Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Palladium-Catalyzed Site-Selective Functionalization of Unactivated Alkenes with Vinylcyclopropanes Aided by Weakly Coordinating Native Amides

Meledath Sudhakaran Keerthana and Masilamani Jeganmohan*

Department of Chemistry, Indian Institute of Technology, Madras-600036, India

E-Mail: mjeganmohan@iitm.ac.in

Electronic Supporting Information (ESI)

Table of Contents

S2	Experimental Section
S3-S5	Optimization Studies
S5	General Procedure for synthetic transformations
S6-S7	Mechanistic investigation
S8	References
S9– S21	Spectral Data of all Compounds
S22 – S52	Copies of ¹ H and ¹³ C

Experimental Section

General information: All reactions were carried out under the N₂ atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with nitrogen prior to use (three times). Dry solvents are used for the reaction. Column chromatographical purifications were performed using SiO₂ (120- 200 mesh ASTM) from Merck if not indicated otherwise. Abbrevations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Commercially available metal salts and acids were purchased from Sigma-Aldrich and Spectrochem. Pvt. Ltd., India and used without further purification. Starting materials $1a-1j^1$, $2a-2p^2$ and ligands $L1-L5^3$, $L10^4$, L9 and $L14^5$ were prepared according to known literature procedures.¹⁻⁶

1. General Procedure for the β -selective allylation of amide 1 with 2:

A 15ml Schlenk tube with septum containing $Pd(OAc)_2$ (10 mol %), L9 (20 mol %) and K_2HPO_4 (1.2 equiv) were evacuated and purged with nitrogen gas three times. Followed by, amide 1 (50 mg, 1.0 equiv) and vinylcyclopropane 2 (5.0 equiv) was dissolved in THF (1.0 mL each) and was added to the Schlenk tube *via* syringe. Further, $(EtO)_2MeSiH$ (4.0 equiv) was added to the reaction mixture dropwise and the reaction mixture was evacuated and purged with nitrogen gas three times. The rubber septum was taken out and the reaction mixture was covered with screw cap. The reaction mixture was allowed to stir at 60 °C for 24 h. Then, the reaction mixture was allowed to cool to ambient temperature and diluted with CH₂Cl₂, followed by filtration through celite and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent to give pure **3**.

Optimization Studies:

The effect of ligands was judiciously evaluated for the reaction (**Scheme S1**). The best results were obtained when **L9** was used as a ligand to provide the desired product **3aa** in 79% yield with good β -selectivity (>95%). However, when the reaction was screened with various monoprotected amino acid ligands such as **L1-L5**, the yield of the product **3aa** was drastically reduced. Mono and diphosphine ligands **L11-L13** were also ineffective for the reaction. However, when ligand **L6** was utilized the allylated product was observed in 38% yield. In this case, low β -selectivity was observed with a β/γ ratio of 2:1. The bipryidyl ligand **L8** gave the

desired product in 34% yield with regioisomers **3aa** and **3aa'** in the ratio of 5:1. Further, when 1,2-bis(phenylsulfinyl)ethane **L10** was probed for the reaction, a drastic improvement of 57% in the yield of the product was observed with a β/γ ratio of 10:1. Low β -selectivity was observed for ligand **L14** which does not poses any substitution at either pyridine or oxazoline ring.

Scheme S1. Ligand Optimization.

Next, the effect of catalyst loading on the allylation reaction was examined. Decreasing the catalyst loading to 5 mol % reduced the yield of the product **3aa** in to 65%. Increasing the catalyst loading shows only slight increase in the product yield. Further, the product formation was completely inhibited in the absence of ligand and base (**Table 1**, entries 1-2). Reducing the base concentration to 50 mol % reduced the yield of the product **3aa** to 51% (entry 3). In the presence of alternate bases such as KOPiv and K_2CO_3 the reaction yield was reduced to 52% and 48% respectively. Other bases were ineffective for the reaction (entries 5-9). Further, when the reaction was screened with PivOH instead of base the product formation was not observed (entry

10). Various hydride sources such as Et₃SiH, Diphenyl silane and PMHS were also screened for the reaction. In these cases, Et₃SiH gave the corresponding product **3aa** in 32% yield. Other reductants were ineffective for the reaction (entries 11-13). The reaction was also examined with various solvents. Acetonitrile, 1, 4-dioxane and DMSO delivered the product **3aa** in 69%, 38% and 42% respectively. Other solvents such as toluene, DCE and TFE were ineffective for the reaction (entries 14-19). Varying the reaction temperature to 80 °C and 45 °C reduced the yield of the product to 71% and 64% respectively (entries 20-21). Further, restricting the reaction time to 12 h reduced the yield of the product to 66% (entry 22).

Scheme S2. B-selective allylation of amide 1a

Entry	Ligand (mol %)	Base (equiv.)	Additive	Solvent (mL)	Yield (%)
1	-	K ₂ HPO ₄	(EtO) ₂ MeSiH	THF	NR
2	L9	-	(EtO) ₂ MeSiH	THF	NR
3	L9	K ₂ HPO ₄ (50 mol %)	(EtO) ₂ MeSiH	THF	51
4	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	THF	79
5	L9	KOPiv	(EtO) ₂ MeSiH	THF	52
6	L9	CsOAc	(EtO) ₂ MeSiH	THF	NR
7	L9	K ₂ CO ₃	(EtO) ₂ MeSiH	THF	48
8	L9	NaOAc	(EtO) ₂ MeSiH	THF	NR
9	L9	LiOAc ⁻ 2H ₂ O	(EtO) ₂ MeSiH	THF	NR
10	L9	PivOH	(EtO) ₂ MeSiH	THF	NR
11	L9	K ₂ HPO ₄	Et ₃ SiH	THF	32
12	L9	K ₂ HPO ₄	Diphenyl silane	THF	NR
13	L9	K ₂ HPO ₄	PMHS	THF	NR
14	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	Acetonitrile	69

Table S1

15	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	Toluene	NR
16	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	TFE	trace
17	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	Dioxane	38
18	L9	K ₂ HPO ₄	Et ₃ SiH	DCE	NR
19	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	DMSO	42
20^a	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	THF	71
21 ^b	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	THF	64
22^c	L9	K ₂ HPO ₄	(EtO) ₂ MeSiH	THF	66

^{*a*}reaction was carried out at 80 °C, ^{*b*}reaction was carried out at 45 °C, ^{*c*}reaction time was restricted to 12 h.

