Supporting information for:

Tridentate κ^3 -*P*,*P*,*C* Iridium Complexes: Influence of Ligand Saturation on Intramolecular C—H Bond Activation

Mitchell J. Demchuk,^a Joseph A. Zurakowski,^{a,b} Marcus W. Drover^{a,*}

*E-mail: marcus.drover@uwo.ca

^aDepartment of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada ^bDepartment of Chemistry and Biochemistry, The University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada

1.	Experimental Section	S2
2.	Preparation of Compounds	S 3
3.	Multinuclear NMR Data	S 8
4.	IR Data	S26
5.	Computational Details	S29
6.	Crystallographic Details	S 31
7.	References	S 34

Experimental Section:

General Considerations. All experiments were carried out employing standard Schlenk techniques under an atmosphere of dry nitrogen employing degassed, dried solvents in a solvent purification system supplied by PPT, LLC. Non-halogenated solvents were tested with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran to confirm effective moisture removal. *d*₆-benzene was dried over molecular sieves and degassed by three freeze-pump-thaw cycles. Dicyclohexylborane (HBCy₂),¹ *tri*-tert-butyl-allyl-diphosphinoethane (t^tbape) ² and *tri*-tert-butyl-*n*-propyldicyclohexylboranyl-diphosphinoethane (t^tbbpe)² were prepared using literature procedures. Other reagents were purchased from commercial vendors and used without further purification unless otherwise stated.

Physical methods. ¹H NMR spectra are reported in parts per million (ppm) and are referenced to residual solvent e.g., ¹H(C₆D₆): δ 7.16; ¹³C(C₆D₆): 128.06; coupling constants are reported in Hz. ¹³C{¹H}, ¹¹B{¹H}, and ³¹P{¹H} NMR spectra were performed as proton-decoupled experiments and are reported in ppm.

Preparation of Compounds:

[Ir^I(\kappa^3-(CH₂)₃PP^{tBu}₃)(COD)] ((±)-1: C₂₅H₄₉P₂Ir, M_W = 603.8 g/mol): In the glovebox, [Ir(\mu-OCH₃)(COD)]₂ (24 mg, 0.036 mmol, 1 equiv.) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in *ca***. 0.5 mL THF. Then, t^tbbpe (35 mg, 0.073 mmol, 2 equivs.) was dissolved in** *ca***. 1 mL THF and added to the vial while mixing, immediately turning dark yellow/murky**

