# **Supporting Information**

# Nickel-Catalyzed Hydrodefluorination/ Deuterodefluorination of CF<sub>3</sub>-Alkenes with Formic Acid

Peng Yang,<sup>Δ\*1</sup> Haiping Yu,<sup>Δ1</sup> Runze Zhai,<sup>1</sup> Jianrong Steve Zhou,<sup>\*3</sup> and Bo Tang<sup>\*1,2</sup> <sup>1</sup>Key Laboratory of Molecular and Nano Probes, Ministry of Education, Engineering Research Center for Intelligent Manufacturing of Functional Chemicals, Ministry of Education, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.

<sup>2</sup>Laoshan Laboratory, Qingdao, 266237, China.

<sup>3</sup>State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China

# Table of contents

| 1. General information                               | 2  |
|------------------------------------------------------|----|
| 2. Hydrodefluorination of CF <sub>3</sub> -alkenes   | 2  |
| 3. Deuterodefluorination of CF <sub>3</sub> -alkenes | 14 |
| 4. Mechanism studies                                 |    |
| 5. Synthesis monofluoroalkene                        |    |
| 6. NMR spectra                                       | 20 |

# 1. General information

All NMR spectra were acquired on Bruker AV 400 MHz NMR spectrometers. <sup>1</sup>H NMR chemical shifts were recorded relative to SiMe<sub>4</sub> ( $\delta$  0.00). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) and m (multiplet). The number of protons (n) for a given resonance was indicated by nH. Coupling constants were reported as a *J* value ifn Hz. <sup>13</sup>C NMR chemical shifts were recorded relative to solvent resonance (CDCl<sub>3</sub>:  $\delta$  77.16). Gas chromatography (GC) analysis was performed on a Shimadzu GC-2030 instrument with GC column SH-Rxi-5ms. GC/MS analysis was performed using Agilent J&W GC column HP-INNOWAX on Agilent triple quadrupole gas chromatography-mass spectrometry 7890B-7000D. High resolution mass spectral analyses (HRMS) were recorded on a Bruck micro-TOF mass spectrometer using electrospray ionization (ESI), positive ion mode.

All air-sensitive compounds were handled under an atmosphere of argon or in a nitrogen-filled glovebox. Glassware was dried at 120 °C for at least 3 h before use. Tetrahydrofuran (THF) were dried over molecular sieve and stored in a glove box. Unless noted otherwise, commercially available chemicals were used as received without purification. Flash column chromatographies were performed using the indicated solvent system on silica gel (200–300 mesh).

### 2. Hydrodefluorination of CF<sub>3</sub>-alkenes

#### (1) Condition optimization.

A general procedure for condition optimization: In a nitrogen-filled glove box, Ni salt (0.005 mmol), Ligand (0.006 mmol) and dry solvent (0.1 mL) were charged into a 10-mL Schlenk tube. After stirring for 15 min, internal standard  $C_{12}H_{26}$  (10 µL), Hydrogen donor and CF<sub>3</sub>-alkenes **1a** (24.4 mg, 0.1 mmol) were added. The Schlenk tube was sealed and the reaction mixture was stirred in a metal sand bath maintained at 90 °C for 24 h. After cooled to room temperature, the reaction mixture was filtered by a short silica gel column plug and determined the yield of **2a** by GC analysis.

# Table S1. The effect of nickel salts



# Table S2. The effect of solvents

| Ph´ | CF <sub>3</sub><br>CO <sub>2</sub> Et | + HCO <sub>2</sub> H/Et <sub>3</sub> N | NiBr <sub>2</sub> (DME) (5 mol%<br>( <i>R</i> )-Me-Duphos (6 mo<br>Solvent (0.1 mL), 90 °C, | (h) = (h) | Et |
|-----|---------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1a  | (Z/E mixture)                         | 5 : 2 (equiv)                          |                                                                                             | 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | Entry                                 |                                        | Solvent                                                                                     | 2a Yield(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|     | 1                                     | r                                      | Γoluene                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | 2                                     |                                        | <i>i</i> -PrOH                                                                              | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | 3                                     | 1,-                                    | 4-dioxane                                                                                   | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | 4                                     |                                        | THF                                                                                         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|     | 5                                     |                                        | DMSO                                                                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |

# Table S3. The effect of hydrogen donor

| CF <sub>3</sub><br>Ph CO <sub>2</sub> Et + [H] |                                 | NiBr <sub>2</sub> (DME) (5 mol%)<br>( <i>R</i> )-Me-Duphos (6 mol%) | F_F                   |
|------------------------------------------------|---------------------------------|---------------------------------------------------------------------|-----------------------|
|                                                |                                 | THF (0.1 mL), 90 °C, 24 h                                           | Ph CO <sub>2</sub> Et |
| <b>1a</b> (Z/E mixture)                        |                                 |                                                                     | 2a                    |
| Entry                                          | Hydrogen donor                  |                                                                     | 2a Yield(%)           |
| 1                                              | PhSiH <sub>3</sub> (1.0 eq.)    |                                                                     | 5                     |
| 2                                              | H                               | 23                                                                  |                       |
| 3                                              | HCOOH/Et <sub>3</sub> N (5:1)   |                                                                     | 51                    |
| 4                                              | HCOOH/Et <sub>3</sub> N (5:2)   |                                                                     | 57                    |
| 5                                              | LiBH(Et) <sub>3</sub> (1.5 eq.) |                                                                     | 0                     |
| 6                                              | Н                               | 0                                                                   |                       |

