Supporting Information

Vapochromic Separation of Toluene and Pyridine Azeotropes by Adaptive

Macrocycle Co-Crystals

Bin Li,* Yun Wang, Yuan Wang, Yue Liu, Lu Wang, Zhi-Yuan Zhang and Chunju Li.*

Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

Corresponding author. E-mail: bli@tjnu.edu.cn; cjli@shu.edu.cn

Contents

1. Materials and methods	S2
2. Characteristics of Dioxane@P5-PDI co-crystals	S3
3. Characterization of P5-PDI α materials	S7
4. Single-component solid-vapor sorption experiments	S9
5. Crystal engineering of Py@P5-PDI Co-crystals	S14
6. Two-component solid-vapor sorption experiments	S16
7. References	S18

1. Materials and methods

Toluene and pyridine were purchased from Adamas-beta Chemical Company without further purification. Per-ethylated pillar[5]arene (P5) and N,N'-bis(*n*-butyl)pyromellitic diimide (PDI) were prepared according to literature procedures.^[S1,S2] ¹H NMR spectra were recorded using a Bruker Avance 400 MHz spectrometer. Single crystal X-ray diffraction data of Dioxane@P5-PDI was collected on a Bruker D8-Venture detector using Mo-K α radiation ($\lambda = 0.71073$ Å), and Py@P5-PDI was collected on a Bruker APEX-II CCD detector using Ga-K α radiation ($\lambda = 1.34139$ Å). The crystal structure was solved and refined against all F^2 values using the SHELX and Olex 2 suite of programs.^[S3,S4] Diffuse reflectance spectra were recorded using a TA Instrument TA-Q500 and the samples were heated under nitrogen gas at a rate of 10 °C /min. Powder X-ray diffraction (PXRD) data were measured with a powder X-ray diffractometer (D/max 2200vpc, Rigaku, Japan) using Cu K α radiation ($\lambda = 1.5046$ Å) with a range 5–40 °C. Head Space Gas Chromatographic (HS-GC) measurement was carried out using an Agilent 7890B instrument configured with an FID detector.

Sample preparation of P5-PDI α . P5 (3.0 g) was first of all mixed with PDI (0.75 g) in dioxane (30 mL) and dissolved by ultrasonic treatment. The solution was filtered with a 0.22µm syringe filter. Then slow evaporation of the solvent within 5 days afforded orange cocrystals of Dioxane@P5-PDI. The resulting co-crystals were further activated under vacuum at 75 °C for 12 h to obtain solvent-free crystalline materials of P5-PDI α .

Co-crystal growth of Py@P5-PDI. Co-crystals of Py@P5-PDI were grown by slow evaporation of a pyridine solution (1 mL) of P5 (20 mg) and PDI (6.0 mg) at room temperature. After a week, yellow co-crystals suitable for X-ray structural determination were obtained.

Vaporhromic experiments. An open 2 mL vial containing 10 mg of P5-PDI α was placed in a sealed 20 mL vial containing 1 mL of Py or Tol or Py/Tol mixture (ν/ν 50:50). P5-PDI α materials were exposed under saturated vapor pressure in the closed vessel at room temperature. Obvious naked-eye color changes could be observed over the time.

2. Characteristics of Dioxane@P5-PDI co-crystals

Figure S1. Photographs of the crystal growth of Dioxane@P5-PDI by slow evaporation of a solution of P5 and PDI in dioxane. Scale bar: 20 μm.

Figure S2. Diffuse reflectance spectra of individual P5 and PDI, and Dioxane@P5-PDI cocrystals. An obvious absorption at 475 nm was observed in Dioxane@P5-PDI, idicating the formation of CT complex between P5 and PDI.

