Supporting Information

Facile access to C-substituted piperazin-2-ones and mianserin derivative enabled by chemoselective carbene insertion and cyclization cascade

Dharmendra Kumar ${ }^{[a, b]}$ Urmila Unnikrishnan ${ }^{[a]}$ and Malleswara Rao Kuram* ${ }^{[a, b]}$
${ }^{\text {a }}$ Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow- 226031, U.P., India
${ }^{\mathrm{b}}$ Academy of Scientific \& Innovative Research (AcSIR), Ghaziabad 201002, India
Email: malleswara.kuram@cdri.res.in

TABLE OF CONTENTS

1	General Information	S 2
2	Preparation of starting materials	S 3
3	Optimization of reaction conditions	S 5
4	General Procedure A for the synthesis of 3aa-3nv, 4aw-4ac', 9 and 10	$\mathrm{S7}$
5	Characterization data	$\mathrm{S7}$
6	Synthetic transformation and synthesis of Mianserin derivative	S 18
7	Control Experiments	S 21
8	XRD data for 3aa	S 22
9	NMR Sperence	S 23
10		S 24

1. General Information:

All the reactions were performed using oven-dried Schlenk tubes and monitored by Merck silica gel $60 \mathrm{~F}_{254}$ precoated plates $(0.25 \mathrm{~mm})$ visualizing under UV light $(254 \mathrm{~nm})$ or I_{2} staining. Temperature mentioned for any reaction is corresponding to the oil bath temperature. Column chromatography was performed using silica gel 60-120 Å or 100-200 Å mesh of Merck Company.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ nuclear magnetic resonance spectra were recorded on Bruker Advance III 400 MHz spectrometer at $25^{\circ} \mathrm{C}$. NMRs of the products were measured in CDCl_{3}. The chemical shifts in ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR spectra are reported in parts per million (ppm) and are referenced to the residual solvent signal as the internal standard; ${ }^{1} \mathrm{H}$ NMR spectra ($\mathrm{CDCl}_{3}: \delta 7.26 \mathrm{ppm}$ or TMS: $\delta 0.00 \mathrm{ppm}$) and ${ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}: \delta 77.16\right)$. The coupling constant (J) was reported in Hertz (Hz). Splitting patterns are denoted as "s" for singlet; "d" for doublet; "t" for triplet; "q" for quartet; "sext" for sextet; "sept" for septet; "m" for multiplet, "br" for broad; "dt" for doublet of triplets; "td" for triplet of doublets. ESI-HRMS were recorded on AGILENT 6520 Q-TOF spectrometer. The melting point was recorded on STUART SMP10 digital melting point apparatus. IR spectra were recorded on Bruker FT-IR Spectrometer ALPHA II.
All commercially available chemicals were used as received unless otherwise indicated. The ethylenediamine, and starting materials of diazo compounds were purchased from GLR Innovations/TCI/Sigma and used without further purification. Copper(II) 2-ethylhexanoate was purchased from Sigma-Aldrich.

2. Preparation of Starting materials:

2.1. Preparation of α-diazo arylacetates $(1 a-1 s)^{1}$:
a) Procedure for 1a:

1a
A solution of 1,8-diazabicyclo-[5.4.0]-undec-7-ene (DBU) ($2.28 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ $(10 \mathrm{~mL})$ was added dropwise to a solution of ethyl phenyl acetate ($1.64 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv) and p toluenesulfonyl azide (TsN_{3}) ($2.37 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$. Then, the reaction mixture was stirred at room temperature for 15 hours. After completion of the reaction, water (40 mL) was added, and the resulting mixture was extracted with diethyl ether ($3 \times 40 \mathrm{~mL}$). The combined organic layers are washed with brine (40 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of the solvent under reduced pressure, the residual was purified by a silica gel column chromatography with petroleum ether (PE)/ethyl acetate (EA) (30:1) as the eluent (the eluent was PE/EA = 5:1.) to give $\mathbf{1 a}$ as a red oil ($1.73 \mathrm{~g}, 91 \%$ yield).
The same procedure was followed for the synthesis of other diazo compounds.
b) The diazo compounds employed in the reactions:

$1 \mathbf{a}$

1b

1c

1d

$1 f$

19

1 h

$1 i$

$1 e$

1k

1p

11

$1 q$

1m

1 r

1 n

10

1s

2.2. Preparation of $\mathbf{N}^{1}, \mathbf{N}^{2}$-disubstituted diamines: ${ }^{2}$

a) Step 1: In a round bottom flask charged with magnetic stirrer bar, $\mathrm{CuCl}(2.7 \mathrm{mmol}), \mathrm{KOH}(53 \mathrm{mmol})$ and iodobenzene derivatives (27 mmol), was added ethylenediamine (80 mmol) slowly at $0^{\circ} \mathrm{C}$. After being stirred overnight at room temperature, the reaction mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 times). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered off and concentrated in vacuo to give crud product which was used without purification for the next step.
b) Step 2: To the crude N-phenylethylenediamine derivatives (1.0 equiv) and $4 \AA$ Å molecular sieves (powder, 200 mg per mmol) in dry methanol was added benzaldehyde (1.01 equiv) and the mixture was stirred at room temperature for 24 h . The mixture was then cooled to $0^{\circ} \mathrm{C}$, and was added NaBH_{4} (1.5 equiv) portion wise and the reaction was stirred until completion. The reaction mixture was then filtered through a plug of Celite and the filtrate was evaporated under vacuo. The residue was then purified by flash column chromatography ($\mathrm{DCM} / \mathrm{MeOH}$) to afford pure N^{1}-benzyl- N^{2}-phenylethylenediamine.
Following diamines were prepared using other reported procedures: $\mathbf{2 l},{ }^{3}$ (then reduction with LiAlH_{4} in THF), $\mathbf{2 m} \mathbf{m}^{4}$ (then reduction with LiAlH_{4} in THF), $\mathbf{2 w}$, ${ }^{5}$ and $\mathbf{2 z .}{ }^{3}$
c) The diamine substrates employed in the reactions:

2i

2j

2k

20

21

2u

$2 r$

2v

2w

2s

2x

2t

$2 z$

2a'
$\mathrm{TsHN} \sim_{\mathrm{NHPh}}$

2b'

2c'

2d'

3. Optimization of reaction conditions:

Entry	Catalyst (5 mol\%)	Ligand (6 mol\%)	Solvent	Temp	Yield of 3aa
$1^{\text {b }}$	$\mathrm{Cu}(\mathrm{hfacac})_{2} \times \mathrm{XH}_{2} \mathrm{O}$	(rac)-BINOL	THF	$60^{\circ} \mathrm{C}$	53\%
$2^{\text {c }}$	$\mathrm{Cu}(\mathrm{hfacac})_{2} \cdot \mathrm{XH}_{2} \mathrm{O}$	(rac)-BINOL	THF	$60^{\circ} \mathrm{C}$	37\%
$3^{\text {d }}$	$\mathrm{Cu}(\mathrm{hfacac})_{2} \cdot \mathrm{XH}_{2} \mathrm{O}$	(rac)-BINOL	THF	$60^{\circ} \mathrm{C}$	48\%
4	$\mathrm{Cu}(\mathrm{hfacac})_{2} \cdot \mathrm{XH}_{2} \mathrm{O}$	(rac)-BINOL	THF	$60^{\circ} \mathrm{C}$	54\%
5	$\begin{aligned} & \mathrm{Cu}(\text { hfacac })_{2} \times \mathrm{xH}_{2} \mathrm{O} \\ & (10 \mathrm{~mol}) \text {) } \end{aligned}$	(rac)-BINOL (12 mol\%)	THF	$60^{\circ} \mathrm{C}$	39\%
6	$\mathrm{Cu}(\mathrm{hfacac})_{2} \times \mathrm{xH}_{2} \mathrm{O}$	(rac)-BINOL	THF	RT	trace
$7{ }^{\text {e }}$	$\mathrm{Cu}(\mathrm{hfacac})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$	$(r a c)-\mathrm{BINOL}$	THF	$60^{\circ} \mathrm{C}$	6\%
8	$\mathrm{Cu}(\mathrm{hfacac})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$	-	THF	$60^{\circ} \mathrm{C}$	44\%
9	$\mathrm{Cu}(\text { hfacac })_{2} \times \mathrm{XH}_{2} \mathrm{O}$	-	TFE	$60^{\circ} \mathrm{C}$	44\%
10	$\mathrm{Cu}(\text { hfacac })_{2} \times \mathrm{xH}_{2} \mathrm{O}$	-	ACN	$60^{\circ} \mathrm{C}$	20\%
11	$\mathrm{Cu}(\mathrm{hfacac})_{2} \times \mathrm{XH}_{2} \mathrm{O}$	-	CHCl_{3}	$60^{\circ} \mathrm{C}$	41\%
12	$\mathrm{Cu}(\mathrm{hfacac})_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$	-	Aceto ne	$60^{\circ} \mathrm{C}$	17\%
13	$\mathrm{Cu}(\text { hfacac })_{2} \cdot \mathrm{XH}_{2} \mathrm{O}$	-	$\begin{aligned} & \text { 2-Me } \\ & \text { THF } \end{aligned}$	$60^{\circ} \mathrm{C}$	55\%