# Table S4. The effect of concentration



| Entry | System concentration       | 2a Yield(%) |
|-------|----------------------------|-------------|
| 1     | THF (0.2 mL, $c = 0.25$ M) | 59          |
| 2     | THF (0.3 mL, $c = 0.17$ M) | 74          |
| 3     | THF (0.4 mL, $c = 0.12$ M) | 70          |

#### Table S5. The effect of catalyst amount

$$\begin{array}{c} \mathsf{CF}_{3} \\ \mathsf{Ph} \\ \mathcal{CO}_{2}\mathsf{Et} + \mathsf{HCO}_{2}\mathsf{H}/\mathsf{Et}_{3}\mathsf{N} \end{array} \xrightarrow[\mathsf{THF}\ (0.3\ \mathsf{mL}),\ 90\ ^\circ\mathsf{C},\ 24\ \mathsf{h} \\ \mathsf{THF}\ (0.3\ \mathsf{mL}),\ 90\ ^\circ\mathsf{C},\ 24\ \mathsf{h} \\ \mathsf{2a} \end{array}$$

1a (Z/E mixture) 5 : 2 (equiv)

| Entry | NiBr <sub>2</sub> (DME) (mmol%) | (R)-Me-Duphos (mmol%) | 2a Yield(%) |
|-------|---------------------------------|-----------------------|-------------|
| 1     | 10                              | 10                    | 93          |
| 2     | 5                               | 6                     | 74          |
| 3     | 3                               | 4                     | 22          |
| 4     | 1                               | 2                     | 10          |

# Table S6. The effect of time and temperature



# Table S7. The effect of ligands



L1, (R,R)-Me-DuPhos

| 2 | i-Pr<br>i-Pr<br>i-Pr<br>i-Pr<br>L2, ( <i>R</i> , <i>R</i> )- <i>i</i> -Pr-DuPhos                   | 14 |
|---|----------------------------------------------------------------------------------------------------|----|
| 3 | $L3, (R, R)-QuinoxP^*$                                                                             | 72 |
| 4 | $i - \Pr $ | 18 |
| 5 | PCy <sub>2</sub><br>PCy <sub>2</sub><br>L5, ( <i>R</i> )-Cy-BINAP                                  | 0  |
| 6 | Cy<br>Cy<br>P<br>Cy<br>Cy<br>L6                                                                    | 0  |
| 7 | t-Bu <sub>`P</sub> ∕t-Bu<br>¦<br>t-Bu<br><b>L7</b>                                                 | 0  |
| 8 |                                                                                                    | 0  |
| 9 |                                                                                                    | 0  |

#### (2) A general procedure for the hydrodefluorination of CF<sub>3</sub>-alkenes 1a:



In a nitrogen-filled glove box, NiBr<sub>2</sub>(DME) (0.005 mmol), (*R*)-Me-Duphos (0.006 mmol) and dry THF (0.3 mL) were charged into a 10-mL Schlenk tube. After stirring for 15 min, Et<sub>3</sub>N (28  $\mu$ L, 0.5 mmol), HCO<sub>2</sub>H (20  $\mu$ L, 0.2 mmol), and CF<sub>3</sub>-alkenes **1a** (24.4 mg, 0.1 mmol) were added. The Schlenk tube was sealed and the reaction mixture was stirred in a metal sand bath maintained at 90 °C for 36 h. After cooled to room temperature, the reaction was quenched by 2 mL of dilute HCl (1.0 M). The reaction mixture was extracted 3 times by EA and dried by anhydrous Na<sub>2</sub>SO<sub>4</sub>. Solvent was removed and the residue was purified by silica gel column chromatography using EA/Hexanes as eluent to give the alkylation product.

(3) Analytical data for alkylation products:



#### Ethyl 4,4-difluoro-3-phenylbut-3-enoate (2a) [852561-60-5]

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 90%. The NMR data of 2a are consistent with the data reported in the literature (X.-Q. Chu, L.-W. Sun, Y.-L. Chen, J.-W. Chen, X. Ying, M. Ma, Z.-L. Shen, *Green Chem.*, 2022, **24**, 2777-2782).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.57–7.19 (m, 5H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.39 (t, *J* = 2.2 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.30 (dd, J = 4.0, 2.9 Hz), 154.96 (dd, J = 292.1, 289.1 Hz), 133.20 (t, J = 3.9 Hz), 128.65, 128.01 (t, J = 3.0 Hz), 127.69, 87.33 (dd, J = 21.3, 17.7 Hz), 61.24, 34.05 (d, J = 2.3 Hz), 14.20.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -87.91 (d, J = 35.5 Hz, 1F), -89.19 (d, J = 34.9 Hz, 1F).

GC-MS (EI): calculated for C<sub>12</sub>H<sub>12</sub>F<sub>2</sub>O<sub>2</sub> [M-H]<sup>+</sup> : 225.1, found: 225.1.

# Ethyl 3-(3-chlorophenyl)-4,4-difluorobut-3-enoate (2b)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 86%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29 – 7.13 (m, 4H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.30 (t, *J* = 2.2 Hz, 2H), 1.14 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.98 (dd, J = 3.9, 2.7 Hz), 155.12 (dd, J = 294.9, 247.5 Hz, ), 135.04 (t, J = 4.0), 134.58, 129.90, 128.20 (t, J = 3.8 Hz), 127.90, 126.22 (t, J = 3.9 Hz), 86.69 (dd, J = 22.8, 17.5 Hz), 61.40, 33.82 (d, J = 2.3 Hz), 14.22.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -86.58 (d, J = 32.4 Hz, 1F), -87.66 (d, J = 32.3 Hz, 1F).

