Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

for

Synthesis of (1-silyl)allylboronates by KOtBu-catalyzed ring-opening *gem*-silylborylation of cyclopropenes

Ikuya Fujii,^{†,‡} Haruka Hirata,[†] Hirokazu Moniwa[†] and Ryo Shintani,^{*,†,‡}

[†]Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan [‡]Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan

I. General	S2
II. Synthesis of Substrates	83
III. Catalytic Reactions and Derivatization	86
IV. X-ray Crystal Structure	S14
V. Theoretical Calculations	S16
VI. ¹ H and ¹³ C NMR Spectra	S33
VII. References	\$73

I. General

All reactions were carried out with standard Schlenk techniques under nitrogen unless otherwise noted. NMR spectra were recorded on JEOL JNM-ECS400, JEOL JNM-ECZL400S, or Agilent Unity-Inova500 spectrometer. High resolution mass spectra were recorded on JEOL JMS700 spectrometer. X-ray crystallographic analysis was performed by RIGAKU XTaLAB P200 with graphitemonochromated Mo-K α (0.71075 Å) radiation. Preparative GPC was performed with JAI LaboACE LC-5060 equipped with JAIGEL-2HR columns using CHCl₃ as an eluent. Reversed-phase chromatography was performed with JAI LaboACE LC-5060 equipped with Mightysil RP-18GPII columns using MeCN as an eluent. Computations were performed using workstation at Research Center for Computational Science, National Institutes of Natural Sciences, Okazaki, Japan.

THF (Kanto Chemical; dehydrated), Et₂O (Wako Chemicals; dehydrated), CH₂Cl₂ (Kanto Chemical; dehydrated), toluene (Wako Chemicals), DMSO (Kanto Chemical; dehydrated), H₂O (Kishida Chemical), 4-bromoanisole (Wako Chemicals), 4-chloroacetophenone (TCI), CHBr₃ (Wako Chemicals), benzyltriethylammonium chloride (Wako Chemicals), (dimethylphenylsilyl)boronic acid pinacol ester (Wako Chemicals), 4-toluenesulfonic acid monohydrate (Wako Chemicals), TfOH (TCI), *n*BuLi (Kanto Chemical; 1.58 M solution in hexane), EtMgBr (Aldrich; 3.0 M solution in Et₂O), KOtBu (TCI or Nacalai Tesque), NaOtBu (TCI), LiOtBu (Aldrich), Ti(O*i*Pr)₄ (Wako Chemicals), NaOH (Wako Chemicals), and NaBO₃•4H₂O (Wako Chemicals) were used as received. **1a**,¹**1b**,¹**1d**,² **1e**,¹**1i**,³**1j**,³**1k**,³**1l**,⁴**2b**,⁵**2c**,⁵ and Cu(OtBu)(IPr)⁶ were synthesized following the literature procedures.

II. Synthesis of Substrates

Representative Procedures for Substrates: 3-(4-Chlorophenyl)-3-(4-methoxyphenyl)cyclopropene (1h)

*n*BuLi (7.80 mL, 12.5 mmol; 1.58 M solution in hexane) was added over 12 min to a solution of 4-bromoanisole (1.56 mL, 12.5 mmol) in THF (30 mL) at -78 °C, and the mixture was stirred for 30 min at -78 °C. 4-Chloroacetophenone (1.95 mL, 15.0 mmol) was then added to it, and the resulting mixture was stirred for 2 h at -78 °C and gradually warmed to room temperature over 1.5 h. The reaction was quenched with H₂O and this was extracted with CH₂Cl₂. The organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was added to it. The mixture was stirred for 2.5 h at 70 °C, and the reaction was quenched with H₂O and saturated NaClaq at room temperature. This was extracted with CH₂Cl₂, and the organic layer was washed with saturated NaClaq, dried over K₂CO₃, filtered and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/CH₂Cl₂ = 1/1 to afford 1-(4-chlorophenyl)-1-(4-methoxyphenyl)ethylene as a white solid (2.62 g, 10.7 mmol; 86 % yield).

¹H NMR (CDCl₃): δ 7.33-7.26 (m, 4H), 7.24 (d, ³*J*_{HH} = 8.7 Hz, 2H), 6.87 (d, ³*J*_{HH} = 8.7 Hz, 2H), 5.40 (d, ²*J*_{HH} = 0.9 Hz, 1H), 5.34 (d, ²*J*_{HH} = 0.9 Hz, 1H), 3.83 (s, 3H).

A solution of NaOH (17.1 g, 428 mmol) in H₂O (17 mL) was added dropwise over 1 h to a solution of 1-(4-chlorophenyl)-1-(4-methoxyphenyl)ethylene (2.62)10.7 g, mmol), benzyltriethylammonium chloride (424 mg, 1.86 mmol), and CHBr₃ (1.42 mL, 14.6 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred for 21 h at 40 °C, and the reaction was quenched with H₂O and saturated NH₄Claq at room temperature. This was extracted with CH₂Cl₂, and the organic layer was washed with saturated NaClaq, dried over MgSO4, passed through a pad of silica gel with EtOAc, and concentrated under vacuum. The residue was further passed through a pad of silica gel CH₂Cl₂ with EtOAc 1,1-dibromo-2-(4-chlorophenyl)-2-(4with and then to afford methoxyphenyl)cyclopropane as a brown solid (4.10 g, 9.85 mmol; 92% yield).

¹H NMR (CDCl₃): δ 7.41 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.38 (d, ³*J*_{HH} = 9.2 Hz, 2H), 7.28 (d, ³*J*_{HH} = 8.7 Hz, 2H), 6.84 (d, ³*J*_{HH} = 8.7 Hz, 2H), 3.77 (s, 3H), 2.44 (d, ²*J*_{HH} = 7.3 Hz, 1H), 2.40 (d, ²*J*_{HH} = 7.8 Hz, 1H).

Ti(O*i*Pr)₄ (146 μ L, 0.493 mmol) was added to a solution of 1,1-dibromo-2-(4-chlorophenyl)-2-(4-methoxyphenyl)cyclopropane (4.10 g, 9.85 mmol) in THF (15 mL) and Et₂O (22 mL) at room temperature. EtMgBr (3.93 mL, 11.8 mmol; 3.0 M solution in Et₂O) was added dropwise to it over 2 h and the mixture was stirred for 2 h at room temperature. The reaction was slowly quenched with H₂O and 1 M HClaq at 0 °C. This was extracted with Et₂O, and the organic layer was washed with saturated

NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/CH₂Cl₂ = 3/1 to afford 1-bromo-2-(4-chlorophenyl)-2-(4-methoxyphenyl)cyclopropane as a colorless oil (2.58 g, 7.63 mmol; 77 % yield, dr = 56/44).

¹H NMR (CDCl₃): δ 7.35-7.29 (m, 2.24H), 7.28 (d, ³*J*_{HH} = 8.7 Hz, 0.88H), 7.22 (d, ³*J*_{HH} = 8.7 Hz, 0.88H), 7.17-7.10 (m, 2H), 6.89 (d, ³*J*_{HH} = 8.7 Hz, 0.88H), 6.80 (d, ³*J*_{HH} = 8.7 Hz, 1.12H), 3.81 (s, 1.32H), 3.76 (s, 1.68H), 3.67-3.58 (m, 1H), 1.88-1.70 (m, 2H).

KOtBu (1.11 g, 9.92 mmol) was added portionwise to a solution of 1-bromo-2-(4-chlorophenyl)-2-(4-methoxyphenyl)cyclopropane (2.58 g, 7.63 mmol) in DMSO (18 mL) at room temperature. The mixture was stirred for 2 h at room temperature and the reaction was slowly quenched with H₂O at 15 °C. This was extracted with Et₂O/hexane, and the organic layer was washed with saturated NaClaq, dried over MgSO₄, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/CH₂Cl₂ = 2/1 to afford compound **1h** as a pale yellow solid (1.66 g, 6.47 mmol; 85% yield).

¹H NMR (CDCl₃): δ 7.47 (s, 2H), 7.23 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.09 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.07 (d, ³*J*_{HH} = 8.7 Hz, 2H), 6.83 (d, ³*J*_{HH} = 8.7 Hz, 2H), 3.80 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 158.0, 146.2, 138.7, 131.4, 129.5, 129.1, 128.2, 113.7, 113.6, 55.4, 30.9. HRMS (FAB) calcd for C₁₆H₁₃ClO (M⁺) 256.0649, found 256.0657.

Analytical Data for Other substrate:

3,3-Di(4-phenylphenyl)cyclopropene (1c)

¹H NMR (CDCl₃): δ 7.63-7.57 (m, 4H), 7.56 (s, 2H), 7.54 (d, ³*J*_{HH} = 8.2 Hz, 4H), 7.43 (t, ³*J*_{HH} = 7.5 Hz, 4H), 7.36-7.30 (m, 2H), 7.30 (d, ³*J*_{HH} = 8.7 Hz, 4H). ¹³C{¹H} NMR (CDCl₃): δ 146.2, 141.1, 138.8, 128.8, 128.6, 127.2, 127.1, 127.0, 113.3, 31.5. HRMS (FAB) calcd for C₂₇H₂₀ (M⁺) 344.1560, found 344.1562.

3,3-Di(3-methoxyphenyl)cyclopropene (1f)

¹H NMR (CDCl₃): δ 7.45 (s, 2H), 7.25-7.15 (m, 2H), 6.83-6.68 (m, 6H), 3.77 (s, 6H). ¹³C{¹H} NMR (CDCl₃): δ 159.6, 148.8, 129.2, 120.7, 114.0, 113.0, 111.2, 55.2, 31.9. HRMS (FAB) calcd for C₁₇H₁₆O₂ (M⁺) 252.1145, found 252.1144.

3,3-Di(2-naphthyl)cyclopropene (1g)

¹H NMR (CDCl₃): δ 7.87-7.81 (m, 2H), 7.79 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.78-7.72 (m, 2H), 7.68 (s, 2H), 7.66 (s, 2H), 7.49-7.41 (m, 4H), 7.39 (dd, ³*J*_{HH} = 8.7 Hz and ⁴*J*_{HH} = 1.8 Hz, 2H). ¹³C{¹H} NMR (CDCl₃): δ 144.7, 133.6, 132.1, 127.8, 127.7, 126.81, 126.79, 126.1, 125.5, 113.8, 32.4. HRMS (FAB) calcd for C₂₃H₁₆ (M⁺) 292.1247, found 292.1247.

III. Catalytic Reactions and Derivatization

General Procedure for Table 2.

KOtBu (3.4 mg, 30 μ mol) was dissolved in THF (0.5 mL) at 40 °C. Silylboronate **2a** (98.1 μ L, 0.360 mmol), cyclopropene **1** (0.300 mmol), and THF (1.0 mL) were added to it, and the resulting mixture was stirred for 20 h at 40 °C. This was passed through a pad of silica gel with EtOAc, and the solvent was removed under vacuum. The residue was chromatographed on silica gel and further purified by GPC with CHCl₃ to afford compound **3** (or **5**).

Compound 3aa. Hexane/EtOAc = 10/1 was used for silica gel chromatography. Pale yellow oil (92.3 mg, 0.216 mmol; 72% yield).

¹H NMR (CDCl₃): δ 7.46-7.40 (m, 2H), 7.35-7.07 (m, 11H), 6.93-6.87 (m, 2H), 6.22 (d, ³*J*_{HH} = 12.4 Hz, 1H), 2.10 (d, ³*J*_{HH} = 12.4 Hz, 1H), 1.20 (s, 6H), 1.17 (s, 6H), 0.34 (s, 3H), 0.32 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 143.7, 140.4, 138.5, 138.0, 134.1, 130.4, 129.1, 128.3, 128.0, 127.7, 127.2, 127.1, 126.5, 126.2, 83.1, 25.1, 24.9, 20.8, -2.5, -2.8. HRMS (FAB) calcd for C₂₉H₃₅BO₂Si (M⁺) 454.2494, found 454.2498.

Compound 3ba. Hexane/EtOAc = 30/1 was used for silica gel chromatography. White solid (84.8 mg, 0.175 mmol; 58% yield).

¹H NMR (CDCl₃): δ 7.46-7.41 (m, 2H), 7.34-7.26 (m, 3H), 7.07 (d, ³*J*_{HH} = 7.3 Hz, 2H), 7.00 (s, 4H), 6.80 (d, ³*J*_{HH} = 7.8 Hz, 2H), 6.15 (d, ³*J*_{HH} = 12.4 Hz, 1H), 2.35 (s, 3H), 2.29 (s, 3H), 2.08 (d, ³*J*_{HH} = 12.8 Hz, 1H), 1.18 (s, 6H), 1.15 (s, 6H), 0.33 (s, 3H), 0.31 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 141.0, 138.3, 138.2, 137.6, 135.8, 135.7, 134.1, 130.2, 129.01, 128.98, 128.7, 127.6, 127.0, 126.0, 83.1, 25.0, 24.9, 21.4, 21.2, 20.5, -2.5, -2.7. HRMS (FAB) calcd for C₃₁H₃₉BO₂Si (M⁺) 482.2807, found 482.2819.

Compound 3ca. Hexane/CH₂Cl₂ = 3/1 was used for silica gel chromatography. Yellow oil (109 mg, 0.179 mmol; 60% yield).

¹H NMR (CDCl₃): δ 7.67-7.62 (m, 2H), 7.59-7.54 (m, 2H), 7.52 (d, ³*J*_{HH} = 8.2 Hz, 2H), 7.49-7.38 (m, 8H), 7.38-7.26 (m, 5H), 7.21 (d, ³*J*_{HH} = 8.2 Hz, 2H), 6.99 (d, ³*J*_{HH} = 8.2 Hz, 2H), 6.33 (d, ³*J*_{HH} = 12.8 Hz, 1H), 2.20 (d, ³*J*_{HH} = 12.4 Hz, 1H), 1.22 (s, 6H), 1.19 (s, 6H), 0.39 (s, 3H), 0.35 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 142.6, 141.2, 141.1, 139.4, 139.2, 139.1, 138.0, 137.7, 134.1, 130.8, 129.1, 128.9, 128.8, 127.7, 127.5, 127.2, 127.1, 127.0, 126.8, 83.2, 25.1, 25.0, 21.1, -2.4, -2.8. HRMS (FAB) calcd for C₄₁H₄₃BO₂Si (M⁺) 606.3120, found 606.3130.

Compound 3da. Hexane/EtOAc = 30/1 was used for silica gel chromatography. White solid (104 mg, 0.213 mmol; 71% yield).

¹H NMR (CDCl₃): δ 7.44-7.37 (m, 2H), 7.36-7.26 (m, 3H), 7.00 (dd, ³*J*_{HH} = 8.7 Hz and ⁴*J*_{HF} = 5.5 Hz, 2H), 6.94 (t, ³*J* = 8.7 Hz, 2H), 6.88 (t, ³*J* = 8.7 Hz, 2H), 6.77 (dd, ³*J*_{HH} = 8.7 Hz and ⁴*J*_{HF} = 5.5 Hz, 2H), 6.13 (d, ³*J*_{HH} = 12.4 Hz, 1H), 2.02 (d, ³*J*_{HH} = 12.8 Hz, 1H), 1.21 (s, 6H), 1.19 (s, 6H), 0.36 (s, 3H), 0.32 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 161.8 (d, ¹*J*_{CF} = 245 Hz), 161.7 (d, ¹*J*_{CF} = 245 Hz), 139.7, 137.9, 136.5, 136.1, 134.1, 131.8 (d, ³*J*_{CF} = 7.7 Hz), 129.2, 128.5 (d, ³*J*_{CF} = 7.7 Hz), 127.7, 127.4, 115.3 (d, ²*J*_{CF} = 21.1 Hz), 114.9 (d, ²*J*_{CF} = 22.0 Hz), 83.3, 25.1, 25.0, 20.9, -2.4, -2.9. HRMS (FAB) calcd for C₂₉H₃₃BF₂O₂Si (M⁺) 490.2305, found 490.2322.

Compound 3ea. Hexane/EtOAc = 30/1 was used for silica gel chromatography. Yellow solid (70.5 mg, 0.135 mmol; 45% yield).

¹H NMR (CDCl₃): δ 7.43-7.36 (m, 2H), 7.36-7.26 (m, 3H), 7.22 (d, ³*J*_{HH} = 8.7 Hz, 2H), 7.15 (d, ³*J*_{HH} = 8.2 Hz, 2H), 6.96 (d, ³*J*_{HH} = 8.7 Hz, 2H), 6.72 (d, ³*J*_{HH} = 8.2 Hz, 2H), 6.20 (d, ³*J*_{HH} = 12.8 Hz, 1H), 2.02 (d, ³*J*_{HH} = 12.8 Hz, 1H), 1.21 (s, 6H), 1.19 (s, 6H), 0.37 (s, 3H), 0.32 (s, 3H). ¹³C {¹H} NMR (CDCl₃): δ 141.6, 138.4, 137.7, 136.3, 134.0, 132.5, 132.2, 131.6, 129.2, 128.6, 128.5, 128.3, 128.2, 127.7, 83.3, 25.1, 25.0, 21.3, -2.4, -3.0. HRMS (FAB) calcd for C₂₉H₃₃BCl₂O₂Si (M⁺) 522.1714, found 522.1721.

Compound 3fa. Hexane/EtOAc = 10/1 was used for silica gel chromatography. Colorless oil (100 mg, 0.195 mmol; 65% yield).

¹H NMR (CDCl₃): δ 7.49-7.42 (m, 2H), 7.36-7.26 (m, 3H), 7.19 (t, ³*J*_{HH} = 7.8 Hz, 1H), 7.12 (t, ³*J*_{HH} = 7.8 Hz, 1H), 6.78 (ddd, ³*J*_{HH} = 8.2 Hz and ⁴*J*_{HH} = 2.3 and 0.9 Hz, 1H), 6.75-6.68 (m, 2H), 6.66 (dd, ⁴*J*_{HH} = 2.3 and 1.8 Hz, 1H), 6.52 (dd, ³*J*_{HH} = 7.8 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 6.50 (dd, ⁴*J*_{HH} = 2.8 and 1.4 Hz, 1H), 6.23 (d, ³*J*_{HH} = 12.4 Hz, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 2.11 (d, ³*J*_{HH} = 12.4 Hz, 1H), 1.20 (s, 6H), 1.17 (s, 6H), 0.37 (s, 3H), 0.33 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 159.5, 159.4, 145.0, 141.7, 138.2, 138.1, 134.1, 129.3, 129.1, 128.9, 127.6, 122.9, 119.8, 115.5, 113.1, 112.6, 111.4, 83.1, 55.3, 55.2, 25.0, 20.9, -2.4, -2.7. HRMS (FAB) calcd for C₃₁H₃₉BO₄Si (M⁺) 514.2705, found 514.2711.

Compound 3ga. The reaction was conducted on a 2.00 mmol scale. Hexane/EtOAc = 30/1 was used

for silica gel chromatography. The solid thus obtained was washed with hexane and no GPC purification was performed. Pale yellow solid (758 mg, 1.37 mmol; 68% yield). The structure was confirmed by X-ray crystallographic analysis after recrystallization from CH₂Cl₂/MeOH.

¹H NMR (CDCl₃): δ 7.88-7.82 (m, 1H), 7.77 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.77-7.69 (m, 2H), 7.68 (d, ³*J*_{HH} = 8.3 Hz, 1H), 7.66-7.60 (m, 1H), 7.52-7.43 (m, 4H), 7.42-7.33 (m, 6H), 7.32-7.27 (m, 2H), 7.07 (dd, ³*J*_{HH} = 8.3 Hz and ⁴*J*_{HH} = 1.5 Hz, 1H), 6.45 (d, ³*J*_{HH} = 12.2 Hz, 1H), 2.20 (d, ³*J*_{HH} = 12.7 Hz, 1H), 1.24 (s, 6H), 1.21 (s, 6H), 0.41 (s, 3H), 0.34 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 141.0, 138.4, 138.1, 138.0, 134.2, 133.63, 133.56, 132.5, 132.4, 129.2, 129.0, 128.5, 128.2, 128.1, 127.9, 127.8, 127.7, 127.6, 127.5, 126.0, 125.9, 125.8, 125.7, 125.4, 83.2, 25.1, 25.0, 21.2, -2.4, -2.8. HRMS (FAB) calcd for C₃₇H₃₉BO₂Si (M⁺) 554.2807, found 554.2810.

Compound 3ha. Hexane/EtOAc = $20/1 \rightarrow 10/1$ was used for silica gel chromatography. Yellow oil (86.5 mg, 0.167 mmol; 56% yield, dr = 52/48).

¹H NMR (CDCl₃): δ 7.47-7.38 (m, 2H), 7.36-7.26 (m, 3H), 7.21 (d, ³*J*_{HH} = 8.7 Hz, 0.96H), 7.14 (d, ³*J*_{HH} = 8.2 Hz, 1.04H), 7.03-6.94 (m, 2H), 6.85-6.71 (m, 4H), 6.14 (d, ³*J*_{HH} = 12.4 Hz, 0.52H), 6.12 (d, ³*J*_{HH} = 12.4 Hz, 0.48H), 3.82 (s, 1.56H), 3.77 (s, 1.44H), 2.11 (d, ³*J*_{HH} = 12.4 Hz, 0.52H), 2.00 (d, ³*J*_{HH} = 12.4 Hz, 0.48H), 1.20 (s, 6.24H), 1.18 (s, 5.76H), 0.36 (s, 1.44H), 0.35 (s, 1.56H), 0.32 (s, 1.44H), 0.31 (s, 1.56H). ¹³C{¹H} NMR (CDCl₃): δ 158.4, 158.3, 142.4, 139.2, 138.0, 137.1, 136.8, 136.1, 134.1, 132.3, 132.2, 131.8, 131.7, 131.4, 129.1, 128.5, 128.4, 128.1, 128.0, 127.7, 127.6, 126.0, 113.8, 113.5, 83.2, 55.4, 55.3, 25.1, 25.0, 20.9, 20.6, -2.4, -2.5, -2.8, -3.0. HRMS (FAB) calcd for C₃₀H₃₆BClO₃Si (M⁺) 518.2210, found 518.2213.

Compound 3ia. Hexane/EtOAc = 50/1 was used for silica gel chromatography. Reversed phase chromatography was performed with MeCN instead of GPC purification. Colorless oil (38.7 mg, 89.1 μ mol; 30% yield, dr = 84/16). The stereochemistry was assigned by analogy with compound **3ja**.

¹H NMR (CDCl₃): δ 7.58-7.50 (m, 1.68H), 7.44-7.38 (m, 0.32H), 7.37-7.11 (m, 7.68H), 6.88-6.83 (m, 0.32H), 5.82 (d, ³*J*_{HH} = 11.9 Hz, 0.84H), 5.55 (d, ³*J*_{HH} = 12.4 Hz, 0.16H), 2.36-2.06 (m, 2.84H), 1.86 (d, ³*J*_{HH} = 11.9 Hz, 0.16H), 1.36-0.98 (m, 16H), 0.84 (t, ³*J*_{HH} = 6.9 Hz, 0.48H), 0.80 (t, ³*J*_{HH} = 7.1 Hz, 2.52H), 0.42 (s, 2.52H), 0.39 (s, 2.52H), 0.28 (s, 0.48H), 0.27 (s, 0.48H). ¹³C{¹H} NMR (CDCl₃; *E*-isomer): δ 144.2, 138.4, 136.9, 134.1, 129.1, 128.1, 127.6, 126.4, 125.9, 125.5, 83.1, 30.7, 29.2, 25.0, 23.0, 19.9, 14.1, -2.7, -2.8. HRMS (FAB) calcd for C₂₇H₃₉BO₂Si (M⁺) 434.2807, found 434.2822.

Compound 3ja. The reaction was conducted on a 2.00 mmol scale. Hexane/EtOAc = 30/1 was used for silica gel chromatography. Reversed phase chromatography was performed with MeCN instead of GPC purification. Colorless oil (321 mg, 0.740 mmol; 37% yield, *E* pure (E/Z = 74/26 before purification)). The stereochemistry of the major isomer was determined by the NOE experiment.

¹H NMR (CDCl₃; *E*-isomer): δ 7.56-7.50 (m, 2H), 7.37-7.28 (m, 3H), 7.28-7.22 (m, 4H), 7.20-7.12 (m, 1H), 5.85 (d, ³*J*_{HH} = 12.2 Hz, 1H), 2.15 (d, ³*J*_{HH} = 12.2 Hz, 1H), 2.11 (d, ³*J*_{HH} = 7.3 Hz, 2H), 1.55-1.42 (m, 1H), 1.18 (s, 6H), 1.15 (s, 6H), 0.78 (d, ³*J*_{HH} = 6.4 Hz, 3H), 0.72 (d, ³*J*_{HH} = 6.8 Hz, 3H), 0.39 (s, 3H), 0.35 (s, 3H). ¹³C{¹H} NMR (CDCl₃; *E*-isomer): δ 144.6, 138.5, 136.3, 134.1, 129.1, 128.1, 127.6, 126.71, 126.67, 125.9, 83.1, 38.1, 27.1, 25.0, 24.9, 23.2, 21.6, 20.1, -2.7, -2.8. HRMS (FAB) calcd for C₂₇H₃₉BO₂Si (M⁺) 434.2807, found 434.2798.

