Supporting Information

Turn-on Fluorescent Aptasensing for Determination of Serotonin via Target-Induced Knot Displacement at Corona

Hagir Omer M.A., Danyang Zhang, Wenshuai Zhou, Xiaolin Yang*, Honglan Qi*

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P.R. China.

*Corresponding author. E-mail: xlyang@snnu.edu.cn; honglanqi@snnu.edu.cn.

1. Experiment

1.1 Reagents and apparatus

Serotonin (5-HT), dopamine hydrochloride (DA) and L-ascorbic acid (AA) were purchased from Sigma-Aldrich (USA). Anti-5-HT aptamer-FAM sequence and six ss-DNAs (including ss-DNA-a-Dabcyl, ss-DNA-b-Dabcyl, ss-DNA-c-Dabcyl, ss-DNAd-Dabcyl and ss-DNA-e-Dabcyl, random ss-DNA-Dabcyl) were synthesized by Sangon Biotechnology Inc. (China, Table S1). Norepinephrine (NE) and L-3,4dihydroxyphenylalanine (L-DOPA) were obtained from Wokai Chemical Reagent Co., Ltd (China). 10 mM PBS (containing 0.0018 M NaH₂PO₄, 0.0082 M Na₂HPO₄, 0.10 M KCl, 0.1 M NaCl and 0.005 M MgCl₂, pH 7.40) was used as DNA incubation solution. A Millipore Milli-Q water (18.2 M Ω ·cm) was used in this work.

FluoroMax-4 (HORIBA, USA), an electrophoresis chamber (Shanghai Titan Scientifc Co., Ltd., China), circular dichroism spectrometer (CD, Applied Photophysics Ltd., UK) were used.

Table S1. Oligonucleotide sequences used in the experiments

Oligonucleotide	sequence $(5' \rightarrow 3')$
Anti-5-HT aptamer-	FAM-(CH ₂) ₆ -CGA CTG GTA GGC AGA TAG GGG AAG
FAM	CTG ATT CGA TGC GTG GGT CG
ss-DNA-a-Dabcyl	GCC TAC CAG TCG -(CH ₂) ₆ -Dabcyl
ss-DNA-b-Dabcyl	CAG CTT CCC CTA -(CH ₂) ₆ -Dabcyl
ss-DNA-c-Dabcyl	TCA GCT TCC CCT -(CH ₂) ₆ -Dabcyl
ss-DNA-d-Dabcyl	CAG CTT CCC CTA TTT TTT TTT TTT TTT-(CH ₂) ₆ -
	Dabcyl
ss-DNA-e-Dabcyl	TCA GCT TCC CCT TTT TTT TTT TTT TTT-(CH ₂) ₆ -
	Dabcyl
Random ss-DNA-	ACT TTG TTT GGT-(CH ₂) ₆ -Dabcyl
Dabcyl	

1.2 Preparation of the FAM-ds-DNA-Dabcyl biocomplex

The biocomplexes was fabricated according to the reference.¹ Briefly, 6 μ L anti-5-HT aptamer-FAM, 18 μ L ss-DNA-Dabcyl and 1976 μ L 1× PBS were added into a 2 mL tube with a typically final concentration 30 nM of anti-5-HT aptamer-FAM and 90 nM of ss-DNA-Dabcyl. The mixture complex was incubated for 1 h at 37 °C using a mixed incubation instrument. After that, the FAM-ds-DNA-Dabcyl biocomplex was obtained without others handle step.

1.3 Fluorescence measurement for 5-HT detection

The obtained FAM-ds-DNA-Dabcyl biocomplex was incubated with different concentrations of 5-HT for 30 min at 37 °C. The fluorescence emission was recorded on the FluoroMax-4 (HORIBA, USA) with an excitation wavelength of 465 nm and slit of 5 nm. The concentration of 5-HT was quantified by the increased FL intensity at 515 nm, $\Delta I = I - I_0$, where I_0 and I is the FL intensity in the absence and presence of 5-HT, respectively.

1.4 Calculation for the quenching constant K_{SV}

The quenching constant K_{SV} was calculated according to the Stern-Volmer equation (eq. S1),

$$I_0/I = 1 + K_{\rm SV}C \quad (S1)$$

where I_0 and I are the FL intensities before and after the addition of the ss-DNA-Dabcyl, K_{SV} is the quenching constant, and C is the ss-DNA-Dabcyl concentration.

