A Hydrolytically Stable Complexant for Minor An Separation from Ln in Process Relevant Diluents

Supporting Information

Lesta S. Fletcher, Mariah L. Tedder, Samiat O. Olayiwola, and Jesse D. Carrick*

Department of Chemistry, Tennessee Technological University, Cookeville, TN 38505-0001, United States Corresponding Author Email: jcarrick@tntech.edu

Table of Contents	S1
Experimental Procedures	S2
Statistical Equations	S3
Table S1. Raw Data to Accompany Figure 1(a). ²⁴¹ Am ³⁺ Distribution (<i>D</i>)-values,	
at 1M HNO _{3(aq)} as $f(t)$ in Exxal-8/kerosene	S4
Table S2. Raw Data to Accompany Figure 1(a). ¹⁵⁴ Eu ³⁺ Distribution (<i>D</i>)-values,	
at 1M HNO _{3(a0)} as $f(t)$ in Exxal-8/kerosene	S5
Table S3. Summary D_M for Tables S1 and S2	S6
Table S4. Raw Data to Accompany Figure 1(b). ²⁴¹ Am ³⁺ Distribution (D)-values,	
f(HNO _{3(a0)}) Initial Concentration in Exxal-8/kerosene	S7
Table S5. Raw Data to Accompany Figure 1(b). ¹⁵⁴ Eu ³⁺ Distribution (D)-values,	
f(HNO _{3(a0)}) Initial Concentration in Exxal-8/kerosene	S9
Table S6. Summary D_M for Tables S4 and S5	S11
Table S7. Raw Data to Accompany Figure 2(a). ²⁴¹ Am ³⁺ Distribution (D)-values,	
f([L]) Initial Concentration in Exxal-8/kerosene	S12
Table S8. Raw Data to Accompany Figure 2(a). $^{154}Eu^{3+}$ Distribution (D)-values,	
f([L]) Initial Concentration in Exxal-8/kerosene	S13
Table S9. Summary D_M for Tables S7 and S8	S14

Experimental Section

Chemicals. All reagents were purchased from U.S. chemical suppliers, stored according to published protocols, and used as received unless indicated otherwise. All aqueous solutions were prepared with Milli-Q type 1 water system.

Small-Scale Dissolution. A small amount of mass, generally between 10 and 20 mg, was accurately weighed out into a sample tube. Ten microliters of the appropriate diluent (Exxal-8 or kerosene) were added to the sample vial and sonicated for five to thirty minutes. This step was repeated until complete dissolution of the complexant was observed. The sample was capped, parafilmed, and left for 24 hours to ensure the complexant did not crash out of solution.

Solvent Extraction. Organic phase. An appropriate mass of 1 was transferred from a sample vial to a 5.0 mL Class A volumetric flask to make a concentrated stock solution. Weighing by difference was used on the original sample vial to calculate the actual mass of 1 dissolved. The solvent was added to the flask and manually agitated to facilitate dissolution. Generally, the complexant was fully dissolved after 5 minutes of sonication. Various concentrations of 1 were prepared from the concentrated stock solution in 1.0 or 2.0 mL Class A volumetric glassware. Aqueous phase. Eight concentrated stock solutions of ²⁴¹Am³⁺ were prepared in various concentrations of HNO₃ (0.25–5.0 M). These ²⁴¹Am³⁺ stock solutions were used throughout the entirety of this study to spike the working aqueous phase of the matching [HNO₃]. Initial counts of the aqueous phase were generally 3400-4000 cpm / 200 µL. This method was repeated for ¹⁵⁴Eu³⁺. Extraction. Equal volumes (0.6 mL) of the organic and active aqueous phase, in that order, were added to a 1.5 mL microcentrifuge tube. The centrifuge tubes were capped and wrapped in parafilm then placed on a pulsing vortex shaker at 1700 rpm for the appropriate time. After the allotted time on the vortex shaker, the samples were centrifuged for five minutes to achieve phase separation. The organic and aqueous phases were transferred to separate 1.5 mL centrifuge tubes with a disposable fine-tip transfer pipette. A 200 µL aliquot of each phase was transferred to a counting tube with sampling performed in duplicate. Gamma Spectroscopy. A 2480 Wizard² automatic gamma counter with 3 inch NaI(Tl) was used for the determination of ²⁴¹Am³⁺ and ¹⁵⁴Eu³⁺ activity of samples. Samples were counted for 10 minutes, or until total counts reached 10000, and the instrument software relayed the results as counts per minute (CPM). The distribution ratios of a given metal ion (D_M) were calculated according to Equation 1 where [M] is the net CPM of either the organic phase (numerator) or aqueous phase (denominator). Separation factors (SF) were calculated using Equation 2. Values are reported in figures as an average of duplicate samples with error bars representing uncertainties calculated at 2σ from the counting error. The supporting information for this work provides additional detail.