Compound 3ka. Hexane/EtOAc = $50/1 \rightarrow 30/1$ was used for silica gel chromatography. Reversed phase chromatography was performed with MeCN instead of GPC purification. Colorless oil (60.5 mg, 0.144 mmol; 48% yield, dr = 53/47). The stereochemistry was assigned by analogy with compound **3ja**.

¹H NMR (CDCl₃): δ 7.62-7.55 (m, 1.06H), 7.47-7.40 (m, 0.94H), 7.40-7.28 (m, 3H), 7.26-7.13 (m, 3H), 7.13-7.06 (m, 1.06H), 6.74 (d, ³*J*_{HH} = 6.8 Hz, 0.94H), 5.54 (d, ³*J*_{HH} = 11.9 Hz, 0.47H), 5.44 (d, ³*J*_{HH} = 12.4 Hz, 0.53H), 2.79 (sept, ³*J*_{HH} = 7.0 Hz, 0.53H), 2.52 (sept, ³*J*_{HH} = 6.8 Hz, 0.47H), 2.17 (d, ³*J*_{HH} = 11.9 Hz, 0.53H), 1.66 (d, ³*J*_{HH} = 12.4 Hz, 0.47H), 1.25-1.12 (m, 12H), 1.03 (d, ³*J*_{HH} = 6.9 Hz, 1.59H), 0.97 (d, ³*J*_{HH} = 6.8 Hz, 1.41H), 0.94 (d, ³*J*_{HH} = 6.9 Hz, 1.41H), 0.67 (d, ³*J*_{HH} = 6.9 Hz, 1.59H), 0.44 (s, 1.59H), 0.42 (s, 1.59H), 0.31 (s, 1.41H), 0.29 (s, 1.41H). ¹³C{¹H} NMR (CDCl₃): δ 144.5, 144.1, 143.4, 141.2, 138.6, 138.5, 134.2, 134.1, 129.5, 129.1, 129.0, 128.9, 127.8, 127.6, 127.5, 127.4, 125.9, 125.8, 125.1, 120.9, 83.1, 82.9, 36.5, 28.8, 25.0, 24.94, 24.92, 24.89, 22.7, 22.5, 22.1, 20.9, 18.41, 18.37, -2.6, -2.97, -2.99. HRMS (FAB) calcd for C₂₆H₃₇BO₂Si (M⁺) 420.2650, found 420.2656.

Compound 5la. Silica gel chromatography was not performed. Colorless oil (65.9 mg, 0.159 mmol; 53% yield). The stereochemistry was assigned based on the H–H coupling constant on the cyclopropane ring.

¹H NMR (acetone-*d*₆): δ 7.64-7.58 (m, 2H), 7.37-7.30 (m, 3H), 1.73 (ddd, ²*J*_{HH} = 13.7 Hz and ³*J*_{HH} = 10.3 and 4.9 Hz, 1H), 1.67-1.58 (m, 1H), 1.50 (td, *J*_{HH} = 12.4 Hz and ³*J*_{HH} = 3.4 Hz, 1H), 1.45-1.19 (m, 8H), 1.17 (s, 6H), 1.14 (s, 6H), 1.04-0.95 (m, 1H), 0.90 (t, ³*J*_{HH} = 7.3 Hz, 3H), 0.86 (t, ³*J*_{HH} = 7.3 Hz, 3H), 0.40 (s, 3H), 0.36 (s, 3H), 0.07 (d, ³*J*_{HH} = 11.2 Hz, 1H), 0.03 (d, ³*J*_{HH} = 11.2 Hz, 1H). ¹³C{¹H} NMR (CDCl₃): δ 141.9, 133.8, 128.4, 127.6, 82.9, 41.1, 33.6, 30.9, 30.1, 29.3, 25.3, 24.7, 23.5, 23.1, 20.0, 14.4, 14.3, 0.4, -0.6. Anal. Calcd for C₂₅H₄₃BO₂Si: C, 72.44; H, 10.46. Found: C, 72.67; H, 10.57.

General Procedure for Equation 1.

KOtBu (3.4 mg, 30 μ mol) was dissolved in THF (0.5 mL) at 60 °C. Silylboronate **2** (0.360 mmol), cyclopropene **1a** (57.7 mg, 0.300 mmol), and THF (1.0 mL) were added to it, and the resulting mixture was stirred for 20 h at 60 °C. This was passed through a pad of silica gel with EtOAc, and the solvent was removed under vacuum. The residue was chromatographed on silica gel and further purified by GPC with CHCl₃ to afford compound **3**.

Compound 3ab. Hexane/EtOAc = 30/1 was used for silica gel chromatography. White solid (113 mg, 0.259 mmol; 86% yield).

¹H NMR (CDCl₃): δ 7.37-7.30 (m, 2H), 7.27-7.11 (m, 8H), 6.29 (d, ³*J*_{HH} = 12.8 Hz, 1H), 1.98 (d, ³*J*_{HH} = 12.8 Hz, 1H), 1.26 (s, 6H), 1.25 (s, 6H), 0.87 (t, ³*J*_{HH} = 7.8 Hz, 9H), 0.64-0.52 (m, 6H). ¹³C{¹H} NMR (CDCl₃): δ 143.9, 140.6, 137.7, 130.6, 128.4, 128.3, 128.1, 127.2, 126.6, 126.1, 83.0, 25.2, 25.0, 17.8, 7.6, 3.8. HRMS (FAB) calcd for C₂₇H₃₉BO₂Si (M⁺) 434.2807, found 434.2821.

Compound 3ac. Hexane/EtOAc = 20/1 was used for silica gel chromatography. Orange solid (90.1 mg, 0.207 mmol; 69% yield).

¹H NMR (CDCl₃): δ 7.38-7.31 (m, 2H), 7.29-7.10 (m, 8H), 6.29 (d, ${}^{3}J_{HH} = 12.4$ Hz, 1H), 1.98 (d, ${}^{3}J_{HH} = 12.4$ Hz, 1H), 1.26 (s, 6H), 1.25 (s, 6H), 0.78 (s, 9H), 0.12 (s, 3H), -0.00 (s, 3H). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 143.7, 140.6, 137.2, 130.5, 128.6, 128.4, 128.1, 127.2, 126.7, 126.1, 83.1, 26.9, 25.3, 24.8, 18.5, 18.0, -4.9, -5.9. HRMS (FAB) calcd for C₂₇H₃₉BO₂Si (M⁺) 434.2807, found 434.2812.

Procedure for Scheme 2a.

A mixture of compound **3ga** (55.5 mg, 0.100 mmol) and NaBO₃•4H₂O (46.2 mg, 0.300 mmol) in THF (0.5 mL) and H₂O (0.5 mL) was stirred for 13 h at room temperature. The reaction was quenched with 5% Na₂S₂O₃aq and this was extracted with Et₂O. The solvent was removed under vacuum and the residue was purified by silica gel preparative TLC with hexane/EtOAc = 10/1. This was further purified by GPC with CHCl₃ to afford compound **6** as a white amorphous (30.3 mg, 68.1 µmol; 68% yield).

¹H NMR (CDCl₃): δ 7.90-7.83 (m, 1H), 7.82-7.77 (m, 2H), 7.77-7.69 (m, 2H), 7.69-7.63 (m, 1H), 7.58-7.53 (m, 2H), 7.53-7.47 (m, 3H), 7.47-7.40 (m, 5H), 7.40-7.33 (m, 2H), 7.15 (dd, ³*J*_{HH} = 8.3 Hz and ⁴*J*_{HH} = 1.5 Hz, 1H), 6.39 (d, ³*J*_{HH} = 11.2 Hz, 1H), 4.41 (d, ³*J*_{HH} = 11.2 Hz, 1H), 1.40 (bs, 1H), 0.412 (s, 3H), 0.408 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 141.9, 139.7, 137.1, 136.2, 134.5, 133.41, 133.39, 132.9, 132.7, 130.3, 129.7, 128.8, 128.33, 128.27, 128.10, 128.08, 127.9, 127.8, 127.6, 126.9, 126.3, 126.24, 126.16, 126.1, 125.4, 65.9, -5.2, -5.3. HRMS (FAB) calcd for C₃₁H₂₇OSi (M–H⁻) 443.1826, found 443.1829.

Procedure for Scheme 2b.

KOtBu (3.4 mg, 30 µmol) was dissolved in THF (1.5 mL) at 40 °C. Silylboronate **2a** (98.1 µL, 0.360 mmol) and cyclopropene **1g** (87.4 mg, 0.299 mmol) were added to it, and the resulting mixture was stirred for 20 h at 40 °C. This was cooled to 0 °C, and 1 M NaOHaq (0.60 mL) and 30 wt% H₂O₂aq (0.60 mL) were added to it. The mixture was stirred for 3 h at 0 °C and the reaction was quenched with 5 wt% Na₂SO₃aq. This was extracted with EtOAc and the solvent was removed under vacuum. The residue was purified by preparative TLC with hexane/EtOAc = $15/1 \rightarrow 10/1$ and further purified by GPC with CHCl₃ to afford compound **6** as a colorless viscous oil (68.4 mg, 0.154 mmol; 51% yield).

Procedure for Scheme 2c.

TfOH (9.70 µL, 0.111 mmol) was added to a solution of compound **3ja** (43.6 mg, 0.100 mmol) in CH₂Cl₂ (1.0 mL) at 0 °C, and the mixture was stirred for 1 h at 0 °C. The reaction was quenched with saturated NaHCO₃aq, and this was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated under vacuum. The residue was purified by GPC with CHCl₃ and further chromatographed on silica gel with hexane/EtOAc = 20/1 to afford compound **7** as a colorless oil (20.2 mg, 67.3 µmol; 67% yield).

¹H NMR (CDCl₃): δ 7.31-7.25 (m, 2H), 7.22-7.15 (m, 3H), 6.69 (dd, ³*J*_{HH} = 18.1 and 7.3 Hz, 1H), 5.40 (dd, ³*J*_{HH} = 17.6 Hz and ⁴*J*_{HH} = 1.4 Hz, 1H), 3.42 (q, ³*J*_{HH} = 7.3 Hz, 1H), 1.66-1.57 (m, 2H), 1.54-1.41 (m, 1H), 0.88 (d, ³*J*_{HH} = 6.8 Hz, 3H), 0.86 (d, ³*J*_{HH} = 6.8 Hz, 3H). ¹³C{¹H} NMR (CDCl₃): δ 157.4, 143.8, 128.6, 128.0, 126.3, 83.2, 49.7, 44.4, 25.4, 24.9, 22.8, 22.6. HRMS (FAB) calcd for C₁₉H₃₀BO₂ (M+H⁺) 301.2333, found 301.2338.

IV. X-ray Crystal Structure

Compound 3ga

A colorless CH₂Cl₂ solution of compound **3ga** was prepared. Crystals suitable for X-ray analysis were obtained by layering MeOH and slow diffusion of the solvents at room temperature. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2340586). The data can be obtained free of charge via the Internet at https://www.ccdc.cam.ac.uk/structures/.

Crystal Data and Structure Refinement.

Empirical Formula	$C_{37}H_{39}BO_2Si$				
Formula Weight	554.63				
Temperature	$113 \pm 2 \text{ K}$				
Wavelength	0.71075 Å				
Crystal System	Monoclinic				
Space Group	C2/c				
Unit Cell Dimensions	a = 16.206 (4) Å b = 14.988 (3) Å c = 26.246 (5) Å	$\alpha = 90^{\circ}$ $\beta = 99.955 \ (6)^{\circ}$ $\gamma = 90^{\circ}$			

Volume	6279(2) Å ³
Z Value	8
Calculated Density	1.173 g/cm ³
Absorption coefficient	0.106 mm^{-1}
F(000)	2369.872
Crystal size	0.240 x 0.130 x 0.100 mm
Theta Range for Data Collection	3.14–27.50°
Index Ranges	$-20 \le h \le 19, 0 \le k \le 19, 0 \le l \le 34$
Reflections Collected	54311
Independent Reflections	7169 [R(int) = 0.0475]
Completeness to Theta = 25.2425°	99.74%
Absorption Correction	Semi-empirical from equivalents
Max. and Min. Transmission	1.000 and 0.857
Refinement Method	Full-matrix least-squares on F ²
Data / Restraints / Parameters	7169 / 67 / 417
Goodness-of-Fit on F ²	1.0505
Final R Indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.1058
R Indices (All Data)	R1 = 0.0566, wR2 = 0.1112
Largest Diff. Peak and Hole	0.4525 and –0.2832 $e^{-}/Å^{3}$

V. Theoretical Calculations

All calculations were performed with the Gaussian 16 package.⁷ Geometrical optimizations were conducted using the DFT-M06 functional.⁸ The 6-31+G(d) basis set was used for all atoms. Frequency analyses were carried out to confirm that each structure is a local minimum (no imaginary frequency) or a transition state (only one imaginary frequency). The energies were evaluated by single-point calculations using the same level of theory as the geometry optimization, including solvation effect by SCRF-SMD model⁹ using THF as solvent. Natural bond orbital (NBO) calculations were performed using NBO 3.1.¹⁰ Energy diagrams were created with EveRplot.¹¹ The 3D optimized structures were displayed by the CYLview visualization program.¹² The output files were uploaded at https://doi.org/10.5281/zenodo.11212804.

We assessed the Gibbs energy changes at standard conditions (298.15 K and 1 atm), and the resulting Gibbs energy profiles are depicted in Figure S1.

Figure S1. Calculated energy diagram for the KOtBu-catalyzed *gem*-silylborylation of 1a with trimethylsilylboronic acid pinacol ester.

We theoretically examined the ring-opening step of *syn*-isomer **IntD** and *anti*-isomer **IntF** to afford π -allylpotassium **IntG** (Figure S2). As a result, the *syn*-isomer **IntD** (0 kcal/mol) was found to be energetically unfavorable for direct ring-opening process through **TS**_{syn-opening} ($\Delta G^{\circ \ddagger}_{syn-opening} = 27.8$ kcal/mol). Therefore, the *syn/anti*-isomerization of **IntD** could undergo through **TS**_{DE} to yield *anti*-isomer **IntF** ($\Delta G^{\circ \ddagger}_{DE} = 20.7$ kcal/mol; $\Delta G^{\circ}_{DF} = -2.2$ kcal/mol). The ring-opening process **TS**_{FG} of *anti*-isomer **IntF** (-2.2 kcal/mol) exhibited a lower energy barrier ($\Delta G^{\circ \ddagger}_{FG} = 22.8$ kcal/mol) than that of the *syn*-isomer. From the results of natural population analysis, the transition-state of the *anti*-isomer has more delocalized negative charge on the cyclopropane ring, leading to a lower activation energy barrier for **TS**_{FG}. These results indicated that the ring-opening process proceeds via the *syn*-to-*anti* isomerization of **IntD**.

Figure S2. Calculated energy diagram for the ring-opening process of IntD and IntF.

Cartesian Coordinates of Optimized Species

IntA

Center	Atomic	Atomic	Coordinates	(Angstroms)		33 34
Num	Nun	Тур				35
ber	aber	o	Х	У	Z	36
1	14	0	0.979394	-1.84415	-0.5142	37
2	6	0	2.816099	-1.95598	0.037202	38
3	1	0	3.489081	-1.27056	-0.49754	39
4	1	0	2.945456	-1.75907	1.115364	40
5	1	0	3.186979	-2.97926	-0.13835	41
6	6	0	0.240827	-3.31934	0.457291	42
7	1	0	0.164426	-3.10967	1.536911	43
8	1	0	-0.76647	-3.59033	0.110401	44
9	1	0	0.881512	-4.20851	0.33831	45
10	6	0	-2.16403	0.718151	-0.76062	46
11	6	0	-2.29587	-0.14838	0.527642	47
12	5	0	-0.02182	-0.02528	-0.15401	48
13	8	0	-0.89413	0.334687	-1.27003	49
14	8	0	-0.95797	-0.21143	1.001727	
15	8	0	0.911107	1.041804	0.315242	
16	6	0	1.837115	1.783287	-0.46136	
17	6	0	0.955549	-2.43016	-2.32616	
18	1	0	-0.08263	-2.51487	-2.68374	
19	1	0	1.474104	-1.73363	-3.00164	
20	1	0	1.429039	-3.41926	-2.43494	
21	6	0	-3.22028	0.439213	-1.8168	
22	1	0	-4.23461	0.614449	-1.42742	
23	1	0	-3.07086	1.110364	-2.67465	
24	1	0	-3.16166	-0.59145	-2.18757	
25	6	0	-2.16807	2.214223	-0.45181	
26	1	0	-1.88636	2.763956	-1.36104	
27	1	0	-3.16324	2.567364	-0.14306	
28	1	0	-1.44285	2.464224	0.332646	
29	6	0	-3.17734	0.45269	1.610211	
30	1	0	-4.20313	0.613014	1.245899	
31	1	0	-3.23478	-0.23394	2.467603	

32	1	0	-2.78552	1.411844	1.970597
33	6	0	-2.79189	-1.56031	0.225512
34	1	0	-2.65386	-2.18616	1.118527
35	1	0	-3.86042	-1.57176	-0.03343
36	1	0	-2.23187	-2.0191	-0.59983
37	6	0	2.120623	1.17057	-1.8302
38	1	0	1.194213	1.053546	-2.40682
39	1	0	2.79912	1.827121	-2.39473
40	1	0	2.605544	0.189452	-1.74755
41	6	0	1.289491	3.194779	-0.6607
42	1	0	0.38299	3.174368	-1.2796
43	1	0	1.033418	3.64718	0.308748
44	1	0	2.03025	3.840233	-1.15647
45	6	0	3.130285	1.862045	0.346698
46	1	0	3.536834	0.85624	0.530835
47	1	0	3.900181	2.448337	-0.17598
48	1	0	2.945971	2.348752	1.318142
49	19	0	0.908924	0.124022	2.745381

TS _{AB}					
Center Nu	Atomic Nu	Atomic Ty	Coordinates	(Angstroms)	
mber	ımber	/pe	x	у	Z
1	14	0	1.555	-1.59755	-0.54601
2	6	0	3.487899	-1.32709	-0.49153
3	1	0	3.809305	-0.35704	-0.90421
4	1	0	3.873898	-1.3772	0.542652
5	1	0	4.015057	-2.11315	-1.06333
6	6	0	1.553334	-3.44123	0.089475
7	1	0	1.844872	-3.51399	1.151933
8	1	0	0.565636	-3.92068	-0.00391
9	1	0	2.270229	-4.05782	-0.48362
10	6	0	-2.46101	0.153341	-0.66555
11	6	0	-2.24565	-0.70101	0.623919
12	5	0	-0.34869	0.484588	0.122444
13	8	0	-1.11728	0.521709	-1.03766
14	8	0	-1.0668	-0.09967	1.189108
15	8	0	0.573088	1.440265	0.523506
16	6	0	1.166107	2.465527	-0.28847
17	6	0	1.29354	-1.91613	-2.43382
18	1	0	0.267546	-2.26255	-2.64149
19	1	0	1.449436	-1.00622	-3.03482
20	1	0	1.986801	-2.68882	-2.81225
21	6	0	-3.10922	-0.58991	-1.8148
22	1	0	-4.10469	-0.95869	-1.528
23	1	0	-3.23538	0.087781	-2.67004
24	1	0	-2.5037	-1.44128	-2.14658
25	6	0	-3.22263	1.444996	-0.39638
26	1	0	-3.17611	2.077895	-1.2928
27	1	0	-4.28138	1.255854	-0.17149
28	1	0	-2.78458	2.007985	0.439595
29	6	0	-3.36965	-0.60571	1.636373
30	1	0	-4.31806	-0.94838	1.198321
31	1	0	-3.14786	-1.25104	2.497738
32	1	0	-3.50523	0.417352	2.005966
33	6	0	-1.96056	-2.1661	0.326952

34	1	0	-1.59473	-2.65166	1.242984
35	1	0	-2.87055	-2.69056	0.003862
36	1	0	-1.18973	-2.28349	-0.44432
37	6	0	1.595346	1.942539	-1.65095
38	1	0	0.73647	1.594098	-2.23694
39	1	0	2.090764	2.748764	-2.21085
40	1	0	2.305224	1.111296	-1.54709
41	6	0	0.163662	3.599301	-0.44424
42	1	0	-0.7169	3.262734	-1.00767
43	1	0	-0.16838	3.958703	0.540159
44	1	0	0.615403	4.442986	-0.98553
45	6	0	2.38287	2.931126	0.495593
46	1	0	3.099176	2.103871	0.619825
47	1	0	2.898134	3.749052	-0.02623
48	1	0	2.087269	3.292484	1.491309
49	19	0	1.310483	-0.22536	2.483668

IntB					
Center Nu	Atomic N	Atomic Ty	Coordinates	(Angstroms)	
mber	umber	/pe	x	У	Z
1	14	0	3.178466	-0.94672	-0.17665
2	6	0	4.291366	0.483157	-0.88981
3	1	0	3.704136	1.335846	-1.26934
4	1	0	4.974125	0.882322	-0.12172
5	1	0	4.915123	0.117582	-1.72699
6	6	0	4.565933	-2.29242	0.036281
7	1	0	5.269033	-2.03101	0.843748
8	1	0	4.145161	-3.28042	0.28402
9	1	0	5.1565	-2.40791	-0.89181
10	6	0	-2.9518	-0.58509	-0.67774
11	6	0	-2.18352	-1.47905	0.344431
12	5	0	-1.28932	0.601354	0.293335
13	8	0	-2.0509	0.546219	-0.84008
14	8	0	-1.46195	-0.48793	1.128575
15	8	0	-0.40229	1.553053	0.671003
16	6	0	0.068734	2.658182	-0.14927
17	6	0	2.41506	-1.60157	-1.84321
18	1	0	1.924794	-2.57932	-1.70254
19	1	0	1.659243	-0.91901	-2.26699
20	1	0	3.201218	-1.73673	-2.60968
21	6	0	-3.17787	-1.22503	-2.02884
22	1	0	-3.77098	-2.14416	-1.92339
23	1	0	-3.73593	-0.53626	-2.67657
24	1	0	-2.23477	-1.47308	-2.52882
25	6	0	-4.258	-0.03458	-0.13016
26	1	0	-4.63482	0.735438	-0.81564
27	1	0	-5.02132	-0.81948	-0.05005
28	1	0	-4.12782	0.425331	0.858757
29	6	0	-3.06556	-2.29101	1.264986
30	1	0	-3.69724	-2.9765	0.683046
31	1	0	-2.44418	-2.8979	1.93695
32	1	0	-3.71393	-1.65609	1.879369
33	6	0	-1.13687	-2.36756	-0.30809

34	1	0	-0.50588	-2.81587	0.47202
35	1	0	-1.60032	-3.18459	-0.87628
36	1	0	-0.4833	-1.80001	-0.98587
37	6	0	0.640764	2.108163	-1.44444
38	1	0	-0.13625	1.655841	-2.07413
39	1	0	1.117869	2.915921	-2.01639
40	1	0	1.404224	1.346048	-1.2255
41	6	0	-1.07556	3.624881	-0.39256
42	1	0	-1.88158	3.155782	-0.97057
43	1	0	-1.48848	3.983061	0.560677
44	1	0	-0.71506	4.495507	-0.9571
45	6	0	1.161876	3.313897	0.674748
46	1	0	1.998383	2.618215	0.840619
47	1	0	1.558607	4.193207	0.150566
48	1	0	0.772492	3.641528	1.648769
49	19	0	1.04699	-0.14519	2.322278

IntC						36	1	0	-1.686321	-2.52873	3.409839
Ce	Ato	Ato				37	1	0	-1.787787	-0.75717	3.280778
nter]	omic	omic	Coordinates (A	ngstroms)		38	6	0	-0.160626	-3.54045	0.995285
Num	Nun	Тур				39	1	0	0.803838	-3.86963	0.573827
ber	ıber	()	X	y	Z	40	1	0	-0.387217	-4.20887	1.846842
1	6	0	6 69 10 2 2	1 95521	0 402757	41	1	0	-0.924835	-3.73427	0.223449
1	6	0	-0.064055	-1.65551	0.492737	42	6	0	3.737402	-1.32761	-1.52628
2	0	0	-7.333393	-0.//231	0.390312	43	6	0	4.988784	-1.04165	-0.63505
3	0	0	-7.150604	0.462/17	0.152501	44	8	0	4.470103	-0.10407	0.347027
4	0	0	-3.839057	0.032813	-0.3/403	45	8	0	2.99073	-0.08433	-1.41573
5	0	0	-4.9/01	-0.42801	-0.48355	46	6	0	2.845428	-2.42835	-0.97868
0	0	0	-3.409904	-1.08290	-0.04154	47	1	0	1.912881	-2.45701	-1.56003
/	0	0	-3.011133	-0.23991	-1.09601	48	1	0	3.323334	-3.41364	-1.06023
8	6	0	-2.960697	1.08263	-0.8933	49	1	0	2.575743	-2.2527	0.072549
9	6	0	-2.510809	1.838741	-1.97934	50	6	0	4.050502	-1.5861	-2.98333
10	6	0	-1.872423	3.06609	-1.78574	51	1	0	4.697311	-2.46886	-3.08462
11	6	0	-1.671328	3.550636	-0.494	52	1	0	3.121626	-1.78688	-3.53352
12	6	0	-2.114019	2.802063	0.5989	53	1	0	4.549333	-0.73262	-3.45634
13	6	0	-2.753157	1.580843	0.400215	54	6	0	6.103666	-0.32166	-1.37626
14	6	0	-3.27041	-1.0528	-2.32826	55	1	0	6.853063	0.015739	-0.64838
15	6	0	-2.716565	-1.46339	-1.23339	56	1	0	6.602613	-0.9837	-2.09591
16	1	0	-6.99487	-2.84077	0.838369	57	1	0	5.733572	0.561624	-1.91493
17	1	0	-8.553053	-0.90464	1.007219	58	6	0	5.535246	-2.25091	0.089894
18	1	0	-7.808506	1.337908	0.222183	59	1	0	5.849615	-3.02128	-0.6281
19	1	0	-5.545164	1.642706	-0.70844	60	1	0	6.41444	-1.9625	0.680947
20	1	0	-4.738845	-2.54048	-0.11361	61	1	0	4.796356	-2.68827	0.771363
21	1	0	-2.664124	1.462399	-2.99266	62	8	0	2.687918	1.572183	0.215017
22	1	0	-1.538048	3.644678	-2.64634	63	6	0	2.96598	2.341048	1.415836
23	1	0	-1.17393	4.507121	-0.33745	64	6	0	1.840611	3.3567	1.485377
24	1	0	-1.955555	3.169135	1.612474	65	1	0	1.823433	3.981382	0.581331
25	1	0	-3.092667	0.99917	1.258826	66	1	0	0.869425	2.847812	1.584115
26	1	0	-3.473189	-1.15698	-3.38812	67	1	0	1.967085	4.012585	2.356723
27	19	0	0.292352	0.684449	-0.82932	68	6	0	2.928821	1.426336	2.626842
28	1	0	-2.095203	-2.15514	-0.67282	69	1	0	3.738185	0.686037	2.60316
29	14	0	-0.090294	-1.67862	1.586489	70	1	0	3.033219	2.019922	3.545452
30	6	0	1.231629	-1.91332	2.999119	71	1	0	1.968659	0.891727	2.669353
31	1	0	1.212602	-1.07215	3.711857	72	6	0	4.309316	3.031818	1.262505
32	1	0	1.038979	-2.83554	3.578935	73	1	0	4.502985	3.673273	2.132975
33	1	0	2.262649	-1.97654	2.609527	74	1	0	5.128363	2.304514	1.189472
34	6	0	-1.692562	-1.68559	2.69356	75	1	0	4.318843	3.663598	0.363398
35	1	0	-2.61264	-1.77844	2.091065	76	5	0	3.391812	0.504448	-0.23221
							-	-			

TS _{CD}						36	1	0	-1.80158	-1.24769	4.185364
Ce	Ato	Ato				37	1	0	-2.00891	0.368499	3.485049
nter	omic	omic	Coordinates (A	Angstroms)		38	6	0	-0.28108	-2.96383	2.292409
Num	Nun	Тур				39	1	0	0.665853	-3.32465	1.860288
ber	nber	e	X	у	Z	40	1	0	-0.2516	-3.18393	3.374562
1	6	0	-6 63694	-2 14793	-0 50193	41	1	0	-1.08719	-3.57845	1.859875
2	6	0	-7 52995	-1.08315	-0 38464	42	6	0	3.530381	-1.92765	-1.03865
- 3	6	0	-7.03273	0.217082	-0.35766	43	6	0	4.927286	-1.34389	-0.65932
4	6	0	-5.66132	0.451168	-0.44244	44	8	0	4.573549	-0.15937	0.108156
5	6	0	-4.75026	-0.60834	-0.55757	45	8	0	2.716273	-0.72654	-1.12368
6	6	0	-5.269	-1.91241	-0.59041	46	6	0	2.920665	-2.79488	0.049694
7	6	0	-3.26761	-0.38168	-0.65245	47	1	0	1.86869	-2.98995	-0.2014
8	6	0	-2.81951	1.054604	-0.59665	48	1	0	3.435349	-3.76127	0.131181
9	6	0	-2.54775	1.749545	-1.77937	49	1	0	2.949687	-2.3026	1.032101
10	6	0	-2.062	3.058102	-1.74958	50	6	0	3.485981	-2.64626	-2.36806
11	6	0	-1.84595	3.691146	-0.52473	51	1	0	4.173914	-3.50314	-2.36346
12	6	0	-2.1365	3.017024	0.661328	52	1	0	2.473451	-3.03082	-2.54926
13	6	0	-2.62428	1.710691	0.623308	53	1	0	3.75563	-1.98737	-3.20127
14	6	0	-2.41985	-1.34581	-1.42945	54	6	0	5.723179	-0.86034	-1.86083
15	6	0	-2.36936	-1.47095	-0.10772	55	1	0	6.588677	-0.28599	-1.50524
16	1	0	-7.00838	-3.17223	-0.52663	56	1	0	6.095997	-1.70009	-2.46164
17	1	0	-8.60164	-1.26635	-0.31771	57	1	0	5.126418	-0.20591	-2.51146
18	1	0	-7.71585	1.061757	-0.27003	58	6	0	5.775641	-2.25125	0.20202
19	1	0	-5.29732	1.478375	-0.4198	59	1	0	5.974252	-3.19801	-0.31943
20	1	0	-4.58941	-2.75884	-0.69101	60	1	0	6.74123	-1.77126	0.40847
21	1	0	-2.70391	1.245599	-2.73593	61	1	0	5.295201	-2.47495	1.161122
22	1	0	-1.85295	3.582658	-2.68168	62	8	0	2.647811	1.352275	-0.04787
23	1	0	-1.45617	4.708261	-0.4946	63	6	0	3.179207	2.549026	0.580056
24	1	0	-1.97254	3.50621	1.621521	64	6	0	1.986521	3.480914	0.688144
25	1	0	-2.85467	1.184514	1.549708	65	1	0	1.570133	3.695989	-0.30685
26	1	0	-2.45288	-1.91904	-2.35153	66	1	0	1.199779	3.028864	1.310838
27	19	0	0.186008	0.415423	-0.93318	67	1	0	2.280963	4.433246	1.148528
28	1	0	-2.49584	-2.22455	0.666304	68	6	0	3.727389	2.219059	1.956602
29	14	0	-0.52598	-1.06712	1.994213	69	1	0	4.588341	1.542016	1.898216
30	6	0	0.973877	-0.3629	3.008346	70	1	0	4.050795	3.142791	2.455605
31	1	0	0.897861	0.732063	3.113885	71	1	0	2.953619	1.748097	2.578445
32	1	0	1.011913	-0.79075	4.027593	72	6	0	4.248772	3.135039	-0.32546
33	1	0	1.941565	-0.57802	2.523643	73	1	0	4.623502	4.078642	0.093786
34	6	0	-1.96116	-0.70434	3.237129	74	1	0	5.101545	2.450315	-0.43162
35	1	0	-2.95444	-0.99662	2.856796	75	1	0	3.839476	3.342999	-1.32384
						76	5	0	3.329586	0.214087	-0.31856

In	t	D
		-

IntD						36	1	0	1.74653	-0.04057
Ce	Ate	Ato		• • • •		37	6	0	0.812062	3.344165
nter]	omic	omic	Coordinates (A	Angstroms)		38	1	0	0.514603	3.712351
Num	Nun	Тур				39	1	0	-0.014626	3.539392
ber	ıber	G	X	у	Z	40	1	0	1.672118	3.94749
1	6	0	6.686325	1.208826	-1.0436	41	6	0	-3.536952	-2.02787
2	6	0	7.343877	-0.02092	-1.12813	42	6	0	-4.495063	-1.29417
3	6	0	6.611651	-1.18195	-0.90712	43	8	0	-4.539356	0.05289
4	6	0	5.251012	-1.11778	-0.60281	44	8	0	-2.66287	-0.94943
5	6	0	4.569189	0.107683	-0.51154	45	6	0	-4.241132	-2.55074
6	6	0	5.330509	1.269021	-0.74889	46	1	0	-3.486841	-2.86733
7	6	0	3.098653	0.177729	-0.22625	47	1	0	-4.870502	-3.41927
8	6	0	2.468235	-1.15801	0.054078	48	1	0	-4.870233	-1.78248
9	6	0	1.900911	-1.9127	-0.97823	49	6	0	-2.697289	-3.11848
10	6	0	1.301705	-3.14657	-0.73096	50	1	0	-3.341698	-3.89071
11	6	0	1.267589	-3.65709	0.56754	51	1	0	-2.079313	-3.5998
12	6	0	1.866044	-2.93757	1.600896	52	1	0	-2.031287	-2.72988
13	6	0	2.467721	-1.70738	1.339089	53	6	0	-3.925887	-1.16973
14	6	0	2.238068	1.237099	-0.92119	54	1	0	-4.552952	-0.47776
15	6	0	2.61075	1.38281	0.556153	55	1	0	-3.917856	-2.13658
16	1	0	7.236835	2.134555	-1.21354	56	1	0	-2.900737	-0.77237
17	1	0	8.40657	-0.06785	-1.36336	57	6	0	-5.899359	-1.85132
18	1	0	7.09779	-2.15607	-0.96833	58	1	0	-5.883225	-2.90145
19	1	0	4.713321	-2.05007	-0.43088	59	1	0	-6.497163	-1.28499
20	1	0	4.850325	2.246911	-0.70423	60	1	0	-6.400801	-1.7934
21	1	0	1.962137	-1.52733	-1.99965	61	8	0	-2.807207	1.375168
22	1	0	0.866041	-3.71552	-1.55304	62	6	0	-3.276084	2.723253
23	1	0	0.787763	-4.61469	0.769003	63	6	0	-2.252536	3.626983
24	1	0	1.865235	-3.33617	2.615695	64	1	0	-1.250643	3.456778
25	1	0	2.950628	-1.15341	2.146486	65	1	0	-2.213088	3.443844
26	1	0	2.905567	1.868553	-1.5347	66	1	0	-2.510887	4.681926
27	1	0	3.435537	2.063983	0.832421	67	6	0	-4.647903	2.913008
28	14	0	1.265529	1.510745	1.848058	68	1	0	-5.396982	2.264782
29	6	0	-0.3314	0.55831	1.497988	69	1	0	-4.973245	3.954861
30	1	0	-0.171078	-0.50081	1.242875	70	1	0	-4.618114	2.69051
31	1	0	-0.948944	0.584801	2.410629	71	6	0	-3.302493	2.95292
32	1	0	-0.933269	1.032479	0.708804	72	1	0	-3.627808	3.980557
33	6	0	1.826171	1.039243	3.594134	73	1	0	-3.996874	2.266607
34	1	0	2.870419	1.335171	3.774843	74	1	0	-2.301319	2.820903
35	1	0	1.203261	1.551186	4.343806	75	5	0	-3.359016	0.225264
						76	19	0	-0.337279	0.263289