2. General Procedure for the synthesis of Vinyl Cyclopropanes:

The VCPs were prepared according to the reported literature procedures.² To a mixture of NaH (20 mmol) and THF (40 mL) was added corresponding malonate (10 mmol) dropwise under ice bath. After 1 hour, a solution of dibromo-2-butene (10 mmol) in THF (40 mL) was added slowly over 1 hour. Then the reaction was warmed to room temperature. After the reaction was complete (monitored by TLC), it was quenched with water. The mixture was extracted with EtOAc (50 mL x 3). The organic layer was washed with brine, dried over Na2SO4, filtered and concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography (PE/EtOAc = 20/1) to afford the desired product **2**.

3. General Procedure for synthetic transformations:

(a) General procedure for synthesis of 4: To a solution of 3ha (0.25 mmol) in THF (0.4 mL), NaH (1.5 equiv.) was added portion wise at 0 $^{\circ}$ C. This solution was allowed to stir for 30 minutes and allyl bromide (1.5 equiv.) was added to the solution dropwise. The reaction mixture was allowed to stir under rt for next 12 h. The progress of the reaction was monitored by the TLC analysis. After completion of the reaction, the mixture was filtered through the celite and washed with ethyl acetate. The organic layer was extracted with ethyl acetate, concentrated under reduced pressure and subjected to column chromatographic purification, gave pure product 4 as yellow liquid in 40% yield.

(b) General procedure for synthesis of 5⁶: A 10 mL Schlenk tube equipped with a stir bar was evacuated and filled with argon. **3ea** (1.00 equiv) was dissolved in CH₃OH. NaOH (5 equiv) was

added to the reaction mixture. The reaction mixture was refluxed at 75 $^{\circ}$ C for 8 h. The resulting mixture was diluted with DI water and then extracted with EtOAc. The combined organic layers were dried (anhyd. Na₂SO₄) and concentrated under reduced pressure to afford **5**.

3. Mechanistic investigation

a) Deuterium labeling studies for β -selective allylation in absence of hydride source.

A 15ml Schlenk tube with septum containing $Pd(OAc)_2$ (10 mol %), L9 (20 mol %) and K_2HPO_4 (1.2 equiv) were evacuated and purged with nitrogen gas three times. Amide 1i (20 mg,) was dissolved in THF (1.0 mL each) and was added to the Schlenk tube *via* syringe. Then, CD₃COOD (2 equiv.) was added to the reaction mixture. The tube was sealed using screw cap and the reaction mixture was allowed to stir at 60 °C for 1 h in an oil bath. After cooling to the ambient temperature, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and the filtrate was concentrated to produce D-1i in 88% yield. 26% deuterium incorporation was obtained at allylic carbon and 46% deuterium incorporation was observed at the terminal carbon of alkene.

b) Deuterium labeling studies for β -selective allylation in presence of hydride source.

A 15ml Schlenk tube with septum containing Pd(OAc)₂ (10 mol %), **L9** (20 mol %) and K₂HPO₄ (1.2 equiv) were evacuated and purged with nitrogen gas three times. Amide **1a** (20 mg,) was dissolved in THF (1.0 mL each) and was added to the Schlenk tube *via* syringe. (OEt)₂MeSiH (4.0 equiv) was then added dropwise to the reaction mixture. Further, CD₃COOD (2.0 equiv) was added to the reaction mixture. The tube was sealed using screw cap and the reaction mixture was allowed to stir at 60 °C for 1 h in an oil bath. After cooling to the ambient temperature, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and the filtrate was concentrated to produce **D-1a** in 95% yield. 17% deuterium incorporation was obtained at γ position and 30% deuterium incorporation was observed at the terminal carbon of alkene. Further, H/D exchange between CD₃COOD and Si–H was confirmed by HRMS. The mass corresponding to (OEt)₂MeSiD was detected in the HRMS.

 $(OEt)_2MeSiD$: **HRMS** (**ESI-TOF**) **m/z**: $[M + K]^+$ Calcd for $C_5H_{13}DKO_2Si$ 174.0463 ; Found 174.0480.

c) Alkene Isomerization

6,697 6,697 6,6176

Reference:

- 1. T. Itoh, T. Matsueda, Y. Shimizu, M. Kanai, Chem. Eur. J., 2015, 21, 15955–15959.
- 2. H. Li, Y. Liu, S. Chiba, Chem. Commun., 2021, 57, 6264-626.
- M. Liu, P. Yang, M. K. Karunanda, Y. Wang P. Liu, K.M. Engle, J. Am. Chem. Soc., 2018, 140, 5805–5813.
- 4. G. Naturale, M. Lamblin, C Commandeur, F. X Felpin, J. Dessolin, *Eur. J. Org. Chem.* .2012, 5774–5788.
- 5. A. J. Young, M. C. White, J. Am. Chem. Soc. 2008, 43, 14090–14091.
- 6. J. Rodrigalvarez, H. Wang, R. Martin, J. Am. Chem. Soc., 2023, 145, 3869-3874.

Spectral Data of Compounds

Dimethyl (E)-2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3aa):

Prepared according to general procedure **1**; yellow oil; eluent (18% ethyl acetate:hexane); yield is 79%.

¹**H** NMR (400 MHz, CDCl₃): 6.99 – 6.82 (m, 1H), 6.14 (dd, J = 14.8, 2.8 Hz, 1H), 5.80 – 5.64 (m, 1H), 4.98 (m, 2H), 3.69 (s, 6H), 3.35 (m, 6.9 Hz, 4H), 2.18 (m, J = 7.5 Hz, 2H), 2.05 (m, 2H), 1.96 (d, J = 7.7 Hz, 3H), 1.12 (m, 6H), 1.09 – 0.75 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 169.8, 166.1, 147.6, 136.7, 119.4, 77.4, 77.1, 76.8, 52.5, 50.8, 42.1, 40.8, 31.2, 27.9, 25.5, 14.8, 13.1, 12.7.HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₃₂NO₅ 342.2280 ; Found 342.2294. Diethyl (*E*)-2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ab):

Prepared according to general procedure **1**; yellow oil; eluent (18% ethyl acetate:hexane); yield is 78%.

