SUPPORTING INFORMATION

Synthesis and Electronic Properties of Nitrogen-Rich Nanographenes

Gavin P. Heim, Masanari Hirahara, Vidhya Dev, and Theodor Agapie*
Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC
127-72, Pasadena, California 91125, United States
Table of Contents

General Considerations	2
Synthetic Procedures	2
Synthesis of 5-bromo-2-(3,5-di-tert-butylphenyl)pyrimidine (1a)	3
Figure S1. ${ }^{1} \mathrm{H}$ NMR of 5-bromo-2-(3,5-di-tert-butylphenyl)pyrimidine (1a)	4
Figure S2. ${ }^{13} \mathrm{C}$ NMR of 5-bromo-2-(3,5-di-tert-butylphenyl)pyrimidine (1a)	4
Synthesis of 1,2-bis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)ethyne (2a)	5
Figure S3. ${ }^{1} \mathrm{H}$ NMR of 1,2-bis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)ethyne (2a)	6
Figure S4. ${ }^{13} \mathrm{C}$ NMR of 1,2-bis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)ethyne (2a)	6
Synthesis of 1,2,3,4,5,6-hexakis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)benzene (3a).	7
Figure S5. ${ }^{1} \mathrm{H}$ NMR of 1,2,3,4,5,6-hexakis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)benzene (3a)	8
Figure S6. ${ }^{13} \mathrm{C}$ NMR of 1,2,3,4,5,6-hexakis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)benzene (3a)	8
General strategy for monitoring the ring closure of 3a and 3b	9
Synthesis of HPC-N $\mathbf{1 2}_{12}\left(\mathrm{Ar}^{\text {tBu }}\right)_{6}$	9
Figure S7. ${ }^{1} \mathrm{H}$ NMR of HPC-N ${ }_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$	10
Figure S8. ${ }^{13} \mathrm{C}$ NMR of HPC-N ${ }_{12}\left(\mathrm{Ar}^{\text {tBu }}\right)_{6}$	10
Additional Electrochemistry/Spectroscopy Data	11
Figure S9. Cyclic voltammogram of HPC-N $\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$	11
Figure S10. Absorption and emission spectra of HPC-N $\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ with ZnCl_{2}	12
Figure S11. Absorption and emission spectra of HPC- $\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{1 B u}}\right)_{6}$ with TfOH	13
Figure S12. Emission spectra of HPC-N $\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ with CuBr_{2}	14
Figure S13. Absorption spectra of HPC- $\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ with CuBr_{2}	14
Figure S14. MALDI-TOF of ZnCl_{2} added to $\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{H u}}\right)_{6}$ in CHCl_{3}	15
Figure S15. MALDI-TOF of CuBr_{2} added to $\mathbf{H P C - \mathbf { N } _ { \mathbf { 1 2 } } (\mathbf { A r } ^ { \mathbf { t B u } }) _ { 6 } \text { in THF }}$	15
Table S1. Comparing redox features in HBC variants	16
Density Functional Theory Calculations	17
Figure S16. Geometry-optimized structures of HPC-N $\mathbf{N}_{12} \mathbf{P h}_{6}$	17
Figure S17. Geometry-optimized structures of HBC-Ph ${ }_{6}$	17
Figure S18. HOMO, HOMO-1, LUMO, and LUMO+1 of HPC-N $\mathbf{1 2}^{2} \mathbf{P h}_{6}$	18
Figure S19. HOMO-6 and HOMO-2 for HPC-N $\mathbf{1 2}^{\text {Ph }}$ 6. Isovalues set to 0.02	19
Figure S20. HOMO, HOMO-1, LUMO, and LUMO+1 of HBC-Ph ${ }_{6}$	20
Figure S21. HOMO-2 for HBC-Ph ${ }_{\text {6 }}$. Isovalue set to 0.02	21
Table S2. HOMO-LUMO energy differences (B3LYP/6-311G(d,p))	22
Table S3. Cartesian coordinates obtained for the optimized geometry of HPC-N ${ }_{\mathbf{1 2}}$	22
Table S4. Cartesian coordinates obtained for the optimized geometry of HPC-N $\mathbf{N}_{12} \mathbf{P h}_{6}$	23
Table S5. Cartesian coordinates obtained for the optimized geometry of HBC-Ph	25
Table S6. Cartesian coordinates obtained for the optimized geometry of HBC-Ph $\mathbf{6}_{6}\left(90^{\circ}\right)$	27
Table S7. Cartesian coordinates obtained for the optimized geometry of HBC-Ph ${ }_{6}\left(45^{\circ}\right)$	30
Crystallographic Information	33
Refinement Details	34
Table S8. Crystal data and structure refinement for HPC-N $\mathbf{1 2}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$	34
Table S9. Comparison of select bond lengths	35
Figure S22. Additional representations of HPC- $\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\text {tBu }}\right)_{6}$ crystal structure	36
References	37

General considerations. Unless otherwise specified, all operations involving air- or water-sensitive reagents were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk and vacuum line techniques. Glassware was oven-dried at $140^{\circ} \mathrm{C}$ for 2 h prior to use on the Schlenk line or in the MBraun drybox. Tetrahydrofuran (THF), diethyl ether, toluene, pentane, and hexanes for air- and moisture-sensitive reactions were dried by the method of Grubbs. ${ }^{1}$ Dry N, N-dimethylformamide (DMF) was purchased from Millipore Sigma and cannula transferred to freshly-activated $3 \AA$ molecular sieves and stored in a Teflon-sealed Schlenk tube under N_{2} atmosphere for 12 h prior to use. Meta-xylene was vacuum transferred from sodium benzophenone ketyl. Deuterated solvents were purchased from Cambridge Isotope Laboratories and CDCl_{3} was used as received. All solvents, once dried and degassed, were stored under a nitrogen atmosphere over $3 \AA$ molecular sieves. Iodo[bis(diphenylphosphino)-9,9dimethylxanthene]copper(I) was prepared following a previously reported procedure. ${ }^{2}$ All other reagents were used as received. ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra were recorded on Varian Mercury 300 MHz or Varian 400 MHz spectrometers at ambient temperatures, unless otherwise denoted. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are reported referenced internally to residual solvent peaks reported relative to tetramethylsilane. Gas chromatography-mass spectrometry (GC-MS) were performed on an Agilent 6890A instrument using a HP-5MS column (30 m length, 0.25 mm diameter, $0.50 \mu \mathrm{~m}$ film) and an Agilent 5973 N mass-selective EI detector. Absorption spectra were recorded on a Varian Cary Bio 50 spectrophotometer.

Electrochemical measurements: CVs were recorded with a Pine Instrument Company AFCBP1 biopotentiostat with the AfterMath software package. All measurements were performed in a three electrode cell, which consisted of glassy carbon (working; $\varnothing=3.0 \mathrm{~mm}$), silver wire (counter) and bare platinum wire (reference), in an N_{2}-filled MBraun glovebox at RT. Dry tetrahydrofuran that contained ~ 100 $\mathrm{mM}\left[{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ was used as the electrolyte solution. The ferrocene/ferrocenium $\left(\mathrm{FcH} / \mathrm{FcH}{ }^{+}\right)$redox wave was used as an internal standard for all measurements.