3.785637

1.905217

0.911559

2.605131 2.233742

-0.40414

0.586435

0.037851

-0.83538

-1.64474

-2.37689

-1.41106

-2.11405

0.22261 0.665785

-0.54712 1.002413

1.990408 2.567982

2.510233

1.981914

0.636596

0.959968 1.362699

-0.33604

-1.08759

-0.80753

-1.46893

-1.04687

-2.55186

-1.30869

-1.42928 -0.95707

-1.3058

-2.50482

0.694464

0.905894 1.1971

1.129046 -0.63011

-1.80161

TSD	ī
	-

TS _{DE}						36	1	0	1.94636	0.033554
Ce	Ate	Ato	a 1			37	6	0	1.033729	3.465129
nter]	omic	omic	Coordinates (A	Angstroms)		38	1	0	0.71415	3.821295
Num	Nun	Тур				39	1	0	0.268413	3.766406
ber	ıber	e d	X	y	Ζ	40	1	0	1.965167	3.994103
1	6	0	6 78688	0.00306	0.80001	41	6	0	-3.732543	-1.8785
1 2	6	0	7 44874	0.33500	-0.89901	42	6	0	-4.737202	-0.83985
2	6	0	6 600033	1 22457	0.024674	43	8	0	-4.566282	0.301305
3	6	0	5 207400	-1.22437	0.024074	44	8	0	-2.700648	-1.01791
-	6	0	1 620502	-1.14258	0.3671	45	6	0	-4.305997	-2.68213
5	6	0	5 308677	1 062163	-0.3071	46	1	0	-3.492287	-3.23649
0 7	6	0	2 115600	0.110201	-0.85525	47	1	0	-5.049411	-3.41028
0	6	0	2 411280	1 20822	-0.2905	48	1	0	-4.778416	-2.03814
8	0	0	2.411289	-1.20825	-0.2348	49	6	0	-3.107572	-2.80203
9 10	6	0	2.381856	-1.9954	-1.40357	50	1	0	-3.885714	-3.38176
10	0	0	0.000056	-3.10883	-1.4/382	51	1	0	-2.438057	-3.51424
11	6	0	0.899056	-3.59972	-0.36621	52	1	0	-2.527002	-2.25445
12	6	0	0.960443	-2.86328	0.81538	53	6	0	-4.35734	-0.3628
13	6	0	1./2892	-1.69828	0.885429	54	1	0	-4.985787	0.497895
14	6	0	2.40576	1.23497	-0.91222	55	1	0	-4.517684	-1.14526
15	6	0	2.59/23/	1.337765	0.53146	56	1	0	-3.306519	-0.0426
16	1	0	7.359627	1.839256	-1.28044	57	6	0	-6.184309	-1.27482
17	1	0	8.53596	-0.21863	-0.50645	58	1	0	-6.320857	-2.19206
18	1	0	7.199764	-2.13093	0.367892	59	1	0	-6.81689	-0.49357
19	1	0	4.741555	-1.9876	0.47312	60	1	0	-6.535611	-1.46117
20	1	0	4.864732	1.944319	-1.21906	61	8	0	-2.571293	1.140601
21	1	0	2.938366	-1.65186	-2.2792	62	6	0	-2.910768	2.546987
22	1	0	1.629013	-3.74973	-2.39632	63	6	0	-1.703154	3.15611
23	1	0	0.305532	-4.51173	-0.41946	64	1	0	-0.799624	3.03951
24	1	0	0.418978	-3.20368	1.699069	65	1	0	-1.527494	2.678328
25	1	0	1.797662	-1.1614	1.831258	66	1	0	-1.859091	4.229463
26	1	0	1.90142	1.602426	-1.7956	67	6	0	-4.14759	2.662818
27	1	0	3.473251	1.943077	0.897984	68	1	0	-5.02522	2.218677
28	14	0	1.295785	1.592913	1.868356	69	1	0	-4.367599	3.720373
29	6	0	-0.432506	0.861371	1.619347	70	1	0	-3.988109	2.16033
30	1	0	-0.478764	-0.23677	1.642065	71	6	0	-3.125234	3.178136
31	1	0	-1.066235	1.228975	2.442734	72	1	0	-3.338231	4.249117
32	1	0	-0.903769	1.223158	0.693054	73	1	0	-3.971967	2.721235
33	6	0	1.910501	1.11993	3.591597	74	1	0	-2.226092	3.082034
34	1	0	2.926582	1.511023	3.752258	75	5	0	-3.295139	0.2069
35	1	0	1.263206	1.553625	4.369151	76	19	0	-0.245589	-0.35782
										–

3.757821

1.876096

0.884462

2.607749

2.128458

0.198016

0.789698

-0.09742

-0.35635

-0.95666

-1.44314

-0.60733

-1.71048

1.219675

1.735771

0.718882

1.971243 2.182201

2.446373 2.935252

2.23213

0.758383

1.348025

1.199684

-0.26279

-1.25338 -1.40971

-2.09763

-1.48023

-3.07204

-2.26727

-2.2818

-1.7949

-2.48087

-3.24574

-0.0438

-0.16291

0.485119

0.581953

-0.58946

-1.44089

IntE						36	1	0	1.756086	0.096956	3.797166
Ce	Ato	Ato				37	6	0	1.080523	3.543929	1.82106
nter]	omic	omic	Coordinates (A	ngstroms)		38	1	0	0.847287	3.875873	0.797571
Num	Nun	Тур				39	1	0	0.261836	3.870812	2.480071
ber	ıber	e	x y		Z	40	1	0	1.994708	4.069159	2.1351
1	6	0	6 833943	0 941 592	-0 80977	41	6	0	-3.784109	-1.83591	0.348159
2	6	0	7.460142	-0.2458	-0.42994	42	6	0	-4.696123	-0.71361	0.939799
3	6	0	6.678357	-1.30611	0.023054	43	8	0	-4.524514	0.36906	-0.01872
4	6	0	5.291662	-1.17931	0.093315	44	8	0	-2.752992	-1.0642	-0.32693
5	6	0	4.64637	0.004294	-0.29275	45	6	0	-4.473971	-2.6755	-0.71315
6	6	0	5.449296	1.061818	-0.74229	46	1	0	-3.726042	-3.30557	-1.21264
7	6	0	3.15543	0.165462	-0.16966	47	1	0	-5.230409	-3.3366	-0.2709
8	6	0	2.405077	-1.12536	-0.20051	48	1	0	-4.960594	-2.05308	-1.476
9	6	0	2.415197	-1.87378	-1.39454	49	6	0	-3.127996	-2.72659	1.379471
10	6	0	1.70119	-3.06285	-1.51402	50	1	0	-3.89019	-3.24538	1.977484
11	6	0	0.943583	-3.53946	-0.43858	51	1	0	-2.518897	-3.49078	0.877598
12	6	0	0.945126	-2.82663	0.759286	52	1	0	-2.478628	-2.16144	2.05836
13	6	0	1.683606	-1.64689	0.878775	53	6	0	-4.208981	-0.18483	2.278877
14	6	0	2.50168	1.380558	-0.84917	54	1	0	-4.773192	0.723472	2.528072
15	6	0	2.702968	1.344892	0.672229	55	1	0	-4.367351	-0.91526	3.082866
16	1	0	7.430107	1.782133	-1.16643	56	1	0	-3.141568	0.076878	2.252671
17	1	0	8.544212	-0.3419	-0.48489	57	6	0	-6.162895	-1.0698	1.018779
18	1	0	7.148427	-2.24168	0.327277	58	1	0	-6.310297	-1.944	1.668095
19	1	0	4.702808	-2.02174	0.459508	59	1	0	-6.724243	-0.23125	1.451054
20	1	0	4.956725	1.983309	-1.05515	60	1	0	-6.586769	-1.29122	0.032879
21	1	0	2.993366	-1.4981	-2.24161	61	8	0	-2.571311	1.028534	-1.35333
22	1	0	1.729669	-3.6197	-2.45079	62	6	0	-2.853296	2.435493	-1.60363
23	1	0	0.375804	-4.46476	-0.5301	63	6	0	-1.643366	2.934224	-2.37138
24	1	0	0.382454	-3.19796	1.616347	64	1	0	-0.724639	2.821167	-1.77563
25	1	0	1.708351	-1.12851	1.836931	65	1	0	-1.523283	2.380537	-3.31363
26	1	0	1.433329	1.119317	-1.02322	66	1	0	-1.755904	3.998688	-2.61496
27	1	0	3.568024	1.939308	1.017179	67	6	0	-4.113409	2.538309	-2.44333
28	14	0	1.30818	1.671475	1.87045	68	1	0	-4.991055	2.169613	-1.89658
29	6	0	-0.381309	0.952856	1.418155	69	1	0	-4.297961	3.586231	-2.71546
30	1	0	-0.442174	-0.14266	1.484457	70	1	0	-4.00772	1.958598	-3.3706
31	1	0	-1.122107	1.363783	2.123033	71	6	0	-2.995019	3.177243	-0.28496
32	1	0	-0.702776	1.274681	0.415883	72	1	0	-3.187251	4.240497	-0.48234
33	6	0	1.705074	1.185483	3.650471	73	1	0	-3.829131	2.787232	0.313043
34	1	0	2.674944	1.604298	3.956983	74	1	0	-2.072627	3.108253	0.308733
35	1	0	0.942061	1.579025	4.339436	75	5	0	-3.29828	0.17967	-0.58743
						76	19	0	-0.424761	-0.66667	-1.63457

Ir	١ť	1	F
11	LL		Ľ

IntF						36	6	0	-6.468822	-0.84399
Ce	Ate	Ato				37	1	0	-5.993542	0.00116
nter]	omic	omic	Coordinates (Angstroms)		38	1	0	-6.639444	-1.59651
Num	Nun	Тур				39	1	0	-1.50511	5.500398
ber	ıber	G	X	у	Z	40	1	0	-7.49083	-1.10483
1	6	0	-2.403739	0.168459	0.51111	41	19	0	0.57084	1.162634
2	6	0	-1.265597	-0.66641	-0.01467	42	8	0	2.643577	-0.62198
3	6	0	-2.192116	1.661803	0.549707	43	8	0	2.296542	1.00655
4	14	0	-1.369051	-2.20826	-1.05453	44	6	0	3.38275	-1.62281
5	6	0	-1.580942	-0.63661	1.497469	45	5	0	2.985301	-0.10629
6	1	0	-0.377563	-0.08537	-0.33277	46	6	0	2.693685	1.203905
7	6	0	-3.817735	-0.19078	0.140331	47	6	0	2.535305	-1.87716
8	6	0	-1.537947	2.355682	-0.47395	48	6	0	3.528256	-2.89325
9	6	0	-2.619617	2.391649	1.668376	49	6	0	4.734949	-1.04141
10	6	0	-1.472224	-1.82771	-2.90488	50	8	0	3.953084	-0.53082
11	6	0	0.243504	-3.13133	-0.71464	51	6	0	2.699303	2.684967
12	6	0	-2.786956	-3.37432	-0.6287	52	6	0	1.665308	0.49373
13	1	0	-2.135331	-1.55803	1.756318	53	6	0	4.097304	0.523074
14	6	0	-4.323263	0.104939	-1.13332	54	1	0	1.537282	-2.23851
15	6	0	-4.677806	-0.79412	1.062699	55	1	0	2.418117	-0.95713
16	6	0	-1.287306	3.726798	-0.37222	56	1	0	3.006789	-2.63364
17	1	0	-1.209361	1.810042	-1.36177	57	1	0	4.029913	-3.66248
18	6	0	-2.381987	3.75882	1.773185	58	1	0	2.543469	-3.28085
19	1	0	-3.125783	1.859331	2.476747	59	1	0	4.124233	-2.72619
20	1	0	-0.741251	-1.0615	-3.20572	60	1	0	5.288585	-1.75002
21	1	0	-1.275671	-2.72794	-3.50739	61	1	0	4.611755	-0.10666
22	1	0	-2.471506	-1.45896	-3.18048	62	1	0	5.343979	-0.83506
23	1	0	1.123793	-2.51683	-0.96387	63	1	0	1.672459	3.073983
24	1	0	0.322542	-4.07303	-1.27839	64	1	0	3.094709	2.868933
25	1	0	0.302481	-3.37203	0.358817	65	1	0	3.302556	3.250345
26	1	0	-2.658565	-4.31206	-1.19165	66	1	0	0.668433	0.896221
27	1	0	-2.808553	-3.63173	0.440027	67	1	0	1.64677	-0.58838
28	1	0	-3.768743	-2.95841	-0.89679	68	1	0	1.859813	0.653219
29	6	0	-5.628842	-0.22387	-1.48622	69	6	0	4.467865	-0.0994
30	1	0	-3.671076	0.589835	-1.86329	70	6	0	5.215699	1.429586
31	6	0	-5.989853	-1.12102	0.718792	71	1	0	5.470501	-0.54195
32	1	0	-4.306581	-1.02071	2.063324	72	1	0	4.487257	0.664099
33	6	0	-1.702853	4.432283	0.754146	73	1	0	3.766844	-0.88869
34	1	0	-0.767775	4.243824	-1.17947	74	1	0	6.12352	0.828539
35	1	0	-2.719423	4.302755	2.655499	75	1	0	4.970107	1.902867
						76	1	0	5.440917	2.219957