¹**H NMR** (400 MHz, CDCl₃): δ 6.95 (m, J = 14.9, 1H), 6.19 (dd, J = 14.8, 1H), 5.77 (m, 1H), 5.01 (m, 1H), 4.27 – 3.95 (m, 4H), 3.51 – 3.36 (m, 5H), 3.36 (m, 2H), 2.24 (m, J = 7.4 Hz, 2H), 2.10 (t, J = 7.4 Hz, 2H), 2.05 – 1.92 (m, 1H), 1.27 (m, 6H), 1.23 – 1.13 (m, 6H), 1.10 – 1.01 (t, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 169.5, 166.1, 147.6, 136.9, 119.5, 116.0, 77.4, 77.3, 76.7, 61.3, 51.2, 42.1, 40.8, 31.3, 27.8, 25.6, 14.8, 14.1, 13.2, 12.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₃₆NO₅ 370.2593; Found 370.2599

Diisopropyl (E)-2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ac):

Prepared according to general procedure 1; yellow oil; eluent (19% ethyl acetate:hexane); yield is 71%.

¹**H NMR** (400 MHz, CDCl₃): δ 6.98 – 6.91 (m, 1H), 5.88 – 5.71 (dd, 1H), 5.05 (m, 3H), 4.97 (m, J = 18.2 Hz, 1H), 3.41 (m, 4H), 3.34 – 3.20 (m, 1H), 2.24 (m, 2H), 2.09 (m, J = 7.5 Hz, 2H), 1.97 (m, 3H), 1.25 (t, J = 6.5 Hz, 12H), 1.18 (d, J = 21.9 Hz, 6H), 1.13 – 1.01 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 171.0, 169.0, 166.1, 147.6, 137.7, 119.5, 115.9, 77.4, 76.8, 68.7, 56.9, 51.5, 42.1, 40.8, 31.4, 31.3, 28.3, 27.7, 25.6, 21.6, 14.8, 13.1, 12.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₄₀NO₅ 398.2906; Found 398.2918.

Di-tert-butyl (E)-2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ad):

Prepared according to general procedure 1; yellow oil; eluent (18% ethyl acetate: hexane); yield is 74%.

¹H NMR (400 MHz, CDCl₃): δ 7.06 – 6.80 (m, 1H), 5.88 – 5.60 (m, 1H), 5.25 – 4.65 (m, 2H), 3.65 – 3.30 (m, 4H), 3.14 (t, J = 9.7 Hz, 1H), 2.41 – 1.78 (m, 4H), 1.89 (m, 3H), 1.44 (s, J = 3.8 Hz, 18H), 1.15 (m, J = 21.5 Hz, 6H), 1.09 – 0.94 (m, 3H).¹³C NMR (101 MHz, CDCl₃): δ 13C NMR (101 MHz, CDCl3) δ 170.8, 168.9, 166.1, 147.6, 137.9, 119.5, 115.7, 114.8, 81.3, 77.4, 76.7, 57.9, 53.1, 44.4, 42.2, 40.8, 31.3, 28.3, 27.9, 27.8, 25.6, 14.8, 13.2, 12.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₄₄NO₅ 426.3219; Found 426.3211.

Dibenzyl (E)-2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ae):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate: hexane); yield is 68%.

¹**H NMR** (400 MHz, **CDCl**₃): δ 8.00 – 6.90 (m, 10H), 7.01 – 6.64 (m, 1H), 6.18 (m, J = 15.0 Hz, 1H), 5.79 – 5.53 (m, 1H), 5.15 (m, J = 3.0 Hz, 4H), 4.98 (m, J = 14.6 Hz, 2H), 3.42 (m, J = 22.6, 15.8, 7.5 Hz, 5H), 2.23 (m, 2H), 2.05 (m, 4H), 1.32 – 0.97 (m, 9H).¹³**C NMR** (101 MHz, **CDCl**₃): δ 169.1, 166.1, 147.6, 136.7, 135.4, 128.6, 128.3, 128.2, 119.5, 116.1, 77.4, 77.1, 77.0, 76.8, 67.1, 60.4, 51.2, 42.2, 40.8, 31.2, 27.9, 25.6, 14.8, 13.2, 12.7. **HRMS** (**ESI-TOF**) m/z: [M + H]⁺ Calcd for C₃₀H₄₀NO₅ 494.2906; Found 494.2901.

Bis(2-bromobenzyl) (E)-2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3af):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate: hexane); yield is 58%.

¹**H** NMR (400 MHz, CDCl₃): $\delta 8.00 - 6.90$ (m, 8H), 7.01 - 6.64 (m, 1H), 6.18 (d, J = 15.0 Hz, 1H), 5.79 - 5.53 (m, 1H), 5.15 (m, 4H), 4.98 (m, 2H), 3.42 (m, 5H), 2.23 (t, J = 7.6 Hz, 2H), 2.05 (m, J = 9.4, 4.7 Hz, 3H), 1.32 - 0.97 (m, 9H).¹³C NMR (101 MHz, CDCl₃): δ 169.11, 166.07, 147.57, 136.72, 135.37, 128.57, 128.35, 128.18, 119.52, 116.13, 77.41, 77.09, 77.05, 76.77, 67.10, 60.43, 51.16, 42.15, 40.81, 31.23, 27.86, 25.60, 14.84, 13.19, 12.72. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₃₈Br₂NO₅ 650.1117; Found 650.1124.

1-(*Tert*-butyl) 3-methyl (*E*)-2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ag):

Prepared according to general procedure 1; yellow oil; eluent (20% ethyl acetate:hexane); yield is 71%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.10 – 6.83 (m, 1H), 6.18 (m, J = 15.0 Hz, 1H), 5.77 (m, J = 9.1 Hz, 1H), 5.03 (m, 2H), 3.73 (m, J = 4.3 Hz, 3H), 3.48 – 3.32 (m, 4H), 3.43 – 3.09 (m, 1H), 2.22 (m, J = 7.6 Hz, 4H), 2.07 (m, 2H), 1.58 – 1.41 (m, 9H), 1.17 (m, J = 21.3 Hz, 6H), 1.07 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 170.3, 168.5, 166.1, 147.6, 137.7, 137.1, 119.5, 115.9, 114.9, 81.8, 52.3, 52.0, 42.1, 40.8, 31.5, 31.3, 28.4, 27.9, 27.9, 25.6, 14.8, 13.2, 12.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₃₈NO₅ 384.2750; Found 384.2744.

1-(*Tert*-butyl) **3-ethyl** (*E*)-**2-(7-(diethylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate** (**3ah**): EtO₂C_>CO₂^tBu

Prepared according to general procedure **1.** yellow oil; eluent (20% ethyl acetate:hexane); yield is 70%.