14	$\mathrm{Cu}(\mathrm{hfacac})_{2} \mathrm{xH}_{2} \mathrm{O}$	-	DCE	$60^{\circ} \mathrm{C}$	71\%
15	$\mathrm{Cu}(\text { hfacac })_{2} \mathrm{xH}_{2} \mathrm{O}$	(rac)-BINOL	DCE	$60^{\circ} \mathrm{C}$	65\%
16	$\mathrm{Cu}(\text { hfacac })_{2} \mathrm{xH}_{2} \mathrm{O}$	1,10- Phenanthroline	DCE	$60^{\circ} \mathrm{C}$	27\%
17	$\mathrm{Cu}(\text { hfacac })_{2} \mathrm{xH}_{2} \mathrm{O}$	2,2'-bipyridyl	DCE	$60^{\circ} \mathrm{C}$	49\%
18	$\mathrm{Cu}(\text { hfacac })_{2} \mathrm{xH}_{2} \mathrm{O}$	dppe	DCE	$60^{\circ} \mathrm{C}$	62\%
19	$\mathrm{Cu}(\mathrm{hfacac})_{2} \mathrm{xH}_{2} \mathrm{O}$	dBbpy	DCE	$60^{\circ} \mathrm{C}$	25\%
20	$\mathrm{Cu}(\text { hfacac })_{2} \mathrm{xH}_{2} \mathrm{O}$	(rac)-BINAP	DCE	$60^{\circ} \mathrm{C}$	Trace
$21^{\text {f }}$	$\mathrm{Cu}(\text { hfacac })_{2} \cdot \mathrm{xH}_{2} \mathrm{O}$	-	DCE	$60^{\circ} \mathrm{C}$	66\%
$22^{\text {g }}$	$\mathrm{Cu}(\mathrm{hfacac})_{2} \mathrm{xH}_{2} \mathrm{O}$	-	DCE	$60^{\circ} \mathrm{C}$	69\%
23	$\mathrm{Cu}(\text { hfacac })_{2} \times \mathrm{XH}_{2} \mathrm{O}$ (10 mol\%)	-	DCE	$60^{\circ} \mathrm{C}$	58\%
24	$\mathrm{Cu}(\mathrm{acac})_{2} \mathrm{xH}_{2} \mathrm{O}$	-	DCE	$60^{\circ} \mathrm{C}$	61\%
25	$\mathrm{Cu}(\mathrm{OTf})_{2}$	-	DCE	$60^{\circ} \mathrm{C}$	60\%
26	-	-	DCE	$60^{\circ} \mathrm{C}$	<5\%
27	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} . \mathrm{PF}_{6}$	-	DCE	$60^{\circ} \mathrm{C}$	18\%
28	CuBr_{2}	-	DCE	$60^{\circ} \mathrm{C}$	60\%
29	CuTc	-	DCE	$60^{\circ} \mathrm{C}$	67\%
30	$\mathrm{Rh}(\mathrm{esp})_{2}(2 \mathrm{~mol} \%)$	-	DCE	$60^{\circ} \mathrm{C}$	66\%
31	Cul	-	DCE	$60^{\circ} \mathrm{C}$	30\%
32	CuBr (10 mol\%)	-	DCE	$60^{\circ} \mathrm{C}$	30\%
33	$\mathrm{CuCl}_{2}(10 \mathrm{~mol} \%)$	-	DCE	$60^{\circ} \mathrm{C}$	52\%
34	CuCl	-	DCE	$60^{\circ} \mathrm{C}$	45\%
35	$\mathrm{Cu}_{2} \mathrm{O}$ (10 mol\%)	-	DCE	$60^{\circ} \mathrm{C}$	11\%
36	$\mathrm{Pd}(\mathrm{TFA})_{2}$	-	DCE	$60^{\circ} \mathrm{C}$	<10\%
37	$\mathrm{Zn}(\mathrm{OTf})_{2}$	-	DCE	$60^{\circ} \mathrm{C}$	<10\%
$38^{\text {b }}$	$\mathrm{Cu}(\mathrm{OAc}) / 10 \mathrm{~mol} \%$	-	DCE	$60^{\circ} \mathrm{C}$	86\%
$39^{\text {b }}$	$\mathrm{Cu}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}$	-	DCE	$60^{\circ} \mathrm{C}$	80\%
$40^{\text {b }}$	$\mathrm{Cu}(2-$ ethylhexanoate $)_{2}$	-	DCE	$60^{\circ} \mathrm{C}$	91\%

aReaction condition: 1a (0.1 mmol), 2a(2.0 equiv.), catalyst ($5 \mathrm{~mol} \%$), ligand ($6 \mathrm{~mol} \%$) in 1 mL solvent at indicated temp for 12 h
 (1.0 equiv.) and 1a (1.5 equiv.). fUnder N_{2}. gUnder O_{2}. $\mathrm{CuTc}=\operatorname{Copper(I)-thiophene-2-carboxylate~TFE~}=2,2,2$-trifluoroethanol, DCE $=$ Dichloroethane, $\mathrm{ACN}=$ acetonitrile, $\mathrm{dppe}=1,2$-Bis(diphenylphosphino)ethane, $\mathrm{dBbpy}=4,4^{\prime}$-di-tert-butyl-2,2'-bipyridine, $\mathrm{BINOL}=$ 1,1'-Bi-2-naphthol, BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl.

Unsuccessful substrates

unidentified product

 formed

4. General Procedure A for the synthesis of 3aa-3nv, 4aw-4ac', 9 and 10:

In an oven-dried 25 mL Schlenk tube, charged with a magnetic stirrer bar, was added $\mathrm{N}^{1}, \mathrm{~N}^{2}$-disubstituted ethylenediamine 2 (2.0 equiv.), Cu(2-ethylhexanoate) $)_{2}(5 \mathrm{~mol} \%$) in dichloroethane ($2.5-5 \mathrm{~mL}$). To this was added the diazo compound $\mathbf{1}$ ($0.25-0.50 \mathrm{mmol}, 1.0$ equiv.), and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 hours. The solvent was evaporated under reduced pressure to afford the crude product. The crude product was purified by silica gel (100-200 mesh) column chromatography (Hexane/EtOAc) to afford corresponding piperazin-2-ones 3aa-3nv, 4aw-4ac', 9 and $\mathbf{1 0}$.

5. Characterization data

1-benzyl-3,4-diphenylpiperazin-2-one (3aa):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 a}$ (226.3 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3aa as a white solid ($155.8 \mathrm{mg}, 0.455 \mathrm{mmol}, 91 \%$ yield). m.p.: 115-125 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.42$ (20\% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ ($\mathrm{d}, \mathrm{J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl 3): $\delta 168.4,147.9,138.2,136.4,129.4,128.8,128.0,127.9,127.7,126.7,118.4,113.2$, 65.4, 49.8, 44.2, 43.5. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ 343.1810; found 343.1799. IR: v(cm ${ }^{-1}$) 2921, 2855, 1645, 1272.

1-benzyl-4-phenyl-3-(p-tolyl)piperazin-2-one (3ba):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 b}$ ($102.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2a ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3ba as a sticky solid ($156.8 \mathrm{mg}, 0.44 \mathrm{mmol}, 88 \%$ yield). R_{f} $=0.48$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 4 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $168.5,147.9,137.5,136.5,135.1,129.4,129.3,128.7,128.0,127.7,126.6,118.3,113.1,65.2,49.8,44.1$, 43.4, 21.1. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O} 357.1967$; found 357.1961. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3040,2967$, 1668, 1253.

1-benzyl-3-(3,4-dimethoxyphenyl)-4-phenylpiperazin-2-one (3ca):
 Prepared according to the general procedure \mathbf{A} using $\mathbf{1 c}$ ($125.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2a ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (21% Ethyl acetate in Hexane) afforded the desired product 3ca as a solid ($195.2 \mathrm{mg}, 0.485 \mathrm{mmol}, 97 \%$ yield). m.p.: $123-138{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.457$ (40% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97 (dd, $J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H})$, $4.62(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl $_{3}$): $\delta 168.4,149.2,148.7,148.0,136.5,130.4,129.3,128.8,128.0,127.7,118.8,118.5$, 113.4, 111.0, 109.9, 65.2, 56.0, 55.9, 49.9, 44.1, 43.6. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3} 403.2022$; found 403.2012. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 2908,2838,1657,1232$.