Preparation of pre-reduced magnetic stir bars: Sodium mirror ($10-20 \mathrm{mg}$) is prepared in a $20-\mathrm{mL}$ scintillation vial along with 200-300 mg of benzophenone dissolved in THF to form a purple solution, which is then added to a $20-\mathrm{mL}$ vial containing 10-20 Teflon-coated magnetic stir bars and stirred for 12 h . The solution is decanted, and the stir bars are rinsed with THF until the mother liquor is colorless, resulting in black, pre-reduced magnetic stir bars that are dried under vacuum for 1 h and are to be used for reactions involving Na and NaK .

Absorption spectroscopy: UV-vis spectra were recorded on a Varian Cary Bio 50 spectrophotometer in a 1 mm cuvette. Single equivalents of $\mathrm{ZnCl}_{2}\left(103 \mathrm{mM}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ were added to $0.060 \mathrm{mM} \mathrm{HPC-} \mathrm{\mathbf{N}}_{\mathbf{1 2}}\left(\mathbf{A r}{ }^{\mathrm{tBu}}\right)_{\mathbf{6}}$. After addition of an equivalent, a spectrum was recorded.

Emission spectroscopy: Corrected room temperature emission spectra were collected in the Beckman Institute Laser Resource Center using a modified Jobin Yvon Spec Fluorolog-3 instrument. Samples were excited with a xenon arc lamp, employing a monochromator for wavelength selection, and emission was detected at 90° using two Ocean Optics EQDPro CCD spectrometers spanning 300-930 nm. Single equivalents of metal salt or trifluoromethane sulfonic acid (103 mM) were added to 0.060 mM HPC$\mathbf{N}_{12}\left(\mathbf{A r}^{\mathrm{tBu}}\right)_{6}$. After addition of an equivalent, a spectrum was recorded. The entrance and exit slits were 5 nm , and voltage was set to 400 V .

MALDI-TOF: Mass spectra were recorded on a Bruker Autoflex MALDI TOF/TOF. Dithranol (0.091 mM in CHCl_{3}) was employed as the matrix. $3 \mu \mathrm{~L}$ of the dithranol solution were combined with $1 \mu \mathrm{~L}$ of $0.060 \mathrm{mM} \mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathrm{tBu}}\right)_{\mathbf{6}}+$ metal salt mixture. This mixture was drop casted onto a MALDI plate and allowed to dry under ambient conditions.

Synthetic Procedures

5-Bromo-2-(3,5-di-tert-butylphenyl)pyrimidine (1). Adapted from a previously-reported procedure: ${ }^{3}$ In an N_{2}-purged glove box, a Schlenk flask fitted with a screw-in Teflon stopper was charged with a solution of 3,5-di-tert-butylbromobenzene ($20 \mathrm{~g}, 75 \mathrm{mmol}$) in THF (250 mL). The flask was sealed, brought outside of the box and cooled to $-78{ }^{\circ} \mathrm{C}$ with a dry ice/acetone bath. A pentane solution of tert-butyllithium (80 $\mathrm{mL}, 2.0 \mathrm{M}, 160 \mathrm{mmol}$) was added dropwise via cannula. The reaction was allowed to warm to room temperature and stirred for 1 h forming a yellow solution. The reaction was then brought back into an $\mathrm{N}_{2}-$ purged glovebox and $\mathrm{ZnCl}_{2}(7.2 \mathrm{~g}, 53 \mathrm{mmol})$ was added slowly to the reaction resulting in the loss of the yellow coloration and formation of a white precipitate. The mixture was allowed to stir at room temperature for 30 min . 5 -bromo-2-iodopyrimidine ($22.3 \mathrm{~g}, 78 \mathrm{mmol}$) was added to the mixture. The flask was then placed in a cold well previously cooled with liquid nitrogen. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.3 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added slowly, the flask sealed, and brought outside of the box. The vessel was fitted with an oven-dried reflux condenser and warmed to $70^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, water (100 mL) was added to quench the reaction, and the mixture concentrated in vacuo to about 100 mL . The resulting suspension was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and washed with $5 \times 100 \mathrm{~mL}$ of water. The organic layer was washed with brine (2 x 100 mL), dried over MgSO_{4}, and filtered. Removal of the volatiles under a reduced pressure afforded an orange solid, which was charged with 200 mL of hexanes and heated to reflux. The mixture was filtered, and the filtrate was concentrated under a reduced pressure, allowing a white solid to crash out, which was filtered and washed with cold hexanes. The off-white solid ($15.2 \mathrm{~g}, 57.5 \%$ yield) is analytically pure $\mathbf{1 a}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 8.31$ (app d, $2 \mathrm{H}, \mathrm{ArH}$), $7.62(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}$), 1.43 (s, 18 H , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=163.75$ (aryl-C), 157.84 (aryl-C), 151.40 (aryl-C), 135.93 (aryl-C), 125.6 (aryl-C), 122.65 (aryl-C), 118.05 (aryl-C), $35.18\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.64\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right)$. HRMS (FAB +) m / z Calcd. for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{2} 347.1123$, found 347.1122.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5-bromo-2-(3,5-di-tert-butylphenyl)pyrimidine (1).

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5-bromo-2-(3,5-di-tert-butylphenyl)pyrimidine (1).

1,2-bis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)ethyne (2). Adapted from a previously-reported procedure: ${ }^{4}$ A 1-L, oven-dried Schlenk flask was allowed to cool under vacuum on the Schlenk line. Under a positive pressure of N_{2}, the Schlenk flask was charged with 5-bromo-2-(3,5-di-tertbutylphenyl)pyrimidine (1a) ($12.8 \mathrm{~g}, 37 \mathrm{mmol}$), cesium carbonate ($24.1 \mathrm{~g}, 74 \mathrm{mmol}$), and palladium (II) acetate $(165 \mathrm{mg}, 0.73 \mathrm{mmol})$. DMF (250 mL) was added to the Schlenk flask via cannula. To this mixture was added trimethylsilylacetylene ($3.14 \mathrm{~mL}, 22 \mathrm{mmol}$) under positive N_{2} pressure. The reaction mixture was degassed via one cycle of freeze-pump-thaw. Iodo[bis(diphenylphosphino)-9,9dimethylxanthene]copper(I) ($566 \mathrm{mg}, 0.73 \mathrm{mmol}$) was added under positive N_{2} pressure. The reaction mixture was subjected to two more cycles of freeze-pump-thaw, and the mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 12 h . Volatiles were removed under a reduced pressure, and the crude solid was charged with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (300 mL) and filtered to remove excess cesium carbonate. The filtrate was concentrated under a reduced pressure and purified via column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. The white solid ($5.3 \mathrm{~g}, 25.6 \%$) was dried under vacuum for 12 h at room temperature prior to the next step. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $8.95(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar} H), 8.36(\operatorname{app~d}, 4 \mathrm{H}, \mathrm{Ar} H), 7.61(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar} H), 1.42\left(\mathrm{~s}, 36 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=164.02$ (aryl-C), 159.13 (aryl-C), 151.45 (aryl-C), 136.22 (aryl-C), 125.93 (aryl-C), 123.02 (aryl-C), 115.89 (aryl-C), 90.03 (alkyne-CC), $35.22\left(C_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right) 31.65\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right.$. HRMS (FAB+) m/z Calcd. for $\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{C}_{38} \mathrm{H}_{47} \mathrm{~N}_{4} 559.3801$, found 559.3813.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 1,2-bis(2-(3,5-di-tert-butylphenyl)pyrimidin-5yl)ethyne (2).