HRMS (ESI): calculated for  $C_{12}H_{11}ClF_2O_2$  [M+Na]<sup>+</sup> : 283.0313, found: 283.0324.



#### Ethyl 4,4-difluoro-3-(m-tolyl)but-3-enoate (2c)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 79%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.20 – 7.14 (m, 1H), 7.04 (dd, *J* = 17.7, 9.0 Hz, 3H), 4.05 (q, *J* = 7.1 Hz, 2H), 3.30 (t, *J* = 2.1 Hz, 2H), 2.28 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.35, 154.94 (dd, *J* = 292.1, 288.7 Hz), 138.25, 133.12 (t, *J* = 3.8 Hz), 128.72 (t, *J* = 3.3 Hz), 128.53, 128.49, 125.09 (t, *J* = 3.5 Hz), 87.34 (dd, *J* = 21.3, 17.9 Hz), 61.21, 34.10 (d, *J* = 2.4 Hz), 21.58, 14.22.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -88.15 (d, J = 35.8 Hz, 1F), -89.25 (d, J = 35.8 Hz, 1F).

HRMS (ESI): calculated for C<sub>13</sub>H<sub>14</sub>F<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 263.0860, found: 263.0876.



#### Ethyl 4,4-difluoro-3-(3-(trifluoromethyl)phenyl)but-3-enoate (2d)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 78%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 – 7.30 (m, 4H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.34 (t, *J* = 2.2 Hz, 2H), 1.13 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.91 (dd, J = 4.2, 2.7 Hz), 155.22 (dd, J = 293.4, 290.5 Hz), 134.15 (t, J = 4.1 Hz), 131.43, 131.17 (q, J = 32.4 Hz), 129.21, 124.87 (dd, J = 7.4, 3.7 Hz), 124.53 (dd, J = 7.4, 3.7 Hz), 124.05 (q, J = 272.4 Hz), 86.77 (dd, J = 22.6, 17.4 Hz), 61.46, 33.82 (d, J = 2.1 Hz), 14.14. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.81 (s, 3F), -86.34 (d, J = 32.1 Hz, 1F), -87.75 (d, J = 32.3 Hz, 1F). HRMS (ESI): calculated for C<sub>13</sub>H<sub>11</sub>F<sub>5</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 317.0577, found: 317.0583.



#### Ethyl 4,4-difluoro-3-(p-tolyl)but-3-enoate (2e)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 85%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.23 (d, *J* = 7.5 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.37 (t, *J* = 2.2 Hz, 2H), 2.34 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.37 (dd, J = 4.1, 2.8 Hz), 154.87 (dd, J = 291.7, 288.7 Hz), 137.49, 130.18 (t, J = 3.8 Hz), 129.36, 127.85 (t, J = 3.5 Hz), 87.14 (dd, J = 21.3, 17.9 Hz), 61.20, 34.06 (d, J = 2.4 Hz), 21.26, 14.22.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -88.46 (d, *J* = 36.6 Hz, 1F), -89.55 (d, *J* = 36.5 Hz, 1F).

HRMS (ESI): calculated for  $C_{13}H_{14}F_2O_2$  [M+Na]<sup>+</sup> : 263.0860, found: 263.0866.





#### Ethyl 4,4-difluoro-3-(4-methoxyphenyl)but-3-enoate (2f) [2797146-95-1]

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 66%. The NMR data of **2f** are consistent with the data reported in the literature (J. Yang, S. Ponra, X. Li, B. B. C. Peters, L. Massaro, T. Zhou, P. G. Andersson, *Chem. Sci.*, 2022, **13**, 8590-8596).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.26 (d, *J* = 8.2 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.80 (s, 3H), 3.36 (t, *J* = 2.0 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.42 (dd, *J* = 4.1, 2.8 Hz), 159.03, 154.78 (dd, *J* = 291.1, 288.5 Hz), 129.21 (t, *J* = 3.5 Hz), 125.35 (t, *J* = 3.8 Hz), 114.11, 86.83 (dd, *J* = 21.6, 18.2 Hz), 61.21, 55.39, 34.18 (d, *J* = 2.5 Hz), 14.24.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -89.15 (d, *J* = 38.2 Hz, 1F), -90.20 (d, *J* = 38.2 Hz, 1F).

GC-MS (EI): calculated for  $C_{13}H_{14}F_2O_3$  [M-H]<sup>+</sup> : 255.1, found: 255.1.



#### Ethyl 3-(4-bromophenyl)-4,4-difluorobut-3-enoate (2g)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 77%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.48 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.36 (s, 2H), 1.20 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.03, 154.90 (dd, J = 292.9, 289.9 Hz), 132.15 (t, J = 4.0 Hz), 131.84, 129.66 (t, J = 3.6 Hz), 121.74, 86.73 (dd, J = 22.3, 17.5 Hz), 61.36, 33.80 (d, J = 2.3 Hz), 14.21. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -87.01 (d, J = 33.4 Hz, 1F), -88.20 (d, J = 33.6 Hz, 1F). HRMS (ESI): calculated for C<sub>12</sub>H<sub>11</sub>BrF<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 326.9808, found: 326.9774.