1-benzyl-3-(4-fluorophenyl)-4-phenylpiperazin-2-one (3da):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 d}$ ($104.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2a ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (9% Ethyl acetate in Hexane) afforded the desired product 3da as a sticky solid ($173.0 \mathrm{mg}, 0.48 \mathrm{mmol}, 96 \%$ yield). R_{f} $=0.25$ (15% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.54-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.84-$ 6.78 (m, 1H), $6.70-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-114.9. ${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.2,162.6$ (d, J = 246.3 Hz), 147.8, 136.3, 133.9 (d, J = 2.8 Hz), 129.4, $128.8,128.5(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 128.1,127.8,118.8,115.6$ ($\mathrm{d}, \mathrm{J}=21.4 \mathrm{~Hz}$), 113.5, 65.0, 50.0, 44.2, 43.7. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}$ 361.1716; found 361.1707. IR: v(cm ${ }^{-1}$) 3035, 2925, 2861, 1647, 1270.

1-benzyl-3-(4-chlorophenyl)-4-phenylpiperazin-2-one (3ea):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 e}$ ($56.1 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathbf{2 a}$ ($113.1 \mathrm{mg}, 0.5 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3 ea as a sticky solid ($83.8 \mathrm{mg}, 0.22 \mathrm{mmol}, 89 \%$ yield). R_{f} $=0.25$ (15% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.48(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 2H), $7.34-7.27$ (m, 5H), $7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 1 \mathrm{H})$, $6.67(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.68 - $3.60(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , CDCl_{3}): $\delta 167.9,147.7,136.8,136.2,133.7,129.4,128.9,128.8,128.2,128.0,127.8,118.9,113.4,65.0,49.9$, 44.2, 43.6. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}$ 377.1421; found 377.1413. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3065,3035$, 2972, 1669, 1254.

1-benzyl-3-(4-bromophenyl)-4-phenylpiperazin-2-one (3fa):

Prepared according to the general procedure A using $\mathbf{1 f}$ ($67.2 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathbf{2 a}$ ($113.1 \mathrm{mg}, 0.5 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product $\mathbf{3 f a}$ as a sticky solid ($88.5 \mathrm{mg}, 0.21 \mathrm{mmol}, 84 \%$ yield). $\mathrm{R}_{\mathrm{f}}=$ 0.24 (15% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.81$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl $\left.{ }_{3}\right)$:
$\delta 167.8,147.7,137.4,136.2,131.9,129.4,128.8,128.6,128.0,127.8,121.9,118.9,113.4,65.1,50.0,44.3$, 43.6. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}$ 421.0916; found 421.0910. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3035,2928,2859$, 1666, 1278, 1253.

1-benzyl-4-phenyl-3-(4-(trifluoromethyl)phenyl)piperazin-2-one (3ga):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 g}$ ($64.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathbf{2 a}$ ($113.1 \mathrm{mg}, 0.5 \mathrm{mmol}$). Flash column chromatography (9% Ethyl acetate in Hexane) afforded the desired product 3ga as a sticky solid ($68.7 \mathrm{mg}, 0.167 \mathrm{mmol}, 67 \%$ yield). R_{f} $=0.28$ (15% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.68$ (d, J = 8.2 Hz , $2 \mathrm{H}), 7.59$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30-7.25$ (m, 3H), $7.24-7.18$ (m, 2H), $7.16-7.11$ (m, $2 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}): δ-62.4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.6,147.6,142.5,136.2,130.2$ (q, J = 32.2 Hz), 129.5 , $128.8,128.0,127.9,127.3,126.9,125.7(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 124.2(\mathrm{~d}, \mathrm{~J}=271.9 \mathrm{~Hz}), 119.1,113.5,65.4,50.0,44.4$, 43.7. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$ 411.1684; found 411.1680. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3066,3034,2938$, 2878, 1670, 1252.

1-benzyl-4-phenyl-3-(o-tolyl)piperazin-2-one (3ia):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 i}$ ($102.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2a ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (9% Ethyl acetate in Hexane) afforded the desired product 3ia as a sticky solid ($103.3 \mathrm{mg}, 0.29 \mathrm{mmol}, 58 \%$ yield). $\mathrm{R}_{\mathrm{f}}=$ 0.257 (15% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$): $\delta 7.33-7.25(\mathrm{~m}, 4 \mathrm{H})$, $7.24-7.15(\mathrm{~m}, 6 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{td}, J=7.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 1 \mathrm{H})$, $3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.6,148.7,138.1,137.8,136.6,131.3,129.3,128.8,128.3,127.8,127.7,127.4,125.9$, 120.2, 116.3, 63.4, 50.1, 44.9, 44.1, 20.0. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O} 357.1967$; found 357.1966. IR: v(cm $\left.{ }^{-1}\right) 3053,2969,2935,1662,1292$.

1-benzyl-3-(2-bromophenyl)-4-phenylpiperazin-2-one (3ja):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 j}$ ($134.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 a}$ ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (11% Ethyl acetate in Hexane) afforded the desired product $\mathbf{3 j a}$ as a solid ($176.9 \mathrm{mg}, 0.42 \mathrm{mmol}, 84 \%$ yield). m.p.: $95-$ $103{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.15$ (15% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60$ (dd, $\mathrm{J}=$ $7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (dd, J = 7.7, 1.5 Hz, 1H), $7.36-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}+$ $\left.\mathrm{CDCl}_{3}\right), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 3 \mathrm{H}), 5.61(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}$, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.50-$ 3.43 (m, 1H), 3.41 - 3.33 (m, 1H). $\left.{ }^{13}{ }^{\text {C }}{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.5,148.7,139.2,136.5,133.6,129.4$, $129.3,129.2,128.8,128.4,127.8,127.5,125.7,121.2,118.1,65.2,50.3,46.4,44.9$. HRMS (ESI) m/z: [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}$ 421.0916; found 421.0906. IR: v(cm ${ }^{-1}$) 3027, 2907, 2824, 1641, 1261.

1-benzyl-3-(naphthalen-1-yl)-4-phenylpiperazin-2-one (3ka):

Prepared according to the general procedure A using $\mathbf{1 k}$ ($60.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathbf{2 a}$ ($113.1 \mathrm{mg}, 0.5 \mathrm{mmol}$). Flash column chromatography (10% Ethyl acetate in Hexane) afforded the desired product 3ka as a white solid ($63.7 \mathrm{mg}, 0.162 \mathrm{mmol}, 65 \%$ yield). m.p.: 142-146 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.5$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}$, $3 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H})$, $3.69-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.1,148.1$, $136.5,135.3,134.4,131.7,129.4,128.9,128.8,128.7,128.3,127.8,126.5,126.0,125.2,125.1,125.0,119.8$, 115.5, 63.3, 50.2, 45.0, 43.8. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 393.1967; found 393.1963. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3062,2920,2852,1660,1295$.

1-benzyl-4-phenyl-3-(pyridin-3-yl)piperazin-2-one (3la):

Prepared according to the general procedure A using 11 ($95.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 a}$ ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (30% Ethyl acetate in Hexane) afforded the desired product 3la as a red sticky ($139 \mathrm{mg}, 0.405 \mathrm{mmol}, 81 \%$ yield). $\mathrm{R}_{\mathrm{f}}=$ 0.2 (60% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.77$ (s, 1H), 8.57 (s , 1 H), 7.88 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 167.4,149.1,148.6,147.6,136.1,135.1,134.0,129.5,128.8,128.1,127.9,123.5,119.5,114.2$, 63.8, 50.1, 44.2, 43.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}$ 344.1763; found 344.1761. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$ 3048, 2977, 2880, 2825, 1669, 1293, 1256.

1,3-dibenzyl-4-phenylpiperazin-2-one (3ma):

Prepared according to the general procedure A using 1m (102 mg, 0.5 mmol$)$ and $\mathbf{2 a}$ ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (9% Ethyl acetate in Hexane) afforded the desired product 3 ma as a red sticky ($58.8 \mathrm{mg}, 0.165 \mathrm{mmol}, 33 \%$ yield). $\mathrm{R}_{\mathrm{f}}=$ 0.35 (20\% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.21(\mathrm{~m}, 5 \mathrm{H})$, $7.20-7.12(\mathrm{~m}, 7 \mathrm{H}), 6.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.27(\mathrm{~m}, 3 \mathrm{H}), 3.25-3.17(\mathrm{~m}$, 1H), $3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.9,147.9,138.0,136.4$, 130.3, 129.5, 128.7, 128.2, 127.6, 126.7, 118.8, 114.5, 62.5, 50.1, 44.4, 42.4, 37.1. HRMS (ESI) m/z: [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 357.1967; found 357.1966. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3037,2974,1654,1257$.