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (101 MHz, CDCl_{3}) of 1,2-bis(2-(3,5-di-tert-butylphenyl)pyrimidin-5yl)ethyne (2).

1,2,3,4,5,6-hexakis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)benzene (3). Adapted from a previouslyreported procedure: ${ }^{5}$ An oven-dried Schlenk tube fitted with a screw-in Teflon stopper was charged with 1,2-bis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)ethyne (2) ($2.00 \mathrm{~g}, 4 \mathrm{mmol}$), IMesHCl ($54 \mathrm{mg}, 0.16$ $\mathrm{mmol})$, and acetylacetonatonickel (II) ($41 \mathrm{mg}, 0.16 \mathrm{mmol}$). The flask was then charged with 10 mL of m xylene via syringe. The solution was subjected to three cycles of freeze-pump-thaw and left under nitrogen. Isopropylmagnesium chloride ($0.5 \mathrm{~mL}, 1.39 \mathrm{M}$ in THF, 0.7 mmol) was added via syringe, and the solution was warmed to $120^{\circ} \mathrm{C}$ for 16 h . Volatiles were removed under a reduced pressure. The crude solid was purified via column chromatography ($10 \% \mathrm{EtOAc} / \mathrm{Hexanes}$), and the fractions containing the desired product precipitated a white solid, which was filtered and washed with ethyl acetate and hexanes to yield the desired cyclotrimer $\mathbf{3 a}(1.65 \mathrm{~g}, 82.5 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.49(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 8.09(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ar} H), 7.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 1.28\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=164.15$ (aryl-C), 157.82 (aryl-C), 151.25 (aryl-C), 138.07 (aryl-C), 135.64 (aryl-C), 128.94 (aryl-C), 125.91 (aryl-C), 122.81
 Found: C, 80.99; H, 8.14; N, 9.89.

$\stackrel{9}{9}$	$\stackrel{8}{8}$

Figure S5. ${ }^{1} \mathrm{H} \quad \mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}$) of 1,2,3,4,5,6-hexakis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)benzene (3).

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1,2,3,4,5,6-hexakis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)benzene (3).

Monitoring the ring closure of 3a and 3b. In an N_{2}-purged glovebox, a 1-2 mL aliquot was removed from the reduction of $\mathbf{3}$ and quenched slowly with isopropanol on the benchtop. This mixture was then charged with a minimal amount of DDQ to oxidize the putative anionic intermediate, ${ }^{6}$ resulting in a red-yellow solution. The volatiles were removed on the rotary evaporator, and the crude solid was taken up in CDCl_{3} and filtered to record the ${ }^{1} \mathrm{H}$ NMR spectrum.

$\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$. In an N_{2}-purged glovebox, a $20-\mathrm{mL}$ scintillation vial is charged with $1,2,3,4,5,6-$ hexakis(2-(3,5-di-tert-butylphenyl)pyrimidin-5-yl)benzene ($200 \mathrm{mg}, 0.12 \mathrm{mmol}$). In a separate vial, sodium $(24.7 \mathrm{mg}, 1.07 \mathrm{mmol})$ and potassium ($42 \mathrm{mg}, 1.07 \mathrm{mmol}$) are weighed out and carefully mixed with a spatula. The alloy is suspended in THF and charged with a magnetic pre-reduced stir bar. Compound $\mathbf{3}$ is suspended in THF and added to the sodium and potassium alloy to immediately form a purple suspension. This mixture is stirred at room temperature for 48 h . The dark brown solution is transferred to a Teflonsealed Schlenk tube and quenched with isopropanol, followed by MeOH over 1 h to form a dark yellow mixture. This solution is then sparged with dioxygen for 12 h , concentrated under a reduced pressure, and extracted with chloroform and filtered. The filtrate is allowed to sit at $-20^{\circ} \mathrm{C}$ for 7 h to form deep-red crystals. The mother liquor is decanted, and the crystals are rinsed with cold chloroform. HPC-N $\mathbf{N a}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ is then dried in vacuo at room temperature for 12 h before further use ($100.4 \mathrm{mg}, 50.3 \%$). Single crystals suitable for X-ray diffraction were grown from slow evaporation at room temperature of a saturated chloroform solution. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{ArH}), 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 1.65(\mathrm{~s}, 18 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$). $\delta=153.82$ (aryl-C), 150.40 (aryl-C), 136.74 (aryl-C), 124.85 (aryl-C), 123.48 (aryl-C), 119.67 (aryl-C), 116.22 (aryl-C), 115.35 (aryl-C), $34.27\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 31.04$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Anal. calcd. (\%) for $\mathrm{C}_{114} \mathrm{H}_{126} \mathrm{~N}_{12}$: C, $82.27 ; \mathrm{H}, 7.63 ; \mathrm{N}, 10.10$. Found: C, $82.00 ; \mathrm{H}, 7.43 ; \mathrm{N}, 9.90$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{H P C - N} \mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{\mathbf{6}}$.

Additional Spectroscopy and Electrochemistry Data

Figure S9. CV of $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathrm{tBu}}\right)_{6}(1 \mathrm{mM})$ collected at $200 \mathrm{mV} / \mathrm{s}$. $0.1 \mathrm{M}\left({ }^{\mathrm{n}} \mathrm{Bu}\right)_{4} \mathrm{NPF}_{6}$ in THF. Working electrode: glassy carbon. Reference electrode: $\mathrm{Ag} / \mathrm{AgCl}$. Counter electrode: Pt wire.

Figure S10. A. Absorption spectra of $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}\left(0.060 \mathrm{mM}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. B. Emission spectra (excitation wavelength: 410 nm) of $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ recorded after adding successive equivalents of ZnCl_{2}.

Figure S11. A. Absorption spectra of $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}\left(0.060 \mathrm{mM}\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. B. Emission spectra (excitation wavelength: 410 nm) of $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ recorded after adding successive equivalents of TfOH (100 mM in CHCl_{3}).

Figure S12. Emission spectra (excitation wavelength: 410 nm$)$ of $\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{\mathbf{6}}(0.060 \mathrm{mM}$ in THF) recorded after adding successive equivalents of CuBr_{2}.

Figure S13. Absorption spectra of $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}(0.060 \mathrm{mM}$ in THF $)$ recorded after adding successive equivalents of CuBr_{2}.

Figure S14. MALDI-TOF of $20 \mathrm{ZnCl}_{2}$ added to $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{1 B u}}\right)_{6}$ in CHCl_{3}. Matrix: dithranol

Figure S15. MALDI-TOF of $20 \mathrm{CuBr}_{2}$ added to $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{1 B u}}\right)_{6}$ in THF Matrix: dithranol

Table S1. Comparing most positive reduction determined by cyclic voltammetry between hexabenzocoronene variants.

