Supporting Information

Cu^I-Amido(bisphosphine) catalyzed C(*sp*³)—C(*sp*³) direct homo- and heterocoupling of unactivated alkanes *via* C(*sp*³)-H activation

Sachin C. Sonawane,^a Rani Gourkhede,^a Prateek Saini,^b Srinivasan Ramakrishnan,^{*b} Maravanji S. Balakrishna^{*a}

^aPhosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. ^bDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India. Email: <u>krishna@chem.iitb.ac.in</u>

Table of Contents	
1) General Information	S2
2) Optimization of Reaction Conditions for Homocoupling of Toluene	S3
3) Radical Trapping Experiment	S4
4) General Procedure for the Homocoupling Reaction and Spectral Data	S4-S10
5) Synthesis of 1-methoxy-3-phenethylbenzene (calmodulin inhibitor) (c)	S10-S11
6) ¹ H and ¹³ C{ ¹ H} NMR Spectrum of Compounds i to xvi	S11-S30
7) [PNP-Cu] ₂ Catalyzed Homocoupling Reaction of Allyl Benzene xxv	S28
8) Free Energy Profile Diagram and Computational Details	S30-S31
9) GC/MS Spectra of xxvi-xxxi and c	S32-S36
10) Identification of Intermediate B	S 37
11) Cartesian Coordinates of Optimized Geometries	S38-53
12) References	S54

1. General Information

All air-sensitive compounds were handled and stored in the MBRAUN Glove box. All manipulations were performed under an inert atmosphere of dry nitrogen or argon, using standard Schlenk techniques. All solvents were dried using conventional methods and distilled before use. Amidobisphosphine,¹ and [PNP-Cu]₂ were synthesized published procedures.² Aryl alkanes, cyclohexane, cyclopentane, cyclooctane, and oxidants such as DTBP, TBHP, DCP and TBPB were purchased from Aldrich Chemicals.

Instrumentation. NMR spectra were recorded on Bruker FT spectrometers (Avance-400 or 500 MHz) at ambient probe temperatures. ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra were acquired using broadband decoupling method. The spectra were recorded in CDCl₃ solutions with TMS as an internal standard; chemical shifts of ${}^{1}H$ and ${}^{13}C{}^{1}H$ NMR spectra are reported in ppm downfield from TMS. The chemical shifts of ${}^{31}P{}^{1}H$ NMR spectra are referred to 85% H₃PO₄ as an external standard. Positive values indicate downfield shifts. GC-MS analyses were performed on an Agilent 7890A GC system with an FID detector using a J & amp; WDB-1 column (10 m, 0.1 mm ID). Catalytic reactions were magnetically stirred, and monitored by thin-layer chromatography (TLC) using Merck Silica Gel 60 F254 plates.

Precaution notes: Due to the low boiling points of alkanes such as toluene and its derivatives, cyclohexane, cyclopentane, cyclooctane, and oxidants (such as DTBP, TBHP, TBPB, DCP), the reactions were conducted in 20 mL sealed Teflon capped reaction tubes. This approach was necessary because, at elevated temperatures in an open system, there is a possibility of significant loss of reactants. Additionally, special precautions were taken when handling oxidants. This included wearing a lab coat, hand gloves, mask, safety goggles and performing the reactions in a well-ventilated fume hood.

2. Optimization of Reaction Condition

Table S1. Optimization of reaction conditions for homocoupling of toluene^a

	Copper cat. mol % Oxidant Temp °C, time h		
 Entries	Catalyst (mol%)	Base (1 eq.)	Yield in % ^{<i>a</i>}
 1)	No	No	N. R
2)	(1)	-	80
3)	(1)	-	90^{b}
4)	(0.5)	-	63
5)	(1)	-	51°
6)	(1)	-	26 ^d
7)	(1)	-	70 ^e
8)	(1)	LiOH	38
9)	(1)	K_2CO_3	N. R
10)	(1)	KOAc	70
11)	(1)	'BuOK	62
12)	$PPh_{3}(4) + CuI(2)$	No	29
13)	XanthPhos (2) + CuI (2)	-	38
14)	(S)-BINAP (2) + CuI (2)	-	45
15)	[CuCl] (2)	-	28
16)	[CuBr] (2)	-	32
17)	[CuI] (2)	-	34
18)	$[CuCl_2](2)$	-	30
19)	$[Cu(OAc)_2]$ (2)	-	29

^{*a*}Catalytic reaction conditions: 1.69 mmol toluene, Copper(I) catalysts (0.5-1 mol %) (Entries 2-11 [PNP-Cu]₂), ^{*b*}tert-butanol 2 mol % was added (Entry 3). 2.5 mmol Oxidants were used such as (DTBP= Di-*tert*-butyl peroxide (Entries 1-4 and 8-19), °TBPB = *tert*-Butyl perbenzoate, ^{*d*}TBHP = *tert*-Butyl hydrogenperoxide, °DCP = Dicumyl peroxide. All reactions performed at 125 °C for 12 h, isolated yields. N. R = No reaction.

3. Radical Trapping Experiment

The radical pathway was validated with the addition of a radical quencher (TEMPO) to the reaction medium, which resulted in a decrease of the product yield to merely 10%. The proposed catalytic pathway is based on the calculations and experimental observations as summarized in Scheme 4, in the manuscript.

4. General procedure: Synthesis of 1, 2-diphenylethane (i)

An oven-dried 20 mL pressure vessel was charged with toluene (156 mg, 1.69 mmol), [PNP-Cu]₂ (1 mol %), 'BuOH (25 mg, 2 mol%) and di-*tert*-butyl-peroxide (2.53 mmol). The reaction mixture was degassed with nitrogen and the vessel was sealed with a Teflon cap. The reaction mixture was stirred with moderate speed for 12 h at 120 °C. The reaction mixture was washed with aq. NaHCO₃, after cooling at room temperature. The organic layer was extracted with ethyl acetate and dried over Na₂SO₄. The solution evaporated under reduced pressure and the crude mixture was purified by silica gel column chromatography (200-400 MESH) using petroleum ether and ethyl acetate (9:1 v/v) as an eluent to obtain i in 90% yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.30 (dd, *J* = 8.6, 6.5 Hz, 4H), 7.25 – 7.16 (m, 6H), 2.94 (s, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 141.81, 128.48, 128.36, 125.94, 37.98. GC/MS (ESI) *m/z* : [M]⁺ Calcd for C₁₄H₁₄ 182.1, found 182.1. Compounds i -xvi were prepared using the general procedure 4.

Butane-2, 3-diyl)dibenzene (ii)

Compound **ii**: [Ethyl benzene (180 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **ii** in 91 % yield as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 7.34 (t, *J* = 7.6 Hz, 4H), 7.25 (d, *J* = 7.5 Hz, 6H), 2.84-2.80 (tt, *J* = 7.4, 3.7 Hz, 2H), 1.05-1.04 (d, *J* = 6.5 Hz, 6H).¹³C NMR (126 MHz, CDCl₃): δ 132.86, 128.29, 127.62, 126.05, 47.27, 21.06. **GC/MS** (ESI) *m/z* : [M]⁺ Calcd for C₁₆H₁₈ 210.1, found 210.0.