¹H NMR (400 MHz, CDCl₃): δ 7.08 – 6.86 (m, 1H), 5.85 – 5.70 (m, 1H), 5.03 (m, J = 14.1 Hz, 2H), 4.19 (m, 2H), 3.40 (m, 4H), 3.26 (m, 1H), 2.23 (m, J = 7.5 Hz, 2H), 2.11 (m, 2H), 1.95 (d, J = 6.7 Hz, 3H), 1.46 (d, J = 2.8 Hz, 9H), 1.36 – 1.26 (m, 3H), 1.17 (d, 6H), 1.13 – 0.96 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 171.8, 170.5, 169.8, 168.6, 147.6, 137.7, 119.5, 115.8, 114.9, 81.7, 81.4, 77.4, 77.1, 61.1, 57.5, 52.2, 40.8, 31.4, 28.3, 27.8, 25.6, 14.8, 14.1, 13.1, 12.7. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₂H₄₀NO₅ 398.2906; Found 398.2911.

Ethyl (*E*)-2-acetyl-9-(diethylamino)-7-ethyl-9-oxonon-4-enoate (3ai):

Prepared according to general procedure **1** yellow oil; eluent (15% ethyl acetate: hexane); yield is 54%.

¹H NMR (400 MHz, CDCl₃): δ 6.95 (m, J = 14.9, 6.9 Hz, 1H), 6.19 (m, J = 15.0 Hz, 1H), 5.91 – 5.74 (m, 1H), 5.11 – 4.72 (m, 2H), 4.20 (m, J = 7.5 Hz, 2H), 4.11 (m, 1H), 3.41 (m, 4H), 2.24 (d, J = 2.8 Hz, 3H), 2.10 – 2.01 (m, 4H), 2.03 – 1.89 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.17 (d, J = 21.6 Hz, 6H), 1.14 – 0.89 (t, 3H).¹³C NMR (101 MHz, CDCl₃) δ 203.1, 169.7, 166.1, 147.5, 137.5, 137.0, 119.5, 116.0, 61.4, 58.8, 42.2, 40.8, 31.4, 29.0, 27.1, 25.6, 14.8, 14.1, 13.2, 12.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₉H₃₃NNaO₄ 362.2307; Found 362.2318. Methyl (*E*)-2-benzoyl-9-(diethylamino)-7-ethyl-9-oxonon-4-enoate (3aj):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate:hexane); yield is 46%.

¹H NMR (400 MHz, CDCl₃): δ 7.95 (m, J = 7.8 Hz, 2H), 7.78 (m, J = 7.5 Hz, 1H), 7.61 (m, 1H), 7.49 (m, 3H), 7.17 – 6.71 (m, 1H), 6.19 (d, J = 15.1 Hz, 1H), 3.76 (m, J = 2.6 Hz, 3H), 3.40 (m,4H), 2.46 – 2.07 (m, 4H), 1.17 (m, J = 21.1 Hz, 10H), 1.20 – 0.92 (t, 3H).¹³C NMR (101 MHz, CDCl₃): 192.4, 168.0, 166.1, 147.6, 133.8, 128.8, 128.5, 119.5, 52.5, 45.7, 42.1, 40.8,

25.5, 14.8, 13.2, 12.7. **HRMS (ESI-TOF) m/z:** $[M + H]^+$ Calcd for $C_{23}H_{34}NO_4$ 388.2488; Found 388.2496.

Methyl (E)-9-(diethylamino)-7-ethyl-2-(4-methylbenzoyl)-9-oxonon-4-enoate (3ak):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate:hexane); yield is 41%.

¹**H** NMR (400 MHz, CDCl₃): 7.88 (m, J = 7.7 Hz, 2H), 7.53 – 7.03 (m, 2H), 7.06 – 6.81 (m, 1H), 6.19 (d, J = 15.0 Hz, 1H), 5.95 – 5.69 (m, 1H), 5.01 (m, 2H), 4.36 (m, 1H), 3.68 (m, J = 3.1 Hz, 3H), 3.40 (m, J = 21.4, 7.3 Hz, 4H), 2.42 (s, 3H), 2.08 (m, J = 27.4 Hz, 4H), 1.26 – 0.76 (m, 10H). ¹³C NMR (101 MHz, CDCl₃): δ 194.7, 170.5, 166.1, 147.5, 144.6, 137.1, 129.3, 128.8, 119.5, 116.1, 77.4, 76.7, 52.8, 52.5, 42.2, 40.8, 31.5, 28.1, 25.6, 21.7, 14.8, 14.2, 13.2, 12.7. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₄H₃₆NO₄ 402.2644; Found 402.2641.

Methyl (E)-9-(diethylamino)-7-ethyl-2-(3-methoxybenzoyl)-9-oxonon-4-enoate (3al):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate:hexane); yield is 38%.

¹**H NMR** (400 MHz, CDCl₃): δ 7.64 – 7.43 (m, 4H), 7.46 – 7.22 (m, 1H), 7.15 (m 1H), 6.95 (m, J = 14.6, 4.0 Hz, 1H), 6.19 (d, J = 14.6 Hz, 1H), 3.86 (m, 3H), 3.76 (s, 3H), 3.40 (m, 4H), 2.23 (m, 4H), 1.32 – 1.12 (m, 10H), 1.08 (t, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 192.3, 168.0, 166.1, 159.9, 147.6, 137.2, 129.8, 129.6, 121.2, 120.4, 119.5, 118.5, 117.3, 112.5, 111.2, 55.5, 52.5, 51.5, 45.8, 42.1, 40.8, 25.6, 14.8, 13.2, 12.7. **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₆NO₅ 418.2593; Found 418.2581

(E)-8,8-Dicyano-N, N,3-triethyloct-5-enamide (3am):

Prepared according to general procedure 1; yellow oil; eluent (25% ethyl acetate:hexane); yield is 64%.

¹H NMR (400 MHz, CDCl₃): δ 6.92 (m, J = 14.8, 5.8 Hz, 1H), 6.16 (d, J = 15.1 Hz, 1H), 5.87 – 5.57 (m, 1H), 5.28 – 5.11 (m, 2H), 3.78 (s, 1H), 3.57 – 3.31 (m, 4H), 2.38 (q, J = 7.7, 7.2 Hz, 2H), 2.33 – 2.01 (m, 4H), 1.27 – 0.87 (m, 9H).¹³C NMR (101 MHz, CDCl₃): δ 166.1, 147.6, 133.8, 119.5, 118.8, 112.5, 77.4, 77.1, 42.2, 30.3, 29.9, 25.6, 21.6, 14.8, 13.2, 12.7. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₆H₂₅N₃NaO 298.1895; Found 298.1889.