1-benzyl-3-hexyl-4-phenylpiperazin-2-one (3na):

Prepared according to the general procedure \mathbf{A} using 1n ($99 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2a (226.3 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3na as a yellow oil ($68.3 \mathrm{mg}, 0.195 \mathrm{mmol}, 39 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.6$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 4 \mathrm{H})$, $6.86-6.79(\mathrm{~m}, 3 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 2 \mathrm{H})$, $1.53-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.89-0.81(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$,
CDCl_{3}): $\delta 170.3,148.6,136.7,129.4,128.7,128.1,127.6,119.1,115.2,61.4,49.9,44.4,42.2,32.0,31.7,29.3$, 26.4, 22.6, 14.1. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O} 351.2436$; found 351.2441. IR: v(cm ${ }^{-1}$) 3038, 2935, 2871, 1655, 1257.

1-benzyl-3,4-diphenylpiperazin-2-one (3aa):

Prepared according to the general procedure A using $\mathbf{1 0}$ ($88.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2a ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3aa as a white solid ($162.6 \mathrm{mg}, 0.475 \mathrm{mmol}, 95 \%$ yield). m.p.: 115-125 ${ }^{\circ} \mathrm{C}$.

1-benzyl-3,4-diphenylpiperazin-2-one (3aa):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 p}$ ($126.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 a}$ ($226.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3aa as a white solid ($166.0 \mathrm{mg}, 0.485 \mathrm{mmol}, 97 \%$ yield). m.p.: 115-125 ${ }^{\circ} \mathrm{C}$.

1-(4-methoxybenzyl)-3,4-diphenylpiperazin-2-one (3ab):

Prepared according to the general procedure \mathbf{A} using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2b ($256.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (10% Ethyl acetate in Hexane) afforded the desired product 3ab as a white solid ($182.5 \mathrm{mg}, 0.49 \mathrm{mmol}, 98 \%$ yield). m.p.: $150-160^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.38$ (20\% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.52(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H})$, $7.11-7.07$ (m, 2H), $6.82-6.77(\mathrm{~m}, 3 \mathrm{H}), 6.68$ (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.43$ (s, 1H), 4.65 (d, J = $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.27(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,159.2,147.9,138.2,129.5,129.4,128.8,128.5,127.8,126.7$, 118.4, 114.2, 113.2, 65.5, 55.3, 49.2, 44.3, 43.2. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ 373.1911; found 373.1915. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3032,2931,2837,1653,1314,1221$.

1-(4-(dimethylamino)benzyl)-3,4-diphenylpiperazin-2-one (3ac):

Prepared according to the general procedure \mathbf{A} using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 c}$ ($269.4 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (15% Ethyl acetate in Hexane) afforded the desired product 3ac as a solid ($175.4 \mathrm{mg}, 0.455 \mathrm{mmol}, 91 \%$ yield). m.p.: $135-140^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.38\left(25 \%\right.$ Ethyl acetate in Hexane). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 7.54$ (d, J = 7.4 Hz, 2H), 7.36-7.28 (m, 3H), 7.23-7.19 (m, 2H), 7.06 (d, J=7.6 Hz, 2H), 6.78 $(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 4 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}$ $=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, CDCl_{3}): $\delta 168.1,150.2,147.9,138.3,129.3,128.7,127.7,126.7,123.9,118.2,113.1,112.6,65.5,49.2$, 44.3, 42.8, 40.6. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}$ 386.2232; found 386.2227. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 2905$, 2863, 1655, 1282, 1214.

1-(4-fluorobenzy)-3,4-diphenylpiperazin-2-one (3ad):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2d (244.3 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (12% Ethyl acetate in Hexane) afforded the desired product 3ad as a white solid ($167.6 \mathrm{mg}, 0.465 \mathrm{mmol}, 93 \%$ yield). m.p.: 138-142 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.34$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52$ ($\mathrm{d}, \mathrm{J}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}): $\delta-114.5 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.4,162.4(\mathrm{~d}, \mathrm{~J}=246.2 \mathrm{~Hz}), 147.9,138.1,132.3(\mathrm{~d}, \mathrm{~J}=$ $3.1 \mathrm{~Hz}), 129.7(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 129.4,128.8,127.9,126.7,118.6,115.7(\mathrm{~d}, \mathrm{~J}=21.3 \mathrm{~Hz}), 113.3,65.5,49.2,44.2$, 43.6. HRMS (ESI) m/z: [M+H] $]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O} 361.1711$; found 361.1715. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3048,2899,1647$, 1217.

1-(4-chlorobenzy)-3,4-diphenylpiperazin-2-one (3ae):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 e}$ ($260.7 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (10% Ethyl acetate in Hexane) afforded the desired product 3 ae as a white solid ($165.8 \mathrm{mg}, 0.44 \mathrm{mmol}, 88 \%$ yield). m.p.: $166-170{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.19$ (15% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51$ (d, J = 6.9 Hz, 2H), $7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}$ $=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: ठ 168.4, 147.8, 138.0, 135.0, 133.6, 129.5, 129.4, 129.0, 128.8, 128.0, 126.7, 118.6, 113.3, 65.5, 49.3, 44.2, 43.7. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O} 377.1415$; found 377.1419. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3026,2925,2850$, 1651, 1265, 1215.

1-(4-bromobenzyl)-3,4-diphenylpiperazin-2-one (3af):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 f}$ (305.2 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (10% Ethyl acetate in Hexane) afforded the desired product 3af as a brown solid ($202.2 \mathrm{mg}, 0.48 \mathrm{mmol}, 96 \%$ yield). m.p.: 187-190 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.36$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta 7.52$ ($\mathrm{d}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.45(, \mathrm{~m}, 2 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl_{3}): $\delta 168.4,147.8,138.0,135.5,131.9,129.7,129.4,128.8,128.0,126.7,121.7,118.6,113.3,65.4$, 49.4, 44.2, 43.7. HRMS (ESI) m/z: [M+H] $]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O}$ 421.0921; found 421.0909. IR: v($\left.\mathrm{cm}^{-1}\right) 3022$, 2839, 1650, 1276, 1216.

1-(4-iodobenzyl)-3,4-diphenylpiperazin-2-one (3ag):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 g}$ (352.2 $\mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (12% Ethyl acetate in Hexane) afforded the desired product 3ag as a solid ($210.7 \mathrm{mg}, 0.45 \mathrm{mmol}, 90 \%$ yield). m.p.: $188-193^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=$ 0.2 (15\% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.53$ $7.51(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=14.9$
$\mathrm{Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.4$, 147.8, 138.0, 137.9, 136.2, 129.9, 129.4, 128.8, 128.0, 126.7, 118.6, 113.2, 93.2, 65.4, 49.5, 44.2, 43.7. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ 469.0771; found 469.0763. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3026,2838,1653,1283,1218$.

1-(furan-2-ylmethyl)-3,4-diphenylpiperazin-2-one (3ah):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 h}$ (216.2 $\mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3ah as a solid ($141.2 \mathrm{mg}, 0.425 \mathrm{mmol}, 85 \%$ yield). m.p.: $88-95^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.34$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51-7.49$ (m, 2H), $7.36-7.27$ ($\mathrm{m}, 4 \mathrm{H}$), $7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.31$ (dd, J = 3.1, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.63$ ($\mathrm{m}, 1 \mathrm{H}$), 3.56 - $3.43(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.1,150.0,147.9,142.6,138.0,129.4,128.7$, 127.8, 126.8, 118.5, 113.4, 110.5, 108.7, 65.3, 44.0, 43.8, 42.7. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ 333.1598; found 333.1601. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3034,2935,2863,1651,1286,1233$.

3,4-diphenyl-1-(thiophen-2-ylmethyl)piperazin-2-one (3ai):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2i (232.3 $\mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3ai as a solid ($158.5 \mathrm{mg}, 0.455 \mathrm{mmol}, 91 \%$ yield). m.p.: $113-120^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=$ 0.4 (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.36-$
7.27 (m, 3H), $7.24-7.19$ (m, 3H), 6.92 (d, J = $3.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.48$ ($\mathrm{m}, 2 \mathrm{H}$), $3.47-3.42(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,147.9,138.9,138.0,129.4,128.7,127.9$, 127.0, 126.8, 125.8, 118.6, 113.5, 65.4, 44.7, 44.2, 43.5. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{OS}$ 349.1375; found 349.1375. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$ 2921, 2856, 1647, 1280, 1225.