Hexane-3, 4-diyl)dibenzene (iii)

Compound iii: [Propyl benzene (180 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford iii in 92 % yield as a viscous liquid. ¹H NMR (500 MHz, CDCl₃): δ 7.35 (t, *J* = 7.6 Hz, 4H), 7.27 – 7.13 (m, 6H), 2.61 (dt, *J* = 7.6, 2.3 Hz, 2H), 1.47 – 1.25 (m, 4H), 0.55 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 144.57, 128.43, 128.21, 125.99, 54.26, 27.46, 12.23. GC/MS (ESI) *m/z* : [M]⁺ Calcd for C₁₈H₂₂ 238.2, found 238.2.

1, 2-Di-o-tolyl-ethane (iv)

Compound iv: [*o*-xylene (180 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford iv in 85 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.21 – 7.17 (m, 8H), 2.89 (s, 4H), 2.36 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 140.20, 135.94, 130.22, 128.88, 126.14, 126.07, 34.16, 19.36. GC/MS (ESI) *m/z*: [M]⁺ Calcd for C₁₆H₁₈ 210.1, found 210.1.

1, 2-Di-p-tolylethane (v)

Compound v: [*p*-xylene (180 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), ^{*t*}BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford v in 93 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.12 (s, 1H), 2.89 (s, 1H), 2.36 (s, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 138.89, 135.32, 129.03, 128.32, 37.67, 21.05. GC/MS (ESI) *m/z* : [M]⁺ Calcd for C₁₆H₁₈ 210.1, found 210.1.

1,2-Bis(3,5-dimethylphenyl)ethane (vi)

Compound vi: [1,3,5 trimethyl benzene (203 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford vi in 80 % yield (190.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 6.89 (s, 6H), 2.84 (s, 4H), 2.34 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 142.10, 137.86, 125.53, 126.23, 38.13, 21.30. GC/MS (ESI) *m/z* : [M]⁺ Calcd for C₁₈H₂₂ 238.1, found 238.2.

1, 2-Di(thiophen-2-yl)ethane (vii)

Compound vii: [2-methyl thiophene (166 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford vii in 78 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.16 (dd, *J* = 5.1, 1.2 Hz, 2H), 6.95 (dd, *J* = 5.1, 3.4 Hz, 2H), 6.87 – 6.81 (m, 2H), 3.23 (s, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 143.70, 126.75, 124.65, 123.33, 32.16. GC/MS (ESI) *m/z* : [M]⁺ Calcd for C₁₀H₁₀S₂ 194.0, found 194.1.

1, 2-Bis(5-methylthiophen-2-yl)ethane (viii)

Compound **viii**: [2,4-dimethyl thiophene (190.4 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **viii** in 75 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 6.62 (d, *J* = 3.4 Hz, 2H), 6.59 (dq, *J* = 3.4, 1.1 Hz, 2H), 3.12 (s, 4H), 2.48 (d, *J* = 1.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 141.68, 137.66, 124.68, 124.28, 32.34, 15.35. **GC/MS** (ESI) *m/z* : [M]⁺ Calcd for C₁₂H₁₄S₂ 222.0, found 222.0.

1, 4-Bis(2-chlorophenyl)ethane (ix)

Compound **ix**: [*p*-chlorotoluene (215 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)%)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **ix** in 69 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.28 – 7.21 (m, 4H), 7.11 – 7.04 (m, 4H), 2.89 (s, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 139.62, 131.79, 129.85, 37.04. GC/MS (ESI) *m/z* : [M]⁺ Calcd for C₁₄H₁₂Cl₂ 250.0, found 250.0.

1, 2-bis(2-chlorophenyl)ethane (x)

Compound **x**: [*o*-chlorotoluene (215 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **x** in 83% yield as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.40 – 7.36 (m, 2H), 7.22 – 7.16 (m, 6H), 3.07 (s, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 138.97, 134.03, 130.63, 129.49, 127.57, 126.78, 33.83. GC/MS (ESI) *m/z*: [M]⁺ Calcd for C₁₄H₁₂Cl₂ 250.0, found 250.0.

1, 2-Bis(4-bromophenyl)ethane (xi)

Compound **xi**: [*p*-bromotoluene (290 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **xi** in 80 % yield (187.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 4H), 7.02 (d, *J* = 8.3 Hz, 4H), 2.87 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 140.10, 131.43, 130.25, 119.84, 37.01. GC/MS (ESI) *m/z*: [M]⁺ Calcd for C₁₄H₁₂Br₂ 377.9, found 338.0.

1, 2-Bis(2-bromophenyl)ethane (xii)

Compound **xii**: [*o*-bromotoluene (290 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **xii** in 79 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.53 (m, 2H), 7.32 – 7.21 (m, 4H), 7.16 – 7.05 (m, 2H), 2.46 (t, *J* = 2.0 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 140.62, 137.90, 132.39, 130.89, 127.37, 127.29, 22.97. GC/MS (ESI) *m/z*: [M]⁺ Calcd for C₁₄H₁₂Br₂ 377.9, found 338.0.

1, 2-Bis(3-bromo-5-methylphenyl)ethane (xiii)

Compound **xiii**: 1-Br-*m*-xylene (314 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), ^{*i*}BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **xiii** in 91 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 2H), 7.16 (s, 2H), 6.92 (s, 2H), 2.82 (s, 4H), 2.32 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 143.38, 140.10, 129.80, 128.47, 128.05, 122.21, 37.37,

1,2-Bis(1-bromonaphthalen-2-yl)ethane (xiv)

Compound **xiv**: 1-Br-2-methyl naphthalene (375 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), ^{*i*}BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **xiv** in 80 % yield as a white solid. ¹H **NMR** (500 MHz, CDCl₃) δ 8.38 (d, *J* = 8.5 Hz, 2H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.63 (ddd, *J* = 8.3, 6.7, 1.3 Hz, 2H), 7.58 – 7.49 (m, 2H), 7.38 (d, *J* = 8.3 Hz, 2H), 3.40 (s, 4H). ¹³C **NMR** (126 MHz, CDCl₃) δ 138.84, 133.35, 132.63, 128.29, 128.07, 127.67, 127.36, 127.31, 125.97, 123.85, 37.84. **GC/MS** (ESI) *m/z* : [M]⁺ Calcd for C₂₂H₁₆Br₂ 437.9, found 438.0.

1, 1'-(Ethane-1,2-diylbis(4,1-phenylene))bis(ethan-1-one) (xv)

Compound **xv**: [4-methyl acetophenone (227.8 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), 'BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol%)] Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **xv** in 80 % yield as a white solid. ¹H **NMR** (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 2H), 3.03 (s, 3H), 2.61 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 197.84, 146.73, 135.34, 128.72, 128.59, 37.32, 26.57. **GC/MS** (ESI) *m/z* : [M]⁺ Calcd for C₁₈H₁₈O₂ 266.1, found 266.1.