orange. This reaction was allowed to stir for 3 h, resulting in a murky dark orange solution, after which volatiles were removed in vacuo. The resulting orange oily solid was dissolved in pentane and filtered using Celite® (the crude yield after this step was 47 mg (107%), as side product, MeO-BCy₂ was still present; >96% purity via ³¹P{¹H} NMR spectroscopy). Orange crystals suitable for analysis by single crystal X-Ray diffraction were grown from a minimal amount of pentane at -35 °C over the course of 3 days (more material can be obtained from subsequent crystallizations). These crystals can be quickly washed with cold pentane to remove the side product, CH₃OBCy₂ to give (±)-1 in >99% purity *via* ³¹P{¹H} NMR spectroscopy (18 mg, 41%). ¹H NMR (600 MHz, C₆D₆, 298 K): δ_H = 4.40 (br, 1H; CH COD), 3.72 (br, 1H; CH COD), 3.16 – 2.08 (br, 10H), 2.01 (m, 2H), 1.77 (m, 2H), 1.56 (m, 1H), 1.47 (m, 1H), 1.35 (m, 2H), 1.25 (d, 9H; ³J_{H,P} = 11.2 Hz; ^tBu CH₃), 1.11 $(d, 9H; {}^{3}J_{H,P} = 11.6 \text{ Hz}; {}^{t}\text{Bu CH}_{3}), 1.01 (d, 9H; {}^{3}J_{H,P} = 10.2 \text{ Hz}; {}^{t}\text{Bu CH}_{3}), 0.86 (m, 2H; CH_{2}).$ ¹³C{¹H} NMR (151 MHz, C₆D₆, 298 K): $\delta c = 64.3$ (br, CH COD), 62.7 (br, CH COD), 53.6 (br, CH COD), 49.6 (br, CH COD), 38.6 (br, CH₂ COD), 38.4 (dd, J_{C,P} = 10.8, 5.5 Hz), 36.5 (br, CH₂ COD), 36.5 (dd, J_{C,P} = 22.4, 7.2 Hz), 35.9 (dd, J_{C,P} = 3.6, 1.1 Hz), 35.2 (dd, J_{C,P} = 25.3, 5.1 Hz), 34.1 (br, CH₂ COD), 32.5 (d, J_{CP} = 4.2 Hz), 32.4 (br, CH₂ COD), 32.3 (dd, J_{CP} = 10.6, 4.7 Hz), 31.3 (d, JCP = 5.00 Hz), 30.2 (dd, JCP = 18.8, 15.6 Hz), 28.2 (d, JCP = 5.8 Hz), 19.9 (dd, $J_{C,P}$ = 16.1, 11.7 Hz), 19.8 (dd, $J_{C,P}$ = 5.0, 3.7 Hz). ³¹P{¹H} NMR (121 MHz, C₆D₆, 298 K): δ_P = + 57.1 (d, $J_{P,P}$ = 44.5 Hz), + 53.9 (d, $J_{P,P}$ = 44.5 Hz). HRMS (ESI): m/z calc. for $[C_{25}H_{48}P_2Ir]^+$: 603.286 [M-H]⁺; expt. 603.286 [M-H]⁺. Anal. calcd for C₂₅H₄₉P₂Ir (603.8): C, 49.73; H, 8.18; best found: C, 51.05; H, 8.15. These results are outside the range viewed as establishing analytical purity but are provided to illustrate the best values obtained to date. Clean NMR data indicate >95% purity

[Ir¹(κ^3 -(CH)=(CH)(CH₂)PP^{tBu}₃)(COD)] ((±)-2: C₂₅H₄₇P₂Ir, M_W = 601.8 g/mol): In the glovebox, [Ir(μ -OCH₃)(COD)]₂ (23 mg, 0.035 mmol, 1 equiv.) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in *ca*. 0.5 mL THF. Then, t⁴bape (21 mg, 0.069 mmol, 2 equivs.) was dissolved in *ca*. 1 mL THF and added to the vial while mixing, turning from yellow to