Compound $\quad \mathrm{E}_{1 / 2}\left(\mathrm{~V}\right.$ vs. $\left.\mathrm{FcH}^{0 /+}\right) \quad$ Electrolyte \quad Reference

HPC- $\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u})_{6}}\right.$	-1.31	0.1 M ${ }^{\mathrm{n}}(\mathrm{Bu})_{4} \mathrm{PF}_{6} / \mathrm{THF}$	This work
$\mathbf{N}_{4}-\mathbf{H B C}$	-1.6	0.1 M $\mathrm{n}(\mathrm{Bu})_{4} \mathrm{PF}_{6} / \mathrm{CH}_{3} \mathrm{CN}$	Draper and co-workers ${ }^{7}$
${ }^{\mathrm{tBu}} \mathbf{H B C}$	-2.1	0.1 M ${ }^{\mathrm{n}}(\mathrm{Bu})_{4} \mathrm{PF}_{6} / \mathrm{THF}$	Müllen and co- workers
${ }^{\mathbf{t B u}} \mathbf{H B C}$	-1.7	0.1 M ${ }^{\mathrm{n}}(\mathrm{Bu})_{4} \mathrm{PF}_{6} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	Guldi, Jux, and co- workers

Density Functional Theory (DFT) Calculations

All computations were performed using ORCA software ${ }^{10}$ version 4.1.2 on the Resnick High-Performance Computing Cluster at Caltech. Geometry optimizations and orbital energies were performed using the restricted Kohn-Sham formalism with the B3LYP functional ${ }^{11}$ and the $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. ${ }^{12}$

Figure S16. Geometry-optimized structure of $\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}} \mathbf{P h}_{6}$. Right: rotated by 90° into the page.

Figure S17. Geometry-optimized structure of $\mathbf{H B C}-\mathbf{P h}_{6}$. Right: rotated by 90° into the page.
$\mathbf{H P C}-\mathbf{N}_{12} \mathbf{P h}_{6}$ was modeled using Avogadro software starting from the crystal structure of $\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ and submitted for geometry optimization. The structure of $\mathbf{H B C}-\mathbf{P h}_{6}$ was generated by replacing each nitrogen atom with $\mathrm{C}-\mathrm{H}$. In the optimized structure, the phenyl rings are essentially coplanar with the HBC (Figure S17). When $\mathbf{H B C}^{\mathbf{P}} \mathbf{P h}_{6}$ is modified such that each Ph rings are rotated relative to the HBC plane for a dihedral angle of 45°, the rings show little rotation upon geometry optimization. The HOMOLUMO gap changes (increases from 3.347 eV to 3.576 eV), but remains greater than that of $\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}} \mathbf{P h}_{6}$. At this level of theory, these results indicate that the HOMO-LUMO gap is influenced by a combination of nitrogen incorporation and aryl substituent presence / orientation in the periphery of the polyaromatic system.

Figure S18. Clockwise from top left: LUMO (-3.250 eV), LUMO+1 (-3.190 eV), HOMO-1 (-6.296 eV), and HOMO $(-6.269 \mathrm{eV})$ of $\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}} \mathbf{P h}_{6}$. Isosurfaces are shown at 0.02 value.

Figure S19. (left) HOMO-6 and (right) HOMO-2 for $\mathbf{H P C}-\mathbf{N}_{12} \mathbf{P h}_{6}$. Isovalues set to 0.02 .

Figure S20. Clockwise from top left: LUMO (-1.983 eV), LUMO+1 (-1.953 eV), HOMO-1 (-5.350 eV), and HOMO $(-5.330 \mathrm{eV})$ of $\mathbf{H B C}-\mathbf{P h}_{6}$. Isosurfaces are shown at 0.02 value.

Figure S21. HOMO-2 for $\mathbf{H B C}-\mathbf{P h}_{6}$. Isovalue set to 0.02 .

Table S2. HOMO-LUMO energy differences (eV) (computed from B3LYP/6-311G(d,p)).

$\mathbf{H B C}$	3.568
$\mathbf{H B C}-\mathbf{P h}_{\mathbf{6}}$	3.347
$\mathbf{H P C} \mathbf{N}_{\mathbf{1 2}}$	3.635
$\mathbf{H P C}-\mathbf{N}_{\mathbf{1 2}} \mathbf{P h}_{\mathbf{6}}$	3.019

Table S3. Cartesian coordinates obtained for the optimized geometry of $\mathbf{H P C}-\mathbf{N}_{12}$.

N	10.210694	1.114678	9.574955
N	4.182042	8.128486	13.773238
N	8.907951	3.602846	16.345539
N	10.726567	1.035419	12.359151
N	3.665661	8.207244	10.989105
N	5.484301	5.639819	7.002708
N	4.095899	7.384091	8.750411
N	5.377297	7.188247	15.660537
N	9.015201	2.054679	7.687723
N	7.282290	5.365938	16.696740
N	10.296512	1.858772	14.597805
N	7.110462	3.877184	6.651460
C	9.554088	1.939529	10.408885
C	5.282938	6.454228	10.632569
C	9.823511	1.898285	11.862209
C	9.109130	2.788294	12.715713
C	8.146520	3.710214	12.191837
C	4.568675	7.344359	11.486059
C	6.677092	4.700446	8.876330
C	4.838244	7.303238	12.939371
C	6.938026	4.660570	10.283795
C	7.453865	4.581809	13.064524
C	8.590254	2.867646	9.917997
C	5.801847	6.374925	13.430302
C	6.503278	5.492904	12.546907
C	7.714957	4.542111	14.471962
C	7.888627	3.749469	10.801424
C	6.191116	4.774809	6.253476
C	9.391221	2.725330	14.111279
C	6.039302	6.358789	14.835419
C	8.352990	2.883939	8.512857
C	7.033321	5.407073	15.376327
C	10.904036	1.071718	13.691949
C	3.488260	8.171009	9.656268
C	6.245377	5.532156	11.156467
C	5.725453	5.606683	8.324809
C	8.201579	4.468408	17.094717
C	8.666700	3.635924	15.023524
C	5.000981	6.517318	9.236968
C	4.493438	8.017452	15.077064
C	7.358978	3.835693	7.971888
C	9.899255	1.225653	8.271144
H	8.401195	4.437979	18.171098

H	3.956183	8.691225	15.752899
H	2.751358	8.875174	9.255691
H	5.991070	4.804538	5.177153
H	10.436929	0.552341	7.595187
H	11.640963	0.367628	14.092615

Table S4. Cartesian coordinates obtained for the optimized geometry of $\mathbf{H P C}-\mathbf{N}_{12} \mathbf{P h}_{6}$.

N	10.27700	1.23800	9.58400
N	4.27400	8.17000	13.74800
N	8.88900	3.59600	16.32200
N	10.74900	1.11200	12.34700
N	3.71900	8.21300	10.97900
N	5.47200	5.61200	7.03500
N	4.13900	7.38400	8.76200
N	5.49400	7.24600	15.61000
N	9.07500	2.16000	7.70900
N	7.24200	5.31800	16.66100
N	10.28800	1.87600	14.57600
C	9.52400	1.96000	10.42500
C	5.26000	6.40900	10.64000
C	9.78300	1.90300	11.87300
C	9.02700	2.72900	12.73200
C	13.04900	-0.16400	13.34700
H	12.98600	0.01900	12.41700
C	8.02800	3.61300	12.20600
C	4.58100	7.32100	11.47900
C	6.61100	4.63800	8.90800
C	4.84700	7.28300	12.93300
C	6.84800	4.57200	10.31100
C	7.34500	4.47500	13.07100
C	8.51800	2.82100	9.93800
C	5.76500	6.31800	13.42900
C	6.41700	5.40000	12.55400
C	2.59900	9.21000	9.07800
C	7.63000	4.45700	14.46900
C	7.78200	3.65800	10.83100
C	8.47900	4.48700	18.54100
C	2.51400	9.39800	7.70700
H	3.03000	8.85200	7.12500
C	9.33700	2.69000	14.09900
C	11.29200	1.31500	6.13900
H	10.91800	2.16200	5.92400
C	6.03100	6.33100	14.81000
C	8.31400	2.87300	8.55100
C	6.98300	5.33900	15.35600
C	5.99600	4.85300	4.79400
C	10.94700	1.12000	13.67200
C	1.85300	10.00800	9.94200
H	1.91400	9.87300	10.88000

C	10.94900	0.69800	7.33600
C	3.53900	8.20500	9.64400
C	6.17500	5.45100	11.17700
C	5.70100	5.55700	8.34600
C	12.09600	-0.05300	15.54800
H	11.39700	0.23100	16.12400
C	12.17100	0.71300	5.25600
C	8.18500	4.45400	17.08700
C	8.60500	3.59100	15.02000
C	12.04400	0.26500	14.20000
C	14.15800	-0.86300	13.84200
C	4.99800	6.48900	9.26100
C	4.64900	8.13500	15.04300
C	7.28500	3.78400	8.00300
C	3.35900	11.34700	17.48300
H	3.08400	12.07900	18.02300
C	4.15700	9.23300	15.92000
C	1.67500	10.38500	7.16800
C	5.45600	6.01500	4.23900
H	5.10500	6.68800	4.81100
C	10.03600	1.39600	8.27100
C	2.87500	9.75800	15.76400
H	2.29100	9.39300	15.11000
C	12.29400	-1.23200	6.75400
C	11.46900	-0.55500	7.65500
H	11.26100	-0.95200	8.49200
C	9.04800	4.64600	21.23900
H	9.23900	4.69200	22.16800
C	8.01100	5.42800	20.72000
C	12.63500	-0.57600	5.58900
H	13.21400	-1.01600	4.97900
C	6.47500	3.84400	3.96400
H	6.82600	3.04800	4.34500
C	2.44700	10.81500	16.56500
C	1.01900	11.00000	9.43900
C	13.16900	-0.78900	16.07000
C	14.17500	-1.15400	15.19300
H	14.92000	-1.63200	15.53900
C	4.65000	10.85300	17.64100
C	5.42300	6.20100	2.86100
C	5.03000	9.77100	16.86500
H	5.89400	9.39200	16.97700
C	9.51100	3.72100	19.08300
H	10.01200	3.14000	18.52200
C	7.74300	5.32700	19.36600
H	7.03900	5.84400	18.99300
C	6.44400	3.99200	2.57900
C	0.94100	11.15400	8.05800
H	0.35700	11.81700	7.70900
C	9.81100	3.80200	20.43400
C	5.91600	5.17300	2.06100

H	5.89000	5.28200	1.11700
C	6.16300	4.74600	6.25800
H	1.60700	10.53300	6.14900
H	0.47300	11.60500	10.07200
H	14.93200	-1.14900	13.22200
H	13.20700	-1.04800	17.06800
H	10.58400	3.24800	20.83600
H	7.46400	6.05900	21.32600
H	5.30400	11.28000	18.31600
H	1.49000	11.19200	16.48400
H	5.04700	7.06800	2.44700
H	6.80100	3.25000	1.95600
H	12.47400	1.18700	4.39100
H	12.63500	-2.18600	6.95200
N	7.05400	3.82700	6.70200

Table S5. Cartesian coordinates obtained for the optimized geometry of $\mathbf{H B C}-\mathbf{P h}_{6}$.

C	4.25600	0.22000	6.32600
H	4.08400	0.62700	5.48500
C	5.05200	0.89000	7.26000
C	5.33700	0.25500	8.46800
H	5.88400	0.70100	9.10300
C	5.94100	-1.02000	11.02600
H	6.32200	-0.17400	10.82300
C	6.19300	-1.57700	12.26500
C	5.64000	-2.82000	12.53300
H	5.77700	-3.20600	13.39100
C	4.67100	-5.53100	13.07300
H	5.12300	-5.05000	13.75600
C	4.30200	-6.85100	13.31100
C	3.61300	-7.51900	12.30500
H	3.40400	-8.43900	12.42400
C	1.68000	-8.74000	10.52700
H	1.92100	-9.16800	11.34000
C	0.72200	-9.33100	9.71100
C	0.43800	-8.72300	8.48800
H	-0.15700	-9.15400	7.88500
C	-0.40500	-7.30700	6.05100
H	-0.75600	-8.17300	6.23200
C	-0.90000	-6.60800	4.96100
C	-0.29900	-5.38300	4.65900
H	-0.59800	-4.90000	3.89700
C	0.98000	-2.89000	3.92400
H	0.38700	-3.31500	3.31600
C	1.46300	-1.61800	3.61000
C	2.37800	-1.04100	4.48300
H	2.73700	-0.18700	4.27700
C	2.79200	-1.68300	5.65900
C	3.70900	-1.03800	6.60700
C	4.00900	-1.67700	7.83600

C	4.84300	-1.01000	8.77800
C	5.14800	-1.64700	10.06100
C	4.61500	-2.92900	10.33900
C	4.88500	-3.53000	11.59000
C	4.40300	-4.88500	11.86200
C	3.65400	-5.56100	10.87300
C	3.21800	-6.87900	11.12300
C	2.29800	-7.53100	10.18500
C	1.92900	-6.86800	9.00000
C	1.00200	-7.49600	8.11900
C	0.58500	-6.79600	6.89800
C	1.15100	-5.52800	6.59800
C	0.73000	-4.84700	5.44300
C	1.33500	-3.55900	5.09500
C	2.25200	-2.95300	5.98800
C	2.61400	-3.61800	7.21400
C	3.47000	-2.97900	8.13900
C	3.79400	-3.61100	9.36500
C	3.29400	-4.90300	9.63800
C	2.45400	-5.55600	8.70700
C	2.09000	-4.90000	7.50600
C	-2.06500	-7.15900	4.11700
C	-2.54000	-6.43100	3.02600
C	-2.64400	-8.38500	4.44300
C	-3.59500	-6.93000	2.26200
H	-2.08400	-5.46400	2.76900
C	-3.69800	-8.88400	3.67800
H	-2.26900	-8.95900	5.30400
C	-4.17400	-8.15700	2.58800
H	-3.97000	-6.35700	1.40100
H	-4.15400	-9.85100	3.93500
H	-5.00500	-8.55000	1.98500
C	-0.00400	-10.61800	10.14400
C	-0.96200	-11.19400	9.30900
C	0.29600	-11.21000	11.37100
C	-1.62000	-12.35900	9.70100
H	-1.19800	-10.72700	8.34100
C	-0.36100	-12.37600	11.76300
H	1.05100	-10.75600	12.03000
C	-1.31900	-12.95100	10.92800
H	-2.37400	-12.81300	9.04200
H	-0.12400	-12.84200	12.73000
H	-1.83700	-13.87000	11.23700
C	4.64400	-7.54700	14.64100
C	4.26200	-8.87300	14.85300
C	5.33700	-6.85400	15.63400
C	4.57200	-9.50400	16.05800
H	3.71600	-9.41900	14.07000
C	5.64800	-7.48600	16.83800
H	5.63900	-5.81000	15.46700
C	5.26500	-8.81000	17.05000