1.5 Determination of dissociation constants (K_d)

$$K_{d1} = \frac{[anti - 5 - HT aptamer - FAM][ss - DNA - Dabcyl]}{[FAM - ds - DNA - Dabcyl biocomplex]}$$
(S2)

$$K_{d2} = \frac{[ss - DNA - Dabcyl][5 - HT \bullet anti - 5 - HT aptamer - FAM]}{[FAM - ds - DNA - Dabcyl biocomplex][5 - HT]}$$
(S3)

$$K_{d} = \frac{K_{d1}}{K_{d2}}$$
(S4)

The K_d was calculated by the equation S4 using the obtained K_{d1} and K_{d2} , in which K_{d1} is dissociation constant of FAM-ds-DNA-Dabcyl biocomplex to the ss-DNA-Dabcyl and anti-5-HT aptamer-FAM (eq. S2), while K_{d2} is dissociation constant between the FAM-ds-DNA-Dabcyl biocomplex and 5-HT (eq. S3). Namely, K_{d1} was calculated using the equation S2 by fluorescence quenching method. Upon target 5-HT binding, the anti-5-HT aptamers will dissociate from the formed FAM-ds-DNA-Dabcyl

biocomplex. The K_{d2} was calculated using the equation S3 in the presence of increasing concentrations of 5-HT.

Scheme S1 Schematic diagram of the proposed turn-on fluorescent aptasensing for determination of serotonin via terminal hybridized approach.

2. Results:

Fig. S1. (A) FL spectra of 30 nM anti-5-HT aptamer-FAM to random ss-DNA-Dabcyl concentration (0, 10, 20, 30, 50 and 90 nM, respectively). Inset, anti-5-HT aptamer-FAM hybridized with random ss-DNA-Dabcyl. (B) FL spectra of anti-5-HT aptamer-FAM reacted with different concentration of 5-HT (a-g, 0, 1, 10, 100, 500 nM, 1.0 μ M and 10 μ M). (C) Anti-5-HT aptamer-FAM self-hybridization. (D) FL spectra of 30 nM anti-5-HT aptamer-FAM to ss-DNA-d-Dabcyl concentration (0, 10, 20, 30, 50 and 90 nM, respectively). Inset, the relationship between I_0/I and ss-DNA-d-Dabcyl concentration.

Fig. S2. CD spectra of 3 μ M FAM-ds-DNA-a-Dabcyl in the (a) absence and (b) presence of 30 μ M 5-HT in 10 mM PBS (pH 7.40).

Fig. S3. (A) The relationship between FL intensity and incubation time with 100 nM 5-HT for FAM-ds-DNA-d-Dabcyl knot biocomplex. (B) FL spectra of FAM-ds-DNA-d-Dabcyl reacted with different concentrations of 5-HT (a-1, 0, 0.5, 1, 5, 10, 30, 80, 50,100, 500 nM, 1.0 μ M and 10 μ M).

Fig. S4. FL spectra of FAM-ds-DNA-Dabcyl reacted with different concentrations of 5-HT (a-l, 0, 0.5, 1, 5, 10, 30, 50, 80, 100, 500 nM, 1.0 μ M and 10 μ M), (A) FAM-ds-DNA-a-Dabcyl (B) FAM-ds-DNA-b-Dabcyl (C) FAM-ds-DNA-c-Dabcyl (D) FAM-ds-DNA-e-Dabcyl (inset: calibration curve).

ds-DNA	Linear range	Detection limit
FAM-ds-DNA-a-Dabcyl	1-10 µM	3 µM
FAM-ds-DNA-b-Dabcyl	0.5-100 nM	0.2 nM
FAM-ds-DNA-c-Dabcyl	0.5-100 nM	0.5 nM
FAM-ds-DNA-d-Dabcyl	0.5-100 nM	0.1 nM
FAM-ds-DNA-e-Dabcyl	5-100 nM	45 nM

 Table S2. Comparison of analytical performance of five FAM-ds-DNA-Dabcyl biocomplex for 5-HT

Table S3. Comparison of the reported methods for determination of 5-HT

Analytical method	Sensing mechanism	Linear range	Detection limit	References
Electrochemistry	5-HT-apt-Fc	1-100 μM	0.3 μΜ	(1)
Electrochemistry	Aptamer-MB	1pM-10 nM	0.017 fM	(2)
Optical images based on liquid crystal	CTAB/aptamer	1- 1000 nM	1.68 nM	(3)
	DNA aptamer /SWCNT	0.1-1 μM	-	(4)
Fluorescence				
Fluorescence	ssDNA-SWCNT	-	100 µM	(5)
Fluorescence	ssDNA-SWCNT	0.1-50 μM	-	(6)
Fluorescence	FAM-ds-DNA-d- Dabcyl	0.5-100 nM	0.1 nM	This work

MB: methylene blue, **Fc:** ferrocene, **CTAB**: cationic surfactant hexadecyl trimethyl-ammonium bromide, **SWCNT**: single-walled carbon nanotube.

