* = 4.0 Hz, 2H), 6.47 (d, *J* = 4.4 Hz, 2H), 6.40 (d, *J* = 4.8 Hz, 2H), 3.86 (s, 6H), 2.36 (s, 6H), 2.15 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 160.5, 155.2, 150.8, 138.6, 138.4, 137.2, 136.1, 131.7, 131.0, 130.7, 130.1, 128.2, 127.0, 125.4, 118.6, 113.9, 109.9, 55.4, 21.2, 20.1; HRMS (APCI) calcd for C₅₀H₄₆B₂F₄N₅O₂ [M+H]⁺: 846.3774, found 846.3775; ¹¹B NMR (128 MHz, CDCl₃) δ 1.47 (t, *J* = 34.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -141.08 (q, *J* = 33.8 Hz).

Synthesis of BODIPY **2b**: To a dry Schlenk tube loaded with **1bCl** (47 mg, 0.1 mmol), **1bNH**₂ (50 mg, 0.11 mmol) and Cs₂CO₃ (65 mg, 0.2 mmol) was added DMF (2 mL). The reaction mixture was stirred at room temperature for 1 h, Then the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, filtered, and evaporated under

vacuum. The residue was purified by column chromatography on silica gel with dichloromethane / petroleum ether (1 : 1.5) as eluent to give the desired **2b** (52 mg, 59%) as a green amorphous solid. ¹**H NMR** (400 MHz, CDCl₃) δ 9.57 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 4H), 7.72 (d, *J* = 8.0 Hz, 4H), 7.61 - 7.33 (m, 6H), 6.78 (d, *J* = 4.4 Hz, 2H), 6.60 (d, *J* = 4.0 Hz, 2H), 6.57 - 6.50 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) δ 152.5, 136.9, 135.9 134.3, 132.7, 132.6, 132.1, 131.4, 131.2, 129.84, 129.81, 128.4, 126.3, 119.5, 118.9, 112.5, 112.4.; HRMS (MALDI-TOF) calcd for C₄₄H₂₃B₂Cl₄F₆N₇ [M]⁺: 889.0857, found 889.0850; ¹¹**B NMR** (128 MHz, CDCl₃) δ 1.30 (t, *J* = 33.2 Hz); ¹⁹**F NMR** (376 MHz, CDCl₃) δ - 140.16 (q, *J* = 33.8 Hz).

Synthesis of BODIPY **2c**: To a dry Schlenk tube loaded with **1aCl** (45 mg, 0.1 mmol), **1bNH**₂ (50 mg, 0.11 mmol) and Cs₂CO₃ (65 mg, 0.2 mmol) was added DMF (5 mL). The reaction mixture was stirred at room temperature for 1 h. Then the reaction mixture was diluted with dichloromethane, and washed twice with water. The organic layer was dried over anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by column chromatography on silica gel with dichloromethane / petroleum ether (1 : 1.5) as eluent to give the desired **2c** (55 mg, 64%) as a green amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 8.04 (d, *J* = 8.0 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.50 - 7.38 (m, 3H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.96 (s, 2H), 6.76 (d, *J* = 4.8 Hz, 1H), 6.62 - 6.57 (m, 4H), 6.56 (d, *J* = 3.6 Hz, 1H), 6.41 (d, *J* = 4.0 Hz, 1H), 6.36 (d, *J* = 4.4 Hz, 1H), 3.92 (s, 3H), 2.36 (s, 3H), 2.15 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 157.9, 154.5, 149.7, 147.9, 140.4, 138.7, 137.5, 137.0, 136.9, 136.0, 135.3, 133.1, 132.1, 131.7, 131.6, 131.4, 131.2, 131.1, 129.8, 129.6, 129.2, 128.3, 128.2, 124.6, 123.9, 120.1, 119.3, 118.3, 114.0, 113.1, 111.5, 109.2, 55.6, 21.3, 20.1; HRMS (ESI) calcd for C₄₇H₃₄B₂Cl₂F₄N₆NaO [M+Na]⁺ : 889.2191, found 889.2200; ¹¹B NMR (128 MHz, CDCl₃) δ 1.38 (t, *J* = 34.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -140.28 (q, *J* = 37.6 Hz), -140.88 (q, *J* = 33.8 Hz).

3. Crystal data

Figure S1. The packing of dimer 2a. C, black; N, blue; B, yellow; F, green; Cl, dark green. Hydrogen atoms have been removed for clarity, *meso*-aryl and α -aryl substituents were simplified. Thermal ellipsoids are shown at the 30% probability level.

Table S1. Selected geometrical parameters of compound 2a obtained from crystallography

	2a
the C1-N1 bond length (Å)	1.38(5)
the C2-N1 bond length (Å)	1.36(2)
the D E hand large th $(^{\delta})$	1.37(9), 1.39(6)
the B-F bond length (A)	1.35(4), 1.39(1)
the D N hand length $(\hat{\lambda})$	1.54(0), 1.54(5)
the B-N bond length (A)	1.54(0), 1.54(7)
dihedral angles between A_1 and dipyrrin core P_1 in (deg)	70.10
dihedral angles between A_2 and dipyrrin core P_2 in (deg)	75.04
dihedral angles between A_3 and dipyrrin core P_1 in (deg)	39.61
dihedral angles between A_4 and dipyrrin core P_2 in (deg)	37.52
dihedral angles of two dipyrrin cores in P1 and P2 (deg)	45.42