# Ethyl 4,4-difluoro-3-(4-fluorophenyl)but-3-enoate (2h)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 47%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.31 (dd, *J* = 8.2, 5.5 Hz, 2H), 7.04 (t, *J* = 8.7 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.36 (t, *J* = 2.1 Hz, 2H), 1.20 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.17 (dd, J = 4.2, 2.8 Hz), 154.91 (dd, J = 290.5, 289.4 Hz), 130.26 – 129.55 (m), 128.32 (d, J = 7.8 Hz), 115.79, 115.57, 86.61 (dd, J = 23.0, 19.0 Hz), 61.33, 34.14 (d, J = 2.2 Hz), 14.22.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -88.14 (dd, *J* = 35.8, 2.3 Hz, 1F), -89.32 (d, *J* = 36.1 Hz, 1F), -113.44 - -115.24 (m, 1F).

HRMS (ESI): calculated for  $C_{12}H_{11}F_3O_2$  [M+Na]<sup>+</sup>: 267.0609, found: 267.0607.

#### Ethyl 3-(4-(dimethylamino)phenyl)-4,4-difluorobut-3-enoate (2i)

The product was isolated by flash chromatography (EA/hexanes 1/10-1/1) as yellow oily liquid. Yield: 58%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.21 (d, *J* = 8.2 Hz, 2H), 6.70 (d, *J* = 8.8 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.35 (t, *J* = 2.0 Hz, 2H), 2.95 (s, 6H), 1.21 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.67, 154.67 (dd, *J* = 290.7, 287.7 Hz), 149.80, 128.67 (t, *J* = 3.6 Hz),

120.71, 112.44, 86.94 (dd, *J* = 21.2, 18.0 Hz), 61.12, 40.57, 34.12 (d, *J* = 2.6 Hz), 14.26.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -90.01 (d, *J* = 40.5 Hz, 1F), -90.97 (d, *J* = 40.5 Hz, 1F).

HRMS (ESI): calculated for C<sub>14</sub>H<sub>17</sub>F<sub>2</sub>NO<sub>2</sub> [M+Na]<sup>+</sup> : 292.1125, found: 292.1125.



Ethyl 3-(3,5-difluorophenyl)-4,4-difluorobut-3-enoate (2j)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 40%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 6.94 – 6.84 (m, 2H), 6.74 (tt, *J* = 8.8, 2.2 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.36 (t, *J* = 2.2 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.78 (dd, J = 4.0, 2.8 Hz), 164.35 (d, J = 13.2 Hz), 161.88 (d, J = 13.3 Hz), 155.32 (dd, J = 294.9, 290.8 Hz), 111.61 – 110.40 (m), 103.52, 103.27, 103.02, 86.48 (dd, J = 22.7,

20.3 Hz), 61.54, 33.54 (d, *J* = 1.7 Hz), 14.21.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -70.20 (s, 1F), -85.04 (d, *J* = 29.2 Hz, 1F), -85.92 (d, *J* = 29.3 Hz, 1F), -109.43 (s, 1F).

HRMS (ESI): calculated for  $C_{12}H_{10}F_4O_2$  [M+Na]<sup>+</sup> : 285.0515, found: 285.0516.

#### Ethyl 3-(3,5-difluorophenyl)-4,4-difluorobut-3-enoate (2k)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 68%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.28 (dd, *J* = 5.0, 0.9 Hz, 1H), 7.06 – 6.95 (m, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.42 (t, *J* = 2.0 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.92 (dd, *J* = 3.9, 2.9 Hz), 154.84 (dd, *J* = 295.8, 289.8 Hz), 135.15 (d, *J* = 2.9 Hz), 135.08 (d, *J* = 3.0 Hz), 127.20, 125.89 – 124.77 (m), 83.97 (dd, *J* = 26.0, 18.1 Hz), 61.45, 33.83 (d, *J* = 2.9 Hz), 14.24.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -83.02 (d, J = 28.7 Hz, 1F), -89.10 (d, J = 28.8 Hz, 1F).

HRMS (ESI): calculated for C<sub>10</sub>H<sub>10</sub>F<sub>2</sub>O<sub>2</sub>S [M+Na]<sup>+</sup> : 255.0268, found: 255.0268.



# Ethyl 4,4-difluoro-3-(naphthalen-2-yl)but-3-enoate (2l)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 58%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 – 7.72 (m, 4H), 7.54 – 7.37 (m, 3H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.50 (t, *J* = 1.9 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.31 (dd, J = 4.0, 2.9 Hz), 155.19 (dd, J = 292.7, 289.4 Hz), 133.34, 132.67, 130.63 (t, J = 3.9 Hz), 128.31, 128.15, 127.72, 127.17 (t, J = 3.6 Hz), 126.49, 126.43, 125.81 (dd, J = 4.3, 2.8 Hz), 87.51 (dd, J = 21.7, 17.6 Hz), 61.29, 34.17 (d, J = 2.4 Hz), 14.23.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -87.34 (d, J = 34.7 Hz, 1F), -88.75 (d, J = 34.4 Hz, 1F).

HRMS (ESI): calculated for  $C_{16}H_{14}F_2O_2$  [M+Na]<sup>+</sup>: 299.0860, found: 299.0859.