-0.5594

-2.48865

1.453877 0.838122

-0.83289

1.949063 1.407097

-0.24132

2.157881

0.203824

-1.62512

3.390282

1.339738

2.533837

-0.66488 -1.92773

-2.48951

-1.65663

3.103574

3.981757 4.031392

1.942648

1.045553

0.434267

3.098582

1.642719

-1.89397

-2.93641

-1.2082

-2.26085

-2.29733

-3.55829

-2.98342

-1.16813 -2.91826

-3.77351 -3.27729

-1.02676 -0.20701

-1.89603

3.1647

TS _{FG}						36	1	0	-0.1237	-0.9533	4.750008
Ce	At	At				37	1	0	-1.419606	1.173399	4.549908
nter	omic	omic	Coordinates (A	Angstroms)		38	1	0	-2.167707	1.982896	2.365207
Num	Nun	Тур				39	1	0	-0.244098	-1.3695	0.471707
ber	nber	e	x	у	Z	40	1	0	-0.56931	3.0426	1.199208
						41	1	0	-0.568316	5.354	0.440808
1	6	0	-0.136199	-1.2957	2.610707	42	1	0	-1.727418	6.017197	-1.67659
2	6	0	-0.436	-0.5852	3.773308	43	1	0	-2.882014	4.251895	-3.01459
3	6	0	-1.151804	0.610098	3.654808	44	1	0	-2.901808	1.912295	-2.25299
4	6	0	-1.561005	1.077797	2.411308	45	1	0	-1.413599	-1.1014	-1.23559
5	6	0	-1.261603	0.384799	1.215808	46	1	0	-3.913203	0.586291	-0.59909
6	6	0	-0.5247	-0.8116	1.365708	47	1	0	-4.705401	-0.60241	2.314808
7	6	0	-1.669804	0.848498	-0.11989	48	1	0	-3.211799	-1.52371	2.586907
8	6	0	-1.736807	2.251698	-0.45909	49	1	0	-4.779897	-2.36161	2.555008
9	6	0	-1.10171	3.288599	0.281408	50	1	0	-5.731697	-2.26221	-1.55809
10	6	0	-1.091813	4.604498	-0.15469	51	1	0	-6.280794	-2.89831	0.008307
11	6	0	-1.729114	4.979498	-1.34539	52	1	0	-6.376799	-1.15771	-0.32739
12	6	0	-2.369913	3.990696	-2.08719	53	1	0	-2.773593	-3.47281	-1.16659
13	6	0	-2.384109	2.663996	-1.65839	54	1	0	-3.495992	-4.25081	0.255807
14	6	0	-2.017701	-0.1826	-1.20639	55	1	0	-2.020294	-3.285	0.437407
15	6	0	-3.261701	-0.30391	-0.57539	56	1	0	1.632091	2.364706	1.282907
16	14	0	-4.036498	-1.82291	0.237908	57	1	0	2.769291	1.928808	2.576608
17	6	0	-4.194599	-1.55141	2.094608	58	1	0	1.624695	0.714406	1.941308
18	6	0	-5.763596	-2.05811	-0.47859	59	1	0	4.78169	2.650014	1.078608
19	6	0	-2.981794	-3.34361	-0.09409	60	1	0	3.484589	3.235211	0.018107
20	19	0	0.326495	1.056603	-2.26749	61	1	0	4.757592	2.185214	-0.64109
21	6	0	3.279193	1.17821	0.601808	62	1	0	5.8084	-1.23678	0.322408
22	6	0	4.087798	-0.11709	0.941008	63	1	0	6.136896	0.497218	0.529408
23	8	0	3.2257	-1.17419	0.438608	64	1	0	5.251396	-0.08028	-0.90549
24	8	0	2.523295	0.767908	-0.57259	65	1	0	4.897796	0.488415	2.847608
25	6	0	2.271392	1.559707	1.670308	66	1	0	4.897701	-1.26519	2.565107
26	6	0	4.13029	2.374313	0.237507	67	1	0	3.378998	-0.43699	2.971008
27	6	0	5.395598	-0.23018	0.174008	68	1	0	1.100803	-2.1724	-3.82799
28	6	0	4.321198	-0.34259	2.417708	69	1	0	-0.237896	-2.4863	-2.68829
29	8	0	1.6658	-1.23209	-1.45039	70	1	0	0.741607	-3.8353	-3.30959
30	6	0	1.736603	-2.63999	-1.80939	71	1	0	1.934205	-3.33709	0.240807
31	6	0	0.779004	-2.7896	-2.97689	72	1	0	1.355508	-4.55949	-0.91319
32	6	0	1.295005	-3.49789	-0.63669	73	1	0	0.252806	-3.2831	-0.36089
33	6	0	3.157705	-2.96949	-2.23659	74	1	0	3.204506	-3.99769	-2.61989
34	5	0	2.453599	-0.61069	-0.53679	75	1	0	3.862105	-2.88889	-1.39799
35	1	0	0.428602	-2.2287	2.667208	76	1	0	3.486003	-2.29259	-3.03809

T	-	4	1	٦
L	п	ι	L	J

IntG						36	1	0	-5.103991	4.63392
Ce	Ato	Ate	~			37	1	0	-6.390005	2.60950
nter]	omic	omic	Coordinates (A	Angstroms)		38	1	0	-5.4738	0.36424
Num	Nun	Тур				39	1	0	-1.917331	2.09683
ber	ıber	G	X	ý	Ζ	40	1	0	-3.441436	-0.081
1	6	0	-3 439146	3 46052	0 384828	41	1	0	-3.806498	-1.869
2	6	0	-4 690932	3 636774	-0 20048	42	1	0	-3.942257	-4.253
2	6	0	5 402002	2 500828	0.50802	43	1	0	-3.700974	-4.788
1	6	0	-3.402992	1.228676	-0.39892	44	1	0	-3.336939	-3.000
т 5	6	0	3 6131/0	1.015165	0.182063	45	1	0	-2.089113	0.3311
5	6	0	-5.015149	2 184450	0.182005	46	1	0	-1.163397	-2.402
0 7	6	0	-2.9103	0 22526	0.285266	47	1	0	1.537249	0.2285
/ 0	6	0	-3.001020	-0.52550	0.585500	48	1	0	1.917908	0.3927
0	0	0	-5.540228	-1.36324	-0.39003	49	1	0	0.453725	1.1491
9	0	0	-3.483230	-1.11550	-1.9/221	50	1	0	0.740249	-3.712
10	0	0	-3.099933	-2.12/28	-2.90373	51	1	0	2.105457	-2.634
11	0	0	-3.//4122	-3.40024	-2.49987	52	1	0	1.655865	-2.974
12	6	0	-3.632622	-3./5513	-1.14279	53	1	0	-1.336723	-0.270
13	6	0	-3.418343	-2.74399	-0.21305	54	1	0	0.151848	-0.938
14	6	0	-2.12619	-0.51942	1.435136	55	1	0	-1.192819	-2.018
15	0	0	-1.196001	-1.51341	1.698691	56	1	0	2.664772	-1.619
16	14	0	0.083261	-1.31441	3.013539	57	1	0	4.402616	-1.927
1/	6	0	1.095511	0.254/05	2.682604	58	1	0	3.792462	-0.254
18	6	0	1.252936	-2.79257	2.999625	59	1	0	3.989483	-3.391
19	6	0	-0.638169	-1.11995	4.748027	60	1	0	2.2954	-3.199
20	6	0	3.368859	-1.34883	-1.40443	61	1	0	2.774369	-2.836
21	6	0	4.488508	-0.62992	-0.59188	62	1	0	5.17666	-0.346
22	8	0	4.05381	0.76021	-0.63067	63	1	0	4.919691	-2.05
23	8	0	2.206633	-0.52759	-1.09822	64	1	0	3.526037	-0.998
24	6	0	3.577952	-1.27753	-2.90797	65	1	0	6.179467	-1.780
25	6	0	3.091057	-2.77247	-0.9818	66	1	0	6.594307	-0.210
26	6	0	4.522274	-1.03804	0.872811	67	1	0	5.915515	-0.278
27	6	0	5.86995	-0.72876	-1.19674	68	1	0	0.16577	3.2418
28	8	0	1.797581	1.729118	-0.63344	69	1	0	0.118976	3.6628
29	6	0	2.080558	3.104441	-0.25136	70	1	0	0.813769	4.8001
30	6	0	0.713875	3.737338	-0.0672	71	1	0	3.820982	3.2968
31	6	0	2.843063	3.771324	-1.38172	72	1	0	3.014467	4.8303
32	6	0	2.863092	3.139231	1.050109	73	1	0	2.272689	3.7176
33	5	0	2.695984	0.725531	-0.77377	74	1	0	2.997071	4.1821
34	19	0	-0.436075	0.078147	-0.90909	75	1	0	3.856155	2.6864
35	1	0	-2.852683	4.326879	0.695298	76	1	0	2.321386	2.60860

-0.34689

-1.05003

-0.7129

1.009054 -2.32249

-3.95796 -3.22726

-0.80064

0.842825

2.13239 1.055597

1.673461

3.402606

2.738729

3.317311

3.676978

1.99177

4.79154

5.492818 5.054483

-3.41248

-3.22685

-3.24636

-1.1115

-1.60638 0.065195

1.419733

0.996681

1.336923

-1.27311

-0.5549

-2.19456 0.748157

-0.98917 0.189488

-1.53732

-1.1463

-2.31919

1.367926

0.940209

1.845477

ł						36	1	
2	At	At				37	1	(
ntor	omic	omic	Coordinates (A	Angstroms)		38	1	C
	Nur	Тур				39	1	0
	nber	õ	X	у	Z	40	1	0
1	6	0	3 500616	2 835191	-1 51028	41	1	0
2	6	0	3.133081	3.914966	-0.71037	42	1	0
-	6	0	2 503902	3 663701	0 509816	43	1	0
4	6	0	2 220642	2 361582	0.90628	44	1	0
5	6	0	2 543404	1 252591	0 100416	45	1	0
6	6	0	3 215393	1 532453	-1 10798	46	1	0
7	6	0	2 169763	-0 12776	0 485072	47	1	0
, 8	6	0	3 134761	-1 21292	0.249257	48	1	0
9	6	0	0.922031	-0.42009	1.054207	49	1	0
10	6	0	4 520208	-0.42007	0.269336	50	1	0
10	6	0	5 445332	-0.200884	0.200000	51	1	0
12	6	0	5.016168	2 21845	0.15604	52	1	0
12	6	0	3.647362	2 57357	0.185/3	53	1	0
13	6	0	2 727969	-2 54364	-0.18545	54	1	0
15	6	0	0.242372	0 355503	1 2518/3	55	1	0
16	5	0	-2.054312	0.129651	-0 20007	56	1	0
10	14	0	-1.064243	0.127031	2 910188	57	1	0
17	17	0	2 03/5/8	0.72030	0.500632	58	1	0
10	6	0	-2.934340	1 60527	0.300032	59	1	0
20	6	0	-3.400187	-1.09527	-0.43426	60	1	0
20	8	0	-2.100300	-1.87099	-1.37023	61	1	0
21	6	0	3 818012	2 0/016	0 307343	62	1	0
22	6	0	-4.612258	-1.11404	-1 15664	63	19	0
23	6	0	-2 508471	-2 23034	-2.80101	64	8	0
2 4 25	6	0	-2.500471	-2.25754	-0.81045	65	6	0
25	6	0	-1.456124	-1 65955	3 310044	66	1	0
20	6	0	0 114712	0.733310	1 27882	67	1	0
27	6	0	-2 61453	1 105/13	3 104453	68	1	0
20 20	6	0	2.01433	2 5/1888	1.07182	69	6	0
30	1	0	-2.001117	2.541888	-1.07182	70	1	0
31	1	0	3 350844	<i>A</i> 035550	-2.+3+99	71	1	0
32	1	0	2 227787	4 497415	1 166364	72	1	0
32	1	0	1 747790	2 18030	1 872646	73	6	0
34	1	0	3 560107	0 710141	-1 74110	74	1	0
35	1	0	0.830	-1 4636	1 393604	75	1	0
55	1	U	0.039	-1.+030	1.575004	76	1	0