cloudy dark yellow/orange. This reaction was allowed to stir for 5 minutes, resulting in an orange solution, after which volatiles were removed in vacuo. The resulting oily solid was dissolved in pentane and filtered using Celite[®] (the crude yield after this step was 29 mg (69%), with impurities *via* ³¹P{¹H} NMR spectroscopy). Dark yellow crystals suitable for analysis by single crystal X-Ray diffraction were grown from a minimal amount of pentane at -35 °C over the course of 1 week (more material can be obtained from subsequent crystallizations). These crystals can be quickly washed with cold pentane to give (±)-2 in >90% purity ((±)-3 is the impurity) by ${}^{31}P{}^{1}H$ NMR spectroscopy (7 mg, 17%). ¹H NMR (600 MHz, C₆D₆, 298 K): δ_H = 6.88 (m, 1H; ²J_{H,P} = 47.4 Hz; P-CH on cyclometalated arm), 5.57 (m, 1H; ³J_{H,P} = 12.5 Hz; CH middle of cyclometalated arm), 3.66 (br., 2H; CH COD), 3.31 (br., 2H; CH COD), 3.11 (m, 1H; CH2 cyclometalated arm), 2.60 (br. m, 4H; CH₂ COD), 2.36 (br. m, 4H; CH₂ COD), 1.84 (m, 1H; J = 17.8 Hz; CH₂ cyclometalated arm), 1.76 – 1.38 (m, 4H, PCH₂CH₂P backbone), 1.21 (d, 9H; ³*J*_{H,P} = 11.6 Hz; ^tBu CH₃), 1.19 (d, 9H; ${}^{3}J_{H,P} = 12.4 \text{ Hz}; {}^{t}\text{Bu CH}_{3}$, 1.05 (d, 9H; ${}^{3}J_{H,P} = 10.4 \text{ Hz}; {}^{t}\text{Bu CH}_{3}$). ${}^{13}\text{C}{}^{1}\text{H}$ NMR (151 MHz, **C**₆**D**₆, **298** K): δ_c = 163.4 (d, *J*_{C,P} = 32.9 Hz; CH cyclometalated arm), 125.8 (dd, *J*_{C,P} = 40.0, 1.8 Hz; CH cyclometalated arm), 57.3 (br), 55.7 (br), 37.8 (dd, J_{C,P} = 9.9, 4.3 Hz), 36.3 (d, J_{C,P} = 5.1 Hz), 35.3 (br), 34.8 (br), 32.5 (d, J_{C,P} = 4.1 Hz), 32.1 (dd, J_{C,P} = 18.0, 5.0 Hz), 31.9 (d, J_{C,P} = 4.2 Hz), 31.8 (d, JCP = 4.1 Hz), 31.3 (d, JCP = 5.1 Hz), 29.3 (dd, JCP = 20.9, 15.1 Hz), 28.3 (d, JCP = 4.4 Hz), 21.7 (d, J_{CP} = 3.9 Hz), 21.4 (dd, J_{CP} = 17.3, 12.6 Hz); some resonances overlapping. ³¹**P**{¹**H**} **NMR (121 MHz, C₆D₆, 298 K):** $\delta_{P} = +55.4$ (d, $J_{P,P} = 31.6$ Hz), +46.9 (d, $J_{P,P} = 31.6$ Hz). HRMS (ESI): *m*/*z* calc. for [C₂₅H₄₆P₂Ir]⁺: 601.270 [M-H]⁺; expt. 601.270 [M-H]⁺. Anal. calcd for C25H47P2Ir (601.8): C, 49.89; H, 7.87; best found: C, 48.80; H, 7.89. These results are outside the range viewed as establishing analytical purity but are provided to illustrate the best values obtained to date. Clean NMR data indicate >95% purity

[Ir^{III}(κ^3 -(CH₂)(CH)=(CH)PP^{tBu}₃)(1,2,3,5- η^3 , η^1 -C₈H₁₂)] ((±)-3: C₂₅H₄₇P₂Ir, M_W = 601.8 g/mol): In the glovebox, [Ir(μ -OCH₃)(COD)]₂ (33 mg, 0.050 mmol, 1 equiv.) was weighed into a 20 mL scintillation vial equipped with a stir bar and dissolved in *ca*. 0.5 mL THF. Next, t^tbape (30 mg, 0.099 mmol, 2 equivs.) was dissolved in *ca*. 1 mL THF and added to the vial