1-((1-methyl-1H-pyrrol-2-yl)methyl)-3,4-diphenylpiperazin-2-one (3aj):

Prepared according to the general procedure \mathbf{A} using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 j}$ (229.3 $\mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (14% Ethyl acetate in Hexane) afforded the desired product 3aj as a solid ($151.9 \mathrm{mg}, 0.44 \mathrm{mmol}, 88 \%$ yield). m.p.: $105-109{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.48$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ (d, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 $7.27(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{t}, \mathrm{J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10-6.07(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.7,147.8,138.2,129.4,128.8,127.9,126.6,126.2,123.7,118.3,113.0,111.0,106.9,65.6,44.1,41.9$, 40.9, 33.7. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}$ 346.1919; found 346.1918. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$ 2925, 2854, 1655, 1294, 1220.

1-((1H-indol-3-yl)methyl)-3,4-diphenylpiperazin-2-one (3ak):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2k (307.3 $\mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (25% Ethyl acetate in Hexane) afforded the desired product 3ak as a sticky solid ($106.8 \mathrm{mg}, 0.28 \mathrm{mmol}, 56 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.37$ (40% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25$ (br s, 1H), $7.53(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (d, J=7.9 Hz, 1H), $7.37-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.98$
$(\mathrm{m}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.31(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.1,147.9,138.3,136.5$, $129.3,128.7,127.8,126.8,126.7,124.2,122.4,120.0,119.1,118.4,113.3,111.3,110.6,65.7,44.1,42.5$, 41.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}$ 382.1914; found 382.1913. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3344,3055,2971$, 1664, 1254.

1-(2-(1H-indol-3-yl)ethyl)-3,4-diphenylpiperazin-2-one (3al):

 Prepared according to the general procedure A using 1a ($56 \mathrm{mg}, 0.29 \mathrm{mmol}$) and $\mathbf{2 l}$ ($165 \mathrm{mg}, 0.58 \mathrm{mmol}$). Flash column chromatography (22% Ethyl acetate in Hexane) afforded the desired product 3 3al as a sticky solid ($89.4 \mathrm{mg}, 0.226 \mathrm{mmol}, 78 \%$ yield). R_{f} $=0.51$ (40% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82$ (br s, 1H), 7.56 $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.77$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.59(\mathrm{~m}, 3 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.46(\mathrm{~m}$, $1 \mathrm{H}), 3.41-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.2$, $147.8,138.4,136.3,129.3,128.7,127.7,127.2,126.8,122.5,122.0,119.4,118.5,118.2,113.0,112.4,111.3$, 65.4, 48.2, 45.4, 44.0, 23.5. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}$ 396.2070; found 396.2087. IR: v(cm ${ }^{-}$ $\left.{ }^{1}\right) 3353,3064,3027,2965,2937,1666,1254$.

2,3-diphenylhexahydropyrrolo[1,2-a]pyrazin-4(1H)-one (3am):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 m}$ (176.2 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (22% Ethyl acetate in Hexane) afforded the desired product 3am as a gray powder ($71.6 \mathrm{mg}, 0.245 \mathrm{mmol}, 49 \%$ yield). m.p.: 160-170 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.28$ (40% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.22(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.12$ $(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl_{3}): $\delta 167.2,147.9,138.7,129.3,128.8,127.8,126.4,118.1,112.8,65.7,54.1,51.1,45.3,30.8,23.0$. HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$ 293.1654; found 293.1653. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$ 2960, 2916, 2849, 1657, 1249.

1-benzyl-3-phenyl-4-(p-tolyl)piperazin-2-one (3an):

Prepared according to the general procedure A using 1a ($39 \mathrm{mg}, 0.21 \mathrm{mmol}$) and $\mathbf{2 n}$ (100 mg , 0.42 mmol). Flash column chromatography (9% Ethyl acetate in Hexane) afforded the desired product 3an as a sticky solid ($74.8 \mathrm{mg}, 0.149 \mathrm{mmol}, 71 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.42$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.51(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24$ $\left(\mathrm{m}, 3 \mathrm{H}+\mathrm{CDCl}_{3}\right), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}$, $1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 2 \mathrm{H})$, 3.33 - 3.27 (m, 1H), $2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.5,145.8,138.4,136.5,129.9,128.8$, 128.7, 128.1, 127.9, 127.8, 127.7, 126.9, 113.7, 65.7, 49.9, 44.4, 43.7, 20.3. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 357.1961; found 357.1965. IR: $v\left(\mathrm{~cm}^{-1}\right) 3058,2927,2877,1668,1299$.

1-benzyl-4-(4-methoxyphenyl)-3-phenylpiperazin-2-one (3ao):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 0}$ (256.3 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (14\% Ethyl acetate in Hexane) afforded the desired product 3ao as a solid (137.7 mg , 0.37 mmol , 74% yield). m.p.: 95-101 ${ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.316$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49$ (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 $7.27(\mathrm{~m}, 6 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.67$ $(\mathrm{d}, \mathrm{J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.44(\mathrm{~m}$, 1H), $3.42-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.5,153.3$, 142.6, 138.6, 136.6, 128.8, 128.6, 128.1, 127.8, 127.7, 127.3, 116.4, 114.8, 66.6, 55.7, 50.0, 45.1, 44.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ 373.1916; found 373.1914. IR: $v\left(\mathrm{~cm}^{-1}\right) 3047,2982,2828,1665,1291$, 1246.

1-benzyl-4-(4-fluorophenyl)-3-phenylpiperazin-2-one (3ap):

Prepared according to the general procedure A using 1a ($66.5 \mathrm{mg}, 0.35 \mathrm{mmol}$) and $\mathbf{2 p}$ (171 $\mathrm{mg}, 0.7 \mathrm{mmol}$). Flash column chromatography (10% Ethyl acetate in Hexane) afforded the desired product 3ap as a solid ($99.6 \mathrm{mg}, 0.276 \mathrm{mmol}$, 79% yield). m.p.: $104-108{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.18$ (15\% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.48$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.36 $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23\left(\mathrm{~m}, 3 \mathrm{H}+\mathrm{CDCl}_{3}\right), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.58$ (m, 2H), $5.30(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H})$, $3.52-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-126.1 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100 MHz, CDCl_{3}): $\delta 168.3,156.6(\mathrm{~d}, \mathrm{~J}=237.6 \mathrm{~Hz}$), 144.7, 144.6, 138.1, 136.4, 128.8 (d, J = 2.5 Hz), 128.1, 127.9 (d, J = 19.3 Hz), 127.0, 115.9, 115.7, 115.1 ($\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}$), 66.2, 49.9, 44.9, 43.7. HRMS (ESI) m/z: [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}$ 361.1716; found 361.1724. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3058,2905,1664,1284,1213$.

1-benzyl-4-(3-chlorophenyl)-3-phenylpiperazin-2-one (3aq):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2q (260.7 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (10\% Ethyl acetate in Hexane) afforded the desired product 3aq as a solid ($173.3 \mathrm{mg}, 0.46 \mathrm{mmol}$, 92% yield). m.p.: $116-120^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.457$ (20\% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.49(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}$, $1 \mathrm{H}), 6.66(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-6.48(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 168.0,148.8,137.4,136.2,135.2,130.3,128.9,128.8,128.1,128.0,127.8,126.4,118.1,112.7,111.1,65.1$, 49.8, 44.2, 43.1. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{O}$ 377.1421; found 377.1422. IR: v(cm ${ }^{-1}$) 3062, 3029, 2928, 2855, 1649, 1272, 1240.

1-benzyl-4-(4-bromophenyl)-3-phenylpiperazin-2-one (3ar):

Prepared according to the general procedure A using 1a ($50.1 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathbf{2 r}$ (161 $\mathrm{mg}, 0.52 \mathrm{mmol})$. Flash column chromatography (10% Ethyl acetate in Hexane) afforded the desired product 3ar as a solid ($89.8 \mathrm{mg}, 0.213 \mathrm{mmol}, 82 \%$ yield). m.p.: $131-135^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.22$ (15% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37-$ $7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H})$, $4.69(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.39(\mathrm{~m}, 2 \mathrm{H})$, 3.33 - $3.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,146.8,137.6,136.3,132.1,128.9$,
128.8, 128.1, 128.0, 127.8, 126.6, 114.7, 110.5, 65.4, 49.9, 44.4, 43.3. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{O} 421.0910$; found 421.0930. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3025,2917,2857,1649,1298,1218$.