Formula	Dioxane@P5-PDI
Crystallization solvent	Dioxane
Formula	$C_{81}H_{106}N_2O_{18}\\$
Formula weight	1395.67
Temperature / K	100
Crystal system	Monoclinic
Space group	$P2_{1}/c$
a / Å	12.3241(18)
b / Å	33.684(6)
c / Å	20.229(3)
α / °	90
β/°	96.013(4)
γ / °	90
Volume / Å ³	8351(2)
Ζ	4
$\rho_{calc} g/cm^3$	1.11
μ / mm^{-1}	0.078
Crystal size / mm ³	$0.14 \times 0.12 \times 0.09$
Radiation	Mo-Ka ($\lambda = 0.71073$ Å)
F(000)	3000.0
2Θ range for data collection $/^{o}$	3.898 to 55.022
Index ranges	$-14 \le h \le 15, -43 \le k \le 43, -26 \le l \le 26$
Reflections collected	105718
R _{int}	0.0911
Goodness-of-fit on F ²	1.013
Final R_1 indexes $[I \ge 2\sigma(I)]$	0.0616
Final R1 indexes [all data]	0.1246
Final wR(F_2) indexes [all data]	0.1750
Largest diff. peak/hole / eÅ ⁻³	0.30/-0.34
CCDC number	2340989

 Table S1. Crystal data and structure refinement for Dioxane@P5-PDI.

Figure S3. ORTEP drawing of Dioxane@P5-PDI with one P5, one PDI and two dioxane in the asymmetric unit from plane view (a) and side-on view (b). The thermal ellipsoids are displayed at a 30% probability. Hydrogen atoms have been omitted for clarity.

Figure S4. (a) The centroid–centroid distances [3.51 and 3.53 Å] and the dihedral angles [1.94° and 2.80°] of face-to-face $\pi \cdots \pi$ interactions between adjacent P5 and PDI in the crystal structure of Dioxane@P5-PDI. (b) The C–H···O interactions [2.59–2.87 Å] between P5 and PDI.

Figure S5. The packing modes of Dioxane@P5-PDI along the crystallographic *a*, *b*, and *c*-axis, respectively.

Figure S6. (a) The C–H•••O interactions [2.42–2.89 Å] between the oxygens of dioxane and hydrogens of methyl on P5 in Dioxane@P5-PDI. (b) The C–H•••O interactions [2.78–2.90 Å] between the hydrogens of dioxane and the oxygens of PDI in Dioxane@P5-PDI. (c) The C–H•••O interactions [2.48–2.85 Å] between the oxygens of dioxane and the hydrogens of PDI.

3. Characterization of P5-PDIa materials

Figure S7. ¹H NMR spectrum (400 MHz, 298K, CDCl₃) of P5-PDI α , showing a 1:1 stoichiometric ratio of P5 and PDI without any dioxane peaks.

Figure S8. TGA curve of P5-PDI α recorded under a nitrogen atmosphere. Almost no weight loss occurs below 200 °C, supporting its high stability and the complete removal of solvents through activation.

Figure S9. N₂ adsorption/desorption isotherm of P5-PDIα.

Figure S10. Color changes of P5-PDI α after adsorption of dioxane and Dioxane@P5-PDI after desorption of dioxane.

Figure S11. ¹H NMR spectrum (400MHz, 298K, CDCl₃) of P5-PDIα after adsorption of dioxane.

4. Single-component solid-vapor sorption experiments

For single-component Py or Tol adsorption experiment, an open 3 mL vial containing 5.0 mg of P5-PDIα adsorbent was placed in a sealed 20 mL vial containing 1 mL of Py or Tol. Uptake amount in the P5-PDIα crystals was monitored over time by ¹H NMR spectra by completely dissolving the crystals in CDCl₃. Desorption experiments after uptake saturation were carried out by TGA analysis. The purity of Py was measured by GC. Before measurements, the crystals were heated at 30 °C to remove the surface-physically adsorbed vapor molecules.

Figure S12. Time-dependent solid–vapor sorption plots of P5-PDI α for single-component Py vapor.

Figure S13. Time-dependent solid–vapor sorption plots of P5-PDI α for single-component Tol vapor. Absolutely no Tol was adsorbed.

Figure S14. Time-dependent ¹H NMR spectra (400 MHz, 298K, CDCl₃) of P5-PDI α after uptake of Py vapor. The relative uptake of Py by P5-PDI α is plotted in Figure S12.

Figure S15. Time-dependent ¹H NMR spectra (400 MHz, 298K, CDCl₃) of P5-PDI α after uptake of Tol vapor. The relative uptake of Tol by P5-PDI α is plotted in Figure S13. Absolutely no Tol was adsorbed.

Figure S16. ¹H NMR spectrum (400MHz, 298K, CDCl₃) of P5-PDI α after adsorption of Py for 5 h.