#### Ethyl 3-(anthracen-9-yl)-4,4-difluorobut-3-enoate (2m)

The product was isolated by flash chromatography (EA/hexanes 1/20-1/1) as yellow oily liquid. Yield: 55%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (s, 1H), 8.13 (d, *J* = 8.7 Hz, 2H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.50 (dddd, *J* = 9.4, 7.8, 6.5, 1.2 Hz, 4H), 3.98 (q, *J* = 7.1 Hz, 2H), 3.55 (t, *J* = 2.2 Hz, 2H), 1.03 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.89, 154.86 (dd, *J* = 293.9, 288.5 Hz), 131.64, 130.22 (d, *J* = 2.3 Hz), 129.01, 128.27, 126.69 (dd, *J* = 4.2, 1.3 Hz), 126.45, 125.52, 125.43, 82.78 (dd, *J* = 23.6, 22.0 Hz), 61.23, 35.97 (d, *J* = 2.1 Hz), 13.98.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -84.90 (d, J = 32.0 Hz, 1F), -87.52 (d, J = 31.8 Hz, 1F). HRMS (ESI): calculated for C<sub>20</sub>H<sub>16</sub>F<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 349.1016, found: 349.0989.



#### Ethyl 3-benzyl-4,4-difluorobut-3-enoate (2n)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 72%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.10 (m, 5H), 4.08 (q, J = 7.1 Hz, 2H), 3.42 (s, 2H), 2.87 (t, J = 1.9 Hz, 2H), 1.22 (t, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.41 (dd, J = 4.2, 2.8 Hz), 154.80 (dd, J = 286.6, 285.0 Hz), 137.79 (t, J = 3.0 Hz), 128.93, 128.72, 126.84, 84.39 (dd, J = 22.0, 17.1 Hz), 61.06, 32.73 (d, J = 1.4 Hz), 31.55 (d, J = 2.8 Hz), 14.24.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -93.28 (d, *J* = 47.1 Hz, 1F), -93.92 (d, *J* = 47.1 Hz, 1F).

HRMS (ESI): calculated for  $C_{13}H_{14}F_2O_2$  [M+Na]<sup>+</sup> : 263.0860, found: 263.0862.

#### Methyl 4,4-difluoro-3-phenylbut-3-enoate (20)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 94%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 – 7.26 (m, 5H), 3.67 (s, 3H), 3.40 (t, *J* = 2.1 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.78, 155.01 (dd, J = 292.8, 289.2 Hz), 133.12 (t, J = 3.8 Hz), 128.69, 127.97 (t, J = 3.6 Hz), 127.74, 87.22 (dd, J = 21.3, 17.9 Hz), 52.32, 33.79 (d, J = 2.5 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -87.69 (d, J = 34.8 Hz, 1F), -88.92 (d, J = 34.8 Hz, 1F). HRMS (ESI): calculated for C<sub>11</sub>H<sub>10</sub>F<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 235.0547, found: 235.0550.

#### Methyl 3-(3-chlorophenyl)-4,4-difluorobut-3-enoate (2p)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 73%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 – 7.13 (m, 5H), 3.69 (s, 3H), 3.39 (t, *J* = 2.1 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.49 (dd, *J* = 4.1, 3.0 Hz), 155.15 (dd, *J* = 293.4, 290.1 Hz), 134.93 (t,

*J* = 4.0 Hz), 134.60, 129.94, 128.14 (t, *J* = 3.0 Hz), 127.95, 126.16 (t, *J* = 3.5 Hz), 86.54 (dd, *J* = 22.6, 17.6 Hz), 52.49, 33.55 (d, *J* = 2.2 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -86.33 (d, J = 31.9 Hz, 1F), -87.43 (d, J = 31.9 Hz, 1F).

HRMS (ESI): calculated for C<sub>12</sub>H<sub>11</sub>ClF<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 269.0157, found: 269.0160.



#### Methyl 4,4-difluoro-3-(4-methoxyphenyl)but-3-enoate (2q)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 71%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.22 (m, 2H), 6.95 – 6.88 (m, 2H), 3.83 (s, 3H), 3.70 (s, 3H), 3.40 (t, J = 2.2 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.88 (dd, J = 4.1, 2.9 Hz), 159.07, 154.81 (dd, J = 291.1, 288.6 Hz), 129.16 (t, J = 3.6 Hz), 125.26 (t, J = 3.7 Hz), 114.16, 86.72 (dd, J = 21.4, 18.2 Hz), 55.38, 52.29, 33.92 (d, J = 2.5 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -88.94 (d, J = 37.8 Hz, 1F), -89.96 (d, J = 37.8 Hz, 1F).

HRMS (ESI): calculated for  $C_{12}H_{12}F_2O_3$  [M+Na]<sup>+</sup>: 265.0653, found: 265.0655.

#### tert-Butyl 4,4-difluoro-3-phenylbut-3-enoate (2r)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 56%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 – 7.24 (m, 5H), 3.31 (t, *J* = 2.2 Hz, 2H), 1.36 (s, 9H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.47, 154.84 (dd, J = 290.8, 289.7 Hz), 128.57, 128.02 (t, J = 4.0 Hz), 127.57, 100.13, 89.16 (dd, J = 20.0, 18.8 Hz), 81.46, 35.24 (d, J = 2.7 Hz), 28.01. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -88.42 (d, J = 36.2 Hz, 1F), -89.84 (d, J = 36.2 Hz, 1F). HRMS (ESI): calculated for C<sub>14</sub>H<sub>16</sub>F<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 277.1016, found: 277.1014.  $F_{\Sigma} = F$ 