1-benzyl-3-phenyl-4-(4-(trifluoromethyl)phenyl)piperazin-2-one (3as):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 s}$ (294.3 $\mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (8% Ethyl acetate in Hexane) afforded the desired product 3as as a sticky solid ($166.2 \mathrm{mg}, 0.405 \mathrm{mmol}, 81 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.26$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.50$ $(\mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.46(\mathrm{~m}$, 2H), 3.36-3.27 (m, 1H). ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-61.0 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.8,149.9$, $137.0,136.1,129.0,128.8,128.2,128.0,127.8,126.6(q, J=3.7 \mathrm{~Hz}), 126.3,124.9(q, J=270.4 \mathrm{~Hz}), 119.6$ (q, $J=32.7 \mathrm{~Hz}$), 111.9, 64.9, 49.8, 44.3, 42.9. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O} 411.1679$; found 411.1677. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3063,3032,2934,1673,1258$.

1-benzyl-4-(2-(hydroxymethyl)phenyl)-3-phenylpiperazin-2-one (3at):

Prepared according to the general procedure \mathbf{A} using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 t}$ ($256.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (30% Ethyl acetate in Hexane) afforded the desired product 3at as a solid ($91.2 \mathrm{mg}, 0.245 \mathrm{mmol}, 49 \%$ yield). m.p.: 135 $-153{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.28\left(40 \%\right.$ Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.67(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}$, 1H), $3.57-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.28(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7,147.6,138.0,136.7,136.6,129.0,128.9,128.8,128.5,128.3,127.9,127.8,125.6$, 122.7, 68.8, 62.7, 50.4, 47.9, 45.5. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} 373.1916$; found 373.1934. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3367,3034,2921,2852,2803,1631,1281,1243,1080$.

1-benzyl-4-(naphthalen-1-yl)-3-phenylpiperazin-2-one (3au):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}(95.1 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathbf{2 u}$ (276.3 $\mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (13% Ethyl acetate in Hexane) afforded the desired product 3au as a sticky solid ($139.3 \mathrm{mg}, 0.355 \mathrm{mmol}, 71 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.41$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.17(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.8,145.8,138.0,136.7,134.8,129.2,128.7,128.5,128.1,127.7,127.6,126.0,125.9$, $125.5,124.5,123.2,117.9,67.5,50.3,47.3,45.4$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O} 393.1967$; found 393.1968. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3068,3028,2986,2928,1659,1253$.

1-benzyl-3-phenyl-4-(pyridin-2-yl) piperazin-2-one (3av):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 v}$ (227.3 mg , $1.0 \mathrm{mmol})$. Flash column chromatography (27% Ethyl acetate in Hexane) afforded the desired product 3av as a sticky solid ($49.7 \mathrm{mg}, 0.145 \mathrm{mmol}, 29 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.57$ (40% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}$, 1H), $7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.65-$ $6.61(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.94-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.31$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.0,157.2,148.1,137.7,137.6,136.4,128.8,128.1,127.9$, 127.7, 126.6, 113.5, 106.5, 62.6, 50.1, 43.9, 41.6. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O} 344.1763$; found 344.1764. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3063,3028,2966,2929,1668,1248$.
ethyl 2-(benzylamino)-2-phenylacetate (4aw):

Prepared according to the general procedure \mathbf{A} using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 w}$ ($186.2 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (9% Ethyl acetate in Hexane) afforded the desired product 4aw as a colourless oil ($59.2 \mathrm{mg}, 0.22 \mathrm{mmol}, 44 \%$ yield). R_{f} $=0.657$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.33(\mathrm{~m}, 4 \mathrm{H})$, $7.32-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H})$, 2.15 (br s, 1H), $1.19(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.0,139.6$, 138.2, 128.7, 128.5, 128.4, 128.1, 127.6, 127.2, 64.5, 61.2, 51.4, 14.2. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} 270.1494$; found 270.1494. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3309,3065,2981,2884,2830,1737,1185$.
ethyl 2-(benzyl(2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-phenylacetate (4ax):

Prepared according to the general procedure \mathbf{A} using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 x}$ ($250.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (7% Ethyl acetate in Hexane) afforded the desired product 4ax as a colourless oil ($105.2 \mathrm{mg}, 0.255 \mathrm{mmol}, 51 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.29$ (20% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{br}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.42$ $\left.(\mathrm{s}, 9 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.3,156.1,139.3,136.6,129.0,128.9$, 128.6, 128.5, 128.0, 127.3, 78.9, 67.1, 60.7, 55.4, 50.0, 38.5, 28.5, 14.4. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4} 413.2440$; found 413.2441. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3440,3068,2974,1714,1253,1171$.
ethyl 2-(benzyl(2-((4-methylphenyl)sulfonamido)ethyl)amino)-2-phenylacetate (4ay):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 y}$ ($304.4 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (15% Ethyl acetate in Hexane) afforded the desired product 4ay as a sticky solid ($123.6 \mathrm{mg}, 0.265 \mathrm{mmol}, 53 \%$ yield). R_{f} $=0.43$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 6 \mathrm{H}), 4.99(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.17$ $(\mathrm{m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.75(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2,143.1,138.7,136.8,135.9,129.6,129.0,128.9,128.8,128.7,128.3$, 127.5, 127.1, 67.0, 61.0, 55.5, 49.4, 40.7, 21.5, 14.3. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}$ 467.2005; found 467.2008. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3276,3034,2969,1717,1253,1163$.
ethyl 2-(benzyl(2-oxo-2-(phenylamino)ethyl)amino)-2-phenylacetate (4az):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 z}$ ($240.3 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (15% Ethyl acetate in Hexane) afforded the desired product $4 a z$ as a sticky solid ($66.4 \mathrm{mg}, 0.165 \mathrm{mmol}, 33 \%$ yield). R_{f} $=0.45$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.20$ (br s, 1H), 7.47 (d, J = 7.8 Hz, 2H), 7.40-7.32 (m, 7H), 7.31-7.27 (m, 5H), 7.08 (t, J=7.4 Hz, 1H), 4.66(s, 1H), 4.29-4.23 $(\mathrm{m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, \mathrm{~J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H})$, 1.26 (t, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.0,169.4,137.8,137.4,135.2,129.2,129.1$, 129.0, 128.9, 128.8, 128.0, 124.0, 119.3, 68.0, 61.4, 57.8, 55.6, 14.3. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} 403.2022$; found 403.2028. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3344,3051,2980,1716,1602,1254,1187$.
ethyl 2-((2-amino-2-oxoethyl)(phenyl)amino)-2-phenylacetate (4aa'):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2a' ($150.1 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (44% Ethyl acetate in Hexane) afforded the desired product 4aa' as a solid ($123.3 \mathrm{mg}, 0.395 \mathrm{mmol}, 79 \%$ yield). m.p.: $196-200{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.36\left(60 \%\right.$ Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): δ 7.89 (br s, 1H), $7.39-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=18.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.56(\mathrm{~d}, \mathrm{~J}=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.3,173.8,147.2,133.7$, 129.7, 129.6, 129.5, 129.4, 119.3, 112.8, 66.6, 62.3, 51.5, 14.2. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} 313.1552$; found 313.1555. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3387,3164,2983,1730,1647,1278,1240,1156$.
ethyl 2-((2-((4-methylphenyl)sulfonamido)ethyl)(phenyl)amino)-2-phenylacetate (4ab'):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 b}{ }^{\prime}(290.38 \mathrm{mg}, 1.0 \mathrm{mmol})$. Flash column chromatography (14% Ethyl acetate in Hexane) afforded the desired product 4ab' as a sticky solid ($138.0 \mathrm{mg}, 0.305 \mathrm{mmol}$, 61% yield). $\mathrm{R}_{\mathrm{f}}=0.34$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.56(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 6 \mathrm{H}), 6.84(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, 2H), $5.68-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.03-$ $2.94(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.2$, 147.6, 142.9, 136.7, 135.0, 129.5, 129.3, 128.9, 128.9, 128.6, 127.0, 119.6, 115.8, 68.0, 61.8, 45.9, 40.5, 21.5, 14.2. HRMS (ESI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 453.1848$; found 453.1848. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3165,3033,2970$, 2932, 1720, 1282, 1249, 1163.

6. Synthetic Transformations and the synthesis of Mianserin derivative

Scale up reaction of 3aa

In a 50 mL round bottom flask was added N^{1}-benzyl- N^{2}-phenylethane-1,2-diamine $\mathbf{1 a}$ ($1.131 \mathrm{~g}, 5.0 \mathrm{mmol}, 2.0$ equiv), $\mathrm{Cu}(2 \text {-ethylhexanoate })_{2}(43.7 \mathrm{mg})$ and 1,2-dichloroethane (25 mL). To this was added the ethyl phenyl diazoacetate $\mathbf{2 a}$ ($475.5 \mathrm{mg}, 2.5 \mathrm{mmol}, 1.0$ equiv), and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 hours. The solvent was evaporated under reduced pressure to afford the crude product. Then, the crude product was purified by silica gel (100 - 200 mesh) column chromatography (8% Ethyl acetate in Hexane) to afford compound 3aa in 85% isolated yield.

Following the reported procedure, ${ }^{1}$ an oven-dried 25 mL Schlenk tube was charged with 3aa ($80.0 \mathrm{mg}, 0.23$ mmol) in THF (1 mL). To this was added LiAlH_{4} (5 equiv) in THF at $0^{\circ} \mathrm{C}$ slowly, and the reaction mixture was stirred for 12 h at $80^{\circ} \mathrm{C}$. Then, the reaction was quenched with a minimum amount of water (just for quenching of LiAlH_{4}), filtrated by Celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography (6% Ethyl acetate in Hexane), affording the desired product 5 as a colourless oil ($56.6 \mathrm{mg}, 0.172 \mathrm{mmol}, 75 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.48$ (15% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35$ $-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.80$ (m, 1H), 4.46 (dd, $J=7.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H})$, $3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, \mathrm{J}=11.0,7.9 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.3,141.6,137.9,129.2,128.7,128.3,128.1,127.9,127.2$, 126.8, 121.3, 121.2, 63.0, 61.5, 61.0, 53.6, 52.9. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} 329.2018$; found 329.2016. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3065,3033,2927,2860,1255$.

1-benzyl-4-(2-(hydroxymethyl)phenyl)-3-phenylpiperazin-2-one (6):

Following the previously reported procedure, ${ }^{6}$ A 50 mL round bottom flask was charged with a magnetic stirrer bar, 3ao (111 mg, 0.298 mmol), and acetonitrile/water (1:1). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes, followed by the addition of CAN ($408 \mathrm{mg}, 2.5$ equiv) in one portion. Then, the resulting mixture was stirred at room temperature for 1 hour. Then, the mixture was quenched with saturated aqueous NaHCO_{3} solution. The aqueous layer was extracted with DCM (2 times), and the combined organic layers were washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. Flash column chromatography ($2 \% \mathrm{MeOH}$ in DCM) afforded the desired product $\mathbf{6}$ as a sticky solid (61.9 mg , $0.232 \mathrm{mmol}, 78 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.52$ ($5 \% \mathrm{MeOH}$ in DCM). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39$ $-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H})$, 3.07 - $\left.2.99(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.7,140.0,136.9,128.7,128.5$, 128.4, 127.8, 127.6, 64.2, 50.3, 47.6, 41.5. HRMS (ESI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}$ 267.1497; found 267.1488. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3340,3063,3034,2966,1654,1253$.
(2-(4-benzyl-2-phenylpiperazin-1-yl)phenyl)methanol (7):

Following the reported procedure, ${ }^{1}$ an oven-dried 25 mL Schlenk tube charged with 3at ($253 \mathrm{mg}, 0.68 \mathrm{mmol}$) in THF (1 mL) was reduced with $\mathrm{LiAlH}_{4}(154 \mathrm{mg}, 4.08 \mathrm{mmol})$ in THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h at $80^{\circ} \mathrm{C}$. After quenching with 1 mL of water, the mixture was filtrated by Celite, and the filtrate was concentrated. The residue was purified by silica gel column chromatography (27% Ethyl acetate in Hexane), afforded the desired product 7 as an oil ($180.3 \mathrm{mg}, 0.503 \mathrm{mmol}, 74 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.51$ (40% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.09-$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (dd, $J=10.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.61(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.56(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.24-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.92$ ($\mathrm{m}, 3 \mathrm{H}$), $\left.2.49(\mathrm{td}, \mathrm{J}=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.8,140.0$, $137.6,136.1,129.3,128.4,128.3,128.2,128.0,127.6,127.4,127.3,125.2,123.3,64.9,64.8,63.0$, 61.8, 55.4, 53.7. HRMS (ESI) m/z: [M+H] calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O} 359.2123$; found 359.2118. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3438$, 3063, 2982, 1252.

2-benzyl-1,2,3,4,10,14b-hexahydrodibenzo[c,f]pyrazino[1,2-a]azepine (8):

Following the modified procedure, ${ }^{7}$ in a 25 ml round bottom flask charged with a magnetic stirrer bar was added piperazine derivative $\mathbf{7}(155 \mathrm{mg}, 0.43 \mathrm{mmol})$ and polyphosphoric acid $(1.8 \mathrm{~g})$ in 1.5 mL NMP. The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 12 h . The reaction was quenched with ice, then DCM was added. The mixture was basified with 2 N aqueous NaOH . The organic layer was separated from the aqueous layer, and subsequently extracted with DCM. The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in a vacuum. The residue was purified by flash column chromatography (15% ethyl acetate and Hexane), affording the desired product 8 as a sticky solid ($72.1 \mathrm{mg}, 0.211 \mathrm{mmol}, 49 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.586$ (25% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.27$ (m, 1H), $7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}$, $1 \mathrm{H}), 6.87(\mathrm{td}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ (d, J = 13.0 Hz, 1H), 3.42-3.34 (m, 1H), $3.31(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.91(\mathrm{~m}, 2 \mathrm{H})$, $2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.8,139.9,139.4,137.9,137.7$, 129.7, 129.3, 128.4, 128.2, 127.3, 127.2, 127.0, 126.6, 126.5, 122.3, 119.1, 66.6, 63.2, 62.9, 53.3, 51.3, 38.9. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2}$ 341.2012; found 341.2015. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3062,3030$, 2958, 2813, 1256.
ethyl 2-(methyl(phenyl)amino)-2-phenylacetate (9):

Prepared according to the general procedure A using 1a ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 2d' (107.1 $\mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (2% Ethyl acetate in Hexane) afforded the desired product 9 as a yellow oil ($55.2 \mathrm{mg}, 0.205 \mathrm{mmol}, 41 \%$ yield). $\mathrm{R}_{\mathrm{f}}=0.33$ (5% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1$ $\left.\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13}{ }^{\mathbf{C}\{ }{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.8,149.9,136.0,129.2,128.6,128.4,128.0,118.0,113.4,65.7$, 61.0, 34.5, 14.2. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2} 270.1494$; found 270.1505. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3059$, 2983, 2927, 2889, 1731, 1280, 1185.
ethyl 2-(benzyl(methyl)amino)-2-phenylacetate (10):

Prepared according to the general procedure \mathbf{A} using $\mathbf{1 a}$ ($95.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathbf{2 e}^{\prime}$ ($121.1 \mathrm{mg}, 1.0 \mathrm{mmol}$). Flash column chromatography (4% Ethyl acetate in Hexane) afforded the desired product 10 as a colorless oil ($19.8 \mathrm{mg}, 0.07 \mathrm{mmol}, 14 \%$ yield). $\mathrm{R}_{\mathrm{f}}=$ 0.25 (5% Ethyl acetate in Hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.0$, 139.0, 136.9, 129.0, 128.9, 128.5, 128.3, 128.2, 127.1, 72.3, 60.8, 58.6, 39.2, 14.3. HRMS (ESI) m/z: [M+H] ${ }^{+}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$ 284.1651; found 284.1648. IR: $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 3030,2931,2850,1716,1254,1169$.

7. Control Experiments

Under the standard reaction condition, N -methylaniline $\mathbf{2 d}^{\prime}$ ($11 \mathrm{mg}, 0.1051 \mathrm{mmol}, 1.0$ equiv.), N methylbenzylamine $\mathbf{2 e}^{\prime}(12.7 \mathrm{mg}, 0.1051 \mathrm{mmol}, 1.0$ equiv.), were treated with the diazo compound 1a ($20 \mathrm{mg}, 0.1051 \mathrm{mmol}, 1.0$ equiv), resulting in the desired product 9 in 24% yield while only a trace amount of insertion product 10 was observed.

Additionally, ethyl 2-((2-amino-2-oxoethyl)(phenyl)amino)-2-phenylacetate 4aa' (20 mg, 0.064 mmol, 1.0 equiv.), and ethyl 2-(benzyl(2-((tert-butoxycarbonyl)amino)ethyl)amino)-2-
phenylacetate 4 ax ($30 \mathrm{mg}, 0.0725 \mathrm{mmol}, 1.0$ equiv.) were subjected under standard conditions. The desired products 3aa' and 3ax were not detected even after increasing the temperature.