Ethyl (*E*)-2-cyano-9-(diethylamino)-7-ethyl-9-oxonon-4-enoate (3an):

Prepared according to general procedure 1; yellow oil; eluent (10% ethyl acetate:hexane); yield is 78%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.03 – 6.71 (m, 1H), 6.12 (m, J = 15.1 Hz, 1H), 5.68 (m, J = 10.4, 5.2 Hz, 1H), 5.05 (m, 4H), 4.20 (dd, J = 7.5, 2.7 Hz, 4H), 3.45 (d, J = 7.4 Hz, 2H), 3.42 – 3.16 (m, 4H), 2.20 (m, J = 21.9, 7.2 Hz, 3H), 1.99 (d, J = 7.7 Hz, 2H), 1.28 – 1.09 (m, 7H), 1.08 – 0.86 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 166.1, 166.1, 147.6, 135.3, 119.5, 116.4, 76.7, 62.8, 42.1, 36.7, 30.6, 29.7, 28.9, 25.6, 21.1, 14.8, 14.2, 14.0, 13.2, 12.7. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₈H₃₁N₂O₃ 323.2335; Found 323.2348.

Methyl (*E*)-2-cyano-9-(diethylamino)-7-ethyl-9-oxonon-4-enoate (3ao):

Prepared according to general procedure 1; yellow oil; eluent (20% ethyl acetate: hexane); yield is 76%.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.01 – 6.71 (m, 1H), 6.11 (m, J = 15.0 Hz, 1H), 5.78 – 5.59 (m, 1H), 5.12 – 4.98 (m, 2H), 3.75 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 2.20 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 2.20 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 2.20 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 2.20 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 1H), 3.40 – 3.25 (m, 4H), 3.40 (m, J = 2.8 Hz, 3H), 3.47 (m, 2H), 3.4

= 22.3, 7.2 Hz, 4H), 1.99 (q, J = 5.6, 3.2 Hz, 2H), 1.10 (m, J = 21.8, 7.4 Hz, 6H), 1.03 – 0.97 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 166.61, 166.1, 147.6, 135.3, 119.5, 117.4, 77.4, 77.1, 76.7, 13.2, 12.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₉N₂O₃ 309.2178; Found 309.2184.

(E)-7-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-N,N,3-triethylhept-5-enamide (3ap):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate: hexane); yield is 26%.

¹**H NMR** (400 MHz, CDCl₃): δ 7.04 – 6.85 (m, 1H), 6.18 (m, 2H), 5.79 (m, J = 16.9, 10.1, 6.7 Hz, 1H), 5.07 (t, J = 13.8 Hz, 2H), 3.54 (t, 1H), 3.48 – 3.24 (m, 4H), 2.29 (m, 2H), 2.24 (dd, 4H), 1.77 (s, 3H), 1.76 (s, 3H), 1.19 (m, 2H), 1.15 (m, 3H), 1.07 (t, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 166.3, 166.1, 165.5, 155.0, 147.8, 136.7, 119.4, 116.6, 104.9, 77.3, 77.0, 76.7, 44.9, 42.2, 40.9, 30.6, 28.5, 26.7, 25.6, 25.4, 14.7, 13.1, 12.6. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₉H₃₂NO₅ 354.2280; Found 354.2270.

Dimethyl (E)-2-(7-(diethylamino)-5-methyl-7-oxohept-2-en-1-yl)malonate (3ba):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate: hexane); yield is 78%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.21 – 7.08 (m, 1H), 5.90 (dd, J = 14.7, 6.2 Hz, 1H), 5.76 (m, J = 16.9, 2H), 5.01 (d, 1H), 3.74 (s, 6H), 3.39 (m, J = 14.5, 7.2 Hz, 4H), 3.07 (t, 1H), 2.10 (m, 2H), 2.02 (t, J = 7.2 Hz, 3H), 1.96 (t, 3H), 1.89 (t, J = 7.2 Hz, 1H), 1.83 – 1.76 (m, 1H), 1.15 (m, 3H).¹³C NMR (101 MHz, CDCl₃): δ 169.8, 150.6, 149.3, 148.4, 141.2, 136.8, 122.0, 116.0, 52.5, 50.8, 46.6 41.8, 31.3, 27.9, 25.9, 18.1.**HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₁₇H₃₀NO₅ 328.2124; Found 328.2112.

1-(*Tert*-butyl) 3-ethyl (*E*)-2-(5-(2-(diethylamino)-2-oxoethyl)oct-2-en-1-yl)malonate (3ch):

Prepared according to general procedure **1**. yellow oil; eluent (20% ethyl acetate:hexane); yield is 66%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.08 – 6.86 (m, 1H), 5.85 – 5.70 (m, 2H), 5.03 (m, J = 14.1 Hz, 2H), 4.19 (m, 2H), 3.40 (m, 4H), 3.26 (m, 1H), 2.23 (m, J = 7.5 Hz, 3H), 2.11 (m, 2H), 1.95 (d, J = 6.7 Hz, 3H), 1.46 (d, J = 2.8 Hz, 9H), 1.36 – 1.26 (m, 3H), 1.17 (d, 6H), 1.13 – 0.96 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 171.8, 170.5, 169.8, 168.6, 147.6, 137.7, 119.5, 115.8, 114.9, 81.7, 81.4, 77.4, 77.1, 61.1, 57.5, 52.2, 40.8, 31.4, 28.3, 27.8, 25.6, 14.8, 14.1, 13.1, 12.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₄₂NO₅ 412.3063; Found 412.3060.

Ethyl (E)-2-cyano-7-(2-(diethylamino)-2-oxoethyl)dec-4-enoate (3co):

Prepared according to general procedure 1; yellow oil; eluent (10% ethyl acetate:hexane); yield is 62%.