$$D_{M} = \frac{[M]org}{[M]aq} \qquad Equation (1)$$

$$SF_{Am(III)/Eu(III)} = \frac{D_{Am(III)}}{D_{Eu(III)}} \qquad Equation (2)$$

UV-vis Titration. UV-visible spectrophotometric titrations were performed in a 3 mL, 1.00 cm path length quartz cuvette, using a Cary 5000 UV-vis spectrophotometer. For each titration, an appropriate volume of a 1.5×10^{-3} M Ln(NO₃)₃ (Ln = Nd, Eu) solution in 99% acetonitrile/1% water (v/v) was added to 2.0 mL of a 1.5×10^{-5} M solution of 1 in the same solvent system. The

total volume of $Ln(NO_3)_3$ added was 60 µL. A wavelength scan from 225 to 450 nm at a scan rate of 100 nm per minute and a 5 data point average was taken of the free (uncomplexed) complexant and after each titration. The sample was manually agitated for three minutes after each titration to ensure complete complexation. The titration was complete when the variation in absorbance became negligible. Raw spectra were baseline corrected with OriginPro software and imported into HypSpec software for determination of stability constants by nonlinear regression curve fitting.

Counting Statistics

A critical limit (L_c , Equation S1) was calculated for every counting (solvent extraction) experiment (**Tables S1, S2, S4, S5, S7,** and **S8**) to determine if the net count was statistically significant at the 95% confidence level.

$$L_c = 1.645\sqrt{2B}$$
 Equation S1

When a net CPM was found to be below the calculated L_C a footnote was added to the data table (**Tables S5** and **S8**) to indicate that the activity is not detected and an upper limit (L_U , Equation S2) at the 95% confidence is reported. The calculated values were left in the raw data tables with a footnote, but these values were not used to report a distribution value in the associated summary table (**Tables S6** and **S9**) or figure (**Figure 2**).

$$L_U = cpm_{net} + 1.645\sqrt{(cpm_{net} + 2B)}$$
 Equation S2

The uncertainty for each distribution value (D_M , where M = ²⁴¹Am³⁺ or ¹⁵⁴Eu³⁺) was calculated from the counting error (2 σ) according to *Equation S3*:

$$\sigma_{D_{M}} = D_{M} \times \sqrt{\left(\frac{\left(\sqrt{\sigma_{org}^{2} + \sigma_{blank}^{2}}\right)}{Net \ cpm_{org}}\right)^{2} + \left(\frac{\left(\sqrt{\sigma_{aq}^{2} + \sigma_{blank}^{2}}\right)}{Net \ cpm_{aq}}\right)^{2}} Equation \ S3$$

The uncertainty for the average D_M was calculated according to *Equation S4* and reported in the summary tables (**Tables S3**, **S6**, and **S9**).

$$\sigma_{Avg(D_M)} = \frac{\sqrt{\sigma D_1^2 + \sigma D_2^2}}{2}$$
 Equation S4

 D_1 and D_2 refer to the individual D_M values from duplicate samples taken for each data point.