1,1,2,2-Tetraphenylethane (xvi)

Compound **xvi**: [diphenyl methane (285.6 mg, 1.69 mmol), DTBP (371 mg, 2.53 mmol), ^{*t*}BuOH (2 mol%), [PNP-Cu]₂ (21.2 mg, 1 mol %)]. Crude mixture purified by silica gel (200-400 MESH) column chromatography, using petroleum ether:ethyl acetate (9:1 v/v) as an eluent to afford **xvi** in 90 % yield as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.15 (m, 8H), 7.10 (dd, *J* = 8.4, 6.8 Hz, 8H), 7.05 – 6.96 (m, 4H), 4.77 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.47, 128.52, 128.14, 125.85, 56.33. **GC/MS** (ESI) *m/z* : [M]⁺ Calcd for C₂₆H₂₂ 334.1, found 334.1.

5. Synthesis of 1-methoxy-3-phenethylbenzene (calmodulin inhibitor)³ (c)

In an oven dried 10 mL glass vessel, toluene (100 mg,1.09 mmol), 3-methoxy toluene (132 mg,1.09 mmol), DTBP (317 mg, 2.17 mmol) and [PNP-Cu]₂ (1 mol%) charged and sealed with Teflon cap. Reaction mixture stirred at 120 °C for 24 h. Reaction mixture was filtered over celite and washed with ethyl acetate, and filtrate evaporated under reduced pressure. Crude mixture purified over column chromatography over silica gel (200-400 MESH), using petroleum ether and ethyl acetate (9:1 v/v) as a eluent to afford **c** in 29 % yield, as an oil. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 6.9 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.24 – 7.16 (m, 4H), 7.11 (d, *J* = 4.8 Hz, 1H), 6.85 – 6.71 (m, 2H), 3.78 (s, 3H), 2.91 (q, *J* = 2.1 Hz, 4H). HRMS (ESI) *m/z*: [M]⁺ Calcd for C₂₆H₂₂ 334.1, found 334.1. GC/MS (ESI) *m/z*: [M]⁺ Calcd for C₂₆H₂₂ 334.1, found 334.1.

6. ¹H and ¹³C Spectra of Homocoupled Products

Figure S1. ¹H NMR spectrum of 1, 2-diphenylethane (i) (400 MHz, CDCl₃)

Figure S2. ¹³C NMR spectrum of 1, 2-diphenylethane (i) (101 MHz, CDCl₃)

Figure S3. ¹H NMR spectrum of 1, 2-diphenylethane (ii) (500 MHz, CDCl₃)

Figure S5. ¹H NMR spectrum of hexane-3, 4-diyl)dibenzene (iii) (500 MHz, CDCl₃)

Figure S7. ¹H NMR spectrum of 1, 2-di-o-tolylethane (iv) (400 MHz, CDCl₃)

Figure S8. ¹³C NMR spectrum of 1, 2-di-o-tolylethane (iv) (101 MHz, CDCl₃)

Figure S9. ¹H NMR spectrum of 1, 2-di-p-tolylethane (v) (400 MHz, CDCl₃)

Figure S11. ¹³C NMR spectrum of 1, 2-di-p-tolylethane (vi) (400 MHz, CDCl₃)

Figure S12. ¹³C NMR spectrum of 1, 2-di-p-tolylethane (vi) (126 MHz, CDCl₃)

Figure S13. ¹H NMR spectrum of 1, 2-di(thiophen-2-yl)ethane (vii) (400 MHz, CDCl₃)

Figure S14. ¹³C NMR spectrum of 1, 2-di(thiophen-2-yl)ethane (vii) (101 MHz, CDCl₃)

Figure S15. ¹H NMR spectrum of 1, 2-bis(5-methylthiophen-2-yl)ethane (viii) (400 MHz, CDCl₃)

Figure S16. ¹³C NMR spectrum of 1, 2-bis(5-methylthiophen-2-yl)ethane (viii) (101 MHz, CDCl₃)

Figure S17. ¹H NMR spectrum of 1, 4-bis(2-chlorophenyl)ethane (ix) (400 MHz, CDCl₃)

Figure S20. ¹H NMR spectrum of 1, 2-bis(2-chlorophenyl)ethane (x) (400 MHz, CDCl₃)

Figure S26. ¹H NMR spectrum of 1, 2-bis(3-bromo-5-methylphenyl)ethane (xiii) (400 MHz, CDCl₃)

Figure S27. ¹³C NMR spectrum of 1, 2-bis(3-bromo-5-methylphenyl)ethane (xiii) (101 MHz, CDCl₃)

Figure S28. ¹H NMR spectrum of 1,2-bis(1-bromonaphthalen-2-yl)ethane (xiv) (500 MHz, CDCl₃)

Figure S29. ¹³C NMR spectrum of 1, 2-bis(1-bromonaphthalen-2-yl)ethane (xiv) (126 MHz, CDCl₃)

Figure S30. ¹H NMR spectrum of 1, 1'-(ethane-1,2-diylbis(4,1-phenylene))bis(ethan-1-one) (**xv**) (500 MHz, CDCl₃)

fl (ppm)

Figure S31. ¹³C NMR spectrum of 1, 1'-(ethane-1,2-diylbis(4,1-phenylene))bis(ethan-1-one) (**xv**) (126 MHz, CDCl₃)

Figure S32. ¹H NMR spectrum of 1,1,2,2-tetraphenylethane (xvi) (400 MHz, CDCl₃)

Figure S33. ¹³C NMR spectrum of 1, 1, 2, 2-tetraphenylethane (xvi) (101 MHz, CDCl₃)

7. [PNP-Cu]₂ catalysed homocoupling reaction of allyl benzene

The reaction between allyl benzene and DTBP in a 1:2 molar ratio, conducted in the presence of [PNP-Cu]2 (1 mol%) at 120°C for 24 hours, yielded traces of 1,6-diphenylhexa-1,5-diene (**xxv**), accompanied by an insoluble grey-coloured sticky solid with apparent polymeric characteristics. Analysis of the solid via GC/MS revealed a molecular ion peak $[M]^+$ at 234.1, confirming the formation of 1,6-diphenylhexa-1,5-diene (**xxv**).

Figure 34. GC/MS spectrum of 1,6-diphenylhexa-1,5-diene (xxv)

Figure S35. ¹H NMR spectrum of 1-methoxy-3-phenethylbenzene c (400 MHz, CDCl₃)

(End of Report) Figure S36. HRMS of 1-methoxy-3-phenethylbenzene c

Figure S37. GC/MS spectrum of 1-methoxy-3-phenethylbenzene c

8. Free Energy Profile Diagram and Computational Details

Figure S38. Standard state free energy profile for the homocoupling of toluene mediated by [Cu(I)PNP], in the absence of exogenous 'BuOH, as calculated from DFT (Level of theory: ω B97xD/LANL2DZ(Cu)/6-311G**(C, H, P, N, O)/SMD(Toluene).