Crystal data	2a
CCDC	2333069
Empirical formula	C50H45B2F4N5O2
Formula weight	845.53
Temperature/K	293.15
Crystal system	triclinic
Space group	P-1
a/Å	12.9120(16)
b/Å	16.473(2)
c/Å	22.588(3)
$\alpha /^{\circ}$	71.340(2)
β/°	83.507(2)
$\gamma^{\prime \circ}$	79.792(2)
Volume/Å ³	4471.9(10)
Z	4
$\rho_{calc}g/cm^3$	1.256
μ/mm^{-1}	0.088
F(000)	1768.0
Crystal size/mm ³	0.19 imes 0.18 imes 0.17
Radiation	MoKa ($\lambda = 0.71073$)
2 Θ range for data collection/°	1.906 to 49.998
Index ranges	$-15 \le h \le 14, -19 \le k \le 19, -26 \le l \le 26$
Reflections collected	32603
Independent reflections	15462 [$R_{int} = 0.1418$, $R_{sigma} = 0.1532$]
Data/restraints/parameters	15462/17/1139
Goodness-of-fit on F ²	0.966
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0819, wR_2 = 0.2159$
Final R indexes [all data]	$R_1 = 0.1584, wR_2 = 0.2626$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.47

Table S2. Crystal data and structure refinement for 2a

4. Photophysical data

Dyes	Solvent	$\lambda_{abs}{}^a(nm)(lg\varepsilon)^b$	$\lambda_{em}^{max}(nm)$	$\Phi_{\mathrm{F}}{}^{c}$	ss ^d (cm ⁻¹)
	Hexane	708 (4.92), 512 (5.02)	732	0.26	460
	Toluene	716 (4.95), 518 (5.06)	746	0.17	560
2a	Dichloromethane	703 (4.92), 510 (5.01)	738	< 0.01	680
	Tetrahydrofuran	711 (4.90), 513 (4.97)	742	0.01	590
	Acetonitrile	692 (4.86), 503 (4.97)	735	< 0.01	850
	Toluene	715 (5.00), 507 (5.02)	746	0.13	580
	Dichloromethane	703 (5.00), 501 (5.06)	743	< 0.01	770
2b	Totuchydrofyran	712 (4.91), 501 (4.73),	747	<0.01	660
	Tetranydrofuran	467 (4.69)			000
	Acetonitrile	690 (4.92), 492 (4.95)	736	< 0.01	910
	Hexane	711 (4.66), 505 (4.84)	767	< 0.01	1030
	Toluene	719 (4.79), 510 (4.88)	782	< 0.01	1120
2c	Dichloromethane	703 (4.73), 503 (4.79)	791	< 0.01	1580
	Tetrahydrofuran	718 (4.79), 469 (4.65)	782	< 0.01	1120
	Acetonitrile	701 (4.77), 461 (4.66)	804	< 0.01	1830

Table S3. Spectroscopic and photophysical properties of BODIPYs 2a-c in different solvents.

^{*a*}Main, lowest-energy absorption band. ^{*b*}Molar absorption coefficient. ^{*c*}The fluorescence quantum yields of **2a-c** were calculated using indocyanine Green ($\Phi_F = 0.12$ in DMSO) as the reference. The standard errors are less than 10 %. ^{*d*}Stokes shift.

Absorption and emission spectra of BODIPY 2a-c dimers at different solvents

Figure S2. Absorption (a) and emission (b) spectra of compound 2a (5 μ M) recorded in different solvents, excited at 680 nm.

Figure S3. Absorption (a) and emission (b) spectra of compound 2b (5 μ M) recorded in different solvents, excited at 680 nm.

Figure S4. Absorption (a) and emission (b) spectra of compound 2c (5 μ M) recorded in different solvents, excited at 700 nm.

5. Reactive oxygen species properties

Figure S5. Absorption spectra of DPBF (initial absorbance around 0.90 at 410 nm) upon irradiation with 660 nm laser light in the presence of BODIPY **2a-c** and photosensitizer **azaBDP** (initial absorbance around 0.1 at 660 nm); (a) **2a** for 120 s (recorded at 20 s intervals) in toluene; (b) **2b** for 120 s (recorded at 20 s intervals) in toluene; (c) **2c** for 120 s (recorded at 20 s intervals) in toluene; (d) photosensitizer **azaBDP** for 30 s (recorded at 5 s intervals) in toluene; (e) absorption spectra of DPBF (initial absorbance around 1.0 at 415 nm) upon irradiation in toluene; (f) Comparative DPBF degradation profiles (absorbance at 415 nm) of **2a-c** and reference **azaBDP** in toluene. Singlet oxygen quantum yield of **2a-c** in toluene are 0.1, 0.04, 0.01, respectively.

Reactive oxygen species (ROS) trapping

Figure S6. (a) Absorption spectra of 9,10-anthracenediyl-bis(methylene) dimalonic acid (ABDA) in the presence of **2a** in PBS/THF (v/v: 1/1) mixture under 660 nm light irradiation.¹⁰ (b) Fluorescence spectra of Dihydroethidium (DHE) in the presence of **2a** in chloroform under 660 nm light irradiation, and the excitation wavelength for spectra determination was 510 nm.¹⁰ (c) EPR spectra of **2a** (0.3 mM in toluene) for ¹O₂ characterization with 2,2,6,6-tetramethyl-4-piperidone (TEMP, 50 mM) as the spin-trap reagent in different conditions.¹³ (d) EPR spectra of **2a** (0.3 mM, in toluene) for O₂^{• –} characterization with 5,5-dimethyl-1-pyrroline-*N*-oxide (DMPO, 200 mM) as the spin-trap reagent in different conditions.¹⁴