¹H NMR (400 MHz, CDCl₃): ¹H NMR (400 MHz, CDCl₃): δ 7.03 – 6.71 (m, 1H), 6.12 (m, J = 15.1 Hz, 1H), 5.68 (m, J = 10.4, 5.2 Hz, 1H), 5.05 (m, 4H), 4.20 (dd, J = 7.5, 2.7 Hz, 4H), 3.45 (d, J = 7.4 Hz, 2H), 3.42 – 3.16 (m, 4H), 2.20 (m, J = 21.9, 7.2 Hz, 3H), 1.99 (d, J = 7.7 Hz, 2H), 1.28 – 1.09 (m, 7H), 1.08 – 0.86 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 166.1, 166.1, 147.6, 135.3, 119.5, 116.4, 76.7, 62.8, 42.1, 36.7, 30.6, 29.7, 28.9, 25.6, 21.1, 14.8, 14.2, 14.0, 13.2, 12.7. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₈H₃₀N₂NaO₃ 345.2154; Found 345.2168. Dibenzyl (*E*)-2-(5-(4-bromophenethyl)-7-oxo-7-(phenylamino)hept-2-en-1-yl)malonate (3de):

Prepared according to general procedure 1; yellow oil; eluent (20% ethyl acetate: hexane); yield is 58%.

¹**H** NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 8.3 Hz, 1H), 7.54 – 7.28 (m, 4H), 7.24 (m, 14H), 5.76 – 5.61 (m, 1H), 5.14 (s, 4H), 4.96 (m, 2H), 3.48 (m, 1H), 2.76 (m, 2H), 2.57 (m, 2H), 2.55 – 1.46 (m, 7H).¹³C NMR (101 MHz, CDCl₃): δ 171.5, 169.1, 148.1, 141.5, 138.4, 136.7, 136.4, 135.4, 134.5, 128.6, 128.6, 128.5, 128.4, 128.2, 128.0, 127.5, 126.0, 121.6, 121.5, 116.5, 116.2, 77.4, 77.1, 76.8, 67.1, 51.2, 37.3, 35.2, 31.3, 27.9, 27.1. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₃₉H₃₉BrNO₅ 668.2012; Found 668.2001.

Ethyl (*E*)-2-benzoyl-7-(4-bromophenethyl)-9-oxo-9-(phenylamino)non-4-enoate (3dp):

Prepared according to general procedure 1; yellow oil; eluent (20% ethyl acetate: hexane); yield is 36%.

¹**H** NMR (400 MHz, CDCl₃): δ 9.79 (s, 1H), 8.15 (m, J = 8.3 Hz, 1H), 7.63 – 7.27 (m, 5H), 7.25 (m, J = 15.7, 8H), 5.88 – 5.47 (m, 1H), 5.35 – 4.57 (m, 1H), 4.26 (m, 2H), 3.51 (t, 1H), 2.77 (m, J = 7.9 Hz, 2H), 2.57 (m, 2H), 2.41 – 2.15 (m, 2H), 2.27 – 2.14 (m, 3H), 2.05 (d, 2H), 1.32 (t, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.5, 166.1, 148.1, 141.5, 138.3, 136.4, 135.4, 134.5, 128.6, 128.4, 128.0, 127.5, 126.0, 121.6, 121.4, 117.4, 116.5, 62.9, 37.3, 36.7, 35.2, 30.7, 28.9, 27.1, 14.0. HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₃₂H₃₅BrNO₄ 576.1749; Found 576.1751.

Methyl (*E*)-7-(4-bromophenethyl)-2-(4-methylbenzoyl)-9-oxo-9-(phenylamino)non-4-enoate (3dk):

Prepared according to general procedure 1; yellow oil; eluent (20% ethyl acetate: hexane); yield is 29%.

¹H NMR (400 MHz, CDCl₃): δ 9.79 (s, 1H), 8.14 (m, J = 8.3 Hz, 1H), 7.88 (m, 1H), 7.60 – 7.36 (m, 4H), 7.24 (m, 7H), 5.96 – 5.60 (m, 1H), 5.21 – 4.74 (m, 1H), 4.36 (m, 1H), 3.67 (s, 3H), 2.77 (m, 2H), 2.57 (t, 2H), 2.40 (s, 3H), 2.41 – 1.91 (m, 7H). ¹³C NMR (101 MHz, CDCl₃): δ 194.8,

171.5, 170.5, 148.1, 144.6, 141.5, 138.3, 137.2, 136.4, 134.5, 133.7, 129.5, 128.8, 128.6, 128.5, 128.0, 127.4, 126.0, 121.6, 121.4, 116.5, 116.1, 52.8, 52.5, 37.3, 35.2, 31.5, 28.1, 27.1, 21.7. **HRMS (ESI-TOF) m/z**: [M + Na]⁺ Calcd for C₃₂H₃₄BrNNaO₄ 598.1569; Found 598.1558.

Dimethyl (*E*)-2-(5-ethyl-7-(methoxy(methyl)amino)-7-oxohept-2-en-1-yl)malonate (3ea):

Prepared according to general procedure 1; yellow oil; eluent (15% ethyl acetate:hexane); yield is 78%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.22 – 6.96 (m, 1H), 5.98 – 5.69 (m, 1H), 5.13 – 4.89 (m, 2H), 3.75 (s, J = 3.2 Hz, 6H), 3.72 (s, J = 10.9 Hz, 3H), 3.45 – 3.34 (m, 2H), 3.25 (m, J = 3.0 Hz, 1H), 2.26 (m, J = 7.5 Hz, 2H), 2.20 – 2.05 (s, 3H), 2.02 (t, J = 7.6 Hz, 2H), 1.09 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): 169.9, 153.4, 149.5, 136.7, 119.7, 117.6, 116.1, 61.7, 52.5, 50.8, 31.3, 27.9, 25.6, 25.4, 12.5, 12.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₇NO₆ 329.1838; Found 329.1841.

Dimethyl (E)-2-(5-ethyl-7-oxo-7-(pyrrolidin-1-yl)hept-2-en-1-yl)malonate (3fa):

Prepared according to general procedure 1; yellow oil; eluent (25% ethyl acetate: hexane); yield is 66%.

¹H NMR (500 MHz, CDCl₃): 7.03 – 6.87 (m, 1H), 6.09 (m, J = 15.2 Hz, 1H), 5.75 (m, J = 8.7 Hz, 1H), 5.03 (m, 3H), 3.74 (s, J = 2.7 Hz, 6H), 3.52 (m, 2H), 3.41 (m, J = 2.6 Hz, 3H), 2.18 – 1.71 (m, 9H)1.07 (t, J = 7.7 Hz, 3H).¹³C NMR (126 MHz, CDCl₃): δ 169.8, 147.2, 136.7, 120.7, 116.1, 77.4, 53.9, 50.8, 46.8, 43.9, 32.2, 27.9, 26.1, 25.5, 24.4, 24.3, 12.6, 12.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₃₀NO₅ 340.2124; Found 340.2119.