8. XRD Data for 3aa

Crystals of compound 3aa were grown from the solvent chloroform/hexane by slow evaporation method. A good quality yellow colour single crystal of size $0.15 \times 0.18 \times 0.19 \mathrm{~mm}$, was selected under a polarizing microscope and was mounted on a glass fiber for data collection. Single crystal X-ray data for compound 3aa were collected on the Rigaku Kappa 3 circle diffractometer equipped with the AFC12 goniometer and enhanced sensitivity (HG) Saturn724+ CCD detector in the 4×4 bin mode using the monochromated Mo-Ka radiation generated from the microfocus sealed tube MicroMax-003 X-ray generator equipped with specially designed confocal multilayer optics. Data collection was performed using ω-scans of 0.5° steps at 293(2) K. Cell determination, data collection and data reduction was performed using the Rigaku Crystal Clear-SM Expert 2.1 b24 software. Structure solution and refinement were performed by using SHELXTL-NT. Refinement of coordinates and anisotropic thermal parameters of non-hydrogen atoms were carried out by the full-matrix least-squares method. The hydrogen atoms attached to carbon atoms were generated with idealized geometries and isotropically refined using a riding model.

Figure 1: ORTEP diagram of the crystal structure of compound 3aa
Table 2 Crystal data and structure refinement details for 3aa

Compound	3aa
Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	342.42
Crystal System	Orthorhombic

Space group	P c a 21
$a(\AA)$	$10.0123(6)$
$b(\AA)$	$18.3467(8)$
$c(\AA)$	$10.1070(4)$
$\alpha\left(^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	90.00
$\gamma\left({ }^{\circ}\right)$	90.00
$V\left(\AA^{3}\right)$	$1856.58(16)$
Z	4
$\mathrm{D}_{\mathrm{c}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.225
F_{000}	728
$\mu\left(\mathrm{~mm}{ }^{-1}\right)$	0.589
$\theta_{\text {max }}\left({ }^{\circ}\right)$	75.6450
Total reflections	5512
Unique reflections	2664
Obs. reflections $[I>2 \sigma(I)]$	2384
$R_{\text {int }}$	0.0324
Goodness-of-fit	1.050
$R_{l}\left(F^{2}\right)$	0.0359
$w R^{2}\left(F^{2}\right)$	0.0956
CCDC No.	2321853

9. Reference

1. Kumar, D.; Chaudhary, D.; Ishu, K.; Yadav, S.; Maurya, N. K.; Kantc, R.; Kuram, M. R. Org. Biomol. Chem., 2022, 20, 8610-8614.
2. Ota, Y.; Miyamura, S.; Araki, M.; Itoh, Y.; Yasuda, S.; Masuda, M.; Taniguchi, T.; Sowa, Y.; Sakai, T.; Itami, K.; Yamaguchi, J.; Suzuki, T. Bioorg. Med. Chem. 2018, 26, 775-785.
3. Shi, X; Quan, Y; Wang, Y; Wang, Y; Li, Y. Bioorganic Med. Chem. Lett. 2021, 33, 127725.
4. Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. Chem. - Eur. J. 2008, 14, 3177.
5. Grate, J. W.; Mo, K. F.; Daily, M. D. Angew. Chem., Int. Ed. 2016, 55, 3925-3930.
6. He, Y.-P.; Quan, R; Li, X.-Z.; Zhu, J; Wu, H. Angew. Chem. Int. Ed. 2023, 62, e202217954.
7. Wikström, H. V.; Mensonides-Harsema, M. M.; Cremers, T. I. F. H.; Moltzen, E. K.; Arnt, J. J. Med. Chem. 2002, 45, 3280.
8. NMR Spectra

Figure S-01: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa

Figure S-02: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aa

Figure S-03: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3}$ ba

Figure S-04: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ba

Figure S-05: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca

Figure S-06: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ca

Figure S-07: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3da

Figure S-08: ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3da

Figure S-09: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3da

Figure S-10: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ea

Figure S-11: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ea

Figure S-12: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3fa

Figure S-13: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 f a}$

Figure S-14: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ga

Figure S-15: ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ga

Figure S-16: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ga

Figure S-17: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ia

Figure S-18: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ia

Figure S-19: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 j a}$

Figure $\mathbf{S - 2 0}:{ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 j a}$

Figure S-21: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3} \mathbf{k a}$

Figure S-22: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 k a}$

Figure S-23: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3la

Figure S-24: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3la

Figure S-25: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{3 m a}$

Figure S-26: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ma

Figure S-27: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3na

Figure S-28: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3na

Figure S-29: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{3 a b}$

Figure S-30: $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ab

Figure S-31: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac

Figure S-32: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ac

Figure S-33: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad

Figure S-34: ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad

Figure S-35: ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ad

Figure S-36: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae

Figure S-37: ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ae

Figure S-38: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af

Figure S-39: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3af

Figure S-40: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag

Figure S-41: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ag

Figure S-42: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah
(

Figure S-43: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ah

Figure S-44: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai

Figure S-45: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ai

Figure S-46: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj

Figure S-47: ${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aj

Figure S-48: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak

Figure S-49: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ak

Figure S-50: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3al

Figure S-51: ${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3al

Figure S-52: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3am

Figure S-53: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3am

Figure S-54: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Figure S-55: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3an

Figure S-56: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ao

Figure S-57: ${ }^{13}$ C\{1 H$\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ao

Figure S-58: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap

Figure S-59: ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap

Figure S-60: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ap

Figure S-61: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aq

Figure S-62: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3aq

Curzen: NAME	
Ex? ${ }^{\text {a }}$	530
Procno	,
F2 - Acquisitior Parame=er	
Da=e_	20230824
Time	14.56
INSTRJM	spect
PROBED	5 mm PABBO $\mathrm{B} 3 /$
PUJPAOG	zg30
TD	65536
SOJVExy	CDC13
NS	8
DS	0
SWH	9615.335 Hz
FIDRES	c. 146719 Hz
AQ	3.4078720 se
RG	73.53
DW	52.000 แะ
DE	6.50 us
TE	300.0
D1	1. 00000000 se
IDO	1
SFO1 400.629712 NH	
NTIM 1	${ }_{1} \mathrm{H}^{\text {H }}$

Figure S-63: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ar

Figure S-64: ${ }^{13}$ C\{ $\left.{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3ar

Figure S-65: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 3as

Figure S-66: ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3as

Figure S-67: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3as

Figure S-68: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3at

Figure S-69: $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3at

Figure S-70: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3au

Figure S-71: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3au

Figure S-72: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3av

Figure S-73: ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 3av

Figure S-74: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4aw

Figure S-75: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4aw

Figure S-76: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4ax

Figure S-77: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4ax

Figure S-78: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectra of 4 ax in CDCl_{3} at 400 MHz

Figure S-79: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC} \mathrm{Spectra} \mathrm{of} \mathrm{4ax} \mathrm{in} \mathrm{CDCl}_{3}$ at 400 MHz

Figure S-80: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4ay

Figure S-81: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4ay

Figure S-82: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectra of 4ay in CDCl_{3} at 400 MHz

Figure S-83: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC} \mathrm{Spectra} \mathrm{of} \mathrm{4ay} \mathrm{in} \mathrm{CDCl}_{3}$ at 400 MHz

Figure S-84: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4az

Figure S-85: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4az

Figure S-86: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectra of 4 az in CDCl_{3} at 400 MHz

Figure S-87: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectra of 4az in CDCl_{3} at 400 MHz

Figure S-88: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound 4aa'

Figure S-89: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz, CDCl_{3}) spectrum of compound 4aa'

Figure S-90: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY Spectra of 4aa' in CDCl_{3} at 400 MHz

Figure S-91: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC Spectra of 4aa' in CDCl_{3} at 400 MHz

Figure S-92: ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC Spectra of 4aa' in CDCl_{3} at 400 MHz

Figure S-93: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 4ab'

Figure S-94: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{4 a b}{ }^{\prime}$

Figure S-95: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{5}$

Figure S-96: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{5}$

Figure S-97: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

Figure S-98: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 6

Figure S-99: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound 7

Figure S-100: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{7}$

Figure S-101: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8}$

Figure S-102: ${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{8}$

Figure S-103: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{9}$

Figure S-104: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{9}$

Figure S-105: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 0}$

Figure S-106: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of compound $\mathbf{1 0}$