Computational details: Quantum chemical calculations were performed using density functional theory⁴ (DFT) with the Gaussian16 software package.⁵ The intermediates' lowest energy structures were obtained by geometry optimisation using the unrestricted formalism of a long-range corrected hybrid functional, ω B97xD.⁶ An effective core potential with relativistic corrections, viz. LANL2DZ⁷ was employed for Cu, and a triple zeta basis set with polarization (6-311G**) was employed for all the other atoms (including hydrogens).⁸ Gibbs free energies⁹ were obtained by performing harmonic analyses on the optimised structures. The polarisable continuum solvation model, SMD (Solvation Model Density).¹⁰ was employed to calculate the solvation free energy of optimised intermediates. The Gibbs free energy of a reaction for any given set of reactants and products was calculated using equation 1. The free energy of intermediates was corrected to account for the standard state corrections from 1 mol per 24.46 L (gas phase) to 1 M (solution phase), which corresponds to RT ln (24.46) or 1.89 kcal mol⁻¹

Eq. (1)
$$\Delta G_{reaction}^{\circ (SMD-toluene)} = \Delta G_{products}^{\circ (SMD-toluene)} - \Delta G_{reactants}^{\circ (SMD-toluene)}$$

9. GC/MS spectra of xxvi-xxxi

Figure S39. GC/MS spectrum of xxvi

```
File :D:\GCMS DATA\2023\OCT2023\MSB-RG-02-223.D
Operator : RG
Acquired : 29 Oct 2023 15:59 using AcqMethod CF_29SEP2023.M
Instrument : GCMS-01
Sample Name: MSB-RG-02-223
Misc Info :
Vial Number: 1
```


Figure S40. GC/MS spectrum of xxvii

Figure S41. GC/MS spectrum of xxix

Figure S42. GC/MS spectrum of xxx

File :D:\GGMS DATA\2023\OCT2023\MSB-RG-02-224.D Operator : RG Acquired : 29 Oct 2023 16:24 using AcqMethod CF_29SEP2023.M Instrument : GGMS-01 Sample Name: MSB-RG-02-224 Misc Info : Vial Number: 2

Figure S43. GC/MS spectrum of xxxi

10. Identification of Intermediate B, in Homomcoupling Reaction

To investigate the formation of intermediate **B**, [PNP-Cu]₂ (1 equiv.) was treated with an excess of 'BuOH in the presence of DTBP (4 equiv.) at 120 °C for 6 hours. Analysis of the reaction mixture via mass spectrometry LRMS (ESI) resulted a mass spectrum with m/z: 701.1596 [M]⁺ calcd for C₄₁H₃₇CuNO₂P₂, found 701.188, which indicates the formation of intermediate **B**.

Figure 44. LRMS of Intermediate B

11. Cartesian Coordinates of Optimized Geometries

Intermediate A

Egas	-2435.55532	3 hartree		
Esolv	-2435.59718	-2435.597186 hartree		
G_{solv}	-2435.12134	0 hartree		
Cu	-0.044653	0.072436	-0.968771	
Р	2.071652	-0.34381	-0.418822	
P	-2.20782	-0.23769	-0.465742	
Ō	0.899228	3.45986	1.179248	
С	-2.252077	-1.18187	1.102997	
С	3.231559	-1.62449	-0.998062	
Ν	-0.200832	1.975373	-0.217055	
С	-2.577579	1.477352	0.003336	
С	2.082149	-0.49874	1.401816	
С	4.291329	-2.07662	-0.211001	
Н	4.42693	-1.68319	0.790503	
С	-1.49173	2.380306	0.139353	
С	-3.654222	-0.8254	-1.408268	
С	4.739151	2.497326	-1.703239	
Н	5.711339	2.504853	-2.182575	
С	2.751046	0.397146	2.232751	
Н	3.29471	1.233389	1.809323	
С	3.054472	-2.1462	-2.279203	
Η	2.220265	-1.80722	-2.885077	
С	-2.313588	-0.54448	2.339673	
Η	-2.391786	0.535461	2.386776	
С	4.137791	1.291108	-1.378146	
Η	4.653084	0.364274	-1.600669	
С	-3.891861	1.880609	0.251055	
Η	-4.699538	1.167295	0.124096	
С	4.091514	3.685882	-1.397694	
Η	4.552415	4.637838	-1.636156	
С	4.992383	-3.54138	-1.989572	
Н	5.677309	-4.28872	-2.373864	
С	-1.813815	3.688535	0.557795	
Η	-1.014828	4.398169	0.704246	
С	5.166327	-3.0339	-0.706724	
Η	5.985946	-3.3846	-0.090084	
С	2.879474	1.25585	-0.772427	
С	-2.095092	-3.31607	2.225521	

Η	-2.009913	-4.39589	2.177114
С	-2.269308	-1.29122	3.512113
Н	-2.313116	-0.78478	4.46939
С	-2.127047	-2.57346	1.054686
Н	-2.061028	-3.07704	0.095046
С	2.699356	0.234215	3.612295
Н	3.210281	0.943128	4.2533
С	-2.168196	-2.67413	3.458663
Н	-2.141004	-3.25386	4.3747
С	3.93653	-3.097	-2.776205
Н	3.794105	-3.4968	-3.773546
С	-3.120709	4.068525	0.797123
Н	-3.318815	5.088941	1.10858
С	-4.177165	3.173339	0.646946
Н	-5.199188	3.479767	0.835204
С	-3.666688	-0.60094	-2.785691
Н	-2.814516	-0.12401	-3.259179
С	2.211129	2.455697	-0.469389
С	0.874803	2.647036	0.260853
С	2.855913	3.657239	-0.770517
Η	2.3651	4.580178	-0.488534
С	1.989055	-0.82239	4.165742
Η	1.948902	-0.94382	5.242392
С	-5.839071	-1.83667	-1.574474
Η	-6.684753	-2.32109	-1.099732
С	1.353268	-1.54962	1.963665
Η	0.801887	-2.23265	1.325282
С	-5.848674	-1.60221	-2.943851
Η	-6.701617	-1.90521	-3.540426
С	-4.761624	-0.98174	-3.548799
Η	-4.763587	-0.79973	-4.617332
С	-4.748153	-1.44787	-0.806719
Η	-4.746671	-1.63253	0.261806
С	1.316661	-1.7163	3.339269
Н	0.743665	-2.53179	3.763636

Intermediate B

Egas	-2669.255480 hartree
E _{solv}	-2669.295192 hartree
G _{solv}	-2668.686794 hartree