Dimethyl (*E*)-2-(5-ethyl-7-morpholino-7-oxohept-2-en-1-yl)malonate (3ga):

Prepared according to general procedure **1**; yellow oil; eluent (28% ethyl acetate:hexane); yield is 64%.

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 6.98 (m, 1H), 5.86 – 5.59 (m, 1H), 5.03 (m, 3H), 3.70 (m, 6H), 3.57 (m, J = 8.5 Hz, 3H), 3.41 (m, 1H), 3.05 (m, J = 16.4, 8.1 Hz, 1H), 2.78 (dt, J = 15.9, 3.7 Hz, 1H). 2.23 (m, 2H), 2.49 – 1.97 (m, 2H), 2.18 – 2.01 (m, 2H), 2.06 – 1.97 (m, 3H), 1.07 (t, 3H).¹³C NMR (101 MHz, CDCl₃): δ 169.8, 168.5, 148.6, 136.7, 118.5, 116.1, 77.4, 76.7, 66.8, 53.6, 52.5, 50.8, 46.7, 42.2, 41.7, 32.2, 31.3, 27.9, 12.5, 12.1. [M + H]⁺ Calcd for C₁₈H₃₀NO₆ 356.2073; Found 356.2085.

Dimethyl (E)-2-(5-ethyl-7-oxo-7-(phenylamino)hept-2-en-1-yl)malonate (3ha):

Prepared according to general procedure **1**; yellow oil; eluent (8% ethyl acetate:hexane); yield is 58%.

¹**H** NMR (400 MHz, CDCl₃): δ 7.62 – 7.52 (m, 5H), 7.10 (m, J = 7.5 Hz, 1H), 5.76 (m, 1H), 5.17 – 4.96 (m, 2H), 3.74 (m, J = 3.1 Hz, 6H), 3.41 (m, J = 2.8 Hz, 1H), 2.30 – 2.03 (m, 2H), 2.02 (m, 2H), 1.98 (m, 3H), 1.08 (t, 3H).¹³**C** NMR (101 MHz, CDCl₃): δ 169.9, 141.3, 136.7, 128.9, 128.6, 124.4, 124.2, 120.0, 119.9 116.1, 77.4, 77.1, 76.8, 52.5, 50.8, 31.3, 27.9, 25.2, 12.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₂₇NNaO₅ 384.1787; Found 384.1781. Dimethyl (*E*)-2-(7-(benzylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ia):

Prepared according to general procedure **1** yellow oil; eluent (16% ethyl acetate:hexane); yield is 50%.

¹**H NMR** (400 MHz, CDCl₃): δ 7.28 (m, J = 5.8, 4.8 Hz, 5H), 6.88 (s, 1H), 5.94 – 5.58 (m, 1H), 5.14 – 4.91 (m, 2H), 4.53 – 4.34 (d, 2H), 3.72 (s, J = 6.1, 4.3 Hz, 6H), 3.40 (t, J = 2.8 Hz, 1H), 2.20 (m, 2H), 2.08 (m, 2H), 2.00 (m, J = 3.3 Hz, 3H), 1.04 (t, J = 7.5, 6.4, 3.8 Hz, 3H). ¹³C NMR

(101 MHz, CDCl₃): δ 170.2, 169.9, 166.2, 146.5, 138.4, 128.6, 128.1, 1278.0, 127.4, 126.5, 122.5, 116.1, 77.4, 77.1, 76.8, 52.5, 50.8, 43.5, 31.3, 27.9, 25.1, 23.2, 12.4. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₁H₂₉NNaO₅ 398.1943; Found 398.1945.

Dimethyl (E)-2-(7-((2-bromobenzyl)amino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ja):

Prepared according to general procedure **1** yellow oil; eluent (20% Ethylacetate: hexane yield is 38%.

¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.28 (m, J = 5.8, 4.8 Hz, 5H), 6.88 (s, 1H), 5.94 – 5.58 (m, 1H), 5.14 – 4.91 (m, 2H), 4.53 – 4.34 (d, 2H), 3.72 (s, J = 6.1, 4.3 Hz, 6H), 3.40 (t, J = 2.8 Hz, 1H), 2.20 (m, 2H), 2.08 (m, 2H), 2.00 (m, J = 3.3 Hz, 3H), 1.04 (t, J = 7.5, 6.4, 3.8 Hz, 3H).¹³C NMR (**101 MHz**, **CDCl**₃): δ 170.2, 169.9, 166.2, 146.5, 138.4, 138.3, 136.7, 128.6, 128.1, 127.8, 127.4, 126.5, 122.5, 116.1, 77.4, 77.1, 76.8, 52.5, 50.8, 43.7, 43.5, 31.3, 27.9, 25.1, 23.2, 12.4. **HRMS (ESI-TOF) m/z:** $[M + H]^+$ Calcd for C₂₁H₂₉BrNO₅ 454.1229; Found 454.1237.

Dimethyl (E)-2-(7-(tert-butylamino)-5-ethyl-7-oxohept-2-en-1-yl)malonate (3ka)

Prepared according to general procedure **1**; yellow oil; eluent (6% ethyl acetate:hexane); yield is 59%.

¹**H NMR** (400 MHz, CDCl₃): δ 6.89 – 6.69 (m, 1H), 5.74 (m, J = 22.9, 15.9, 10.7 Hz, 1H), 5.03 (m, J = 11.9 Hz, 2H), 3.74 (s, J = 2.4 Hz, 6H), 3.40 (m, J = 6.8 Hz, 1H), 2.26 – 2.09 (m, 2H), 2.06 (m, J = 26.5 Hz, 2H), 1.91 (m, J = 2.2 Hz, 3H), 1.36 (s, J = 15.9, 2.4 Hz, 9H), 1.05 (t, J = 7.2 Hz, 3H).¹³C **NMR** (101 MHz, CDCl₃): δ 169.83, 165.55, 145.22, 136.72, 123.74, 116.06, 77.38, 77.06, 76.75, 52.51, 51.16, 50.83, 31.28, 28.84, 28.76, 27.88, 24.95, 24.54, 12.50. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₈H₃₁NNaO₅ 364.2100; Found 364.2110.