H	4.27100	-10.54800	16.22500
H	6.19400	-6.93900	17.62100
H	5.51000	-9.30800	18.00000
C	7.05600	-0.84500	13.30900
C	7.29400	-1.43200	14.55300
C	7.60000	0.40500	13.01300
C	8.07500	-0.76900	15.49900
H	6.86500	-2.41700	14.78700
C	8.38300	1.06700	13.95900
H	7.41300	0.86800	12.03300
C	8.62000	0.48100	15.20200
H	8.26300	-1.23100	16.47900
H	8.81200	2.05200	13.72500
H	9.23600	1.00300	15.94800
C	5.60100	2.29700	6.96100
C	6.39400	2.95100	7.90500
C	5.30700	2.91800	5.74700
C	6.89200	4.22600	7.63500
H	6.62600	2.46200	8.86200
C	5.80600	4.19300	5.47700
H	4.68200	2.40300	5.00300
C	6.59800	4.84700	6.42000
H	7.51700	4.74100	8.37800
H	5.57400	4.68200	4.52000
H	6.99100	5.85100	6.20700
C	0.99800	-0.88000	2.34100
C	1.49700	0.39100	2.05100
C	0.07900	-1.48200	1.48100
C	1.07600	1.05900	0.90100
H	2.22100	0.86500	2.72900
C	-0.34100	-0.81300	0.33000
H	-0.31400	-2.48300	1.70900
C	0.15700	0.45700	0.04100
H	1.46900	2.06000	0.67200
H	-1.06500	-1.28800	-0.34800
H	-0.17400	0.98400	-0.86600
		8	

Table S6. Cartesian coordinates obtained for the optimized geometry of $\mathbf{H B C}-\mathbf{P h}_{6}\left(90^{\circ}\right.$ dihedral).

C	4.25600	0.22000	6.32600
H	4.08400	0.62700	5.48500
C	5.05200	0.89000	7.26000
C	5.33700	0.25500	8.46800
H	5.88400	0.70100	9.10300
C	5.94100	-1.02000	11.02600
H	6.32200	-0.17400	10.82300
C	6.19300	-1.57700	12.26500
C	5.64000	-2.82000	12.53300
H	5.77700	-3.20600	13.39100
C	4.30200	-6.85100	13.31100

C	0.72200	-9.33100	9.71100
C	-0.40500	-7.30700	6.05100
C	-0.90000	-6.60800	4.96100
C	-0.29900	-5.38300	4.65900
C	0.98000	-2.89000	3.92400
H	0.38700	-3.31500	3.31600
C	1.46300	-1.61800	3.61000
C	2.37800	-1.04100	4.48300
H	2.73700	-0.18700	4.27700
C	2.79200	-1.68300	5.65900
C	3.70900	-1.03800	6.60700
C	4.00900	-1.67700	7.83600
C	4.84300	-1.01000	8.77800
C	5.14800	-1.64700	10.06100
C	4.61500	-2.92900	10.33900
C	4.88500	-3.53000	11.59000
C	4.40300	-4.88500	11.86200
C	3.65400	-5.56100	10.87300
C	3.21800	-6.87900	11.12300
C	2.29800	-7.53100	10.18500
C	1.92900	-6.86800	9.00000
C	1.00200	-7.49600	8.11900
C	0.58500	-6.79600	6.89800
C	1.15100	-5.52800	6.59800
C	0.73000	-4.84700	5.44300
C	1.33500	-3.55900	5.09500
C	2.25200	-2.95300	5.98800
C	2.61400	-3.61800	7.21400
C	3.47000	-2.97900	8.13900
C	3.79400	-3.61100	9.36500
C	3.29400	-4.90300	9.63800
C	2.45400	-5.55600	8.70700
C	2.09000	-4.90000	7.50600
C	0.43800	-8.72300	8.48800
C	1.68000	-8.74000	10.52700
C	3.61300	-7.51900	12.30500
C	4.67100	-5.53100	13.07300
H	-0.79800	-8.28100	6.25400
H	-0.63600	-4.83800	3.80200
C	4.64500	-7.54800	14.64100
C	5.79700	-8.32700	14.74300
C	3.80300	-7.39900	15.74400
C	6.10800	-8.95800	15.94800
H	6.46100	-8.44400	13.87400
C	4.11400	-8.03000	16.94900
H	2.89500	-6.78500	15.66300
C	5.26700	-8.80900	17.05000
H	7.01700	-9.57200	16.02800
H	3.45100	-7.91300	17.81800
H	5.51200	-9.30700	18.00000
C	-0.00400	-10.61800	10.14400

C	-1.20200	-10.53800	10.85400
C	0.53600	-11.86500	9.82700
C	-1.86000	-11.70300	11.24700
H	-1.62800	-9.55500	11.10400
C	-0.12200	-13.03000	10.21900
H	1.48100	-11.92800	9.26700
C	-1.32000	-12.95000	10.92900
H	-2.80400	-11.64000	11.80600
H	0.30400	-14.01300	9.96900
H	-1.83900	-13.86900	11.23900
C	-2.06500	-7.15900	4.11700
C	-1.80326	-7.96826	3.01200
C	-3.38141	-6.84911	4.45990
C	-2.85827	-8.46694	2.24780
H	-0.76549	-8.21194	2.74234
C	-4.43647	-7.34875	3.69540
H	-3.58734	-6.21135	5.33134
C	-4.17531	-8.15773	2.58963
H	-2.65239	-9.10566	1.37606
H	-5.47367	-7.10534	3.96582
H	-5.00633	-8.55168	1.98728
C	0.99800	-0.88000	2.34100
C	1.72923	-0.99844	1.15786
C	-0.15361	-0.09378	2.37298
C	1.30874	-0.33004	0.00832
H	2.63732	-1.61869	1.13240
C	-0.57467	0.57373	1.22251
H	-0.72979	-0.00047	3.30451
C	0.15587	0.45502	0.04005
H	1.88421	-0.42328	-0.92390
H	-1.48332	1.19274	1.24840
H	-0.17604	0.98195	-0.86602
C	5.60200	2.29700	6.96100
C	6.76476	2.44537	6.20483
C	4.93761	3.42376	7.44563
C	7.26392	3.71960	5.93519
H	7.28963	1.55707	5.82256
C	5.43542	4.69808	7.17394
H	4.02023	3.30680	8.04158
C	6.59816	4.84628	6.41876
H	8.17993	3.83647	5.33818
H	4.91055	5.58638	7.55622
H	6.99149	5.85099	6.20500
C	7.05600	-0.84500	13.30900
C	8.44668	-0.95975	13.26905
C	6.44984	-0.06659	14.29454
C	9.22853	-0.29747	14.21484
H	8.92542	-1.57297	12.49201
C	7.23194	0.59666	15.24028
H	5.35419	0.02437	14.32650
C	8.62148	0.48115	15.19997

H	10.32443	-0.38746	14.18282
H	6.75256	1.21105	16.01685
H	9.23736	1.00473	15.94549
H	-0.20827	-9.19256	7.83464
H	2.06081	-9.25086	11.52480
H	3.38544	-8.51743	12.43295
H	5.23160	-4.94530	13.74046

Table S7. Cartesian coordinates obtained for the optimized geometry of $\mathbf{H B C}-\mathbf{P h}_{\mathbf{6}}$ (45° dihedral).