#### 4,4-Difluoro-N,N-dimethyl-3-phenylbut-3-enamide (2s) [849104-36-5]

The product was isolated by flash chromatography (EA/hexanes 1/20-1/1) as yellow oily liquid. Yield: 51%. The NMR data of **2s** are consistent with the data reported in the literature (C.-R. Cao, S. Ou, M. Jiang, J.-T. Liu, *Tetrahedron Lett.*, 2017, **58**, 482-485.)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 – 7.25 (m, 5H), 3.41 (t, *J* = 2.1 Hz, 2H), 3.03 (s, 3H), 2.93 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.06, 154.71 (dd, *J* = 291.4, 287.8 Hz), 133.75 (t, *J* = 4.0 Hz), 128.58, 128.27 (t, *J* = 3.3 Hz), 127.57, 87.97 (dd, *J* = 22.6, 18.8 Hz), 37.38, 35.91, 33.46 (d, *J* = 2.6 Hz). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -89.09 (d, *J* = 38.3 Hz, 1F), -90.02 (d, *J* = 38.2 Hz, 1F). GC-MS (EI): calculated for C<sub>12</sub>H<sub>13</sub>F<sub>2</sub>NO [M-H]<sup>+</sup> : 224.1, found: 224.0.

#### 3-(3-Chlorophenyl)-4,4-difluoro-N,N-dimethylbut-3-enamide (2t)

The product was isolated by flash chromatography (EA/hexanes 1/20-1/1) as yellow oily liquid. Yield: 60%.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.35 – 7.22 (m, 4H), 3.39 (s, 2H), 3.05 (s, 3H), 2.95 (s, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 168.72, 154.89 (dd, *J* = 292.4, 288.7 Hz), 135.69 (t, *J* = 3.0 Hz), 134.42, 129.81, 128.33 (t, *J* = 3.6 Hz), 127.74, 126.57 (t, *J* = 3.3 Hz), 87.50 (dd, *J* = 22.3, 17.4 Hz), 37.37, 35.93, 33.15 (d, *J* = 2.4 Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -87.77 (d, *J* = 35.4 Hz, 1F), -88.61 (d, *J* = 35.8 Hz, 1F).

HRMS (ESI): calculated for C<sub>12</sub>H<sub>12</sub>ClF<sub>2</sub>NO [M+Na]<sup>+</sup> : 282.0473, found: 282.0475.

#### (4) Unsuccessful substrates

(1) substrates with low conversions and yields



Conversion: 83%

Figure S1 Unsuccessful substrates

(Z/E mixture)

# 3. Deuterodefluorination of CF<sub>3</sub>-alkenes

(1) A general procedure for the Deuterodefluorination of CF<sub>3</sub>-alkenes 1a:



In a nitrogen-filled glove box, NiBr<sub>2</sub>(DME) (0.005 mmol), (R)-Me-Duphos (0.006 mmol) and dry THF (0.3 mL) were charged into a 10-mL Schlenk tube. After stirring for 15 min, Et<sub>3</sub>N (28  $\mu$ L, 0.5 mmol), DCO<sub>2</sub>D (19  $\mu$ L, 0.2 mmol), and CF<sub>3</sub>-alkenes **1a** (24.4 mg, 0.1 mmol) were added. The Schlenk

tube was sealed and the reaction mixture was stirred in a metal sand bath maintained at 90 °C for 36 h. After cooled to room temperature, the reaction was quenched by 2 mL of dilute HCl (1.0 M). The reaction mixture was extracted 3 times by EA and dried by anhydrous Na<sub>2</sub>SO<sub>4</sub>. Solvent was removed and the residue was purified by silica gel column chromatography using EA/Hexanes as eluent to give the alkenylation product.

(2) Analytical data for products:

#### Methyl 4,4-difluoro-3-phenylbut-3-enoate-2-D (3a)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 77% (1.28 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.50 – 7.19 (m, 5H), 3.67 (s, 3H), 3.39 (pseudomultiplet, 0.72H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.78, 155.08 (dd, *J* = 276.9, 273.7 Hz), 133.09 (t, *J* = 2.9 Hz), 128.69,

127.96 (t, J = 3.5 Hz), 127.73, 87.17 (dd, J = 21.7, 17.6 Hz), 52.31, 33.55 (t,  $J_{C-D} = 20.2$  Hz).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -87.69 (d, J = 35.3 Hz, 1F), -88.90 (d, J = 34.8 Hz, 1F).

HRMS (ESI): calculated for  $C_{11}H_9DF_2O_2$  [M+Na]<sup>+</sup> : 236.0610, found: 236.0607.



#### Ethyl 4,4-difluoro-3-phenylbut-3-enoate-2-D (3b)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 75% (1.33 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.38 – 7.25 (m, 5H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.49 – 3.22 (pseudomultiplet, 0.67H), 1.19 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.27, 154.96 (dd, J = 292.2, 289.2 Hz), 133.17 (t, J = 3.7 Hz), 128.62, 127.99 (t, J = 3.5 Hz), 127.67, 87.30 (dd, J = 21.4, 17.7 Hz), 61.20, 33.78 (t,  $J_{C-D} = 19.2$  Hz), 14.16. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -87.97 (dd, J = 35.7, 5.7 Hz, 1F), -89.18 (dd, J = 35.5, 6.4 Hz, 1F).

HRMS (ESI): calculated for  $C_{12}H_{11}DF_2O_2$  [M+Na]<sup>+</sup> : 250.0766, found: 250.0775.