Time	Sample	СРМ	Error	Net	Recovery	D_{Am}	D_{Am}
(min.)	ID 1	502	(%)	<u>401</u>	(%)	(org./aq.)	Avg.
	org 1	302 401	1.28	481	101.0	0.1555	0.1342
5	org 2	491	1.20	4/0	99.8	0.1332	
	aq 3	2000	1.00	2008			
	aq 4	2089 962	1.00	3008 842	100 6	0.2020	0 2200
	org 5	803 022	1.00	84Z	100.6	0.3089	0.5509
10	org 6	933	1.00	912	98.6	0.3529	
	aq /	2/4/	1.00	2720			
	aq 8	2605	1.00	2384	00.1	0 7 4 9 5	0 7(07
	org 9	1509	1.00	1488	98.1	0.7485	0./62/
20	org 10	1560	1.00	1539	99.3	0.//69	
	aq 11	2009	1.00	1988			
	aq 12	2002	1.00	1981		1 1 1 0	1 1 2 4
	org13	1813	1.00	1792	96.0	1.112	1.134
30	org14	1911	1.00	1890	99.4	1.156	
•••	aq 15	1633	1.00	1612			
	aq 16	1656	1.00	1635			
	org17	2128	1.00	2107	97.5	1.563	1.590
45	org18	2206	1.00	2185	99.8	1.616	
45	aq 19	1369	1.00	1348			
	aq 20	1373	1.00	1352			
	org21	2337	1.00	2316	98.1	1.995	2.024
60	org22	2403	1.00	2382	99.9	2.053	
00	aq 23	1182	1.00	1161			
	aq 24	1181	1.00	1160			
	org25	2341	1.00	2320	97.5	2.042	2.030
00	org26	2357	1.00	2336	98.6	2.017	
90	aq 27	1157	1.00	1136			
	aq 28	1179	1.00	1158			
	org29	2345	1.00	2324	97.0	2.084	2.104
130	org30	2470	1.00	2449	101.6	2.124	
120	aq 31	1136	1.00	1115			
	aq 32	1174	1.00	1153			
A_0	A ₀ - 33	3565	1.00	3544			
A_0	A ₀ - 34	3567	1.00	3546			
A_0	Avg.	3566	1.00	3545			
Blank	Avg.	21	6.87				

<u>Table S1</u>. Raw Data to Accompany Figure 1(a). ²⁴¹Am³⁺ Distribution (*D*)-values, at 1M HNO_{3(aq)} as f(t) in Kerosene/Exxal (50v/50v)

Time	Sample	СРМ	Error	Net CPM	Recovery	D_{Eu}	D_{Eu}
(107	2.22	<u> </u>	101.7	0.0125	$\frac{(Avg.)}{0.0128}$
	$\frac{1}{2}$	100	2.22	40	101.7	0.0123	0.0120
5	org 2	3838	1.00	3687	100.5	0.0132	
	aq 3	3794	1.00	3643			
	aq 4	199	2.00	48	99.2	0.0134	0.0127
	org - 6	195	2.27	40	100.4	0.0121	0.0127
10	ag - 7	3746	0.99	3595	100.4	0.0121	
	aq 8	3794	1.00	3643			
	aq. 0	200	2.26	49	100.6	0.0134	0.0126
	org -10	194	2.20	43	100.5	0.0118	0.0120
20	ag - 11	3795	1.00	3644	10010	0.0110	
	aq 12	3799	1.00	3648			
	r_{2} org13	195	2.26	44	100.6	0.0121	0.0131
	org14	202	2.28	51	99.5	0.0142	
30	ag 15	3801	1.00	3650			
	aq 16	3752	1.00	3601			
	org17	207	2.25	56	98.4	0.0157	0.0136
	org18	193	2.28	42	100.4	0.0115	
45	aq 19	3707	1.00	3556			
	aq 20	3796	1.00	3645			
	org21	200	2.26	49	98.8	0.0137	0.0138
(0	org-22	201	2.27	50	99.0	0.0139	
60	aq 23	3730	1.00	3579			
	aq 24	3738	1.00	3587			
	org25	193	2.26	42	98.3	0.0118	0.0125
00	org26	200	2.28	49	102.6	0.0132	
90	aq 27	3720	1.00	3569			
	aq 28	3869	1.00	3718			
	org25	202	2.25	51	98.7	0.0143	0.0141
120	org26	202	2.34	51	100.5	0.0140	
120	aq 27	3723	1.00	3572			
	aq 28	3792	1.00	3641			
A_0	A ₀ - 33	3876	1.00	3725			
A_0	A ₀ - 34	3770	1.00	3619			
A_0	Avg.	3823	1.00	3672			
Blank	Avg.	151	2.61				

<u>Table S2</u>. Raw Data to Accompany Figure 1(a). ¹⁵²Eu³⁺ Distribution (*D*)-values, at 1M HNO_{3(aq)} as f(t) in Kerosene/Exxal (50v/50v)