C	0.76000	1.20900	0.07100
C	-0.72400	1.25500	-0.07100
C	-1.42400	0.10000	-0.10900
C	-0.75900	-1.14700	-0.02200
C	0.65200	-1.22200	0.12200
C	1.41000	-0.03400	0.16400
C	1.50500	2.39700	0.06900
C	0.86100	3.63700	-0.06900
C	3.05900	4.70200	-0.25200
C	2.99700	2.36100	0.15900
C	-1.38900	2.50100	-0.12900
	-2.81300	2.55900	-0.22200
C	-2.67200	4.95900	-0.01100
C	-0.63400	3.70200	-0.06100
C	-2.91100	0.14600	-0.26000
C	-3.64800	-1.06100	-0.32100
C	-5.66300	0.18400	-0.68700
C	-3.56000	1.34500	-0.34600
C	-1.55100	-2.40000	-0.01500
C	-0.88900	-3.63000	0.15700
C	-3.03000	-4.72100	0.36400
C	-2.95800	-2.36400	-0.09100
C	1.31000	-2.47700	0.18800
C	2.81300	-2.53500	0.26800
C	2.68300	-4.88000	0.03600
C	0.61000	-3.64800	0.13800
C	2.89000	-0.08500	0.33000
C	3.64400	1.11500	0.38200
C	5.64700	-0.17000	0.78700
C	3.55600	-1.33100	0.42200
C	1.66000	4.77400	-0.28200
C	3.67800	3.52400	-0.02400
C	-3.41200	3.78100	-0.16800
C	-1.27900	4.88400	0.04700
C	-5.02900	-0.99600	-0.59000
C	-4.97000	1.33200	-0.55900
C	-1.62700	-4.74500	0.38700
C	-3.67200	-3.56400	0.12100
C	3.40500	-3.75400	0.16700
C	1.28400	-4.81800	0.02000

C	5.02900	1.01700	0.65700
C	4.95300	-1.31800	0.66900
H	1.21700	5.72600	-0.53200
H	4.75400	3.54600	-0.02000
H	-4.47600	3.90600	-0.22200
H	-0.74100	5.80200	0.21900
H	-5.60700	-1.89100	-0.74900
H	-5.54200	2.23900	-0.64200
H	-1.16000	-5.68300	0.64400
H	-4.74900	-3.58000	0.11800
H	4.47400	-3.87000	0.17200
H	0.76300	-5.74800	-0.14400
H	5.63200	1.89500	0.82000
H	5.51200	-2.22900	0.79500
C	-3.35500	6.27900	0.08700
C	-2.83400	7.39600	-0.57900
C	-4.52100	6.42100	0.84900
C	-3.44500	8.66200	-0.48600
H	-1.94600	7.27200	-1.18400
C	-5.18900	7.65700	0.95000
H	-4.90300	5.55900	1.37800
C	-4.63000	8.77100	0.28000
H	-5.11700	9.72400	0.35500
C	3.85900	5.93900	-0.47400
C	4.98600	5.92200	-1.30600
C	3.48600	7.13900	0.14500
C	5.76600	7.07600	-1.51500
H	5.25000	4.99800	-1.80200
C	4.21000	8.33000	-0.05800
H	2.62400	7.13800	0.79800
C	5.35600	8.27600	-0.88600
H	5.92900	9.17000	-1.04300
C	7.11300	-0.21100	1.05200
C	7.62900	-1.02900	2.06700
C	7.98800	0.56900	0.28200
C	9.01500	-1.09000	2.32300
H	6.92800	-1.60200	2.65500
C	9.38000	0.55100	0.51100
H	7.56100	1.17500	-0.50200
C	9.86800	-0.29200	1.53200
H	10.93200	-0.32600	1.71400
C	3.35600	-6.20300	-0.08200
C	2.88600	-7.29700	0.65500
C	4.44900	-6.37600	-0.94100
C	3.47300	-8.57200	0.53900
H	2.05500	-7.14700	1.33000
C	5.08900	-7.62300	-1.07500
H	4.79000	-5.52800	-1.52000
C	4.58200	-8.71400	-0.32800
H	5.05000	-9.67500	-0.42300
C	-3.79700	-5.97500	0.60100

C	-4.92700	-5.97600	1.42800
C	-3.39200	-7.17200	-0.00500
C	-5.67700	-7.14800	1.64800
H	-5.21600	-5.05300	1.91100
C	-4.08700	-8.37700	0.20700
H	-2.52900	-7.15500	-0.65700
C	-5.23600	-8.34400	1.03300
H	-5.78700	-9.25000	1.19700
C	-7.13700	0.21400	-0.91500
C	-7.69200	1.08000	-1.86900
C	-7.98100	-0.62100	-0.16800
C	-9.08600	1.13700	-2.08200
H	-7.01600	1.69500	-2.44300
C	-9.37700	-0.61500	-0.36200
H	-7.52600	-1.26100	0.57200
C	-9.90600	0.27900	-1.31800
H	-10.97400	0.30600	-1.47000
H	-6.49100	7.74400	1.77900
H	-2.80400	9.86300	-1.21700
H	3.72800	9.62900	0.62700
H	7.01900	6.98600	-2.41600
H	2.88700	-9.74700	1.35400
H	6.30100	-7.75100	-2.02600
H	-3.57500	-9.67000	-0.46800
H	-6.93400	-7.08000	2.54500
H	9.62000	-1.98900	3.42400
H	10.37000	1.40500	-0.31200
H	-9.73400	2.09300	-3.10700
H	-10.33100	-1.53700	0.42900

Crystallographic Information

CCDC deposition number 2335088 contains the supplementary crystallographic data for this paper. ${ }^{13}$ These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Refinement Details. In each case, crystals were mounted on a glass fiber or MiTeGen loop using Paratone oil, then placed on the diffractometer under a constant nitrogen stream. Low temperature (175 K) X-ray data were obtained on a Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS based diffractometer (Mo I $\mu \mathrm{S}$ HB micro-focus sealed X-ray tube, $\mathrm{K} \alpha=0.71073 \AA$ or $\mathrm{Cu} \mathrm{I} \mu \mathrm{S} \mathrm{HB}$ micro-focused X-ray tube, $\mathrm{K} \alpha$ $=1.54178$). All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEXII software. ${ }^{14}$ Absorption corrections were applied using SADABS. ${ }^{15}$ Space groups were determined on the basis of systematic absences and intensity statistics and the structures were solved in the Olex 2 software interface ${ }^{16}$ by intrinsic phasing using XT (incorporated into SHELXTL) ${ }^{17}$ and refined by full-matrix least squares on F2. All non-hydrogen atoms were refined using anisotropic displacement parameters, except in some cases with heavily distorted solvent. Hydrogen atoms were placed in the idealized positions and refined using a riding model. The structure was refined (weighed least squares refinement on F2) to convergence. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Diamond 3 visualization software. ${ }^{18}$

Table S8. Crystal data and structure refinement for $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$.