while mixing, slowly going from yellow to cloudy dark yellow/orange. This reaction was allowed to stir for 24 h, resulting in a dark orange/red solution, after which volatiles were removed in vacuo. The resulting orange/red oily solid was dissolved in pentane and filtered using Celite[®] (the crude yield after this step was 47 mg (78%), with impurities via ³¹P{¹H} NMR spectroscopy). Light orange crystals of (±)-3 suitable for analysis by single crystal x-ray diffraction were grown from a minimal amount of pentane at -35 °C over the course of 1 week to give >99% purity via ³¹P{¹H} NMR spectroscopy (4 mg, 7%). More material can be obtained from subsequent crystallizations. ¹H NMR (600 MHz, C₆D₆, 298 K): $\delta_{H} = 8.45$ (m, 1H; Ir-CH on cyclometalated arm), 6.13 (m, 1H; Ir-CH-CH on cyclometalated arm), 4.87 (m, 1H; CH COD), 4.69 (m, 1H; CH COD), 4.07 (m, 1H; CH COD), 3.84 (m, 1H; CH COD), 2.83 (m, 1H; Ir-CH-CH-CH2 on cyclometalated arm by 1H-¹H COSY), 2.58 (m, 1H), 2.47 (m, 2H), 2.04 (m, 1H; Ir-CH-CH-CH₂ on cyclometalated arm by ¹H-¹H COSY), 1.98-1.17 (m, 9H), 1.13 (d, 9H, ³J_{H,P} = 12.0 Hz; ^tBu CH₃), 1.08 (d, 9H, ³J_{H,P} = 11.1 Hz; ^tBu CH₃), 0.80 (d, 9H, ³/_{H,P} = 11.0 Hz; ^tBu CH₃). ¹H{³¹P} NMR (600 MHz, C₆D₆, **298 K):** *δ*_H = 8.45 (dd, 1H; *J*_{H,H} = 8.3 Hz, *J*_{H,H} = 2.2 Hz; Ir-CH on cyclometalated arm), 6.13 (ddd, 1H; JH,H = 8.3 Hz, JH,H = 3.6 Hz, JH,H = 1.9 Hz; Ir-CH-CH on cyclometalated arm), 4.86 (m, 1H; CH COD), 4.69 (m, 1H; CH COD), 4.06 (m, 1H; CH COD), 3.84 (br. d, 1H; J_{H,H} = 14.1 Hz; CH COD), 2.83 (m, 1H; Ir-CH-CH-CH₂ on cyclometalated arm by ¹H-¹H COSY), 2.58 (m, 1H), 2.47 (m, 2H), 2.04 (dd, 1H; JH,H = 15.9 Hz, JH,H = 3.63 Hz; Ir-CH-CH-CH2 on cyclometalated arm by 1H-1H COSY), 1.91 (m, 2H), 1.76 (m, 1H), 1.65 (m, 1H), 1.45 (m, 2H), 1.36 (m, 2H), 1.26 – 1.18 (m, 4H), 1.13 (s, 9H; ^tBu CH₃), 1.08 (s, 9H; ^tBu CH₃), 0.70 (s, 9H; ^tBu CH₃). ¹³C{¹H} NMR (151 MHz, C₆D₆, 298 K): δ_c = 143.9 (dd, J_{CP} = 5.2, 5.1 Hz; Ir-CH on cyclometalated arm), 121.0 (dd, JCP = 14.0, 3.4 Hz; Ir-CH-CH on cyclometalated arm), 94.0 (d, J_{C,P} = 3.6 Hz; allyl CH), 56.1 (d, J_{C,P} = 6.2 Hz; allyl CH), 39.6 (d, J_{C,P} = 1.7 Hz; allyl CH), 39.3 (d, $J_{CP} = 1.7 \text{ Hz}$), 38.8 (dd, $J_{CP} = 6.3$, 2.0 Hz), 36.9 (d, $J_{CP} = 6.0 \text{ Hz}$), 34.2 (d, $J_{CP} = 5.4$ Hz), 33.1 (dd, J_{C,P} = 33.1, 1.3 Hz; Ir-CH-CH-CH₂), 30.9 (d, J_{C,P} = 18.2 Hz), 30.8 (d, J_{C,P} = 3.6 Hz), 30.0 (d, J_{CP} = 4.5 Hz), 28.4 (dd, J_{CP} = 3.4, 0.8 Hz), 27.7 (d, J_{CP} = 4.2 Hz), 27.5 (dd, J_{CP} = 27.3, 15.7 Hz), 26.0 (dd, JCP = 2.1, 1.1 Hz), 25.2 (dd, JCP = 4.1, 1.5 Hz), 23.5 (dd, JCP = 20.4,

12.5 Hz). ³¹P{¹H} NMR (243 MHz, C₆D₆, 298 K): δ_P = + 70.1 (d, $J_{P,P}$ = 2.1 Hz), + 35.5 (d, $J_{P,P}$ = 2.1 Hz). HRMS (ESI): *m*/*z* calc. for [C₂₅H₄₆P₂Ir]⁺: 601.270 [M-H]⁺; expt. 601.270 [M-H]⁺. Anal. calcd for C₂₅H₄₇P₂Ir (601.8): C, 49.89; H, 7.87; best found: C, 48.24; H, 8.07. These results are outside the range viewed as establishing analytical purity but are provided to illustrate the best values obtained to date. Clean NMR data indicate >95% purity

tri-tert-butyl-allyl-diphosphinoethane-d5, (*Bu)2PCH2CH2P(*Bu)(CD2CDCD2), t*bape-

ds: $C_{17}H_{31}D_5P_2$, $M_W = 307.4$ g/mol): To a 100 mL two-necked Schlenk flask, was added finely cut dried magnesium turnings (96.4 mg, 3.97 mmol) and cycled onto a Schlenk line. Approximately 20 mL of dry Et₂O was added to the flask. A reflux condenser was attached to the top neck and a septum to the other.

With vigorous stirring, allyl-bromide-d₅ (0.178 mL, 1.98 mmol) was added slowly dropwise over the course of 30 mins, without allowing the solvent to reflux. The reaction was allowed to stir for 2 h, transforming from a clear colorless solution to a colorless solution with off-white precipitate. The solution was then cannula filtered into another 100 mL Schlenk flask and the reaction vessel was washed with 5 mL of Et₂O. In another 200 mL pear flask, (di-tert-butyl-phosphino)-2-(tert-butyl-iodo-phosphino)ethane, (*Bu)2PCH2CH2P(*Bu)(I) (377.6 mg, 0.972 mmol) was weighed and dissolved in 80 mL THF. The flask was cycled onto the Schlenk line and cooled to 0 °C. Using a nitrogen purged syringe, the *in-situ* prepared solution of allyl-magnesium bromide-d₅ was added slowly to the flask containing ^t(Bu)₂PCH₂CH₂P(^tBu)(I), while stirring over the course of 30 mins. The reaction was then allowed to warm to room temperature and stirred for an additional 2 h (a white precipitate formed). Solvent was removed in-vacuo and the reaction vessel was brought into a glovebox. The dried white solid was then washed with 5 x 4 mL of pentane and filtered through a 0.1 µm PTFE syringe filter into a 20 mL scintillation vial. The solvent was removed *in-vacuo* leaving a viscous white oil (260 mg, 87%). N.B. this compound was 80% pure by ³¹P{¹H} NMR spectroscopy and was used without further purification. The impurity is the known dimer, ('Bu)₂PCH₂CH₂P('Bu)-P(^tBu)CH₂CH₂P(^tBu)₂.² ¹H NMR data as previously reported.² ³¹P{¹H} NMR (243 MHz, **C**₆**D**₆, **298** K): δ_P = + 34.8 (d, $J_{P,P}$ = 29.9 Hz), + 1.62 (d, $J_{P,P}$ = 29.9 Hz).

NMR Data:

Figure S1. (±)-1, ¹H NMR, C₆D₆, 600 MHz, 298 K.

Figure S2. (±)-1, ¹H NMR (expansion), C₆D₆, 600 MHz, 298 K.

Figure S3. (±)-1, ¹H{³¹P} NMR, C₆D₆, 600 MHz, 298 K.

Figure S4. (±)-1, ¹H (blue)/¹H{³¹P} (red) NMR, C₆D₆, 600 MHz, 298 K.

Figure S6. (±)-1, ¹³C{¹H} NMR, C₆D₆, 151 MHz, 298 K.

Figure S7. (±)-1, ¹³C{¹H} NMR (expansion), C₆D₆, 151 MHz, 298 K.

Figure S8. (±)-2, ¹H NMR, C₆D₆, 600 MHz, 298 K.

Figure S9. (±)-2, ¹H NMR (expansion), C₆D₆, 600 MHz, 298 K.

Figure S10. (±)-2, ¹H{³¹P} NMR, C₆D₆, 600 MHz, 298 K.

Figure S12. (±)-2, ¹H (blue)/¹H{³¹P} (red) NMR (expansion), C₆D₆, 600 MHz, 298 K.

Figure S13. (±)-2, ${}^{31}P{}^{1}H$ NMR, C₆D₆, 121 MHz, 298 K, [(±)-3 $\delta_P = 69.0/34.4$].

Figure S14. (±)-2, ¹³C{¹H} NMR, C₆D₆, 151 MHz, 298 K.

Figure S15. (±)-2, ¹H-¹H COSY NMR, C₆D₆, 600 MHz, 298 K.

Figure S16. (±)-3, ¹H NMR, C₆D₆, 600 MHz, 298 K.

Figure S17. (±)-3, ¹H NMR (expansion), C₆D₆, 600 MHz, 298 K.

Figure S18. (±)-3, ¹H NMR (expansion), C₆D₆, 600 MHz, 298 K.

Figure S19. (±)-3, ¹H{³¹P} NMR, C₆D₆, 600 MHz, 298 K.

Figure S20. (±)-3, ¹H (blue)/¹H{³¹P} (red) NMR Stacked, C₆D₆, 600 MHz, 298 K.

Figure S21. (±)-3, ¹H (**blue**)/¹H{³¹P} (**red**) NMR Stacked (expansion), C₆D₆, 600 MHz, 298 K.

Figure S22. (±)-3, ³¹P{¹H} NMR, C₆D₆, 243 MHz, 298 K.

Figure S23. (±)-3, ¹³C{¹H} NMR, C₆D₆, 151 MHz, 298 K.

Figure S24. (±)-3, ¹H-¹H COSY NMR, C₆D₆, 600 MHz, 298 K.

Figure S25. (±)-3, ¹H-¹³C{¹H} HSQC NMR, C₆D₆, 600 MHz, 298 K.

Figure S26. t^{*t*}**bape-d**₅, ³¹P{¹H} NMR, C₆D₆, 243 MHz, 298 K (Impurity at δ_P = -5.64 & 34.8 is (^tBu)₂PCH₂CH₂P(^tBu)-P(^tBu)CH₂CH₂P(^tBu)₂).

Figure S27. t^{*t*}**bape-d**₅, ¹H NMR, C₆D₆, 600 MHz, 298 K.

Figure S28. t^{t} **bape-d**₅ (blue) and t^{t} **bape** (red) overlay, ${}^{31}P{}^{1}H}$ NMR, C₆D₆, 243 MHz, 298 K.

Figure S29. t^{*t*}**bape-d**₅ (blue) and t^{*t*}**bape** (red), ¹H NMR, C₆D₆, 600 MHz, 298 K.

Figure S30. t^{*t*}**bape-d**⁵ (blue) and t^{*t*}**bape** (red) (expansion), ¹H NMR, C₆D₆, 600 MHz, 298 K.

Figure S31. (±)-3-d₄, ¹H NMR, C₆D₆, 600 MHz, 298 K.

Figure S32. (±)-3-d₄, ³¹P{¹H} NMR, C₆D₆, 243 MHz, 298 K.

Figure S33. (±)-3-d₄ (blue) and (±)-3 (red) overlay, ³¹P{¹H} NMR, C₆D₆, 243 MHz, 298 K.

Figure S34. (±)-3-d₄ (blue) and (±)-3 (red) overlay, ¹H NMR, C₆D₆, 600 MHz, 298 K. (Signals at δ_H = 8.45, 6.13, 2.83, and 2.04 ppm are absent).

