Supporting Information

A high-performance chiral ¹⁹F-labeled probe with an increased structural twisting

Chenyang Wang,^{1,2} Guangxing Gu,² Wei Zhang,² Jian Wu,³ and Yanchuan Zhao^{1,2,3*}

¹The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China

²Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China

³Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China

*Correspondence: zhaoyanchuan@sioc.ac.cn.

Content

General Methods and MaterialsS3
Procedure for the Preparation of Ligand
Procedure for the Preparation of Probe-2S6
Multicomponent Detection via Probe-2
Evaluation of Enantiomeric Excess Values with Probe-2
Differentiation of Chiral Amines Using Probe-2
Evaluation of Enantiomeric Excess Values of Crude Reaction Product
Evaluation of Influence of the Presence of Ligand L1/L2 on Chiral Discrimination
of Nitriles
Comparison Between the Performance of Probe-2 and Probe-3 Both Labeled with
a ¹⁹ F AtomS24
DFT Calculation of Probe-1 and Probe-2S25
References
¹ H, ¹⁹ F, and ¹³ C{ ¹ H} NMR Spectra of All New Compounds

General Methods and Materials

Material: All reactions were carried out under nitrogen using standard Schlenk techniques unless otherwise noted. All solvents were of ACS reagent grade or better unless otherwise noted. **Probe-1** and **probe-3** were synthesized according to literature procedures.^{1,2} Silica gel (60 μ m) was purchased from SiliCycle Inc. All reagent-grade materials were purchased from commercial sources and used without further purification.

Infrared Spectroscopy: Infrared spectra were recorded on an HP5973 Fourier Transform Infrared Spectrometer (FT-IR).

Mass Spectrometry: High-resolution mass spectra (HRMS) were obtained at the SIOC Instrumentation Facility employing ESI or EI as the ionization technique.

NMR Spectroscopy: ¹H, ¹⁹F, and ¹³C{¹H} NMR spectra for products characterization were recorded by Agilent-400, Bruker Avance-400, or Bruker Avance-600 spectrometer, chemical shifts (δ) are reported in parts per million (ppm) and referenced with TMS or solvent residue for ¹H NMR and ¹³C{¹H} NMR, and CFCl₃ for ¹⁹F NMR. The solutions used for analysis were prepared by mixing the probe and analyte in CDCl₃. ¹⁹F NMR spectra were recorded on a Bruker Avance neo 600 NMR spectrometer (565 MHz for ¹⁹F nucleus) using a scan number of 64.

DFT Calculation: Structures of probe-1 and probe-2 were calculated using Spartan' 20,³ the ω B97X-D function and the 6-31G* & LANL2DZ>Kr basis set were used for structure optimization.

General procedure for NMR experiment:

Preparation of NMR Samples. For Figure 1, precise quantities of analytes were dissolved in deuterated chloroform (CDCl₃) to prepare stock solutions at the desired concentration (51 mM for A_1 - A_7 ; 17 mM for A_8 - A_{19}). Additionally, stock solutions of **probe-1** (8.5 mM, corresponding to 42 mg in 10 mL of CDCl₃) and **probe-2** (17 mM, equivalent to 75 mg in 10 mL of CDCl₃) were prepared. For the analysis involving **probe-1**, a mixture consisting of 200 µL of the **probe-1** solution (containing 0.8 mg of **probe-1**), 100 µL of the analyte solution (containing 0.2–1.1 mg of the analyte), and 100 µL of pure CDCl₃ was prepared and transferred to an NMR tube for ¹⁹F NMR measurements. Similarly, for the experiments with **probe-2**, 200 µL of the **probe-2** solution (containing 1.5 mg of **probe-2**) and 200 µL of the analyte solution (containing between 0.5–1.0 mg of the analyte) were combined and placed into an NMR tube for ¹⁹F NMR spectroscopy.

For the studies represented in Figure 3, approximately 1.5 mg of **probe-2** was mixed with the raw reaction mixture in CDCl₃ and then transferred into an NMR tube to conduct ¹H-decoupled ¹⁹F NMR measurements.

NMR Measurements. For Figure 1, ¹H-decoupled ¹⁹F NMR spectra were recorded on a Bruker Avance neo 600 NMR spectrometer (565 MHz for ¹⁹F nucleus) at 298 K, using a default relaxation delay (D1) of 1 s and a scan number of 64. For Figures S2, ¹H-decoupled ¹⁹F NMR spectra were recorded on a Bruker Avance neo 600 NMR spectrometer (565 MHz for ¹H-decoupled ¹⁹F nucleus)

at 298 K, using a default relaxation delay (D1) of 1 s and a scan number of 256. For Figure S3, S16, S19 and S20, ¹H-decoupled ¹⁹F NMR spectra were recorded on a Bruker Avance neo 600 NMR spectrometer (565 MHz for ¹H-decoupled ¹⁹F nucleus at 298 K, using a default relaxation delay (D1) of 1 s and a scan number of 32.

General Procedures for the Preparation of Fluorinated Ligands

a) amidation

Figure S1. Synthetic Route for ¹⁹F-labeled Cyclopalladium Probe-2

A solution of 8-Fluoro-2-quinolinecarboxylic acid (100 mg, 0.523 mmol, 1.0 equiv) in SOCl₂(2 mL) was heated to 80 °C for 2 hours, and then SOCl₂ was removed by vacuum pumping, resulting in the precipitated of a white solid in the reaction vessel. To dissolve the white solid, 20 ml toluene was added in the reaction flask, and after 5 minutes, (*R*)-Phenylethylamine (127 mg, 1.05 mmol, 2 equiv) was introduced into the solution. The reaction mixture was stirred at 120 °C for 4 hours. The organic layer was then concentrated under reduced pressure. The resulting residue was subjected to purification through silica gel column chromatography (EtOAc /hexane = 1/4) to give ligand **4** as a white solid (103 mg, yield: 69%). M.P.: 130 – 132 °C.

¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 8.5 Hz, 1H), 8.34 (q, *J* = 9.0, 7.3 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 1H), 7.54 (m, *J* = 7.9, 4.9 Hz, 1H), 7.48 – 7.40 (m, 3H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.31 – 7.23 (t, 1H), 5.37 (m, *J* = 7.2 Hz, 1H), 1.68 (d, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ –124.18 (dd, *J* = 10.7, 5.0 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 163.20, 158.07 (d, *J* = 258.9 Hz), 149.92, 143.25, 137.30 (d, *J* = 3.1 Hz), 136.86 (d, *J* = 12.4 Hz), 130.81 (d, *J* = 1.9 Hz), 128.72, 127.81 (d, *J* = 8.1 Hz), 127.36, 126.26, 123.39 (d, *J* = 4.8 Hz), 119.94, 114.12 (d, *J* = 18.6 Hz), 49.03, 22.15. IR (KBr): 3387, 3325, 3087, 3061, 3028, 2958, 2926, 2853, 1935, 1753, 1676, 1626, 1602, 1570, 1530, 1498, 1470, 1448, 1428, 1376, 1327, 1314, 1292, 1239, 1264, 1207, 1190, 1160, 1131, 1111, 1078, 1061, 1045, 1020, 993, 970, 927, 912, 893, 882, 860, 841, 816, 772, 740, 716, 698, 602, 590, 569, 558, 529, 500, 479 cm⁻¹. HRMS (ESI): C₁₈H₁₆FN₂O⁺ [M+H]⁺ calc. 295.12412, found: 295.12363.

Procedures for the Preparation of probe-2

Ligand 4 (100 mg, 0.34 mmol, 1.0 equiv) was added to a solution of $Pd(OAc)_2$ (84 mg, 0.37 mmol, 1.1 equiv) in acetonitrile (15 mL). The resulting mixture was stirred at 80 °C for 4 h, and filtered through a 0.22 µm syringe filter. The filtrate was concentrated to give the crude product which was transferred to a filter funnel and washed extensively with water and hexane. The yellow powder was then dried under vacuum to give **probe-2** as a yellow solid (140 mg, yield: 94%). M.P.: 180 – 182 °C.

¹⁹F NMR (376 MHz, CDCl₃) δ –117.93 (dd, J = 11.5, 4.5 Hz). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 2H), 7.67 (d, J = 8.2 Hz, 1H), 7.52 (td, J = 8.0, 4.4 Hz, 1H), 7.47 – 7.37 (m, 1H), 7.05 (t, J = 8.1 Hz, 2H), 6.98 – 6.83 (m, 2H), 5.30 – 5.22 (m, 1H), 2.39 (s, 3H), 1.58 (d, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.69, 161.63, 159.93, 156.08 (d, J = 258.6 Hz), 141.70, 139.20 (d, J = 2.9 Hz), 135.93 (d, J = 11.4 Hz), 133.11, 131.70, 127.06 (d, J = 7.8 Hz), 125.01, 124.43, 124.35 (d, J = 4.7 Hz), 122.53 (d, J = 15.4 Hz), 117.21, 115.16 (d, J = 19.9 Hz), 63.15, 23.45, 3.29. IR (KBr): 3048, 2962, 2922, 2855, 1732, 1689, 1616, 1556, 1507, 1456, 1433, 1389, 1373, 1308, 1253, 1199, 1167, 1123, 1084, 1053, 1023, 946, 919, 888, 854, 813, 748, 726, 660, 642, 626, 572, 244, 482, 447, 426, 403 cm⁻¹. HRMS (ESI): C₂₀H₁₇FN₃OPd⁺ [M+H]⁺ calc. 440.0385, found: 440.0393.

Multicomponent Detection via probe-2

Figure S2. ¹H-decoupled ¹⁹F NMR spectra of mixtures of **probe-2** (ca. 3.5 mg), and 8 pairs of enantiomers (each ca. 0.8–4.5 mg) in CDCl₃. ¹H-decoupled ¹⁹F NMR spectra were recorded on a Bruker Avance neo 600 NMR spectrometer (565 MHz for ¹H-decoupled ¹⁹F nucleus) using a scan number of 256.

Evaluation of Enantiomeric Excess Values with Probe-2

a) ¹⁹F NMR spectra for measurement of enantiocomposition

Figure S3. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7). ¹H-decoupled ¹⁹F NMR spectrum of a mixture of **probe-2** (ca. 1.5 mg) and A_7 (ca. 2.4 mg) in CDCl₃. ¹⁹F NMR spectra were recorded on a Bruker AVANCE NEO 600 NMR spectrometer (565 MHz for the ¹⁹F nucleus) using a scan number of 64.

Figure S4. A plot depicting the linear relationship between measured ee using probe-2 versus the actual ee. Measurements were taken in CDCl₃ using a mixture of probe-2 (ca. 1.5 mg) and A_7 (ca. 1.0 mg).

b) HPLC Traces corresponding to the samples described in Figure S2

Figure S5. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.15 min (minor) and 7.97 min (major), and peak areas of *S* and *R* enantiomers are 49.75 % and 50.25 % respectively. The *ee* value measured by HPLC is -0.5 %.

Figure S6. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.18 min (minor) and 7.97 min (major), and peak areas of *R* and *S* enantiomers are 45.44 % and 54.56 % respectively. The *ee* value measured by HPLC is 9.1 %.

Figure S7 Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A₇) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.21 min (minor) and 8.01 min (major), and peak areas of *R* and *S* enantiomers are 43.31 % and 56.69 % respectively. The *ee* value measured by HPLC is 13.4 %.

Figure S8. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.21 min (minor) and 8.01 min (major), and peak areas of *R* and *S* enantiomers are 36.93 % and 63.07 % respectively. The *ee* value measured by HPLC is 26.1 %.

Figure S9. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.21 min (minor) and 8.01 min (major), and peak areas of *R* and *S* enantiomers are 32.48 % and 67.52 % respectively. The *ee* value measured by HPLC is 35.0 %.

Figure S10. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.19 min (minor) and 7.96 min (major), and peak areas of *R* and *S* enantiomers are 25.26 % and 74.74 % respectively. The *ee* value measured by HPLC is 49.0 %.

Figure S11. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.20 min (minor) and 7.96 min (major), and peak areas of *R* and *S* enantiomers are 23.29 % and 76.71 % respectively. The *ee* value measured by HPLC is 53.4 %.

NO.	Ret. Time	Peak Name	пеідпі	Area	Rel.Area	Amount	туре
	min		mAU	mAU*min	%		
1	7.21	n.a.	218.361	39.806	16.96	n.a.	BM *
2	7.96	n.a.	815.846	194.966	83.04	n.a.	MB*
Total:			1034.208	234.772	100.00	0.000	

Figure S12. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.21 min (minor) and 7.96 min (major), and peak areas of *R* and *S* enantiomers are 16.96 % and 83.04 % respectively. The *ee* value measured by HPLC is 66.1 %.

Figure S13. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.22 min (minor) and 7.95 min (major), and peak areas of *R* and *S* enantiomers are 12.01 % and 87.99 % respectively. The *ee* value measured by HPLC is 76.0 %.

Figure S14. Evaluation of the *ee* values of enantioenriched 1,2,3,4-tetrahydronaphthalene-1carbonitrile (A_7) via HPLC. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *R* and *S* enantiomers are 7.22 min (minor) and 7.97 min (major), and peak areas of *R* and *S* enantiomers are 7.39 % and 92.61 % respectively. The *ee* value measured by HPLC is 85.2 %.

Differentiation of Chiral Amines Using Probe-2

Figure S15. Detection of racemic amine using **probe-2** (a-f). ¹H-decoupled ¹⁹F NMR spectra of mixtures of **probe-2** (1.5 mg), various racemic analytes and enantiopure (0.3–0.6 mg) in CDCl₃; The red chromatogram represents the racemic analyte, the green chromatogram represents the analyte in the single configuration. Spectra were recorded on a Bruker Avance-600 NMR spectrometer using a scan number of 64.

Evaluation of Enantiomeric Excess Values of Crude Reaction Product

Under a nitrogen atmosphere, an oven-dried 25 mL Schlenk tube was charged with Cu(acac)₂ (7.6 mg, 0.029 mmol, 10 mol%), chiral ligand L1/L2 (0.043 mmol, 15 mol%) and 1.0 mL of solvent (DMF was used in conditions using ligand L1, and acetone was used for conditions using ligand L2). After stirring at room temperature for 5 minutes, the 2-(4-isobutylphenyl)propanoic acid (60 mg, 0.29 mmol), PhI=O (128 mg, 0.58 mmol, 2.0 equiv), K₂HPO₄·3H₂O (76 mg, 0.44 mmol, 1.5 equiv), TMSCN (57 mg, 0.58 mmol, 2.0 equiv), and 4 mL of solvent were added and the resulting solution was stirred at 30 °C in oil bath for 15 h. Taking 0.5 mL of the reaction solution, extracted with EtOAc/H₂O, removing the solvent under vacuum, and then mixing it with 1.5 mg of the **probe-3** in 0.5 mL of CDCl₃. The solution was filtered through a syringe filter (0.22 μ m) before ¹⁹F NMR analysis. The spectra were recorded on a Bruker Avance-600 NMR neo spectrometer (32 scans). Enantiomeric excess values determined based on the integrations of the ¹⁹F NMR signals corresponding to the enantiomers.

Figure S16. Evaluation of the enantioselectivity of an asymmetric cyanation reaction using probe-2. (a) ¹H-decoupled ¹⁹F NMR spectrum of a mixture of **probe-2** (1.5 mg) and racemic A_{20} (ca. 1.0 mg) in CDCl₃. (b, c) ¹H-decoupled ¹⁹F NMR spectra of mixtures of **probe-2** (1.5 mg) and crude reaction products obtained under different conditions (conditions 1: ligand L1 was used with DMF serving as the solvent; conditions 2: ligand L2 was used with acetone serving as the solvent).

Figure S17. HPLC analysis of reaction mixture under the reaction conditions using ligand L1 with DMF serving as the solvent. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *S* and *R* enantiomers are 4.51 min (minor) and 4.84 min (major), and peak areas of *R* and *S* enantiomers are 92.47 % and 7.53 % respectively. The *ee* value measured by HPLC is 84.9 %.

No.	Ret.Time		Peak Name	Height	Area	Rel.Area	Amount	Туре
	min			mAU	mAU*min	%		
1	4.56	n.a.		66.517	7.607	9.25	n.a.	BMB
2	4.93	n.a.		544.610	74.633	90.75	n.a.	BMB
Total:				611.127	82.240	100.00	0.000	

Figure S18. HPLC analysis of reaction mixture under the reaction conditions using ligand L2 with acetone serving as the solvent. HPLC analysis of Samples with different ee values: Chiralpak OJ–H column, hexane/isopropanol = 95/5; 0.7 mL/min; detected at 214 nm. Retention time (T_R) for *S* and *R* enantiomers are 4.56 min (minor) and 4.93 min (major), and peak areas of *R* and *S* enantiomers are 90.75 % and 9.25 % respectively. The *ee* value measured by HPLC is 81.5 %.

Evaluation of Influence of the Presence of Ligand L1/L2 on Chiral Discrimination of Nitriles.

Figure S19. Evaluation of influence of the presence of ligand L1/L2 on chiral discrimination of nitriles. (a) ¹H-decoupled ¹⁹F NMR spectrum of a mixture of **probe-2** (1.5 mg) and racemic A_{20} (ca. 1.0 mg) in CDCl₃. (b,c) ¹H-decoupled ¹⁹F NMR spectra of mixtures of **probe-2** (1.5 mg), L1 or L2 (0.6 mg) in CDCl₃.

b OMe а С OMe A_3 A_2 A₁ R_S = 0.6 $R_{\rm S}=0$ $R_{\rm S}=0$ probe-3 -68.30 -68.34 -68.9 -69.0 -68.3 ppm ppm -68.1 ppm $R_{\rm S} = 4.1$ $R_{\rm S} = 4.6$ $R_{\rm S} = 3.2$ probe-2 pṗm -115.2 -115.3 ppm -116.6 -116.7 ppm -117.2 -117.3 f d е CN g CF₃ NC сN A_4 A₂₇ $R_{\rm S} = 0$ $R_{\rm S}$ = 0 $R_s = 0$ R_s = 0.9 -68.80 -68.85 ppm -68.9 -68.9 -69.0 ppm -69.20 ppm -68.8 ppm -69.15 R_S = 9.0 R_s = 4.8 R_S = 9.6 R_s = 6.8 -117.1 -117.2 ppm -117.0 -117.2 ppm -116.5 -116.6ppm -117.1 -117.3 ppm

Comparison Between the Performance of Probe-2 and Probe-3 Both Labeled with a ¹⁹F Atom.

Figure S20. (a-g) ¹⁹F{¹H} NMR spectra of mixtures containing ¹⁹F-labeled probes and various analytes dissolved in CDCl₃. ¹⁹F{¹H} NMR spectra associated with **probe-3** are presented in deep green and were obtained using **probe-3** (0.6 mg) and analytes (0.6–1.5 mg) in CDCl₃, while those corresponding to **probe-2** are presented in dark red and were obtained using **probe-2** (1.5 mg) and analytes (0.6–1.5 mg) in CDCl₃. All ¹⁹F NMR measurements were conducted using a Bruker Avance Neo 600 MHz (565 MHz for the ¹⁹F nucleus) NMR spectrometer, with each spectrum obtained from 32 scans.

Determination of the Degree of Twisting by DFT Calculations

Figure S21. Optimized structures of probe-2 or probe-1 through DFT calculation.

probe-2			
Pd	0.23803	-0.49931	0.27668
0	-1.77288	2.32063	2.41519
Ν	-0.44031	0.54737	1.80029
Ν	-0.36529	1.48481	-0.73806
Ν	0.81420	-1.74027	-1.27780
Н	1.12143	-3.56412	0.51900
Н	1.24320	-5.10589	2.43363
Н	0.61481	-4.32607	4.70710
Н	-2.65553	3.56111	0.55363
Н	-2.79707	4.30598	-1.85622
Н	-0.12652	-1.98841	5.04574
Н	-1.34193	0.04257	3.61430
Н	1.62660	0.77694	3.54480
Н	0.70634	0.37309	5.01160
Н	0.28787	1.82916	4.08025
Н	1.37844	1.42437	-4.92535
Н	-0.28004	3.10644	-5.75715
Н	-1.90631	4.10956	-4.18140
Н	0.55647	-3.66449	-3.76450

Н	2.08189	-4.09216	-2.95118
Н	2.01397	-2.67210	-4.02452
F	1.52530	0.57146	-2.52597
С	0.43044	-1.88606	1.68454
С	0.84727	-3.20496	1.50601
С	0.91692	-4.08065	2.58856
С	0.56689	-3.64465	3.86244
С	0.15101	-2.33087	4.05107
С	0.07954	-1.44669	2.97560
С	-0.34968	-0.01169	3.14501
С	-1.15478	1.64944	1.58394
С	-1.16744	2.08618	0.12668
С	-2.04614	3.13276	-0.23310
С	-2.10605	3.53083	-1.53617
С	-1.23466	2.94482	-2.48966
С	-0.34840	1.93654	-2.02599
С	0.63228	0.79463	4.00321
С	0.59952	1.43509	-2.95606
С	0.62461	1.83547	-4.26292
С	-0.30490	2.79512	-4.71814
С	-1.20787	3.34780	-3.84811
С	1.09167	-2.42049	-2.16375
С	1.45714	-3.26332	-3.29322

probe-1

Pd	0.17206	-0.11406	-0.93792
0	3.14301	1.64095	1.26191
Ν	1.22111	0.57819	0.57650
Ν	2.11849	0.56419	-1.98812
Ν	-1.00830	-0.90534	-2.44162
Н	-2.85918	-1.04291	-0.70344
Н	-4.44343	-1.10537	1.16526
Н	4.65899	2.16818	-0.51084
Н	5.52696	2.16379	-2.89535
Н	0.80162	1.37738	2.45765
Н	1.37790	-1.60908	2.11549
Н	1.03631	-0.83589	3.67556
Н	2.49914	-0.38331	2.76795
Н	4.11231	1.07474	-4.65324
Н	-3.06240	-1.22185	-4.81393
Н	-2.83051	-2.85348	-4.13480
Н	-1.61172	-2.16524	-5.23861

Н	-4.96921	-0.69710	3.52617
Н	-4.28776	0.06458	5.77480
Н	-1.96158	0.87182	6.15800
Н	-0.33753	0.88884	4.33459
F	2.28747	-0.11469	-5.48986
F	0.53271	0.55037	-4.42167
F	1.41916	-1.37257	-3.96430
С	-1.19513	-0.31533	0.48747
С	-2.53115	-0.73873	0.28470
С	-3.42095	-0.77069	1.32583
С	-3.03418	-0.35687	2.62540
С	-1.69646	0.07834	2.84409
С	-0.77579	0.06825	1.75178
С	0.67861	0.42594	1.92337
С	2.41093	1.14595	0.40012
С	2.88003	1.14152	-1.04511
С	4.11111	1.72654	-1.33499
С	4.57286	1.71547	-2.63800
С	3.79148	1.11302	-3.62044
С	2.57973	0.55533	-3.24513
С	1.44886	-0.67088	2.67580
С	-1.60504	-1.36194	-3.31375
С	1.69833	-0.10040	-4.28415
С	-2.32345	-1.93552	-4.44151
С	-3.95263	-0.35633	3.70811
С	-3.57543	0.06753	4.95503
С	-2.25451	0.52120	5.17262
С	-1.34283	0.52544	4.14857

References

1. Gu, G.; Yue, Y.; Wang, C.; Zhang, W.; Wu, J.; Li, Y.; Zhao, Chiral Discrimination of Nitrile Compounds Using a ¹⁹F-Labeled Palladium Probe. *Org. Lett.* **2023**, *25*, 4819–4824.

2. Gu, G.; Zhao, C.; Zhang, W.; Weng, J.; Xu, Z.; Wu, J.; Xie, Y.; He, X.; Zhao, Y. Chiral Discrimination of Acyclic Secondary Amines by ¹⁹F NMR. *Anal. Chem.* **2024**, *96*, 730–736.

3. Spartan' 20, Wavefunction, Inc. Irvine, CA

¹H, ¹⁹F, and ¹³C{¹H} NMR Spectra of All New Compounds

0 -20 -40 -60 -80 -100 -120 -140 -160 -180