Figure S17. ¹H NMR spectrum (400MHz, 298K, CDCl₃) of P5-PDI α after adsorption of Tol for 5 h. No Tol peaks were found.

Figure S18. TGA profile of P5-PDI α after uptake of Py. About two Py molecules per P5-PDI were lost at 200 °C.

Figure S19. TGA profile of P5-PDI α after uptake of Tol. Almost no weight loss occurs below 200 °C, indicating no Tol is adsorbed.

Figure S20. PXRD patterns of P5-PDIa before and after capture of Py.

Figure S21. PXRD patterns of P5-PDI α before and after capture of Tol. No structural transformation was observed.

5. Crystal engineering of Py@P5-PDI co-crystals

Formula	Py@P5-PDI
Crystallization solvent	Pyridine
Formula	$C_{93}H_{110}N_6O_{14}$
Formula weight	1535.86
Temperature / K	193.00
Crystal system	Triclinic
Space group	<i>P</i> -1
a / Å	12.0800(5)
b / Å	12.4509(5)
c / Å	29.1324(11)
α / °	94.272(2)
β/°	92.465(2)
γ / °	106.740(2)
Volume / Å ³	4174.8(3)
Z	2
$\rho_{calc} g/cm^3$	1.222
μ / mm^{-1}	0.419
Crystal size / mm ³	$0.12 \times 0.11 \times 0.08$
Radiation	Ga- $K\alpha$ ($\lambda = 1.34139$ Å)
F(000)	1476
2Θ range for data collection /°	6.476 to 105.956
Index ranges	-14<=h<=14, -14<=k<=14, -34<=l<=34
Reflections collected	54799
R _{int}	0.0482
Goodness-of-fit on F ²	1.179
Final R_1 indexes $[I \ge 2\sigma(I)]$	0.0871
Final R1 indexes [all data]	0.1358
Final wR(F_2) indexes [all data]	0.2856
Largest diff. peak/hole / eÅ ⁻³	0.77/-0.75
CCDC number	2340990

 Table S2. Crystal data and structure refinement for Py@P5-PDI.

Figure S22. ORTEP drawing of Py@P5-PDI with one P5, one PDI (with occupancy factor of 0.5) and four Py in the asymmetric unit from plane view (a) and side-on view (b). The thermal ellipsoids are displayed at a 30% probability. Hydrogen atoms have been omitted for clarity.

Figure S23 (a) C–H····O interactions [2.55 and 2.50 Å] between P5 and Py contained in P5 cavity. (b) C–H····N interactions [2.97 and 3.00 Å] between P5 and outside Py in the crystal struture of Py@P5-PDI. The PDI molecules are omitted for clarity.

6. Two-component solid-vapor sorption experiments

Figure S24. Relative Py and Tol uptake in P5-PDI α after saturation using GC.

Figure S25. PXRD patterns of P5-PDI: (I) Py@P5-PDI; (II) after release of Py upon heating. (III) P5-PDIα. The results showed the structure of Py@P5-PDI transform back to the original structure of P5-PDIα after removing Py upon heating.

Figure S26. ¹H NMR spectrum (400MHz, 298K, CDCl₃) of Py@P5-PDI after desorption of Py by heating. No Py peaks were found.

Figure S27. Relative Py and Tol uptake in P5-PDI α after adsorption of the Tol/Py mixtures (*v*:*v* = 98:2).

For the Tol purification experiment, an open 5.00 mL vial containing 50.00 mg of guest-free P5-PDI α adsorbent was placed in a sealed 20.00 mL vial containing 100 μ L of Tol and Py mixtures. The mixture ratios were approximately 98:2. The purity of Tol before and after adsorption were measured by GC.

7. References

(S1) T. Ogoshi, S. Kanai, S. Fujinami, T.-a. Yamagishi and Y. Nakamoto, *para*-Bridged symmetrical pillar[5]arenes: their lewis acid catalyzed synthesis and host–guest property. *J. Am. Chem. Soc.* **2008**, *130*, 5022.

(S2) S. De and S. Ramakrishnan, Macromolecules 2009, 42, 8599.

(S3) G. M. Sheldrick, Crystal structure refinement with SHELXL. *Acta Crystallogr. C.* 2015, 71, 3.

(S4) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *OLEX2:* a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339.