Cu -0.055487 0.755708 0.669162

Р	-1.977216	-0.3618	0.252776
Р	2.022605	-0.22528	0.371474
0	0.315641	2.629558	0.182894
0	-0.170056	-0.80312	-2.86024
С	2.15778	-2.04693	0.415557
С	-3.339426	-0.29772	1.468826
Ν	0.61267	1.182966	-2.060087
Η	0.416663	1.95669	-1.376528
С	2.739118	0.198224	-1.266338
С	-1.867294	-2.13289	-0.167807
С	-4.365195	-1.24354	1.496853
Η	-4.355486	-2.07246	0.797548
С	1.975309	0.819329	-2.258655
С	3.283003	0.455863	1.508467
С	-4.416604	1.738869	-2.314525
Η	-5.44204	2.089648	-2.318422
С	-2.305054	-2.65766	-1.379804
Η	-2.701539	-2.00195	-2.145048
С	-3.349867	0.752849	2.386364
Η	-2.54503	1.480451	2.376821
С	1.986674	-2.77719	-0.762218
Η	1.831872	-2.26315	-1.704784
С	-3.965245	0.945517	-1.267851
Η	-4.642775	0.701408	-0.458667
С	4.075163	-0.10929	-1.53509
Η	4.678479	-0.58122	-0.767558
С	-3.551823	2.090739	-3.339593
Н	-3.893033	2.721072	-4.152611
С	-5.404901	-0.07042	3.326076
Н	-6.208473	0.016209	4.048666
С	2.550559	1.105193	-3.494738
Н	1.937325	1.584484	-4.248344
С	-5.392749	-1.12852	2.423826
Н	-6.185368	-1.86782	2.442541
С	-2.649542	0.486399	-1.232725
С	2.282667	-4.11488	1.658537
Н	2.393995	-4.63195	2.605216
С	1.98452	-4.1649	-0.725885
Н	1.845577	-4.72077	-1.645767
С	2.27526	-2.7262	1.630098
Н	2.372559	-2.17142	2.557538
С	-2.203683	-4.02329	-1.619778

Н	-2.535488	-4.42518	-2.570188
С	2.147528	-4.83681	0.478814
Η	2.153663	-5.92091	0.501131
С	-4.382544	0.870303	3.307351
Η	-4.382905	1.691992	4.014102
С	3.872884	0.785774	-3.751393
Η	4.30604	1.01492	-4.718298
С	4.641479	0.177062	-2.765308
Η	5.679209	-0.07166	-2.954569
С	3.107445	1.804237	1.835432
Η	2.249026	2.340586	1.430846
С	-1.780853	0.837545	-2.277214
С	-0.367962	0.309979	-2.40438
С	-2.240122	1.636627	-3.318259
Η	-1.556728	1.906653	-4.115618
С	-1.676114	-4.86642	-0.651567
Н	-1.599824	-5.93115	-0.842149
С	5.308018	0.408769	2.815839
Н	6.164837	-0.13548	3.19706
С	-1.312846	-2.98061	0.793395
Н	-0.937375	-2.57137	1.726061
С	5.13189	1.748338	3.140989
Н	5.850831	2.249408	3.779587
С	4.035534	2.444944	2.645109
Н	3.898559	3.491912	2.891555
С	4.390192	-0.23728	1.996059
Η	4.539365	-1.28062	1.740663
С	-1.230435	-4.34323	0.557551
Η	-0.794973	-4.9926	1.307257
С	-0.386314	3.779877	0.538488
С	0.319432	4.984577	-0.098891
Η	1.359245	5.021711	0.237763
Η	0.321567	4.876039	-1.187467
Η	-0.167153	5.932431	0.155044
С	-1.837628	3.715414	0.038374
Η	-2.396308	4.626653	0.277191
Η	-1.856519	3.570922	-1.04593
Η	-2.358752	2.867918	0.492603
С	-0.37966	3.932415	2.066944
Н	-0.846011	3.054253	2.528047
Н	0.649856	3.991219	2.432362
Н	-0.919527	4.825	2.400701

Intermediate C

Egas	-2668.6047	90 hartree	
Esolv	-2668.6451	60 hartree	
G _{solv}	-2668.0493	15 hartree	
Cu	0.322116	0.864127	-0.95322
Р	-1.83508	0.018167	0.27825
Р	2.129573	-0.097138	0.117989
0	0.648829	2.656613	-1.09289
0	-1.13995	-1.957089	-3.49383
С	1.859922	-0.844231	1.757959
С	-3.06898	0.579765	1.515515
Ν	0.128791	-0.874327	-1.88144
С	2.323649	-1.467345	-1.04068
С	-1.9562	-1.800638	0.456995
С	-4.27646	-0.097313	1.707488
Η	-4.49719	-0.980638	1.118185
С	1.221158	-1.754548	-1.88346
С	3.693648	0.813425	0.250226
С	-4.2143	1.756022	-2.5884
Η	-5.04359	2.454169	-2.59411
С	-2.57776	-2.642161	-0.46343
Η	-3.02828	-2.23961	-1.36245
С	-2.78979	1.701754	2.293572
Η	-1.85256	2.229427	2.161736
С	1.964387	-2.214899	1.984357
Η	2.213719	-2.882923	1.16879
С	-3.70438	1.307233	-1.37968
Η	-4.14848	1.660108	-0.45705
С	3.480399	-2.245821	-1.06064
Η	4.316507	-1.971552	-0.42539
С	-3.66805	1.302501	-3.78118
Η	-4.0649	1.641733	-4.73105
С	-4.90681	1.478924	3.414954
Η	-5.62165	1.827344	4.151921
С	1.324127	-2.91047	-2.68228
Η	0.498918	-3.170875	-3.32352
С	-5.18942	0.350943	2.650036
Η	-6.12331	-0.181228	2.791054
С	-2.62682	0.418048	-1.33546
С	1.250944	-0.518111	4.072172

Н	0.964804	0.144229	4.880929
С	1.726004	-2.730348	3.253626
Η	1.812014	-3.797887	3.421199
С	1.498941	0.001539	2.810625
Η	1.410911	1.068854	2.63979
С	-2.60898	-4.014323	-0.24415
Н	-3.08094	-4.659791	-0.97577
С	1.36574	-1.887232	4.295869
Н	1.171043	-2.293531	5.281877
С	-3.70675	2.152757	3.237322
Н	-3.47881	3.028329	3.834418
С	2.472312	-3.684518	-2.66954
Н	2.512598	-4.559722	-3.30932
С	3.568314	-3.358391	-1.87765
Н	4.468853	-3.960316	-1.8955
С	3.831476	1.971061	-0.51886
Н	2.992616	2.318166	-1.11622
С	-2.0667	-0.030909	-2.54553
С	-0.95867	-1.06619	-2.67461
С	-2.61765	0.400148	-3.7518
Н	-2.20528	0.001087	-4.67029
С	-2.03613	-4.554759	0.899346
Н	-2.06174	-5.625728	1.066233
С	5.917603	1.124146	1.123819
Н	6.726278	0.80077	1.769202
С	-1.38101	-2.349933	1.604027
Н	-0.89551	-1.704622	2.329369
С	6.061365	2.266258	0.343403
Н	6.985159	2.832623	0.380401
С	5.019116	2.690164	-0.47238
Η	5.124441	3.589752	-1.06792
С	4.735118	0.39815	1.08162
Η	4.61667	-0.482606	1.7042
С	-1.42633	-3.717991	1.82683
Η	-0.97355	-4.128586	2.722263
С	0.26808	3.737649	-0.29396
С	1.019844	4.970238	-0.80887
Η	2.098263	4.808713	-0.72863
Н	0.775265	5.138135	-1.86033
Н	0.756361	5.867002	-0.23955
С	-1.2451	3.96026	-0.39792
Н	-1.57317	4.820614	0.194388

Н	-1.52314	4.124112	-1.44189
Н	-1.78497	3.077185	-0.04788
С	0.669209	3.460801	1.162717
Н	0.166357	2.554424	1.51295
Н	1.749357	3.300701	1.22887
Н	0.395084	4.291176	1.820699

Intermediate D

Egas	-2706.4674	76 hartree	
$E_{solv} \\$	-2706.5105	33 hartree	
G_{solv}	-2705.9243	39 hartree	
Cu	-0.09973	-0.228843	-1.03105
Р	-2.22243	0.222291	-0.15497
Р	2.007639	-0.537864	-0.09906
Ο	-1.64231	-3.896812	0.346004
С	2.206561	0.000476	1.630233
С	-3.13506	1.787564	-0.36773
Ν	-0.32731	-2.295437	-0.6809
С	2.054384	-2.339909	-0.12876
С	-2.15727	-0.077125	1.639366
С	-3.56895	2.55782	0.70944
Η	-3.43976	2.194931	1.722259
С	0.849486	-3.015301	-0.40934
С	3.532908	-0.038731	-0.96312
С	-5.35722	-1.753464	-1.92539
Η	-6.34937	-1.510395	-2.288
С	-2.92728	-1.047246	2.275976
Η	-3.6214	-1.654307	1.706758
С	-3.31524	2.271232	-1.6679
Η	-2.99195	1.676149	-2.51575
С	2.286606	-0.905907	2.685209
Η	2.254667	-1.970884	2.48625
С	-4.58425	-0.775212	-1.32096
Η	-4.98478	0.224689	-1.20747
С	3.257186	-3.030581	0.058759
Η	4.164422	-2.468206	0.255826
С	-4.8566	-3.043493	-2.04812
Η	-5.45284	-3.819105	-2.51539
С	-4.33064	4.272981	-0.80366
Η	-4.78817	5.241148	-0.97144

С	0.925501	-4.421849	-0.49329
Н	0.028834	-4.985241	-0.69995
С	-4.16061	3.797062	0.48918
Н	-4.49119	4.389679	1.33455
С	-3.29758	-1.065817	-0.8584
С	2.34072	1.829147	3.201538
Н	2.356025	2.895987	3.394719
С	2.402627	-0.44331	3.991184
Н	2.463959	-1.154661	4.806791
С	2.213402	1.373059	1.897765
Н	2.12293	2.087257	1.08631
С	-2.7832	-1.256151	3.642441
Н	-3.37319	-2.022912	4.130713
С	2.441015	0.920422	4.2509
Н	2.539799	1.276477	5.270514
С	-3.91378	3.502613	-1.88447
Н	-4.04661	3.86594	-2.89683
С	2.117291	-5.09153	-0.30389
Н	2.127737	-6.173484	-0.38431
С	3.298899	-4.407273	-0.01745
Н	4.229645	-4.94167	0.130757
С	3.602911	-0.347221	-2.32441
Н	2.794752	-0.902413	-2.79085
С	-2.79411	-2.369128	-0.96263
С	-1.49883	-2.901987	-0.35743
С	-3.60206	-3.347347	-1.54612
Н	-3.23029	-4.363695	-1.58132
С	-1.88165	-0.496004	4.375497
Н	-1.77012	-0.665914	5.440481
С	5.66576	1.072624	-1.13018
Н	6.471344	1.624956	-0.6596
С	-1.23651	0.672408	2.376481
Н	-0.61193	1.408797	1.879487
С	5.725447	0.77348	-2.48446
Н	6.575061	1.095057	-3.07595
С	4.693773	0.053199	-3.07992
Н	4.737825	-0.190861	-4.13513
С	4.575254	0.666073	-0.3686
Н	4.535249	0.911271	0.686028
С	-1.10978	0.472366	3.742163
Н	-0.38946	1.055036	4.302931
С	0.271386	1.48559	-2.23296

Н	0.925588	1.062354	-2.99604
Н	-0.73906	1.666275	-2.59267
С	0.857107	2.585732	-1.4669
С	2.221493	2.900284	-1.57133
С	0.082105	3.357031	-0.58252
С	2.786784	3.917665	-0.8152
Н	2.844369	2.339037	-2.25867
С	0.647464	4.37198	0.172887
Н	-0.97875	3.156599	-0.49418
С	2.006991	4.656373	0.068059
Н	3.845121	4.130965	-0.91823
Н	0.021343	4.947566	0.846177
Н	2.449142	5.450643	0.658726

(Cu^{III}-penta-coordinated)

Egas	-2977.3702	-2977.370290 hartree		
Esolv	-2977.419045 hartree			
G _{solv}	-2976.7134	74 hartree		
Cu	-0.27793	-1.324895	0.90478	
Р	-2.28118	-0.571211	-0.2069	
Р	1.224942	1.496456	-0.35849	
0	-1.43898	2.084678	3.141838	
С	0.60568	3.224867	-0.51168	
С	-3.24206	-1.76535	-1.2134	
Ν	-0.42714	0.417172	1.947122	
С	1.734885	1.46717	1.410745	
С	-2.33519	0.986042	-1.153	
С	-3.72667	-1.486491	-2.4901	
Η	-3.59361	-0.500916	-2.91926	
С	0.826702	0.952374	2.343989	
С	2.869666	1.546535	-1.18211	
С	-5.52734	-0.472057	2.312903	
Η	-6.55768	-0.807538	2.282719	
С	-3.06703	2.085856	-0.71527	
Η	-3.59897	2.049453	0.227701	
С	-3.45112	-3.040408	-0.67568	
Η	-3.11037	-3.264529	0.330437	
С	-0.08244	3.830326	0.542397	
Н	-0.21169	3.319931	1.491271	
С	-4.70185	-0.685402	1.22041	
Н	-5.10442	-1.17543	0.342996	

С	2.989628	1.904415	1.848253
Η	3.699744	2.29527	1.13015
С	-5.03005	0.184202	3.43101
Η	-5.66697	0.362547	4.289984
С	-4.58789	-3.730795	-2.67933
Η	-5.10568	-4.492747	-3.25038
С	1.199867	0.895799	3.692744
Η	0.482916	0.518098	4.412158
С	-4.39176	-2.4673	-3.21846
Н	-4.76256	-2.235988	-4.21046
С	-3.36538	-0.274267	1.23734
С	0.214887	5.200478	-1.85762
Н	0.337829	5.728963	-2.79707
С	-0.61416	5.105242	0.392111
Н	-1.14477	5.556347	1.223157
С	0.727019	3.917511	-1.71922
Н	1.236	3.456475	-2.55912
С	-3.10984	3.245374	-1.48175
Н	-3.66173	4.104697	-1.1204
С	-0.4601	5.799228	-0.80123
Н	-0.86314	6.800435	-0.908
С	-4.12252	-4.013591	-1.39959
Η	-4.28029	-4.994123	-0.96557
С	2.4488	1.317511	4.108149
Η	2.718395	1.251382	5.156317
С	3.353564	1.82497	3.181044
Η	4.335553	2.158401	3.496199
С	3.366777	0.3066	-1.5831
Η	2.758912	-0.58065	-1.44768
С	-2.86636	0.406234	2.356745
С	-1.48973	1.038132	2.495603
С	-3.72106	0.636098	3.436416
Η	-3.33056	1.202343	4.272122
С	-2.44434	3.304538	-2.6952
Η	-2.47661	4.210903	-3.28797
С	4.920944	2.572019	-1.95099
Η	5.525266	3.461042	-2.09451
С	-1.62826	1.068033	-2.35683
Н	-1.00888	0.241446	-2.68333
С	5.41047	1.327752	-2.3354
Н	6.394896	1.246075	-2.78292
С	4.631255	0.193684	-2.14743