6. Electrochemical data

Table S4. Electrochemical data acquired at 100 mV/s, and HOMO-LUMO Gaps determined from spectroscopy of dyes 2a-c^a

dyes	$E_{1/2}^{\mathrm{red}}(\mathrm{V})$	$E_{\rm red}^{\rm onest}(V)$	$E_{1/2}^{\rm ox}$ (V)	$E_{\rm ox}^{\rm onest}({\rm V})$	LUMO (eV)	HOMO (eV)	$E_{\rm g}^{\rm e}$ (eV)	$E_{\rm g}^{\rm o}$ (eV)
2a	-1.42; -1.00	-0.85	1.05; 0.78	0.71	-3.55	-5.11	1.56	1.58
2b	-0.68; -1.12	-0.53	1.07	0.87	-3.87	-5.27	1.40	1.59
2c	-1.33; -0.79	-0.71	0.88	0.59	-3.69	-4.99	1.30	1.49

 ${}^{a}E_{1/2}{}^{\text{red}}$ = half wave potentials of reversible reduction potential; $E_{\text{red}}{}^{\text{onset}}$ = the onset reduction potentials; $E_{1/2}{}^{\text{ox}}$ = half wave potentials of reversible oxidation potential; $E_{\text{ox}}{}^{\text{onset}}$ = the onset oxidation potentials; E_{LUMO} = -e($E_{\text{red}}{}^{\text{onset}}$ + 4.4); E_{HOMO} = -e($E_{\text{ox}}{}^{\text{onset}}$ + 4.4); $E_{g}{}^{\text{e}}$ = bandgap, obtained from the intercept of the electrochemical data; $E_{g}{}^{\text{e}}$ = E_{LUMO} - E_{HOMO} ; $E_{g}{}^{\text{o}}$ = bandgap, obtained from the intercept of the absorption spectra.

Figure S7. Differential pulse voltammogram of 2a recorded in dichloromethane containing 0.1 M TBAPF₆ at room temperature.

Figure S8. Differential pulse voltammogram of **2b** recorded in dichloromethane containing 0.1 M TBAPF₆ at room temperature.

Figure S9. Differential pulse voltammogram of 2c recorded in dichloromethane containing 0.1 M TBAPF₆ at room temperature.

7. DFT calculation

The ground state geometry was optimized by using DFT method at B3LYP/6-31G(d) level. The same method was used for vibrational analysis to verify that the optimized structures correspond to local minima on the energy surface. TD-DFT computations were used the optimized ground state geometries under the B3LYP/6-31+G (d, p) theoretical level. The calculated molecules in dichloromethane were done using the Self-Consistent Reaction Field (SCRF) method and Polarizable Continuum Model (PCM). All of the calculations were carried out by the methods implemented in Gaussian 09 package.¹¹

	D I	TD//B3LYP/6-31+G(d, p)			
	Electronic				
	transition	Energy/ eV ^[a]	$f^{[b]}$	Composition ^[c]	CI ^[d]
1aNH ₂	S0→S1	2.4676 eV 502.45 nm	0.7100	HOMO → LUMO	0.7062
	S0→S2	3.2722 eV 378.90 nm	0.0051	HOMO -1 \rightarrow LUMO	0.1212
				HOMO -2 \rightarrow LUMO	0.6943
	S0→S3	3.4465 eV 359.74 nm	0.0025	HOMO -1 \rightarrow LUMO	0.1015
				HOMO $-3 \rightarrow$ LUMO	0.6985
	S0→S4	3.4857 eV 355.69 nm	0.1702	HOMO $-3 \rightarrow$ LUMO	0.1059
				HOMO -2 \rightarrow LUMO	0.1180
				HOMO -1 \rightarrow LUMO	0.6706
2a	S0→S1	1.8039 eV 687.32 nm	0.5220	HOMO → LUMO	0.7060
	S0→S2	2.2203 eV 558.41 nm	0.0003	HOMO -1 \rightarrow LUMO	0.4833
				HOMO \rightarrow LUMO +1	0.5143
	S0→S3	2.5433 eV 487.49 nm	1.2690	HOMO -1 \rightarrow LUMO	0.5143
				HOMO \rightarrow LUMO +1	0.4820
	S0→S7	3.1190 eV 397.51 nm	0.3284	HOMO -2 \rightarrow LUMO	0.6532
				HOMO -4 \rightarrow LUMO	0.2250
2c	S0→S1	1.7804 eV 696.39 nm	0.5183	HOMO → LUMO	0.7058
	S0→S2	2.2718 eV 545.76 nm	0.0609	HOMO -1 \rightarrow LUMO	0.4609
				HOMO \rightarrow LUMO +1	0.5337
	S0→S3	2.5971 eV 477.39 nm	1.2205	HOMO -1 \rightarrow LUMO	0.5307
				HOMO \rightarrow LUMO +1	0.4544
	S0→S6	3.0342 eV 408.62 nm	0.1965	HOMO -2 \rightarrow LUMO	0.6356
				HOMO -4 \rightarrow LUMO	0.2194
				HOMO -1 \rightarrow LUMO +1	0.1327

Table S5. Selected electronic excitation energies (eV) and oscillator strengths (f), configurations of the low-lying singlet excited states of **1aNH₂**, **2a** and **2c** calculated by TDDFT//B3LYP/6–31+G (d, p), based on the optimized ground state geometries.

[a] Only the selected low-lying excited states are presented. [b] Oscillator strength. [c] Only the main configurations are presented. [d] The CI coefficients are in absolute values.