S29	

0.022436

-1.78444

-4.12129

-4.58538

-2.78644

1.416798

-2.72227

-3.73684

-3.34417

-0.20641

-0.83851

-1.83725 -2.37901

-1.46363

-3.18716

-2.60529

-2.89898

-3.88498

-2.04603

-1.74214

-2.30913

0.204689

1.810858

0.56273

1.119963

0.886771

2.255899

-0.47604

1.476261

2.343792

2.1317781.542373

3.263126

3.787875

3.923315

3.698425

4.684506

2.678853

2.82411

3.536899

1.773085

0.469575

0.110635

-0.30943

-0.36719

-0.03845

0.997457

0.951214 -0.39676

0.943629

-0.40735

-1.84768

-3.39316

-3.28945

-2.83666

0.21352

-1.44344

-0.80997

2.63976

4.344674 3.22804

4.231164

4.190214

5.280056

4.135541

2.412299

2.911236

-2.14379

-0.19194

-1.79394

-1.08152

-2.54002

-2.3327

-0.20099

0.35102

0.530155

-0.81058

-2.09551

-1.59034

-2.7602

-2.71593

IntH

IntH						36	1	0	4.739649	0.19667
Ce	Ato	Ato				37	1	0	6.492666	-1.53138
nter]	omic	omic	Coordinates (A	Angstroms)		38	1	0	5.935845	-3.84439
Num	Nun	Тур				39	1	0	3.588823	-4.39101
ber	nber	õ	ху	1	Z	40	1	0	1.837532	-2.66485
1	6	0	3.499609	2.728315	-1.84732	41	1	0	-0.164513	1.487569
2	6	0	3.116867	3.874925	-1.15285	42	1	0	-3.829033	-3.35173
3	6	0	2.447404	3.741295	0.061277	43	1	0	-3.494467	-4.18155
4	6	0	2.137269	2.48005	0.56377	44	1	0	-2.160581	-3.77564
5	6	0	2.48262	1.312452	-0.13298	45	1	0	-4.356567	-0.59809
6	6	0	3.195578	1.468825	-1.33731	46	1	0	-4.954617	-1.44376
7	6	0	2.10029	-0.05031	0.328708	47	1	0	-4.922092	-2.29157
8	6	0	3.149016	-1.10029	0.231797	48	1	0	-1.886852	-2.20508
9	6	0	0.850438	-0.37138	0.777467	49	1	0	-3.395167	-1.46809
10	6	0	4.480792	-0.81005	0.572217	50	1	0	-3.139086	-3.22434
11	6	0	5.470919	-1.78487	0.512444	51	1	0	-0.372275	-2.96769
12	6	0	5.160403	-3.08113	0.101324	52	1	0	-0.109059	-2.88634
13	6	0	3.847335	-3.38572	-0.24892	53	1	0	-1.219443	-4.09082
14	6	0	2.857655	-2.40686	-0.189	54	1	0	0.344664	-1.58011
15	6	0	-0.360317	0.445161	0.947089	55	1	0	-1.316997	-1.91704
16	5	0	-1.734847	-0.08502	0.129269	56	1	0	-1.034144	-1.13945
17	14	0	-0.77446	0.509505	2.804234	57	1	0	1.528521	1.208657
18	8	0	-2.37537	-1.17098	0.876109	58	1	0	0.459484	2.626047
19	6	0	-2.979609	-2.06216	-0.03464	59	1	0	0.282499	1.534658
20	6	0	-1.99108	-2.03639	-1.24841	60	1	0	-2.45462	2.351864
21	8	0	-1.423964	-0.73202	-1.19168	61	1	0	-2.629778	1.326985
22	6	0	-3.114791	-3.42363	0.631143	62	1	0	-3.257962	0.77771
23	6	0	-4.383311	-1.57125	-0.39598	63	19	0	0.638848	0.032125
24	6	0	-2.648389	-2.2414	-2.60506	64	8	0	-2.675641	1.036399
25	6	0	-0.865386	-3.0568	-1.09849	65	6	0	-1.444077	2.939309
26	6	0	-0.68643	-1.19589	3.603558	66	1	0	-1.183607	3.30624
27	6	0	0.497514	1.568363	3.728138	67	1	0	-0.57738	2.375919
28	6	0	-2.440861	1.311237	3.147414	68	1	0	-1.575677	3.81178
29	6	0	-2.724649	2.100008	-0.91911	69	6	0	-3.863818	2.99759
30	1	0	4.04639	2.81207	-2.78609	70	1	0	-4.799663	2.421873
31	1	0	3.354408	4.862249	-1.54624	71	1	0	-3.652856	3.37313
32	1	0	2.1652	4.627413	0.62922	72	1	0	-4.014545	3.858818
33	1	0	1.631695	2.399131	1.523723	73	6	0	-3.05148	1.631194
34	1	0	3.541985	0.58279	-1.87702	74	1	0	-4.003527	1.080942
35	1	0	0.723398	-1.42588	1.05344	75	1	0	-3.147416	2.491081
						76	1	0	-2.279525	0.955965

0.90261

0.793995

0.051264

-0.58087

-0.47667

0.662551

1.46386

-0.0707

1.042589

-0.89871

0.534688

-1.0295

-3.4011

-2.8204

-2.66813 -0.12169

-1.88245

-1.21615

3.623822

3.066205

4.646708

3.589854

3.42503

4.808117

2.790532

4.232506

2.64723

-2.47908

-0.00491

-0.95372

0.050431

-1.33391

-1.61045

-0.43852

-0.39586 0.573162

-1.10608 -2.34084

-2.35424 -3.0209

-2.73285

3ad							
Center Nu	Atomic N	Atomic T	Coordinates (Angstroms)				
mber	umber	ype	x y	I	Z		
1	6	0	-3.175861	-1.86374	-2.86734		
2	6	0	-3.183101	-3.15949	-2.35123		
3	6	0	-2.768039	-3.37783	-1.03973		
4	6	0	-2.342194	-2.30937	-0.25247		
5	6	0	-2.3209	-1.00548	-0.76002		
6	6	0	-2.755445	-0.79861	-2.07659		
7	6	0	-1.869298	0.149673	0.061723		
8	6	0	-2.838108	1.258535	0.250806		
9	6	0	-4.210412	0.993356	0.377826		
10	6	0	-5.125808	2.020989	0.585145		
11	6	0	-4.692775	3.343714	0.660167		
12	6	0	-3.33499	3.62575	0.519037		
13	6	0	-2.421052	2.597151	0.31052		
14	6	0	-0.630166	0.226153	0.59529		
15	6	0	0.509484	-0.71941	0.452736		
16	14	0	1.057447	-1.37636	2.169833		
17	5	0	1.758315	-0.03363	-0.19162		
18	6	0	1.390532	0.078169	3.312312		
19	6	0	-0.294944	-2.44328	2.918311		
20	6	0	2.612131	-2.412	1.966335		
21	8	0	2.689376	-0.71447	-0.93494		
22	6	0	3.583901	0.273197	-1.50742		
23	6	0	3.419413	1.477195	-0.53016		
24	8	0	2.064419	1.297571	-0.04349		
25	6	0	3.536049	2.840084	-1.17692		
26	6	0	4.33549	1.399947	0.681556		
27	6	0	4.98038	-0.30623	-1.57146		
28	6	0	3.075914	0.564277	-2.91095		
29	1	0	-3.50053	-1.68153	-3.89139		
30	1	0	-3.515785	-3.99368	-2.96777		
31	1	0	-2.780247	-4.38448	-0.62276		
32	1	0	-2.03406	-2.48436	0.778512		
33	1	0	-2.757248	0.213865	-2.48355		

34	1	0	-4.563325	-0.03738	0.325658
35	1	0	-6.184582	1.78558	0.69001
36	1	0	-5.409002	4.149371	0.816619
37	1	0	-2.98448	4.656887	0.555741
38	1	0	-1.366866	2.837626	0.169322
39	1	0	-0.407806	1.119597	1.187548
40	1	0	0.245353	-1.60801	-0.14276
41	1	0	0.459142	0.586568	3.60018
42	1	0	2.050245	0.825741	2.848369
43	1	0	1.875372	-0.26905	4.236634
44	1	0	-1.24292	-1.8948	3.017033
45	1	0	-0.47918	-3.34873	2.32256
46	1	0	0.004992	-2.76729	3.926259
47	1	0	2.856814	-2.91795	2.912032
48	1	0	3.4823	-1.80612	1.675639
49	1	0	2.477889	-3.18612	1.196997
50	1	0	3.414543	3.62316	-0.41668
51	1	0	4.527633	2.966028	-1.6343
52	1	0	2.773962	2.996399	-1.94871
53	1	0	5.382074	1.587832	0.407706
54	1	0	4.032132	2.166527	1.406753
55	1	0	4.278707	0.421399	1.178832
56	1	0	5.002352	-1.14111	-2.28447
57	1	0	5.697792	0.451201	-1.91782
58	1	0	5.31488	-0.68441	-0.59828
59	1	0	3.739276	1.257842	-3.4445
60	1	0	3.039592	-0.37516	-3.47774
61	1	0	2.06359	0.990338	-2.89869
			-	-	

KOtBu

Center Nu	Atomic N	Atomic T Atomic N	Atomic T	Coordinates (Angstroms)			
umber	umber	уре	x	y	Z		
1	6	0	1.097377	-0.00015	0.000005		
2	6	0	1.645195	0.739739	-1.23331		
3	1	0	1.279948	0.253566	-2.1516		
4	1	0	1.279978	1.778834	-1.23647		
5	1	0	2.747462	0.763314	-1.2725		
6	6	0	1.644821	-1.43833	-0.02387		
7	1	0	2.747068	-1.48446	-0.02371		
8	1	0	1.278544	-1.99031	0.856047		
9	1	0	1.280053	-1.96047	-0.9224		
10	6	0	1.645435	0.69841	1.257076		
11	1	0	1.279914	1.736697	1.294836		
12	1	0	1.280823	0.182118	2.158979		
13	1	0	2.747699	0.721126	1.296587		
14	8	0	-0.269719	-7.4E-05	0.000016		
15	19	0	-2.629511	0.000113	0.000038		

1a							
Center Nu	Atomic Nu	Atomic T	Coordinates (Angstroms)				
mber	umber	/pe	X	у	Z		
1	6	0	-0.002322	2.405483	0.645903		
2	6	0	0.00222	2.405343	-0.64608		
3	6	0	0.00002	1.04574	0.000056		
4	6	0	1.278676	0.250763	0.039782		
5	6	0	-1.278664	0.250774	-0.03961		
6	6	0	-1.392817	-0.88356	-0.85311		
7	6	0	-2.588824	-1.59148	-0.92952		
8	6	0	-3.696008	-1.18299	-0.18643		
9	6	0	-3.594877	-0.05754	0.627975		
10	6	0	-2.397435	0.65205	0.695418		
11	6	0	2.397505	0.652241	-0.69509		
12	6	0	3.59493	-0.05735	-0.62779		
13	6	0	3.696001	-1.18304	0.186336		
14	6	0	2.588809	-1.59172	0.929281		
15	6	0	1.392778	-0.88375	0.852958		
16	1	0	-0.532625	-1.21605	-1.43589		
17	1	0	-2.656532	-2.46782	-1.57365		
18	1	0	-4.631059	-1.73897	-0.24272		
19	1	0	-4.451368	0.270757	1.216262		
20	1	0	-2.331872	1.536499	1.331588		
21	1	0	2.33197	1.536905	-1.33097		
22	1	0	4.4515	0.270985	-1.21593		
23	1	0	4.631065	-1.73902	0.242487		
24	1	0	2.656429	-2.46822	1.573191		
25	1	0	0.53265	-1.21654	1.435678		
26	1	0	-0.000075	2.922397	-1.5986		
27	1	0	-0.000031	2.923225	1.598047		

compound 1c

compound 1c

compound 1f

$\text{compound} \ \mathbf{1} \mathbf{f}$

compound 1g

compound 1g

compound 1h

compound 1h

compound 3aa

compound 3aa

compound 3ba

compound 3ba

compound 3ca

compound 3ca

compound 3da

compound 3da

compound 3ea

compound 3ea

compound 3fa

compound 3fa

compound 3ga

compound 3ga

compound **3ha** (dr = 52/48)

compound **3ha** (dr = 52/48)

compound **3ia** (dr = 84/16)

compound **3ia** (dr = 84/16)

compound (E)-3ja

compound (E)-3ja

compound **3ka** (dr = 53/47)

compound **3ka** (dr = 53/47)

compound 3ab

compound 3ab

compound 3ac

compound 3ac

compound 5la

compound 5la

VII. References

- 1. Shintani, R.; Iino, R.; Nozaki, K. J. Am. Chem. Soc. 2014, 136, 7849.
- 2. Li, H.; Zhang, M.; Mehfooz, H.; Zhu, D.; Zhao, J.; Zhang, Q. Org. Chem. Front. 2019, 6, 3387.
- 3. Guo, P.; Sun, W.; Liu, Y.; Li, Y.-X.; Loh, T.-P.; Jiang, Y. Org. Lett. 2020, 22, 5978.
- Chen, J.; Guo, P.; Zhang, J.; Rong, J.; Sun, W.; Jiang, Y.; Loh, T.-P. Angew. Chem., Int. Ed. 2019, 58, 12674.
- 5. Shishido, R.; Uesugi, M.; Takahashi, R.; Mita, T.; Ishiyama, T.; Kubota, K.; Ito, H. *J. Am. Chem. Soc.* **2020**, *142*, 14125.
- 6. Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004, 23, 3369.
- Gaussian 16, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2019.
- 8. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- 9. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
- 10. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.
- 11. Bogdos, M. K.; Morandi, B. J. Chem. Educ. 2023, 100, 3641.
- 12. CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org).