Time	D_{Am}	D_{Am}	D_{Eu}	D_{Eu}	SF (Avg.)	SF
(min)	Avg.	Uncertainty	Avg.	Uncertainty	$(\boldsymbol{D}_{Am} \mid \boldsymbol{D}_{Eu})$	Uncertainty
		(2σ)		(2σ)		(2σ)
5	0.1542	0.004	0.0128	0.002	12.0	2.2
10	0.3309	0.007	0.0127	0.002	26.0	4.8
20	0.7627	0.015	0.0126	0.002	60.4	11.1
30	1.134	0.023	0.0131	0.002	86.5	15.6
45	1.590	0.032	0.0136	0.002	117	20.4
60	2.024	0.041	0.0138	0.002	147	25.4
90	2.030	0.041	0.0125	0.002	163	30.4
120	2.104	0.043	0.0141	0.002	149	25.4

<u>Table S3</u>. Summary D_M for Tables S1 and S2

<u>Table S4</u>. Raw Data to Accompany Figure 2(b). ²⁴¹Am³⁺ Distribution (*D*)-values, $f(\text{HNO}_{3(aq)})$ with Initial Concentration in Kerosene/Exxal (50v/50v) of 25 mM

[HNO ₃]	Sample	Срм	Error	Net	Recovery	D_{Am}	D_{Am}
(M)	ID	CFM	(%)	CPM	(%)	(org./aq.)	Avg.
	org 1	1175	1.00	1153	100.7	0.4358	0.4503
0.25	org 2	1217	1.00	1195	99.9	0.4648	
0.25	aq 3	2668	1.00	2646			
	aq 4	2593	1.00	2571			
	org 5	1687	1.00	1665	97.7	0.9224	0.9431
0.5	org 6	1775	1.00	1753	100.6	0.9637	
0.5	aq 7	1827	1.00	1805			
	aq 8	1841	1.00	1819			
	org 9	2399	1.00	2377	101.2	1.799	1.850
0.75	org10	2509	1.00	2487	103.9	1.901	
0.75	aq 11	1343	1.00	1321			
	aq 12	1330	1.00	1308			
	org13	2877	1.00	2855	98.3	2.648	2.695
1.0	org14	3037	1.00	3015	102.8	2.741	
1.0	aq 15	1100	1.00	1078			
	aq 16	1122	1.00	1100			
	org17	3118	1.00	3096	97.2	10.12	10.25
2.0	org18	3220	1.00	3198	100.1	10.38	
2.0	aq 19	328	1.75	306			
	aq 20	330	1.74	308			
	org21	3474	1.00	3452	96.4	13.18	13.45
3.0	org22	3673	1.00	3651	101.6	13.73	
5.0	aq 23	284	1.88	262			
	aq 24	288	1.86	266			
	org25	2954	1.00	2932	95.0	8.778	9.006
40	org26	3152	1.00	3130	100.9	9.233	
4.0	aq 27	356	1.68	334			
	aq 28	361	1.66	339			
	org25	3055	1.00	3033	97.9	9.721	9.699
5.0	org26	3109	1.00	3087	99.7	9.677	
5.0	aq 27	334	1.73	312			
	aq 28	341	1.71	319			
0.25	$A_0 - 33$	3793	1.00	3771			
0.50	$A_0 - 34$	3572	1.00	3550			
0.75	$A_0 - 35$	3674	1.00	3652			
1.0	$A_0 - 36$	4024	1.00	4002			
2.0	$A_0 - 37$	3523	1.00	3501			
3.0	$\dot{A_0} - 38$	3875	1.00	3853			
4.0	$A_0 - 39$	3460	1.00	3438			