Figure S10. Molecular orbitals and energy levels of 1aNH₂, 2a and 2c.

Figure S11. Calculated absorption of energy-minimized calculated 2c.

Figure S12. Calculated structures for the low-energy conformations of **2a** in dichloromethane (B3LYP/6-31G (d)). Φ : dihedral angle of two BODIPY units of different conformer.

Figure S13. Calculated absorption of energy-minimized calculated 2a-l.

Figure S14. Calculated absorption of energy-minimized calculated 2a-ll.

Figure S15. Comparison of measured and calculated absorption bands for the two calculated lowenergy conformers of **2a** in CH₂Cl₂.

DFT optimized coordinates for 1aNH₂ optimized S0 state Geometry by B3LYP/6-31G(d).

В	-0.86631800	1.46915300	0.24317200
С	-1.53179500	-1.07668000	0.04054400
С	-0.83188300	-2.30497500	-0.03789800
С	0.52786800	-2.02244300	-0.00959700
С	0.65814300	-0.61940900	0.06504900
С	1.82857700	0.16451200	0.02028000
С	1.73359700	1.54205700	-0.07015900
С	2.72266200	2.54819000	-0.25863500
С	2.07007900	3.75453500	-0.42215900
С	0.66805400	3.47904500	-0.32534000
С	3.16409500	-0.49846900	0.01836900
С	3.78996500	-0.81190900	-1.20196600
С	5.04270300	-1.43070700	-1.17505800

С	5.68246500	-1.74545400	0.02625100
С	5.03949500	-1.42157000	1.22397500
С	3.78643000	-0.80468800	1.24284900
С	3.12430800	-0.48759000	-2.51775700
С	7.02078600	-2.44323100	0.03156100
С	3.11467500	-0.46888900	2.55224400
F	-1.84589900	1.93654200	-0.64194500
F	-1.21643700	1.78467400	1.55680600
Ν	-0.62219900	-0.05864000	0.09501000
Ν	0.48000000	2.16361100	-0.10767700
Н	-1.29964600	-3.27893800	-0.06798500
Н	1.35513600	-2.71768900	-0.04350400
Н	3.78755300	2.36350000	-0.29085800
Н	5.52926500	-1.67317800	-2.11735900
Н	5.52465100	-1.65455800	2.16940100
Н	3.71238000	-0.86849100	-3.35767400
Н	3.00330900	0.59380800	-2.64880600
Н	2.12185100	-0.92623500	-2.57281200
Н	7.62247100	-2.14793200	0.89757100
Н	7.59326900	-2.21770800	-0.87406700
Н	6.89855700	-3.53347000	0.07735700
Н	2.90522200	0.60403700	2.62893300
Н	3.74248600	-0.75700600	3.40023400
Н	2.15210100	-0.98391000	2.64711800
С	-2.98811600	-0.93158600	0.06773900
С	-3.65455400	0.03749700	0.84450000
С	-3.76984600	-1.83516800	-0.66789500
С	-5.03784200	0.09632500	0.86811200
Н	-3.08001300	0.73195900	1.44311700
С	-5.16194100	-1.78266800	-0.65253800
Н	-3.27896300	-2.58035000	-1.28650200
С	-5.80440400	-0.80886100	0.12023800
Н	-5.55476800	0.83646000	1.47027500
Н	-5.72719300	-2.49138200	-1.24590000
0	-7.15672000	-0.66173300	0.21270100
С	-7.97381700	-1.55799900	-0.52086700
Н	-9.00416300	-1.27029000	-0.30520200
Н	-7.79200500	-1.47674500	-1.60065600
Н	-7.81324600	-2.59792700	-0.20715300
N	-0.37099600	4.34706100	-0.39805400
Н	-0.19987400	5.25771800	-0.79629100
Н	-1.28215700	3.93374700	-0.56424600
Н	2.50429100	4.72831300	-0.60222400

SCF done: -1431.33360742 a.u.

No imaginary Frequency.

DFT optimized coordinates for **2a-I** optimized S0 state Geometry by B3LYP/6-31G(d).

F	1.43821300	0.74351800	-0.07098400
F	2.02679600	-0.03219300	2.00345000
Ν	-2.41156800	-1.36715400	-0.10664400
F	-1.59867800	0.67300800	0.75208500
Ν	2.25708600	-1.49985100	0.10784800
Ν	-0.08040900	-1.58965700	-0.01287200
Н	-0.04322400	-0.56953600	0.05021100
F	-1.79519600	0.49620600	-1.52300300
Ν	-3.84630600	0.67903900	-0.24931300
Ν	3.81027900	0.42435300	0.42816900
0	1.67255700	6.55281400	1.53473800
С	-1.32452700	-2.15764800	0.03100700
С	3.34783700	-2.34333300	-0.08962600
С	1.12846700	-2.21236500	-0.10409000
С	-3.54602700	-2.15197400	0.06179800
С	-4.94156300	-0.17917600	-0.08842000
С	-1.73574300	-3.50091400	0.26162900
Н	-1.08450700	-4.34019500	0.44812300
С	-6.02398600	-2.41438900	0.23156200
С	-4.32221400	1.93956200	-0.47245600
С	2.84853900	-3.63067400	-0.42487700
Н	3.46367100	-4.48870600	-0.65772300
С	-4.81016000	-1.56493000	0.06623800
С	1.46584300	-3.55645300	-0.44315300
Н	0.76905500	-4.33161300	-0.72048700
С	4.64336900	-1.84208100	-0.03580600
С	-3.12351400	-3.48909400	0.27736500
Н	-3.78562800	-4.32582400	0.45112100
С	5.80520800	-2.74652100	-0.26824400
С	6.25855700	-2.98067700	-1.57951900
С	3.59453000	2.92038600	0.74709400
С	4.85651400	-0.47228600	0.19110500
С	-6.61317000	-3.01514400	-0.89612800
С	2.33962800	5.40069600	1.22771000
С	6.44183800	-3.35219700	0.83083500
С	7.53025400	-4.19535200	0.59517400
Н	8.02558800	-4.66315900	1.44321800
С	7.35175100	-3.83013000	-1.76940200
Н	7.70788700	-4.00920200	-2.78153900
С	-6.56406900	-2.61341900	1.51564000
С	7.99794100	-4.44975400	-0.69685400
С	4.33566000	1.68102000	0.50721300

С	-6.12604700	0.59118700	-0.18637400
Н	-7.12689900	0.19508800	-0.08559100
С	-8.30485700	-4.02451600	0.54620200
С	3.48523900	5.34200300	0.42678600
Н	3.90479000	6.23522100	-0.02033800
С	2.43423800	3.00156300	1.54493300
Н	2.03765600	2.11135100	2.01359200
С	1.81511000	4.22038400	1.77346300
Н	0.93219600	4.28603800	2.40106400
С	-7.74647800	-3.81227500	-0.71687000
Н	-8.20363000	-4.27851700	-1.58692800
В	2.34245300	-0.03998400	0.64551000
С	-5.74435100	1.89775700	-0.42784200
Н	-6.38897300	2.75882400	-0.52998000
С	-7.69708100	-3.41976900	1.64949600
Н	-8.11367300	-3.57951400	2.64161200
С	4.09527500	4.11187000	0.19689600
Н	4.97075500	4.07535000	-0.44353300
С	6.06442700	0.26056500	0.13056500
Н	7.04034500	-0.17275700	-0.03831700
0	-1.51283500	6.67520900	-1.68389600
С	-5.92940500	-1.97446700	2.72725300
Н	-6.45525100	-2.26209100	3.64205600
Н	-5.94355500	-0.88123000	2.65385800
Н	-4.87888500	-2.26957000	2.82882200
С	5.74031900	1.59498100	0.31522600
Н	6.42058600	2.43376700	0.35283300
В	-2.37640800	0.17696800	-0.31185400
С	9.15588900	-5.38947000	-0.92891900
Н	9.86208900	-5.36835400	-0.09235200
Н	9.70196700	-5.13335400	-1.84265500
Н	8.80910300	-6.42579500	-1.03580800
С	5.96099300	-3.09251000	2.23799300
Н	6.02984900	-2.02864000	2.49172300
Н	6.55269900	-3.65635700	2.96467700
Н	4.90937100	-3.37651100	2.35828900
С	5.58551200	-2.32247200	-2.75989400
Н	4.53950100	-2.63666500	-2.85019800
Н	6.09801300	-2.57460400	-3.69256900
Н	5.57903500	-1.23169900	-2.65616200
С	-6.03496600	-2.80217100	-2.27429700
Н	-5.98620300	-1.73617600	-2.52359600
Н	-6.64017900	-3.30408000	-3.03453400
Н	-5.01170700	-3.18851000	-2.34208700

С	2.26423100	7.78367000	1.14771000
Н	2.31945100	7.88205100	0.05575700
Н	3.27182900	7.88903100	1.56886700
Н	1.61680800	8.56597700	1.54662400
С	-2.11610400	5.50708400	-1.33663800
С	-3.41410400	5.31519900	-1.83511200
Н	-3.85079800	6.08746800	-2.45982900
С	-4.10418400	4.15284500	-1.54104200
Н	-5.09486900	4.00845100	-1.96001600
С	-3.52910600	3.13581100	-0.74701000
С	-2.23296300	3.35195900	-0.25017100
Н	-1.76172700	2.60729100	0.37357800
С	-1.53117200	4.51803500	-0.53764700
Н	-0.53290600	4.63733400	-0.13329000
С	-9.54859000	-4.86332900	0.71150200
Н	-10.45419000	-4.24704300	0.63591700
Н	-9.57183000	-5.35605500	1.68905500
Н	-9.61585600	-5.63587500	-0.06148200
С	-0.19855900	6.90538700	-1.19549700
Н	0.50634500	6.15105100	-1.56838700
Н	-0.17017800	6.90216900	-0.10071200
Н	0.08891800	7.88926600	-1.57118500

SCF done: -2806.11088957 a.u.

No imaginary Frequency.

DFT optimized coordinates for **2a-ll** optimized S0 state Geometry by B3LYP/6-31G(d).

F	1.57935500	1.18622400	-0.66128100
F	2.44161100	1.67119300	1.42593500
Ν	-2.08959000	-0.25646200	0.70750100
F	-2.10927700	-2.29804700	-0.53586800
Ν	2.47958000	-0.62409100	0.65192000
Ν	0.06112200	-1.17186100	0.71253900
Н	-0.45777400	-1.98680900	0.39054800
F	-2.93946800	-2.34715000	1.58879800
Ν	-4.27984100	-1.19183500	-0.06443400
Ν	3.99238700	1.15333200	-0.32578500
0	1.59116500	6.79849900	-2.70650400
С	-0.76451300	-0.10379300	0.95152400
С	3.62662100	-1.40534700	0.86055900
С	1.40973400	-1.43153000	0.86732100
С	-2.72156200	0.94305900	1.03624000
С	-4.83946300	0.04964600	0.26491400
С	-0.51146200	1.19568600	1.47857100
Н	0.45481700	1.58073900	1.75645200

С	-4.75245100	2.39805800	1.17045200
С	-5.29083200	-1.99159500	-0.52606300
С	3.22641500	-2.71409700	1.23030600
Н	3.90222500	-3.52795300	1.45296700
С	-4.08363800	1.10456700	0.82170400
С	1.84869100	-2.73829500	1.21687000
Н	1.18906300	-3.56357900	1.44940400
С	4.90482800	-0.94476800	0.53301400
С	-1.72919800	1.83977200	1.52233900
Н	-1.91750300	2.85368200	1.84802900
С	6.09381900	-1.82542700	0.76645700
С	6.53916700	-2.70293400	-0.24427800
С	3.67192600	3.39221400	-1.45836400
С	5.07259300	0.30652800	-0.07629400
С	-5.29879700	2.57997000	2.45824700
С	2.31039500	5.69324100	-2.36362700
С	6.76862400	-1.76235900	2.00398400
С	7.88100100	-2.58469500	2.20743800
Н	8.40308700	-2.53153800	3.16080300
С	7.65620900	-3.50680200	0.00693800
Н	8.00049000	-4.18186300	-0.77410700
С	-4.82872400	3.43040700	0.21213700
С	8.33968500	-3.46670700	1.22501800
С	4.45511500	2.23365500	-1.01584500
С	-6.21869700	0.01221000	-0.02706900
Н	-6.90213800	0.84030700	0.10107300
С	-6.00674200	4.83510600	1.83082600
С	3.32004300	5.12325600	-3.14888300
Н	3.58640400	5.54280100	-4.11214100
С	2.65600400	3.98553700	-0.68019900
Н	2.40945200	3.56700300	0.28706400
С	1.99005000	5.11542900	-1.12521400
Н	1.21387300	5.57866500	-0.52422600
С	-5.91456400	3.79809300	2.76307000
Н	-6.33233300	3.93831400	3.75819000
В	2.56427300	0.89590100	0.25593600
С	-6.49788400	-1.25633300	-0.51383800
Н	-7.44727900	-1.62832600	-0.87383500
С	-5.45469800	4.63084000	0.56342700
Н	-5.50979500	5.42765500	-0.17582600
С	3.98945700	3.99090900	-2.68842600
Н	4.75835100	3.54709600	-3.31433100
С	6.23743500	0.88641400	-0.63527700
Н	7.22757200	0.45376300	-0.59442600

0	-5.25368900	-7.36024800	-2.29155800
С	-4.24376900	3.26225300	-1.17258900
Н	-4.43518900	4.14801600	-1.78568800
Н	-4.67190600	2.39447700	-1.68715200
Н	-3.15942600	3.10546100	-1.13618800
С	5.85026700	2.07246600	-1.23089300
Н	6.48069400	2.78999500	-1.73754800
В	-2.85698700	-1.59175600	0.42927600
С	9.52476100	-4.36804000	1.48234400
Н	10.24810500	-3.89690000	2.15645600
Н	10.04364700	-4.62368600	0.55248400
Н	9.21215100	-5.31116100	1.95037000
С	6.31393400	-0.82288300	3.09864900
Н	6.31686400	0.22005000	2.76134300
Н	6.96828300	-0.89757700	3.97221300
Н	5.29092400	-1.04645000	3.42279200
С	5.83767900	-2.78754800	-1.58189700
Н	4.78613300	-3.07545600	-1.46850200
Н	6.32125100	-3.52656200	-2.22762100
Н	5.84739500	-1.82418300	-2.10434100
С	-5.22373700	1.48989300	3.50399400
Н	-5.70782000	0.56874300	3.15996600
Н	-5.71388800	1.80472400	4.43015800
Н	-4.18573600	1.23024000	3.74203200
С	1.87098300	7.42649600	-3.94802400
Н	1.69003500	6.74870600	-4.79255900
Н	2.90623500	7.78966200	-3.99222400
Н	1.18809400	8.27535400	-4.01422600
С	-5.16926500	-6.05637500	-1.90025800
С	-6.21255500	-5.59579300	-1.08286000
Н	-7.00283000	-6.28737700	-0.80810200
С	-6.21619000	-4.28465300	-0.63514100
Н	-7.02175000	-3.94609500	0.00983200
С	-5.18071400	-3.38716600	-0.97354000
С	-4.14946200	-3.86350400	-1.79651000
Н	-3.34763400	-3.19925300	-2.08761600
С	-4.13799400	-5.17994400	-2.25714600
Н	-3.32538100	-5.50528500	-2.89666900
С	-6.70590000	6.12982000	2.17483000
Н	-7.77649600	6.07976100	1.93449200
Н	-6.28737000	6.97278600	1.61463400
Н	-6.62432400	6.35819400	3.24290500
С	-4.22023500	-7.88434700	-3.11035300
Н	-3.24467000	-7.83632900	-2.60895400

Н	-4.15776400	-7.35514800	-4.07042800
Н	-4.48230700	-8.92850200	-3.29101900

-2806.09671496

No imaginary frequency

DFT optimized coordinates for **2c** optimized S0 state Geometry by B3LYP/6-31G(d).

F	1.49945000	0.93652400	0.03993900
F	2.18894600	0.14554500	2.08198300
Ν	-2.22666900	-1.43693200	-0.10302100
F	-1.48801600	0.77633000	0.32716600
Ν	2.46197100	-1.25374800	0.13855000
Ν	0.12413400	-1.47395300	-0.01447000
Н	0.09152900	-0.45024200	0.01798900
F	-2.03806900	0.25641000	-1.83375000
Ν	-3.86292900	0.45912400	-0.26015400
Ν	3.89917700	0.75777200	0.47385300
0	1.02484600	6.55314200	1.28928200
С	-1.07301800	-2.12074000	0.05913800
С	3.60022900	-2.02581300	-0.07167600
С	1.37976800	-2.02848700	-0.09678300
С	-3.28201100	-2.32345200	0.09298000
С	-4.87037300	-0.49239500	-0.09358400
С	-1.36104400	-3.49304300	0.34615900
Н	-0.63230200	-4.25640700	0.57024100
С	-5.71666700	-2.82653700	0.26944700
С	-4.46842300	1.67087300	-0.44944000
С	3.18125900	-3.33150800	-0.43303100
Н	3.84275300	-4.14969000	-0.68250500
С	-4.58984700	-1.86457100	0.08172800
С	1.79488000	-3.33835400	-0.45962500
Н	1.14969300	-4.14810200	-0.76407400
С	4.87313000	-1.44329100	-0.01920000
С	-2.73297200	-3.61117800	0.36088400
Н	-3.30814500	-4.50126300	0.57540000
С	6.08908800	-2.28055300	-0.26739600
С	6.56818300	-2.46183000	-1.58185400
С	3.48941200	3.22145200	0.75730900
С	5.00067000	-0.06527900	0.21473800
С	-6.30718600	-3.49310200	-0.81958700
С	1.88807200	5.52114900	1.08845200
С	6.75146700	-2.88350400	0.82275400
С	7.88537300	-3.66290900	0.57424200
Н	8.39714600	-4.12481100	1.41628800
С	7.70713000	-3.24958000	-1.77972200

Н	8.07906300	-3.38504200	-2.79340000
С	-6.24260100	-3.10973000	1.54306800
С	8.37852600	-3.86210300	-0.71829300
С	4.33297400	2.04692700	0.52230300
С	-6.12209300	0.15617900	-0.15708900
Н	-7.08288400	-0.32443100	-0.03586200
С	-7.85147600	-4.64259000	0.62255400
С	2.97863800	5.54842400	0.20911400
Н	3.20592900	6.43393300	-0.37279500
С	2.40806600	3.22560600	1.66363800
Н	2.18724800	2.33754000	2.24225800
С	1.62780400	4.35655500	1.82925400
Н	0.79882600	4.36313600	2.53029900
С	-7.36117000	-4.39125100	-0.65662700
Н	-7.78579100	-4.88141000	-1.52548700
В	2.46603300	0.19614100	0.71749600
С	-5.87044800	1.49979800	-0.38626300
Н	-6.59411100	2.30001300	-0.45694800
С	-7.29563200	-4.00460900	1.72884600
Н	-7.66803200	-4.19261300	2.72956400
С	3.76662300	4.40879500	0.05945100
Н	4.58897300	4.43123600	-0.65004000
С	6.15220600	0.75796600	0.11604400
Н	7.15488700	0.39998600	-0.07352200
С	5.73578700	2.06412500	0.28807800
Н	6.34891000	2.95474200	0.28974600
В	-2.36647000	0.07170300	-0.50668100
С	9.58791700	-4.73431600	-0.96247900
Н	10.28698800	-4.69559100	-0.12024300
Н	10.12694300	-4.42896100	-1.86549600
Н	9.29901400	-5.78549500	-1.09604600
С	6.25964900	-2.69639900	2.24075800
Н	6.26824100	-1.64033100	2.53430900
Н	6.88770800	-3.24800100	2.94654200
Н	5.22817700	-3.04789500	2.35966100
С	5.88241600	-1.81934000	-2.76736500
Н	4.84601300	-2.16137100	-2.86921400
Н	6.40820400	-2.05834300	-3.69647800
Н	5.84685900	-0.72824000	-2.67021400
С	1.22855500	7.76367100	0.56451600
Н	1.16126900	7.59935900	-0.51652700
Н	2.19743600	8.21459400	0.81446400
Н	0.42179200	8.43113800	0.86764700
С	-2.70584300	5.52293000	-1.10008500

С	-3.85290000	5.12279100	-1.80653900
Н	-4.30804200	5.79816700	-2.52385200
С	-4.39076300	3.86184700	-1.58950900
Н	-5.26537000	3.55123200	-2.15232000
С	-3.80242100	2.96375000	-0.67556400
С	-2.65703600	3.37986700	0.02857000
Н	-2.18900500	2.71141200	0.73635800
С	-2.11422000	4.64197900	-0.17976000
Н	-1.23345500	4.95666100	0.37108200
Н	-8.67233600	-5.34047400	0.75827000
Cl	-5.71830100	-3.19941200	-2.44552900
Cl	-5.56590400	-2.32866400	2.96096700
С	-2.13582000	6.81968300	-1.31564100
Ν	-1.66328000	7.87028100	-1.48410000
SCF done: -3585.06373696 a.u.		No imaginary Frequency.	

8. ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra of all new compounds.

¹¹B NMR (128 MHz, CDCl₃) of compound 1a.

¹⁹F NMR (376 MHz, CDCl₃) of compound **1a2Cl**.

 ^{19}F NMR (376 MHz, CDCl_3) of compound 1aCl.

¹¹B NMR (128 MHz, CDCl₃) of compound 1aNH₂.

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound $1a\mathrm{NH}_2.$

¹¹B NMR (128 MHz, CDCl₃) of compound **1b**.