Η	4.99667	-0.782198	-2.44756
С	3.662373	2.68156	-1.37373
Н	3.297034	3.654485	-1.0645
С	-1.70161	2.212625	-3.13229
Н	-1.15346	2.264868	-4.06601
С	0.007015	-3.061957	-0.07577
Н	0.42454	-3.859885	0.525707
Н	-1.02918	-3.282518	-0.32245
С	0.817406	-2.790761	-1.28618
С	2.1511	-3.207027	-1.3777
С	0.245295	-2.182866	-2.41167
С	2.882787	-3.010061	-2.54208
Н	2.612645	-3.714004	-0.5409
С	0.977394	-1.974553	-3.56879
Н	-0.80279	-1.908305	-2.38377
С	2.305928	-2.383406	-3.63832
Н	3.911212	-3.351557	-2.58661
Н	0.507526	-1.504493	-4.42578
Н	2.880622	-2.221139	-4.54285
С	0.855672	-2.287504	2.276219
Н	0.833355	-1.432305	2.945923
Н	0.226676	-3.095606	2.647516
С	2.227898	-2.707248	1.943578
С	3.186721	-1.771174	1.539984
С	2.610989	-4.05055	2.027646
С	4.47335	-2.166314	1.209218
Н	2.914287	-0.725032	1.479013
С	3.903469	-4.44721	1.708063
Н	1.887383	-4.791125	2.354608
С	4.837752	-3.506847	1.288539
Н	5.19062	-1.420972	0.884073
Н	4.18041	-5.492798	1.784748
Η	5.844939	-3.815858	1.032745

Intermediate A" (A+ toluene) SI fig.

Egas	-2707.07659	92 hartree	
E_{solv}	-2707.123766 hartree		
G _{solv}	-2706.524444 hartree		
Cu	0.041556	0.89022	-0.15557
Р	-2.2463	0.41505	-0.14506
Р	1.627545	-0.81523	-0.04456

0	-1.1636	-2.552998	-0.12223
С	1.486739	-1.183727	1.744117
С	-3.19703	1.979163	-0.17261
Ν	-0.16621	-2.372212	-2.1517
Н	-0.30397	-2.124431	-3.11786
С	1.897434	-2.482301	-0.80613
С	-2.71634	-0.347457	1.44535
С	-4.30372	2.216282	0.641596
Н	-4.62784	1.460349	1.348222
С	1.048069	-3.014607	-1.77986
С	3.304335	-0.10337	-0.24507
С	-4.89509	-0.914573	-3.03456
Н	-5.83555	-0.584107	-3.46025
С	-3.76644	-1.252315	1.581
Н	-4.34282	-1.550336	0.712321
С	-2.77583	2.970867	-1.05993
Н	-1.88941	2.806349	-1.66403
С	0.989474	-2.397509	2.21425
Н	0.730284	-3.182456	1.515203
С	-4.31167	-0.182172	-2.00665
Н	-4.79844	0.719295	-1.65446
С	3.038522	-3.213705	-0.4654
Н	3.710534	-2.825159	0.289929
С	-4.27581	-2.058449	-3.51471
Н	-4.7279	-2.632853	-4.31481
С	-4.57203	4.399639	-0.34109
Н	-5.10368	5.342523	-0.40193
С	1.358914	-4.217565	-2.41095
Н	0.675254	-4.609042	-3.15624
С	-4.98655	3.424094	0.557152
Η	-5.84192	3.60383	1.198563
С	-3.10845	-0.586913	-1.43029
С	1.558103	-0.350583	4.010972
Н	1.778199	0.452106	4.705934
С	0.787729	-2.586304	3.575933
Н	0.393361	-3.531516	3.930836
С	1.753493	-0.15368	2.651436
Н	2.113902	0.802667	2.288535
С	-4.06294	-1.791746	2.825734
Н	-4.87636	-2.501829	2.924155
С	1.077787	-1.569882	4.476348
Н	0.921906	-1.723324	5.538551

С	-3.4647	4.171944	-1.15049
Н	-3.12572	4.937316	-1.83903
С	2.50967	-4.9114	-2.07774
Н	2.743739	-5.844056	-2.5776
С	3.346049	-4.412879	-1.0867
Н	4.241871	-4.952785	-0.80334
С	3.528678	0.640815	-1.40321
Н	2.706733	0.84405	-2.08126
С	-2.48631	-1.741965	-1.92685
С	-1.22304	-2.256187	-1.29636
С	-3.06795	-2.465962	-2.96256
Н	-2.58208	-3.366203	-3.32456
С	-3.31497	-1.429617	3.939779
Н	-3.54587	-1.855673	4.909776
С	5.606664	0.240529	0.390588
Н	6.4122	0.097849	1.102335
С	-1.96159	0.006884	2.563934
Н	-1.12638	0.692783	2.460592
С	5.828546	0.953491	-0.78028
Н	6.807218	1.37326	-0.9836
С	4.786645	1.155659	-1.67574
Н	4.941083	1.750204	-2.56751
С	4.35089	-0.289632	0.657308
Н	4.185322	-0.837858	1.578339
С	-2.26476	-0.529793	3.807231
Н	-1.66563	-0.2557	4.667221
С	0.534635	2.73918	0.528147
Н	-0.30354	3.382969	0.24019
Н	0.547653	2.695513	1.623944
С	1.804616	3.284666	0.007913
С	1.894407	3.808229	-1.29403
С	2.982705	3.310924	0.771744
С	3.072661	4.347226	-1.7883
Н	1.00373	3.802076	-1.91769
С	4.16566	3.840969	0.277556
Н	2.958442	2.925474	1.787484
С	4.223363	4.372057	-1.00584
Η	3.093045	4.757848	-2.79359
Η	5.052082	3.841914	0.904078
Η	5.145334	4.794769	-1.38938