Group	aCSF(nM)	References
NE	0.98 ± 0.09	(7)
DA	3.30 ± 3.40	(7)
L-DOPA	3.81	(8)
5–HT	3.30 ± 3.40	(9)

Table S4. The controls levels of neurotransmitters in artificial cerebrospinal fluid

Fig. S5. Determination of binding constants (K_d) for anti-5-HT aptamer-FAM to 5-HT. (A) The relationship between FL intensity of 30 nM anti-5-HT aptamer-FAM reacted with different concentrations of ss-DNA-Dabcyl concentration (0, 10, 20, 30, 50, 60 and 90 nM, respectively). (B) The relationship between FL intensity of FAM-ds-DNAd-Dabcyl reacted with different concentrations of 5-HT (0, 0.1, 5, 10, 30, 80, 50,100, 500 nM, 1.0 μ M and 10 μ M). For example, 50% binding between anti-5-HT aptamer-FAM and ss-DNA-d-Dabcyl means the FL intensity of anti-5-HT aptamer-FAM of decrease to 50% of its original FL intensity.

Method	K _d	References
Field-effect transistors	30 nM	(10)
Fluorescence	127 nM	(11)
Fluorescence	6.3 µM	(6)
Fluorescence	0.307 μΜ	(4)
Fluorescence	2.3 nM	This work

Table S5. Comparison of anti-5-HT aptamer dissociation constants (K_d) valuereported by different methods.

Fig. S6. (A) FL spectra of the FAM-ds-DNA-d-Dabcyl knot biocomplex in aCSF containing different concentrations of 5-HT (a-e, blank, 30, 50, 80 and 100 nM), (B) The relationship between the increased FL intensity and 5-HT concentrations in (a) 10 mM PB (pH 7.40) and in (b) an aCSF.

Table So. 1	he recovery	(%) OI 3- H I	in artificial	cerebrospinal fluid

Added (nM)	Found (nM)	Recovery (%)
30	31.6 ± 2.3	105.3 ± 7.6
50	49 ± 1.0	98 ± 2.0
80	$\textbf{79.4} \pm \textbf{1.9}$	99.2 ± 2.3
100	100.1 ± 2.4	100.1 ± 2.4
	Added (nM) 30 50 80 100	Added (nM)Found (nM) 30 31.6 ± 2.3 50 49 ± 1.0 80 79.4 ± 1.9 100 100.1 ± 2.4

References

- 1. X. Geng, M. Zhang, H. Long, Z. Hu, B. Zhao, L. Feng and J. Du, *Anal. Chim. Acta*, 2021, **1145**, 124-131.
- 2. R. Li, X. Li, L. Su, H. Qi, X. Yue and H. Qi, *Electroanal.*, 2021, 34, 1048-1053.
- 3. J. J. Ryu and C. H. Jang, Biotechnol. Appl. Bioc., 2023, 70, 1972-1982.
- 4. M. Dinarvand, E. Neubert, D. Meyer, G. Selvaggio, F.A. Mann, L. Erpenbeck, S. Kruss, *Nano Lett.*, 2019, **19**, 6604-6611.
- 5. P. Kelich, S. Jeong, N. Navarro, J. Adams, X. Sun, H.Zhao, M.P. Landry and L. Vukovic, *ACS Nano*, 2022, **16**, 736-745.
- 6. S. Jeong, D. Yang, A.G. Beyene, J.T.D. O'Donnell, A.M.M. Gest, N. Navarro, X. Sun and M.P. Landry, *Sci. Adv.*, 2019, **5**, 1-12.
- 7. D.S. Goldstein, C. Holmes and Y. Sharabi, Brain, 2012, 135, 1900-1913.
- 8. D.S. Goldstein, S.H. Hahn, C. Holmes, C. Tifft, J. Harvey, S. Milstein and S. Kaufman, *J. Neurochem.*, 2002, **64**, 2810-2813.
- 9. A.M.K. Kumar, M. Kumar, K. Deepika, J. B. Fernandez and C. A. Eisdorfer, *Life Sci.*, 1990, **47**, 1751-1759.
- N. Nakatsuka, K.A. Yang, J.M. Abendroth, K.M. Cheung, X. Xu, H. Yang, C. Zhao, B. Zhu, Y.S. Rim, Y. Yang, P.S. Weiss, M.N. Stojanović and A.M. Andrews, *Science*, 2018, **362**, 319-324.
- M. Kubitschke, M. Müller, L. Wallhorn, M. Pulin, M. Mittag, S. Pollok, T. Ziebarth, S. Bremshey, J. Gerdey, K.C. Claussen, K. Renken, J. Groß, P. Gneiße, N. Meyer, J.S. Wiegert, A. Reiner, M. Fuhrmann and O.A. Masseck, *Nat. Commun.*, 2022, 13, 7525.