CCDC Number ${ }^{6}$	2335088
Empirical formula	$\mathrm{C}_{116.94} \mathrm{H}_{128.94} \mathrm{Cl}_{8.84} \mathrm{~N}_{12}$
Formula weight	2015.80
Temperature/K	175.0
Crystal system	Triclinic
Space group	P-1
a/ /	14.3540(6)
b/Å	18.2341(6)
c/Å	23.2636(10)
$\alpha /{ }^{\circ}$	110.586(3)
$\beta /{ }^{\circ}$	101.322(3)
$\gamma /{ }^{\circ}$	93.081(3)
Volume/ \AA^{3}	5538.9(4)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.209
μ / mm^{-1}	2.448
Abs. Correction	Semi-empirical
Crystal size/mm ${ }^{3}$	$0.2 \times 0.2 \times 0.1$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54178)$
2Θ range $/{ }^{\circ}$	5.344 to 133.268
GOF	1.050
Diffractometer	PHOTON

${ }^{\mathrm{a}} \mathrm{R}_{1}=\Sigma| | \mathrm{F}_{0}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{0}\right| \cdot{ }^{\mathrm{b}} \mathrm{W} R_{2}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{0}{ }^{2}\right)^{2}\right]^{1 / 2}\right.$

Table S9. Comparison of select bond lengths between 2,9-bis(2,6-dimethoxyphenyl)-1,10phenanthroline (left) and $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathrm{tBu}}\right)_{\mathbf{6}}($ right, truncated structure $)$.

2,9-bis(2,6-
dimethoxyphenyl)-1,10-
Decamethylphenanthrene
HPC- $\mathbf{N}_{\mathbf{1 2}}\left(\mathrm{Ar}^{\mathrm{tBu}}\right)_{\mathbf{6}}$
bond lengths $(\AA)^{20}$

$$
\text { bond lengths }(\AA)
$$

phenanthroline bond
lengths $(\AA)^{19}$

C16-C26: 1.457
C16'-C26' 1.453
C3F-C1A: 1.480(2)

C12-C31: 1.508
N / A
C4A-C5A: 1.486(2)

C15-C14: 1.415
C15'-C14': 1.420
C3A-C2A: 1.412(4)
\qquad
C17-C27: 1.356
C17'-C27': 1.332
C6A-C6F: 1.408(4)
\qquad
C17-C15: 1.461
C17'-C15': 1.446
C6A-C2A: 1.427(3)
C15-C16: 1.425
C15'-C16': 1.393
C2A-C1A: 1.406(3)

Figure S22. A. Top-down view of $\mathbf{H P C}-\mathbf{N}_{12}\left(\mathbf{A r}^{\mathbf{t B u}}\right)_{6}$ unit cell and B. side-on view, each highlighting optimal π stacking requires each unit to be offset.

References

(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification. Organometallics 1996, 15(5), 1518-1520.
(2) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. A Highly Efficient Palladium/Copper Cocatalytic System for Direct Arylation of Heteroarenes: An Unexpected Effect of Cu (Xantphos)I. J. Am. Chem. Soc. 2010, 132 (11), 3674-3675.
(3) Low, C. H.; Rosenberg, J. N.; Lopez, M. A.; Agapie, T. Oxidative Coupling with Zr(IV) Supported by a Noninnocent Anthracene-Based Ligand: Application to the Catalytic Cotrimerization of Alkynes and Nitriles to Pyrimidines. J. Am. Chem. Soc. 2018, 140 (38), 11906-11910.
(4) Qiu, S.; Zhang, C.; Qiu, R.; Yin, G.; Huang, J. One-Pot Domino Synthesis of Diarylalkynes/1,4-Diaryl-1,3-Diynes by [9,9-Dimethyl-4,5-Bis(Diphenylphosphino)Xanthene] (Xantphos)Copper(I) Iodide-Palladium(II) Acetate-Catalyzed Double Sonogashira-Type Reaction. $A d v$. Synth. Catal. 2018, 360 (2), 313-321.
(5) Stolley, R. M.; Maczka, M. T.; Louie, J. Nickel-Catalyzed [2+2+2] Cycloaddition of Diynes and Cyanamides. European J. Org. Chem. 2011, 2011 (20-21), 3815-3824.
(6) Rickhaus, M.; Belanger, A. P.; Wegner, H. A.; Scott, L. T. An Oxidation Induced by Potassium Metal. Studies on the Anionic Cyclodehydrogenation of 1,1'-Binaphthyl to Perylene. J. Org. Chem. 2010, 75 (21), 7358-7364.
(7) Draper, S. M.; Gregg, D. J.; Schofield, E. R.; Browne, W. R.; Duati, M.; Vos, J. G.; Passaniti, P. Complexed Nitrogen Heterosuperbenzene: The Coordinating Properties of a Remarkable Ligand. J. Am. Chem. Soc. 2004, 126 (28), 8694-8701.
(8) Herwig, P. T.; Enkelmann, V.; Schmelz, O.; Müllen, K. Synthesis and Structural Characterization of Hexa-Tert-Butyl- Hexa-Peri-Hexabenzocoronene, Its Radical Cation Salt and Its Tricarbonylchromium Complex. Chem. - A Eur. J. 2000, 6(10), 1834-1839.
(9) Haines, P.; Reger, D.; Träg, J.; Strauss, V.; Lungerich, D.; Zahn, D.; Jux, N.; Guldi, D. M. On the Photophysics of Nanographenes - Investigation of Functionalized Hexa-PeriHexabenzocoronenes as Model Systems. Nanoscale 2021, 13 (2), 801-809.
(10) Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2 (1), 73-78.
(11) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98 (45), 11623-11627.
(12) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72 (1), 650-654.
(13) Schäfer, J.; Holzapfel, M.; Mladenova, B.; Kattnig, D.; Krummenacher, I.; Braunschweig, H.; Grampp, G.; Lambert, C. Hole Transfer Processes in Meta- and Para-Conjugated Mixed Valence Compounds: Unforeseen Effects of Bridge Substituents and Solvent Dynamics. J. Am. Chem. Soc. 2017, 139 (17), 6200-6209.
(14) APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-Ray Systems, Madison, WI, June 2006.
(15) Sheldrick, G. M. SADABS (Version 2008/1): Program for Absorption Correction for Data from Area Detector Frames.; University of Göttingen: 2008, 2008.
(16) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. No. J. Appl. Crystallogr. 2009, 42, 339-341.
(17) Sheldrick, G. M. No Title. Acta Crystallogr. Sect. A 2008, 64, 112-122.
(18) Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
(19) Bolte, M. CCDC 2001096. CSD Commun. 2020.
(20) Ermer, O.; Neudörfl, J. Comparative Supramolecular Chemistry of Coronene and Hexahelicene: Helix Alignment in Crystalline Complexes with Trimesic Acid (=Benzene-1,3,5Tricarboxylic Acid) and π-Acceptor Compounds. Helv. Chim. Acta 2001, 84(6), 1268-1313.