Dimethyl (E)-2-allyl-2-(5-ethyl-7-oxo-7-(phenylamino)hept-2-en-1-yl)malonate (4):

Prepared according to general procedure 3; yellow oil; eluent (3% ethyl acetate:hexane); yield is 40%.

¹**H NMR** (400 MHz, CDCl₃): δ 7.37 – 7.25 (m, 4H), 7.20 (dd, J = 16.0, 9.0 Hz, 1H), 6.44 (m, J = 15.8 Hz, 1H), 6.01 (m, J = 15.8, 9.6 Hz, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 3.46 (d, J = 8.8 Hz, 1H), 2.93 (ddd, J = 18.8, 9.4, 3.6 Hz, 1H), 1.57 – 1.32 (m, 4H), 0.86 (t, J = 6.6 Hz, 3H).¹³C **NMR (101 MHz, CDCl₃)**: δ 168.8, 168.6, 137.1, 132.5, 129.7, 128.5, 127.4, 126.3, 57.1, 52.4, 52.3, 43.6, 32.8, 31.6, 26.8, 22.5, 14.0. **HRMS (ESI-TOF) m/z:** [M + H]⁺ Calcd for C₂₃H₃₂NO₅ 402.2280; Found 402.2284.

(*E*)-7-Ethylnon-4-enedioic acid (5):

Prepared according to general procedure 3; colorless oil; eluent (30% ethyl acetate:hexane); yield is 60%.

¹**H** NMR (400 MHz, CDCl₃): δ 6.95 (m, J = 14.6, 1H), 6.18 (m, J = 15.0 Hz, 1H), 5.93 – 5.70 (m, 1H), 5.21 – 4.99 (m, 2H), 3.40 (m, 5H), 2.62 (d, 2H), 2.23 (t, J = 7.4 Hz, 2H), 1.18 (m, 8H), 1.10 – 0.98 (m, 3H).¹³C NMR (101 MHz, CDCl₃): δ 166.0, 147.6, 135.1, 119.5, 117.5, 42.1, 40.8, 36.9, 32.0, 25.6, 14.8, 13.2, 12.7. HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₁H₁₈NaO₄ 237.1103; Found 237.1119.

Copies of ¹H and ¹³C of the compounds:

¹H NMR of compound **3ab** in CDCl₃ at 400 MHz:

$^{13}\text{C}\{\text{H}\}$ NMR of compound **3ab** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ac** in CDCl₃ at 400 MHz:

 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56
 56<

¹H NMR of compound **3ad** in CDCl₃ at 400 MHz:

¹³C{H} NMR of compound **3ad** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ae** in CDCl₃ at 400 MHz:

¹³C{H} NMR of compound **3ae** in CDCl₃ at 101 MHz:

¹H NMR of compound **3af** in CDCl₃ at 400 MHz:

 $^{13}C{H}$ NMR of compound **3af** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ag** in CDCl₃ at 400 MHz:

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 693

 744

 750

 750

 750

 751

 753

 753

 754

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

 755

¹H NMR of compound **3ah** in CDCl₃ at 400 MHz:

 $^{13}\text{C}\{\text{H}\}$ NMR of compound **3ah** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ai** in CDCl₃ at 101 MHz:

¹³C{H} NMR of compound **3ai** in CDCl₃ at 101 MHz:

¹H NMR of compound **3aj** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ak** in CDCl₃ at 400 MHz:

 $^{13}\text{C}\{\text{H}\}$ NMR of compound **3ak** in CDCl₃ at 101 MHz:

¹H NMR of compound **3al** in CDCl₃ at 400 MHz:

$^{13}\text{C}\{\text{H}\}$ NMR of compound **3al** in CDCl₃ at 101 MHz:

¹H NMR of compound **3am** in CDCl₃ at 400 MHz:

¹³C{H} NMR of compound **3am** in CDCl₃ at 101 MHz:

¹H NMR of compound **3an** in CDCl₃ at 101 MHz:

¹³C{H} NMR of compound **3an** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ao** in CDCl₃ at 400 MHz:

¹H NMR of compound **3ap** in CDCl₃ at 400 MHz:

¹³C{H} NMR of compound **3ap** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ba** in CDCl₃ at 400 MHz:

 $^{13}\text{C}\{\text{H}\}$ NMR of compound **3ba** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ch** in CDCl₃ at 400 MHz:

66.99 66.99 66.97 66.97 66.95

¹H NMR of compound **3co** in CDCl₃ at 101 MHz:

¹³C{H} NMR of compound **3co** in CDCl₃ at 101 MHz:

¹H NMR of compound **3de** in CDCl₃ at 400 MHz:

¹H NMR of compound **3dp** in CDCl₃ at 400 MHz:

9,79 8,81,16 8,81,16 8,81,16 8,81,16 8,81,16 8,81,16 1,75,51 1

¹³C{H} NMR of compound **3dp** in CDCl₃ at 101 MHz:

¹H NMR of compound **3dk** in CDCl₃ at 400 MHz:

¹H NMR of compound **3ea** in CDCl₃ at 400 MHz:

¹³C{H} NMR of compound **3ea** in CDCl₃ at 101 MHz:

¹H NMR of compound **3fa** in CDCl₃ at 400 MHz:

6.000 0

 $^{13}\text{C}\{\text{H}\}$ NMR of compound **3fa** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ga** in CDCl₃ at 400 MHz:

 $^{13}\text{C}\{\text{H}\}$ NMR of compound **3ga** in CDCl₃ at 101 MHz:

¹H NMR of compound **3ha** in CDCl₃ at 400 MHz:

¹³C{H} NMR of compound **3ha** in CDCl₃ at 400 MHz:

^1H NMR of compound **3ia** in CDCl₃ at 400 MHz

 $^{13}C{H}$ NMR of compound **3ia** in CDCl₃ at 400 MHz:

 ^1H NMR of compound 3ja in CDCl3 at 400 MHz

 $^{13}\text{C}\{\text{H}\}$ NMR of compound **3ja** in CDCl₃ at 400 MHz:

^1H NMR of compound 3ka in CDCl3 at 400 MHz

 $^{13}\text{C}\{\text{H}\}$ NMR of compound **3ja** in CDCl₃ at 400 MHz:

¹H NMR of compound **4** in CDCl₃ at 400 MHz:

¹H NMR of compound **5** in CDCl₃ at 400 MHz:

 $^{13}C{H}$ NMR of compound **5** in CDCl₃ at 400 MHz:

