Supporting Information

 Bi_2Te_3 nanosheets promoted Pd for ethylene glycol electrooxidation in both dark and visible light irradiation

Fangfang Ren^a, Zhenghao Fei^a, Yun Yang^{*b}, Shuli Wang^c, Ligang Feng^{*c}

a. College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.

b. Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, China. E-mail: bachier@163.com

c. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China. E-mail: ligang.feng@yzu.edu.cn, fenglg11@gmail.com

Experimental section

Chemicals

Palladium chloride (PdCl₂, AR), ethanol (CH₃CH₂OH, AR, \geq 99.7%), ethylene glycol (EG, AR, \geq 99.5%), sodium hydroxide (NaOH, AR, \geq 96.0%) and potassium hydroxide (KOH, AR, \geq 85.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Polyvinyl pyrrolidone (PVP, K30, GR), bismuth (III) oxide (Bi₂O₃, 99.9%), tellurium dioxide (TeO₂, 99.99%) and commercial Pd/C (10 wt%, contains 40-60% H₂O) catalyst were purchased from Aladdin. Nafion (5 wt%, contains 45 ± 3% H₂O) was purchased from Shanghai Hesen ElectricCo., Ltd. All solutions were prepared using ultrapure water and the chemicals were purchased and used without further purification.

Synthesis of Bi₂Te₃

In a typical synthesis, 0.4 g of PVP was added into a flask containing 18 mL of EG. Then, the mixture was sonicated for about 15 min to obtain a uniform suspension. After that, 0.2298 g of Bi_2O_3 and 0.2394 g of TeO_2 were added in and thoroughly stirred. Subsequently, 0.32 g of NaOH completely dissolved in 2 mL of ultrapure water was added dropwise into the above solution with continuous stirring. After stirring for 30 min at room temperature, the mixture was transferred into the Teflon-lined stainless steel with a volume capacity of 30 mL, sealed and reacted at 200 °C for 4 h. The product was collected through centrifugation, washed with ultrapure water and ethanol three times and dried in a vacuum oven at 60 °C.

Synthesis of Pd/Bi₂Te₃

The Pd catalyst anchored over Bi_2Te_3 was synthesized by a solvothermal method. Typically, 20 mg of Bi_2Te_3 obtained above was ultrasonically dispersed in a mixture containing 40 mL of ethanol and 40 mL of ultrapure water to form a uniform suspension. Under stirring, 2 mL of H₂PdCl₄ solution (22.6 × 10⁻³ M) was added to the suspension. Then, the pH of the suspension was adjusted to about 9 ~ 10 by NaOH solution (5 M). Subsequently, the resultant mixture was transferred into the Teflonlined stainless steel with a volume capacity of 100 mL, sealed and reacted at 140 °C for 4 h. After naturally cooled to room temperature, the mixture was filtered and washed several times with ethanol and water, respectively. At last, the resulting solid was transferred into a vacuum oven and dried overnight at 60°C to obtain the Pd/Bi₂Te₃-20% catalyst with 20 wt% Pd. While for Pd/Bi₂Te₃-25% and Pd/Bi₂Te₃-30% catalysts, the synthesis process was not changed just by using 2.78 and 3.58 mL of H₂PdCl₄ solution, respectively.

Physical characterizations

Power X-ray diffraction (XRD) was measured on a Rigaku Ultimate IV Xray diffractometer operating at 40 mA and 40 kV. Scanning electron microscopy (SEM) image was acquired using a FEI Nova NanoSEM 450. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and element mapping analysis were conducted on a JEM-2100F electron microscope. Xray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALAB250Xi spectrometer with an Al Kα radiation source.

Photoelectrochemical measurements

All photoelectrochemical measurements were performed in a conventional threeelectrode system by a CHI 660E electrochemical workstation. An L-glassy carbon electrode (L-GCE) with a diameter of 3.0 mm coated by catalyst was employed as the working electrode, an Hg/HgO (1 M KOH) electrode was used as the reference electrode and a platinum foil electrode was used as the counter electrode, respectively. The working electrode was prepared by dispersing 5 mg of catalyst powders into the mixture containing 950 μ L of ethanol and 50 μ L of Nafion solution (5 wt%) with ultrasonic treatment to form a homogeneous catalyst ink. Afterward, 2 μ L of the catalyst ink was dripped onto the L-GCE as the working electrode and then dried in air before electrochemical measurements. All of the potentials were in regard to the Hg/HgO. The electrolyte was saturated by N₂ for 15 min before measurements.

Cyclic voltammetry (CV) was carried out in a 1.0 M KOH solution or a mixed solution of 1.0 M KOH and 1.0 M EG at a potential range between $-0.6 \sim 0.3$ V with a

scan rate of 50 mV s⁻¹. Chronoamperometry (CA) was performed in a mixed solution of 1.0 M KOH and 1.0 M EG at -0.05 V for 3600 s. CO stripping voltammetry was measured in a 1.0 M KOH solution at 20 mV s⁻¹. CO was bubbled into the 1.0 M KOH solution for 30 min to form a CO monolayer adsorption onto the catalyst. Then, the excess CO in the electrolyte was removed by bubbling N_2 into the solution for 15 min.

Fig. S1 XPS survey spectra of Bi_2Te_3 and Pd/Bi_2Te_3 .

Fig. S2 CV curves of Bi_2Te_3 in 1.0 M EG + 1.0 M KOH solution under dark and visible light irradiation conditions at 50 mV s⁻¹.

Fig. S3 CV curves of Pd/Bi_2Te_3 with different loading of Pd for EG oxidation under dark (a) and visible light irradiation (b) conditions. Mass activity of Pd/C and Pd/Bi_2Te_3 with different loading of Pd in 1.0 M EG + 1.0 M KOH solution at 50 mV s⁻¹ (c).

Fig. S4 The histogram of forward peak current density of Pd/C and Pd/Bi₂Te₃ vs. scanning cycles.

Fig. S5 CV curves of Pd/Bi_2Te_3 with (a) and without (b) visible light irradiation in 1.0 M EG + 1.0 M KOH solution at different scan rate.

Fig. S6 Equivalent circuit for EIS analysis. For the equivalent circuit, R_S is the uncompensated solution resistance, R_{ct} represents the charge-transfer resistance arising from alcohol oxidation and R_f stands for the film resistance. Q_S represents double-layer capacitance and Q_f corresponds to the film capacitance.

Fig. S7 EIS spectra of Pd/Bi_2Te_3 catalyst at different potentials in 1.0 M EG + 1.0 M KOH solution under dark (a-c) and visible light illumination (d-f) conditions.

$Pd + (CH_2OH)_{2solution} \rightarrow Pd - (CH_2OH)_{2ads}$	(1)
$Pd + (CH_2OH)_{_{2ads}} + 4OH^- \rightarrow Pd-(HCO)_{2ads} + 4H_2O + 4e^-$	(2)
$Pd-(HCO)_{2ads} + 4OH^{-} \rightarrow Pd-(HCOO)_{2ads} + 2H_{2}O + 4e^{-}$	(3)
$Pd-HCOO_{ads} + e^- \rightarrow Pd-CO_{ads} + OH^-$	(4)
$Pd-(HCO)_{ads} + e^- \rightarrow Pd-CO_{ads} + OH^-$	(5)
$Pd-OH^- \rightarrow Pd + OH_{ads} + e^-$	(6)
$Pd-CO_{ads} + Pd + OH_{ads} \rightarrow 2Pd + CO_2 + H^+ + e^-$	(7)
$Bi_2Te_3 + H_2O \rightarrow Bi_2Te_3 - OH_{ads} + H^+ + e^-$	(8)
$Pd-CO_{ads} + Bi_{2}Te_{3}-OH_{ads} \rightarrow Pd + Bi_{2}Te_{3} + CO_{2} + H^{+} + e^{-}$	(9)
$Bi_{2}Te_{2} + hv \rightarrow Bi_{2}Te_{2} + e^{-} + h^{+}$	(10)

$$h^{+}_{(Bi_{2}Te_{3})} + OH^{-} \rightarrow OH$$
(11)

$$(CH_2OH)_2 + 10(\cdot OH) \rightarrow 2CO_2 + 8H_2O + 5e^-$$
(12)

Intermediates
$$(CO_{ads}) + \cdot OH \rightarrow CO_2 + H^+ + e^-$$
 (13)

Scheme S1 The photoelectrocatalytic process of EG oxidation over Pd/Bi₂Te₃ catalyst.

Table S1. Binding energy (B.E.) of Te 3d and Bi 4f obtained from curve-fitted XPS spectra for Bi_2Te_3 and Pd/Bi_2Te_3 samples.

Catalysts	Te 3d _{5/2}			Te 3d _{3/2}	${ m Bi} 4 { m f}_{7/2}$		Bi 4f _{5/2}	
	Peak	B.E. (eV)	Peak	B.E. (eV)	Peak	B.E. (eV)	Peak	B.E. (eV)
Bi ₂ Te ₃	Te ²⁻	571.6	Te ²⁻	582.0	Bi ₂ Te ₃	157.0	Bi ₂ Te ₃	162.3
	Te ⁴⁺	575.5	Te ⁴⁺	585.9	Bismuth oxide	158.5	Bismuth oxide	163.8
Pd/Bi ₂ Te ₃	Te ²⁻	573.4	Te ²⁻	583.8	Bi ₂ Te ₃	158.0	Bi ₂ Te ₃	162.4
	Te ⁴⁺	575.7	Te ⁴⁺	586.1	Bismuth oxide	158.7	Bismuth oxide	164.0

Catalysts	Electrolyte	Mass activity [mA mg _{Pd} ⁻¹]	Reference
Pd-PPy/NGE	1.0 M KOH + 1.0 M EG	2176.7	[1]
Pd-Bi ₂ Te ₃ -1/C	1.0 M KOH + 1.0 M EG	2420.0	[2]
Pd-Cu ₂ S	1.0 M KOH + 1.0 M EG	3254.0	[3]
PdPbAg NDs	1.0 M KOH + 1.0 M EG	3867.0	[4]
Pd/CoTe-C	1.0 M KOH + 1.0 M EG	3917.3	[5]
PdSn/rGO	0.1 M KOH + 0.5 M EG	4340.0	[6]
Pd/Bi ₂ Te ₃	1.0 M KOH + 1.0 M EG	5620.0	This work

Table S2. Comparison with other Pd-based catalysts for EGOR.

References

 S. Xie, L. Deng, H. Huang, J. Yuan, J. Xu, R. Yue, J. Colloid Interface Sci. 2022, 608, 3130-3140.

- [2] H. Xu, B. Huang, Y. Zhao, G. He and H. Chen, Inorg. Chem., 2022, 61, 4533-4540.
- [3] H. Gao, C Zhai, C. Yuan, Z. Liu, M. Zhu, Electrochim. Acta, 2020, 330, 135214.
- [4] X. Lao, X. Zhang, T. Sun, A. Fu, Y. Zhang, Z. Li, L. Yang, C. Chen, X. Liao, J. Wang, W. Ye,
- P. Guo, Chem. Mater. 2024, 36, 2124-2137.
- [5] F. Ren, Z. Zhang, Z. Liang, Y. Shen, X. Wang, Q. Chen, Y. Du, J. Colloid Interface Sci., 2022, 616, 316-325.
- [6] S. Mondal, V.S.K. Choutipalli, B.K. Jena, V. Subramanian, C.R. Raj, J. Phys. Chem.C 2020, 124, 9631-9643.