5.0	$A_0 - 40$	3438	1.00	3416
Blank	Avg.	22	6.88	

[HNO ₃]	Sample	СРМ	Error	Net	Recovery	D_{Eu}	D_{Eu}
(M)	ID		(%)	CPM	(%)	(org./aq.)	Avg.
	org 1	179	2.36	31	103.1	0.0077	0.0076
0.25	org 2	178	2.37	30	102.3	0.0075	
0.25	aq 3	4208	1.00	4060			
	aq 4	4178	1.00	4030			
	org 5	194	2.27	46	102.4	0.0122	0.0139
0.5	org 6	208	2.19	60	104.0	0.0156	
0.5	aq 7	3955	1.00	3807			
	aq 8	4001	1.00	3853			
	org 9	277	1.90	129	101.1	0.0253	0.0253
0.75	org10	276	1.90	128	100.4	0.0253	
0.75	aq 11	5251	1.00	5103			
	aq 12	5213	0.99	5065			
	org 13	332	1.74	184	100.5	0.0319	0.0326
1.0	org 14	341	1.71	193	100.8	0.0334	
1.0	aq 15	5927	0.99	5779			
	aq 16	5938	0.99	5790			
	org17	351	1.69	203	100.7	0.0645	0.0660
2.0	org18	363	1.66	215	102.2	0.0675	
2.0	aq 19	3298	1.00	3150			
	aq 20	3335	1.00	3187			
	org21	458	1.48	310	101.2	0.0848	0.0885
3.0	org22	482	1.44	334	100.8	0.0923	
5.0	aq 23	3808	1.00	3660			
	aq 24	3770	1.00	3622			
	org25	381	1.62	233	105.9	0.0624	0.0618
10	org 26	371	1.64	223	103.1	0.0613	
4.0	aq 27	3889	1.00	3741			
	aq 28	3793	1.00	3645			
	org 29	413	1.56	265	102.0	0.0720	0.0724
5.0	org 30	418	1.55	270	103.0	0.0727	
3.0	aq 31	3832	1.00	3684			
	aq 32	3863	1.00	3715			
0.25	$A_0 - 33$	4118	1.00	3970			
0.50	$A_0 - 34$	3911	1.00	3763			
0.75	$A_0 - 35$	5321	1.00	5173			
1.0	$A_0 - 36$	6083	1.00	5935			
2.0	$A_0 - 37$	3477	1.00	3329			
3.0	$A_0 - 38$	4072	1.00	3924			
4.0	$A_0 - 39$	3901	1.00	3753			

<u>Table S5</u>. Raw Data to Accompany Figure 2(b). ¹⁵⁴Eu³⁺ Distribution (*D*)-values, $f(\text{HNO}_{3(aq)})$ with Initial Concentration in Kerosene/Exxal (50v/50v) of 25 mM

5.0	$A_0 - 40$	4018	1.00	3870
Blank	Avg.	148	2.60	

[HNO ₃] (M)	D _{Am} Avg.	D _{Am} Uncertainty (2σ)	D _{Eu} Avg.	D _{Eu} Uncertainty (2σ)	$SF (Avg.) (D_{Am} / D_{Eu})$	SF Uncertainty (2σ)
0.25	0.4503	0.009	0.0076	0.002	59.2	15.6
0.50	0.9431	0.019	0.0139	0.002	67.8	10.8
0.75	1.850	0.038	0.0253	0.002	73.1	5.5
1.0	2.695	0.055	0.0326	0.002	82.6	4.8
2.0	10.25	0.316	0.0660	0.003	155	9.2
3.0	13.45	0.444	0.0885	0.003	152	7.6
4.0	9.006	0.267	0.0618	0.003	146	8.1
5.0	9.699	0.295	0.0724	0.003	134	7.0

