Supporting Information

Hierarchical CoSx/Ni(OH)² heterostructure as bifunctional

electrocatalyst for urea-assisted energy-efficient hydrogen

production

Bin Sang,^a Chaozhuang Xue,^a Songyun Guo,^b Xiaojun Wng,^b Shuixiang Xie,^b Changming Wang ^b and Rui-Qing Li,*^b

a School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China

b School of Textile and Clothing, Nantong University, Nantong 226019, China

Corresponding Author E-mail: liruiqing@ntu.edu.cn

Experimental

Chemicals and materials

Co(NO3)2⋅6H2O, NH4F, CH3CSNH2, Ni(NO3)2⋅6H2O and urea were provided from Sinopharm Chemical Reagent Co. Ltd. Nickel foam (NF) were provided from Taiyuan source of power company.

Sample synthesis

Preparation of CoS_x/NF

A piece of NF (3 × 2 cm) was treated in HCl aqueous solution followed by subsequent washing of water and ethanol. Firstly, 2 mmol Co(NO₃)₂, 10 mmol urea and 6 mmol NH₄F were added in water and pre-treated NF was added into above solution. Secondly, after heating at 120 °C for 6 h Co(OH)₂/NF was obtained. Thirdly, the Co(OH)₂/NF was added to CH₃CSNH₂ solution and maintained at 200 °C for 6 h to prepare CoS_x/NF. Preparation of CoS_x/Ni(OH)₂/NF

The CoS_x/NF was immersed mixed solution contained 0.5 mmol Ni(NO₃)₂ and 2 mmol urea, which was heated for 6 h at 120 °C. Thereafter, $CoS_x/Ni(OH)_2/NF$ was obtained with chilling to room temperature.

Materials characterization

The phase and microstructures were studied by X-ray diffraction (XRD, Bruker D8 diffractometer), scanning electron microscopy (SEM, S-4800) and transmission electron microscopy (TEM, FEI Talos F200X). Chemical valence states were analyzed *via* X-ray photo-electron spectrometer (XPS, Thermo ESCALAB 250).

Electrochemical measurements

Electrochemical tests were performed on biologic VMP3 electrochemical workstation with obtained catalysts as working electrode. Polarization curves were carried out and corresponding potentials were rectified. Electrochemical impedance spectroscopy (EIS) was measured at a frequency range from 100 kHz to 0.1 Hz.

Figures

Fig. S1 Schematic illustration for preparing CoS_x/Ni(OH)₂/NF.

Fig. S3 SEM image of of $Ni(OH)_2/NF$ (a), CoS_x/NF (b), $CoS_x/Ni(OH)_2/NF$ (c).

Fig. S4 Low and high-resolution TEM images of Ni(OH)₂/NF (a, c) and CoS_x/NF (b, d).

Fig. S5 XPS spectra of (a) Ni 2p, (b) Co 2p, (c) O 1s, and (d) S 2p for $CoS_x/Ni(OH)_2$.

Fig. S6 CV curves of $Ni(OH)_2/NF$ (a), CoS_x/NF (b), $CoS_x/Ni(OH)_2/NF$ (c).

Fig. S7 XRD pattern of CoSx/Ni(OH)2/NF after the HER stability.

Fig. S8 SEM image of CoS_x/Ni(OH)₂/NF after the HER stability.

Fig. S9 XPS spectra of (a) wide scan spectrum, (b) Ni 2p, (c) Co 2p, (d) O 1s, and (e) S 2p for CoS_x/Ni(OH)₂/NF after the HER stability.

Fig. **S10** XRD pattern of CoS_x/Ni(OH)₂/NF after the UOR stability.

Fig. S11 SEM image of CoS_x/Ni(OH)₂/NF after the UOR stability.

Fig. S12 XPS spectra of (a) wide scan spectrum, (b) Ni 2p, (c) Co 2p, (d) O 1s, and (e) S 2p for CoS_x/Ni(OH)₂/NF after the UOR stability.

Catalysts	Overpotential (mV) at 10 mA $cm-2$	Tafel slope (mV dec ⁻¹)	References
CoS _x /Ni(OH) ₂ /NF	148	99	This work
CoP/rGO	150	38	S ₁
Ni(OH) ₂ @Co ₃ O ₄ /NF	159	114	S ₂
Ni ₂ P@NF	202	120	S ₂
Ni ₃ S ₂ nanorod array foam	200	107	S ₃
$Ni3S2$ nanowires	199.2	106.1	S4
NCO NWs/NF	175	157.84	S ₅
$NF-MoS2/Ni3S2-thiourea$	187	93.41	S ₆
$NF-MoS2/Ni3S2-L-cysteine$	148	68.81	S ₆
$Co-W/CeO2$	166	110	S7
$Ni-S/CeO2$	170	118	S8
Ni ₃ FeN-NPs	158	42	S9

Table S1. Comparison of HER performance of CoS_x/Ni(OH)₂/NF with other reported catalysts.

Table S2. Comparison of UOR performance of CoS_x/Ni(OH)₂/NF in the 1.0 M KOH solution containing 0.5 M urea with other reported catalysts.

Catalysts	Voltage (V) at 10 mA cm ⁻²	References
CoS _x /Ni(OH) ₂ /NF	1.628	This work
$NiFe/Co(PO3)2@NF$	1.63	[S20]
ZIF-67DC/NiMoCo/CNT	1.64	$[521]$
Cu ₈ S ₅ /NSC	1.64	$[522]$
CNO@NSG	1.67	$[523]$
FeCoP/NF	1.67	$[524]$
FeNiOH/NF	1.67	$[S25]$
Mn-CoP/Co ₂ P	1.67	$[526]$
Co-Fe-B-P	1.68	$[527]$
CoP/rGO	1.7	[S1]
Hollow CoP@NC	1.72	$[528]$

Table S3. Comparison of water electrolysis performances of CoS_x/Ni(OH)₂/NF with recently reported catalysts.

Table S4. Comparison of urea electrolysis performances of Mn-Ni2P/NiFe LDH with recently reported catalysts.

References

1 L. Jiao, Y. X. Zhou, H. L. Jiang, *Chem. Sci.*, 2016, **7**, 1690.

2 F. H. Huang, J. Z. Wang, M. Wang, C. Zhang, Y. N. Xue, J. Liu, T. Xu, N. Cai, W. M. Chen, F. Q. Yu, *Colloid Surf. A-Physicochem. Eng. Asp.*, 2021, **623**, 126526.

3 Y. J. Qu, M. Y. Yang, J. W. Chai, Z. Tang, M. M. Shao, C. T. Kwok, M. Yang, Z. Y. Wang, D. Chua, S. J. Wang, Z. G. Lu, H. Pan, *ACS Appl. Mater. Interfaces.*, 2017, **9**, 5959.

4 J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. H. Dong, S. H. Liu, X. D. Zhuang, X. L. Feng, *Angew. Chem. Int. Edit.*, 2016, **55**, 6702.

5 W. J. Chu, Z. J. Shi, Y. D. Hou, D. N. Ma, X. Bai, Y. F. Gao, N. J. Yang, *ACS Appl. Mater. Interfaces.*, 2020, **12**, 2763. 6 X. L. Liu, P. Wang, Q. Q. Zhang, B. B. Huang, Z. Y. Wang, Y. Y. Liu, Z. K. Zheng, Y. Dai, X. Y. Qin, X. Y. Zhang, *Appl. Surf. Sci.*, 2018, **459**, 422.

7 M. Q. Sheng, W. P. Weng, Y. Wang, Q. Wu, S. Y. Hou, *J. Alloy. Compd.*, 2018, **743**, 682.

8 M. Q. Zhao, H. F. Dong, Z. H. Chen, Z. P. Ma, L. X. Wang, G. L. Wang, W. Yang, G. J. Shao, *Int. J. Hydrog. Energy.*, 2016, **41**, 20485.

9 X. D. Jia, Y. F. Zhao, G. B. Chen, L. Shang, R. Shi, X. F. Kang, G. L. N. Waterhouse, L. Z. Wu, C. H. Tung, T. R. Zhang, *Adv. Energy Mater.*, 2016, **6**, 1502585.

10 H. A. Bandal, H. Kim, *J. Colloid Interf. Sci.*, 2022, **627**, 1030.

11 K. Zhang, G. Zhang, J. H. Qu, H. J. Liu, *J. Mater. Chem. A.*, 2018, **6**, 10297.

12 X. Zhang, Y. Y. Liu, Q. Z. Xiong, G. Q. Liu, C. J. Zhao, G. Z. Wang, Y. X. Zhang, H. M. Zhang, H. J. Zhao, *Electrochim. Acta.*, 2017, **254**, 44.

13 Y. Jiang, S. S. Gao, J. L. Liu, G. C. Xu, Q. Jia, F. S. Chen, X. M. Song, *Nanoscale.*, 2020, **12**, 11573.

14 H. T. Wang, H. Y. Zou, Y. Y. Liu, Z. L. Liu, W. S. Sun, K. A. Lin, T. L. Li, S. J. Luo, *Sci. Rep.*, 2021, **11**, 21414.