Toluene

E_{gas}	-271.5345	96 hartree	
Esolv	-271.5433	33 hartree	
G _{solv}	-271.4452	91 hartree	
С	-1.19548	1.19998	0.002009
С	0.193741	1.197148	-0.00875
С	0.908923	0.000001	-0.01193
С	0.193742	-1.19715	-0.00875
С	-1.19548	-1.19998	0.002009
С	-1.89591	0	0.008188
Η	-1.73219	2.142295	0.002145
Η	0.732861	2.139524	-0.01706
Η	0.732863	-2.13952	-0.01706
Η	-1.73219	-2.1423	0.002145
Η	-2.97993	-1E-06	0.013864
С	2.415536	0	0.009411
Η	2.788458	-2.3E-05	1.03862
Η	2.819864	-0.88441	-0.48788
Η	2.819865	0.884435	-0.48784

Benzyl radical

Egas	-270.87873	58 hartree	
E _{solv}	-270.88683	57 hartree	
G _{solv}	-270.8013	59 hartree	
С	-1.12902	1.206796	-0.000001
С	0.251199	1.213156	-0.000004
С	0.989282	0.000007	0.000011
С	0.251212	-1.213147	-0.000005
С	-1.12901	-1.2068	-0.000001
С	-1.83084	-0.000008	0.000004
Η	-1.67137	2.145798	-0.000003
Η	0.791426	2.154137	-0.000015
Н	0.791443	-2.154126	-0.000014
Н	-1.67134	-2.145809	0
Η	-2.91453	-0.000014	0.000004
С	2.392791	0.000004	-0.000001
Η	2.950333	-0.928698	0.000003
Н	2.950391	0.928666	0.000006

di *tert*-butyl peroxide

Egas	-466.051770 hartree		
Esolv	-466.059772 hartree		
G _{solv}	-465.845483	3 hartree	
	Х	У	Z
С	2.669126	1.182757	-0.084632
С	1.743806	-0.027250	-0.007695
Н	2.693244	1.581421	-1.101030
Н	2.329042	1.970469	0.591640
Н	3.682744	0.892102	0.201029
С	1.651414	-0.557998	1.420820
С	2.183902	-1.119124	-0.980979
Н	0.934367	-1.378041	1.477194
Н	2.627040	-0.926415	1.748593
Н	1.332518	0.233841	2.102813
Н	3.176787	-1.489361	-0.711534
Н	1.482985	-1.954500	-0.961212
Н	2.221613	-0.722309	-1.998089
0	0.487836	0.524605	-0.429312
0	-0.487836	-0.524560	-0.429368
С	-1.743806	0.027251	-0.007693
С	-1.651415	0.557849	1.420877
С	-2.183901	1.119226	-0.980863
С	-2.669126	-1.182748	-0.084758
Н	-1.332514	-0.234060	2.102786
Н	-0.934370	1.377889	1.477336
Н	-2.627041	0.926227	1.748690
Н	-2.221614	0.722518	-1.998015
Н	-3.176786	1.489437	-0.711378
Н	-1.482984	1.954600	-0.961010
Н	-3.682744	-0.892123	0.200930
Н	-2.693242	-1.581307	-1.101197
Н	-2.329043	-1.970530	0.591433

tert-butoxy radical

Egas	-232.994268 hartree
Б	-233.0002068
\mathbf{L}_{solv}	hartree
G_{solv}	-232.9069398
	hartree

	Х	У	Z
С	1.27069	-0.789353	-0.312717
С	0.000002	-0.024962	0.082084
Н	2.156524	-0.222387	-0.019669
Н	1.297627	-1.757058	0.194233
Η	1.302025	-0.966718	-1.391356
С	-1.270584	-0.789526	-0.312714
С	-0.000096	1.380355	-0.578116
Н	-2.15649	-0.222712	-0.01959
Н	-1.301936	-0.966825	-1.391363
Н	-1.297352	-1.757268	0.194174
Н	-0.000052	1.247787	-1.662731
Н	-0.889548	1.939607	-0.284742
Н	0.889246	1.939754	-0.284691
0	-0.000015	0.263341	1.424314

tert-butanol

Egas	-233.671201 hartree
Esolv	-233.677024 hartree
G _{solv}	-233.569494 hartree

	Х	У	Z
С	0.682977	1.258895	-0.513100
С	-0.006032	0.000000	0.017387
Н	0.206277	2.149699	-0.097779
Н	1.740037	1.270138	-0.225939
Н	0.632902	1.310278	-1.604373
С	0.683004	-1.258878	-0.513104
С	-1.485747	-0.000015	-0.345729
Н	0.206323	-2.149694	-0.097787
Н	0.632930	-1.310258	-1.604377
Н	1.740064	-1.270100	-0.225943
Н	-1.619908	-0.000014	-1.430372
Н	-1.973194	-0.885237	0.068920
Η	-1.973213	0.885194	0.068924
0	0.027017	-0.000002	1.445001
Η	0.946437	0.000000	1.715992

12. References

1. Kunchur, H. S.; Radhakrishna, L.; Pandey, M. K.; Balakrishna, M. S., *Chem. Commun.* **2021,** *57* (39), 4835-4838.

2. Kunchur, H. S.; Sonawane, S. C.; Saini, P.; Ramakrishnan, S.; Balakrishna, M. S., *Inorg. Chem.* **2023**, *62* (49), 19856-19870.

3. (a) Asakawa, Y.; Kusube, E.; Takemoto, T.; Suire, C., New bibenzyls from Radula complanata. *Phytochem.* **1978**, *17* (12), 2115-2117; (b) Figueiredo, A. C.; Sim-Sim, M.; Barroso, J. G.; Pedro, L. G.; Esquível, M. G.; Fontinha, S.; Luís, L.; Martins, S.; Lobo, C.; Stech, M., Liverwort Radula species from Portugal: chemotaxonomical evaluation of volatiles composition. *Flavour Fragr. J* **2009**, *24* (6), 316-325.

4. (a) Hohenberg, P.; Kohn, W., *Phy. Rev.* **1964**, *136*, B864-B871; (b) Kohn, W.; Sham, L. J., *Phys. Rev.* **1965**, *140* (4A), A1133-A1138; (c) Parr., R. G.; Weitao., Y., Oxford University Press, New York, Oxford: 1989.

5. Gaussian 16, r. C. F., M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.

6. (a) Becke, A. D., *J. Chem. Phys.* **1997**, *107* (20), 8554-8560; (b) Chai, J.-D.; Head-Gordon, M., Phys. Chem. Chem. Phys. **2008**, *10* (44), 6615-6620; (c) Grimme, S., *J. Comput. Chem.* **2006**, *27* (15), 1787-1799.

7. (a) Hay, P. J.; Wadt, W. R., *J. Chem. Phys.* **1985**, *82* (1), 270-283; (b) Wadt, W. R.; Hay, P. J., *J. Chem. Phy.* **1985**, *82* (1), 284-298.

8. (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A., *J. Chem. Phys.* **2003**, *54* (2), 724-728; (b) Hariharan, P. C.; Pople, J. A., Theor. Chim. Acta. **1973**, *28* (3), 213-222.

9. (a) Ho, J.; Klamt, A.; Coote, M. L., *J. Phys. Chem. A* **2010**, *114* (51), 13442-13444; (b) Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., *J. phy. chem.. B* **2011**, *115* (49), 14556-14562.

10. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., J. Phys. Chem. B. **2009**, *113* (18), 6378-6396.