<u>Table S6</u>. Summary D_M for Tables S4 and S5

[Ligand] (mM)	Sample ID	СРМ	Error (%)	Net CPM	Recovery (%)	D _{Am} (org./aq.)	D_{Am} Avg.
	org 1	702	1.19	681	101.3	0.2378	0.2424
()5	org 2	741	1.16	720	103.9	0.2470	
6.25	aq 3	2885	1.00	2864			
	aq 4	2936	1.00	2915			
	org 5	2102	1.00	2081	97.5	1.565	1.593
12.5	org 6	2165	1.00	2144	99.1	1.621	
12.5	aq 7	1351	1.00	1330			
	aq 8	1344	1.00	1323			
	org 9	2992	1.00	2971	94.4	8.922	9.276
25.0	org10	3093	1.00	3072	96.9	9.630	
23.0	aq11	354	1.68	333			
	aq12	340	1.71	319			
	org13	3138	1.00	3117	92.9	23.26	24.06
37 5	org14	3327	1.00	3306	98.3	24.86	
37.5	aq 15	155	2.54	134			
	aq 16	154	2.55	133			
	org17	3222	1.00	3201	93.4	48.50	47.27
50.0	org18	3336	1.00	3315	96.8	46.04	
30.0	aq19	87	3.40	66			
	aq 20	93	3.28	72			
	org21	3300	1.00	3279	95.0	71.28	81.64
62 5	org22	3425	1.00	3404	98.3	92.00	
02.3	aq 23	67	3.87	46			
	aq 24	58	4.16	37			
	org25	3342	1.00	3321	95.8	110.7	110.9
75.0	org26	3354	1.00	3333	96.1	111.1	
73.0	aq 27	51	4.45	30			
	aq 28	51	4.43	30			
A_0	A ₀ - 29	3540	1.00	3519			
A_0	A ₀ - 30	3501	1.00	3480			
A_0	Avg.	3520.5	1.00	3499.5			
Blank	Avg.	21	6.84				

<u>Table S7</u>. Raw Data to Accompany Figure 2(c). Distribution of ²⁴¹Am³⁺ as a Function of Complexant Concentration in Kerosene/Exxal (50v/50v) Log-Log plot

<u>Table S8</u>. Raw Data to Accompany Figure 2(c). Distribution of ¹⁵⁴Eu³⁺ as a Function of Complexant Concentration in Kerosene/Exxal (50v/50v) Log-Log plot

[Ligand]	Sample	Срм	Error	Net	Recovery	D_{Eu}	D_{Eu}
(mM)	ID	CFWI	(%)	CPM	(%)	(org./aq.)	Avg.
	org 1	147	2.60	-3ª	102.6	-0.0009	-0.0001
6 75	org 2	152	2.57	2 ^b	103.0	0.0006	
0.23	aq 3	3657	1.00	3507			
	aq 4	3665	1.00	3515			
	org 5	198	2.25	48	103.3	0.0138	0.0125
12.5	org 6	189	2.30	39	103.3	0.0112	
	aq 7	3629	1.00	3479			
	aq 8	3639	1.00	3489			
	org 9	382	1.62	232	101.9	0.0714	0.0719
25.0	org10	389	1.60	239	103.7	0.0724	
	aq 11	3399	1.00	3249			
	aq 12	3452	1.00	3302			
	org13	712	1.19	562	102.0	0.1924	0.1899
37 5	org14	705	1.19	555	103.0	0.1873	
57.5	aq15	3071	1.00	2921			
	aq16	3113	1.00	2963			
	org17	1072	1.00	922	100.6	0.3666	0.3680
50.0	org18	1084	1.00	934	101.4	0.3693	
50.0	aq 19	2665	1.00	2515			
	aq 20	2679	1.00	2529			
	org21	1441	1.00	1291	99.1	0.6168	0.6307
62 5	org22	1485	1.00	1335	99.7	0.6446	
02.5	aq 23	2243	1.00	2093			
	aq 24	2221	1.00	2071			
	org25	1785	1.00	1635	98.8	0.9407	0.9457
75.0	org26	1806	1.00	1656	99.5	0.9506	
75.0	aq 27	1888	1.00	1738			
	aq 28	1892	1.00	1742			
A_0	A ₀ - 29	3408	1.00	3257.5			
A_0	A ₀ - 30	3425	1.00	3274.5			
A_0	Avg.	3416.5	1.00	3266			
Blank	Avg.	150.5	2.58				

[Ligand] (mM)	D _{Am} Avg.	D _{Am} Uncertainty (2σ)	D_{Eu} Avg.	D _{Eu} Uncertainty (2σ)	SF (Avg.) (D _{Am} / D _{Eu})	SF Uncertainty (2σ)
6.25	0.2424	0.005				25
12.5	1.593	0.032	0.0125	0.002	128	7.1
25.0	9.276	0.278	0.0719	0.003	129	6.9
37.5	24.06	1.12	0.1899	0.005	127	9.5
50.0	47.27	3.31	0.3680	0.009	128	14
62.5	81.64	8.44	0.6307	0.014	129	15
75.0	110.9	14.1	0.9457	0.021	117	25

<u>Table S9</u>. Summary D_M for Tables S7 and S8