15 Y. M. Chen, P. J. Sun, W. W. Xing, *J. Chem. Sci.*, 2019, **131**, 101.

16 Y. Q. Feng, X. Wang, J. F. Huang, P. P. Dong, J. Ji, J. Li, L. Y. Cao, L. L. Feng, P. Jin, C. R. Wang, *Chem. Eng. J.*, 2020, **390**, 124525.

17 H. Z. Xu, K. Ye, K. Zhu, J. L. Yin, J. Yan, G. L. Wang, D. X. Cao, *Inorg. Chem. Front.*, 2020, **7**, 2602.

18 M. X. He, C. Q. Feng, T. Liao, S. N. Hu, H. M. Wu, Z. Q. Sun, *ACS Appl. Mater. Inter.*, 2020, **12**, 2225.

19 X. Q. Du, C. R. Huang, X. S. Zhang, *Int. J. Hydrog. Energy.*, 2019, **44**, 19595.

20 F. Gu, Q. Zhang, X. H. Chen, T. Li, H. C. Fu, H. Q. Luo, N. B. Li, *Int. J. Hydrog. Energy.*, 2022, **47**, 28475.

21 C. Zhang, Z. Xu, Y. C. Yu, A. C. Long, X. L. Ge, Y. K. Song, Y. R. An, Y. Y. Gu, *Electrochim. Acta.*, 2022, **424**, 140613.

22 Y. L. Zhang, L. Chen, B. Yan, F. P. Zhang, Y. L. Shi, X. H. Guo, *Chem. Eng. J.*, 2023, **45**, 138497.

H. Q. Li, H. H. Fu, J. Yu, L. P. Wang, Y. L. Shi, L. Chen, *J. Alloy. Compd.*, 2022, **922**, 166254.

 L. H. Shen, S. H. Tang, L. M. Yu, Q. K. Huang, T. L. Zhou, S. Yang, H. L. Yu, H. X. Xiong, M. J. Xu, X. Zhong, L. Zhang, *J. Solid State Chem.*, 2022, **314**, 123434.

J. T. Ren, G. G. Yuan, C. C. Weng, L. Chen, Z. Y. Yuan, *Nanoscale.*, 2018, 10, 10620.

 F. Tang, Y. W. Zhao, Y. Ge, Y. G. Sun, Y. Zhang, X. L. Yang, A. M. Cao, J. H. Qiu, X. J. Lin, *J. Colloid Interface Sci.*, 2022, **628**, 524.

Z. X. Wu, D. Z. Nie, M. Song, T. T. Jiao, G. T. Fu, X. E. Liu, *Nanoscale.*, 2019, **11**, 7506.

 Y. Y. Xie, M. Q. Chen, M. K. Cai, J. Teng, H. F. Huang, Y. N. Fan, M. Barboiu, D. W. Wang, C. Y. Su, *Inorg. Chem.*, 2019, **58**, 14652.

C. Wang, H. L. Lu, Z. Y. Mao, C. L. Yan, G. Z. Shen, X. F. Wang, *Adv. Funct. Mater.*, 2020, **30**, 2000556.

 B. Xu, X. D. Yang, X. P. Liu, W. X. Song, Y. Q. Sun, Q. S. Liu, H. X. Yang, C. C. Li, *J. Power Sources*, 2020, **449**, 227585.

S. S. Zheng, Y. Zheng, H. G. Xue, H. Pang, *Chem. Eng. J.*, 2020, **395**, 125166.

J. X. Li, X. Q. Du, X. S. Zhang, Z. P. Wang, *Int. J. Hydrog. Energy.*, 2022, **47**, 35203.

S. Chen, J. J. Duan, A. Vasileff, S. Z. Qiao, *Angew. Chem. Int. Edit.*, 2016, **55**, 3804.

 Q. Zhang, F. M. D. Kazim, S. X. Ma, K. G. Qu, M. Li, Y. G. Wang, H. Hu, W. W. Cai, Z. H. Yang, *Appl. Catal. B-Environ.*, 2021, **280**, 119436.

C. L. Xiao, S. Li, X. Y. Zhang, D. R. MacFarlane, *J. Mater. Chem. A.*, 2017, **5**, 7825.

X. X. Wang, J. M. Wang, X. P. Sun, S. Wei, L. Cui, W. R. Yang, J. Q. Liu, *Nano Res.*, 2018, **11**, 988.

 Z. H. Yue, S. Y. Yao, Y. Z. Li, W. X. Zhu, W. T. Zhang, R. Wang, J. Wang, L. J. Huang, D. Y. Zhao, J. L. Wang, *Electrochim. Acta.*, 2018, **268**, 211.