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound 1b.

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of compound 1bH.

¹¹B NMR (128 MHz, CDCl₃) of compound **1bCl**.

¹⁹F NMR (376 MHz, CDCl₃) of compound **1bCl**.

¹H NMR (400 MHz, CDCl₃) of compound **2a**.

¹¹B NMR (128 MHz, CDCl₃) of compound **2a**.

 1 H NMR (400 MHz, CDCl₃) of compound **2b**.

.

δ/ppm

. .

. . . -10

. ¹¹B NMR (128 MHz, CDCl₃) of compound **2b**.

¹H NMR (400 MHz, CDCl₃) of compound 2c.

¹¹B NMR (128 MHz, CDCl₃) of compound **2c**.

F

осн₃

9. HRMS spectra of all new compounds.

HRMS spectra of compound 2a

HRMS spectra of compound 2b

HRMS spectra of compound 2c.

10. Author contribution statement

Long Wang: Investigation, data testing, validation, editing.

Cheng Cheng: Investigation, data testing.

Changjiang Yu: Supervision, writing, reviewing, funding acquisition.

Qinghua Wu: Carried out theoretical calculations, Writing about theoretical calculations.

Zhengxin Kang: Data testing.

Hua Wang: Supervision, reviewing.

Lijuan Jiao: Reviewing, supervision.

Erhong Hao: Funding acquisition, validation, reviewing, supervision.

11. References

1. Benson, R. C.; Kues, H. A. Fluorescence properties of indocyanine green as related to angiography. *Phys. Med. Biol.* **1978**, *23*, 159.

2. Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.

3. Software for the integration of CCD detector system Bruker analytical X-ray systems, Bruker axs, Madison, WI (after **2013**).

4. APEX2 suite for crystallographic software, Bruker axs, Madison, WI.

5. Dolomanov, O.; BourhisL, J.; Gildea, R.; Howard, J.; Puschmann, H. Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst*, **2009**, *42*, 339.

6. Sheldrick, G.M. Crystal structure refinement with ShelXL, Acta Cryst, 2015, A71, 3.

7. (a) Feng, Z.; Feng, Y.; Yu, C.; Chen, N.; Wei, Y.; Mu, X.; Jiao, L.; Hao, E. Regioselective and stepwise syntheses of functionalized BODIPY dyes through palladium-catalyzed cross-coupling reactions and direct C–H arylations. *J. Org. Chem.* **2016**, *81*, 6281; (b) Li, W.; Li, L.; Xiao, H.; Qi, R.; Huang, Y.; Xie, Z.; Jing, X.; Zhang, H. Iodo-BODIPY: A visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. *RSC Adv.* **2013**, *3*, 13417; (c) Batat, P.; Cantuel, M.; Jonusauskas, G.; Scarpantonio, L.; Palma, A.; O'Shea, D. F.; McClenaghan, N. D. BF₂-azadipyrromethenes: Probing the excited-state dynamics of a NIR fluorophore and photodynamic

therapy agent. J. Phys. Chem. A. 2011, 115, 14034. (d) Usui, Y. Determination of quantum yield of singlet oxygen formation by photosensitization. Chem. Lett. 1973, 2, 743.

8. Rohand, T.; Dolusic, E.; Ngo, T. H.; Maes, W.; Dehaen, W. Efficient synthesis of aryldipyrromethanes in water and their application in the synthesis of corroles and dipyrromethenes. *Arkivoc* **2007**, *10*, 307.

9. Zhou, X.; Yu, C.; Feng, Z.; Yu, Y.; Wang, J.; Hao, E.; Wei, Y.; Mu, X.; Jiao, L. Highly regioselective α-chlorination of the BODIPY chromophore with copper(II) chloride. *Org. Lett.* **2015**, *17*, 4632.

10. Wang, L.; Wu, Q.; Kang, Z.; Guo, X.; Miao, W.; Li, Z.; Zuo, H.; Wang, H.; Si, H.; Jiao, L.; Hao, E. Regioselective synthesis of directly connected BODIPY dimers through oxidative coupling of α -amino-substituted BODIPYs. *Org. Lett.* **2023**, *25*, 5055.

11.Yu, C.; Jiao, L.; Yin, H.; Zhou, J.; Pang, W.; Wu, Y.; Wang, Z.; Yang, G.; Hao, E. α-/β-ormylated boron-dipyrrin (BODIPY) dyes: Regioselective syntheses and photophysical Pproperties. *Eur. J. Org. Chem.* **2011**, *28*, 5460.

12. Wang, D.; Cheng, C.; Wu, Q.; Wang, J.; Kang, Z.; Guo, X.; Wu, H.; Hao, E.; Jiao, L. Visible-light excitation of BODIPYs enables self-promoted radical arylation at their 3,5-positions with diazonium salts. *Org. Lett.* **2019**, *21*, 5121.

13. Zhang, D.; Wu, L.; Yang, Q.; Li, X.; Zhang, L.; Tung, C. Versatile photosensitization system for ¹O₂-mediated oxidation of alkenes based on nafion-supported platinum(II) terpyridyl acetylide complex. *Org. Lett.* **2003**, *5*, 3221.

14. Tian, L.; Tang, Z.; Hao, L.; Dai, T.; Zou, J.; Liu, Z. Efficient homolytic cleavage of H_2O_2 on hydroxyl-enriched spinel CuFe₂O₄ with dual lewis acid sites. *Angew. Chem., Int. Ed.* **2024**, *63*, e202401434.

15. Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P. A.; Izmaylov, F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.