#### Ethyl 4,4-difluoro-3-(p-tolyl)but-3-enoate-2-D (3c)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 74% (1.18 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.15 (d, *J* = 7.5 Hz, 2H), 7.08 (d, *J* = 8.1 Hz, 2H), 4.04 (q, *J* = 7.1 Hz, 2H), 3.32 – 3.24 (pseudomultiplet, 0.82H), 2.26 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.40, 154.85 (dd, J = 291.9, 288.8 Hz), 137.48, 129.36, 127.82 (t, J = 3.5 Hz), 87.07 (dd, J = 21.6, 18.3 Hz), 61.20, 33.79 (t,  $J_{C-D} = 18.2$  Hz), 21.27, 14.22.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -88.51 (d, J = 36.4 Hz, 1F), -89.55 (d, J = 36.2 Hz, 1F).

HRMS (ESI): calculated for  $C_{13}H_{13}DF_2O_2$  [M+Na]<sup>+</sup> : 264.0923, found: 264.0918.



#### Ethyl 4,4-difluoro-3-(4-methoxyphenyl)but-3-enoate-2-D (3d)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 51% (1.16 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.19 (dd, J = 8.9, 0.9 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 4.05 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 3.31 – 3.22 (pseudomultiplet, 0.84H), 1.13 (t, J = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.43, 159.01, 154.77 (dd, J = 290.7, 288.5 Hz), 129.21 (d, J = 3.4 Hz), 125.32 (t, J = 3.6 Hz), 114.10, 86.77 (dd, J = 21.6, 17.9 Hz), 61.20, 55.39, 33.90 (t,  $J_{C-D} = 20.2$  Hz), 14.23.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -89.18 (d, J = 38.0 Hz, 1F), -90.19 (d, J = 37.5 Hz, 1F).

HRMS (ESI): calculated for C<sub>13</sub>H<sub>13</sub>DF<sub>2</sub>O<sub>3</sub> [M+Na]<sup>+</sup> : 280.0872, found: 280.0871.



#### Ethyl 3-(4-bromophenyl)-4,4-difluorobut-3-enoate-2-D (3e)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 60% (1.25 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.48 (d, *J* = 8.6 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.38 – 3.34 (pseudomultiplet, 0.75H), 1.20 (t, *J* = 7.1 Hz, 3H).

 $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  170.05, 154.90 (dd, J = 292.8, 290.0 Hz), 132.13 (t, J = 3.5 Hz), 131.84,

129.65 (t, J = 3.6 Hz), 121.74, 86.67 (dd, J = 22.5, 17.6 Hz), 61.35, 33.56 (t,  $J_{C-D}= 25.3$  Hz), 14.21.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -87.01 (d, J = 33.3 Hz, 1F), -88.17 (d, J = 33.3 Hz, 1F).

HRMS (ESI): calculated for  $C_{12}H_{10}DBrF_2O_2$  [M+Na]<sup>+</sup> : 327.9871, found: 327.9872.



Ethyl 3-(3-chlorophenyl)-4,4-difluorobut-3-enoate-2-D (3f)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 66% (1.46 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29 – 7.13 (m, 4H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.35 – 3.23 (pseudomultiplet, 0.54H), 1.14 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.98, 155.12 (dd, J = 293.3, 290.2 Hz), 135.01, 134.57, 129.89, 128.18 (t, J = 3.7 Hz), 127.89, 126.21 (t, J = 3.5 Hz), 86.64 (dd, J = 22.5, 17.6 Hz), 61.38, 33.54 (t,  $J_{C-D} = 21.2$  Hz), 14.20.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -86.61 (dd, J = 32.0, 4.1 Hz, 1F), -87.64 (dd, J = 32.3, 7.9 Hz, 1F). HRMS (ESI): calculated for C<sub>12</sub>H<sub>10</sub>DClF<sub>2</sub>O<sub>2</sub> [M+Na]<sup>+</sup> : 284.0376, found: 284.0374.



#### Ethyl 4,4-difluoro-3-(m-tolyl)but-3-enoate-2-D (3g)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 61% (1.21 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.26 – 7.03 (m, 4H), 4.12 (dd, *J* = 14.2, 7.1 Hz, 2H), 3.36 (pseudomultiplet, 0.79H), 2.35 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.36, 154.93 (dd, J = 291.9, 289.0 Hz), 138.25, 133.09 (t, J = 3.6 Hz), 128.71 (t, J = 3.4 Hz), 128.52, 128.49, 125.08 (t, J = 3.5 Hz), 87.28 (dd, J = 21.3, 17.9 Hz), 61.20, 33.85 (t,  $J_{CD} = 18.2$  Hz), 21.58, 14.22.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -88.16 (d, *J* = 35.8 Hz, 1F), -89.24 (d, *J* = 35.8 Hz, 1F).

HRMS (ESI): calculated for  $C_{13}H_{13}DF_2O_2$  [M+Na]<sup>+</sup> : 264.0923, found: 264.0926.



#### Ethyl 4,4-difluoro-3-(3-(trifluoromethyl)phenyl)but-3-enoate-2-D (3h)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 63% (1.58 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.32 (m, 4H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.36 – 3.27 (pseudomultiplet, 0.42H), 1.13 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 169.92, 155.22 (dd, J = 293.2, 290.8 Hz), 134.10, 131.41, 131.17 (q, J = 32.5 Hz), 129.21, 124.85 (dd, J = 7.4, 3.7 Hz), 124.53 (q, J = 3.6 Hz), 124.05 (q, J = 272.3 Hz), 86.68 (dd, J = 25.0, 19.7 Hz), 61.44, 33.57 (t,  $J_{C-D} = 20.2$  Hz), 14.14.

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.82 (s, 1F), -86.37 (d, *J* = 32.0 Hz, 1F), -87.73 (dd, *J* = 32.0, 8.2 Hz, 1F).

HRMS (ESI): calculated for  $C_{13}H_{10}DF_5O_2$  [M+Na]<sup>+</sup> : 318.0640, found: 318.0650.



#### Ethyl 3-benzyl-4,4-difluorobut-3-enoate-2-D (3i)

The product was isolated by flash chromatography (EA/hexanes 1/100-1/20) as yellow oily liquid. Yield: 71% (1.00 D).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 – 7.05 (m, 5H), 4.01 (q, *J* = 7.1 Hz, 2H), 3.35 (s, 2H), 2.86 – 2.72 (pseudomultiplet, 1.00H), 1.15 (t, *J* = 7.1 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 170.43, 154.81 (dd, J = 286.1, 285.6 Hz), 137.81 (t, J = 2.0 Hz), 128.94, 128.73, 126.85, 84.34 (dd, J = 22.7, 17.3 Hz), 61.06, 32.69, 31.32 (t,  $J_{C-D} = 21.2$  Hz), 14.24. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -93.29 (dd, J = 46.8, 1.5 Hz, 1F), -93.92 (dd, J = 46.9, 1.7 Hz, 1F).

HRMS (ESI): calculated for  $C_{13}H_{13}DF_2O_2$  [M+Na]<sup>+</sup> : 264.0923, found: 264.0923.

# 4. Mechanism studies.



Figure S2 <sup>1</sup>H NMR spectra of deuterated compounds



Figure S3 <sup>1</sup>H NMR spectra of deuterated compounds



Figure S4 <sup>19</sup>F NMR spectra of proposed nickelacyclopropane intermediate

# 5. Synthesis monofluoroalkene



In a nitrogen-filled glove box, Ni(cod)<sub>2</sub> (0.02 mmol), L1 (0.02 mmol) and dry THF (0.3 mL) were charged into a 10-mL Schlenk tube. After stirring for 15 min, Et<sub>3</sub>N (28  $\mu$ L, 2 equiv), HCO<sub>2</sub>H (20  $\mu$ L, 5 equiv) and 1a (0.1 mmol) was added. The Schlenk tube was sealed and the reaction mixture was stirred in a metal sand bath maintained at 90 °C for 36 h. After cooled to room temperature, the reaction mixture was subjected to silica gel column chromatography directly using EA/Hexanes as eluent to give the 4 (60 yield %).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.36–7.27 (m, 5H), 6.95 (d, *J* = 83.8 Hz, 1H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.55 (d, *J* = 2.6 Hz, 2H), 1.18 (t, *J* = 7.1 Hz, 3H).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -126.89 (s).



Isomerization of **2a** to **5**. A mixture of **2a** (52 mg, 0.23 mmol) and tetra-*n*-butylammonium fluoride (TBAF) (1.2 equiv, 0.28 mL, 1 M in THF) in DMF (0.46 mL) was stirred at 12-15 °C. After the solution was stirred for 40 min at that temperature, it was quenched with aq. NH<sub>4</sub>Cl. Oily materials were extracted with a mixture of hexanes-ethyl acetate, and the extract was dried over MgSO<sub>4</sub>. On removal of the solvent, the reaction mixture was subjected to silica gel column chromatography directly using EA/Hexanes as eluent to give the **5** (59 yield %).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.43 – 7.36 (m, 3H), 7.30 – 7.22 (m, 2H), 6.35 (s, 1H), 6.24 (t, *J* = 55.2Hz, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 1.07 (t, *J* = 7.1 Hz, 3H).

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -116.28 (s, 1F).

Hydrodefluoronation of **5** to **4**. In a nitrogen-filled glove box, NiBr<sub>2</sub> (DME) (0.05 mmol), **L1** (0.06 mmol) and dry THF (0.3 mL) were charged into a 10-mL Schlenk tube. After stirring for 15 min, Et<sub>3</sub>N (28  $\mu$ L, 2 equiv), HCO<sub>2</sub>H (20  $\mu$ L, 5 equiv) and **5** was added. The Schlenk tube was sealed and the reaction mixture was stirred in a metal sand bath maintained at 90 °C for 36 h. After cooled to room temperature, the reaction mixture was subjected to silica gel column chromatography directly using EA/Hexanes as eluent to give the **4** (87 yield %).

#### 6. NMR spectra

^3.39 -3.39 -3.38 4.09 4





**2a** <sup>1</sup>H NMR, 400MHz, CDCl<sub>3</sub>














































.22 .20 .18









2h

-20

-40

-60

-100 f1 (ppm)

-80

-120

-140

-160

-180

10

0

44

-200







20

0

-10

-30

-50 -70 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)









10.19 \_3.42 \_3.42 \_3.41 4.14 4

















































**2o** <sup>1</sup>H NMR, 400MHz, CDCI<sub>3</sub>

























7.30 7.29 7.28 6.92 6.91 6.91













-1.36




















CONMe<sub>2</sub>

F、 ,F



















--3.67 --3.39



F































5.5

.0

2.5 2.0 1.5 3.0 3.5

90

-0









