Figure S35. (±)-3-d₄ (blue) and (±)-3 (red) overlay, ¹H NMR, C₆D₆, 600 MHz, 298 K. (Signals at $\delta_{\rm H}$ = 8.45, 6.13, 2.83, and 2.04 ppm are absent – highlighted below).

IR Data

Figure S36. (±)-1, FT-IR (ATR), thin film from evaporated C₆D₆.

Figure S37. (±)-2, FT-IR (ATR), thin film from evaporated C₆D₆.

Figure S39. [Ir(µ-OMe)COD]₂, FT-IR (ATR), thin film from evaporated C₆D₆

Figure S41. t^{*t*}bbpe, FT-IR (ATR), thin film from evaporated C₆D₆.

Computational details

All calculations were performed using version 5.0.3 of the ORCA computational package.³ All geometry optimizations and frequency calculations were performed at the PBE0-D3(BJ)/def2-TZVP level of theory.⁴ The SARC-ZORA-TZVP basis set was used for iridium (along with the *SARC/J* auxiliary basis). The RIJCOSX approximation was used to enhance computational efficiency, along with the auxiliary basis *def2/J.*⁵ Convergence criteria were met using the *defgrid2* integral grid size. Frequency calculations (*Freq*) were performed to confirm that each optimized geometry was a true minimum indicated by the absence of imaginary frequencies. A Universal Solvation Model (SMD) of benzene was used to calculate the thermodynamic parameters.

Accurate electronic energies were determined using CCSD(T) at the DLPNO-CCSD(T)/def2-TZVP level of theory.⁶ The RIJCOSX approximation was used to enhance computational efficiency, along with a *def2/J* auxiliary basis set.⁷ As well, a *def2-TZVP/C* auxiliary basis set was used.⁸

To obtain accurate thermochemical information, the final Gibbs free energies for each chemical species were calculated using the following equation.

$$\Delta G_{solv} = E_{el}(DLPNO\text{-}CCSD(T)) + \Delta G_{correction}(DFT) + \Delta G^{\circ}_{solv}(DFT)$$

 $E_{el}(DLPNO-CCSD(T))$ is the final electronic energy from a DLPNO-CCSD(T)/def2-TZVP calculation, $\Delta G_{correction}(DFT)$ is the *G*- E_{el} (Gibbs free energy minus the electronic energy) from a BP86-D3(BJ)/def2-TZVP calculation, and $\Delta G^{\circ}_{solv}(DFT)$ is the sum of $\Delta G_{ENP}(CPCM Dielectric)$ and $\Delta G_{CDS}(Free-energy(cav+disp))$ from an *SMD* single point calculation.

Geometries of optimized molecules can be retrieved from a .xyz file associated with this work.

Discussion of conversion of IV to (±)-3:

To probe thermodynamics for the conversion of **IV** to (±)-3, relative energies were compared, providing $G_{rel} = 1.7$ kcal mol⁻¹ on going from the 1,2,3,6- η^3 , η^1 -C₈H₁₂ (**IV**) to 1,2,3,5- η^3 , η^1 -C₈H₁₂ ((±)-3) binding motif. On inspection, however, it would appear that the 1,2,3,5- η^3 , η^1 -C₈H₁₂ isomer does contain the less distorted octahedron (taking C1, C5, and the two phosphines as the equatorial plane).

Figure S41. Energetic comparison between IV and (±)-3.

Crystallographic details:

Single crystal X-ray diffraction (scXRD) data for (±)-1 and (±)-2 was collected using a Bruker D8 Venture diffractometer equipped with an Apex detector and IµS Cu microsource at the University of Windsor. Both crystals were mounted on a MiTeGen loop. Data for (±)-1 and (±)-2 was obtained using Molybdenum K- α , λ = 0.71 Å at 170(2) K. Cell refinement and data reduction were performed using Apex3. ⁹ An empirical absorption correction, based on the multiple measurements of equivalent reflections and merging of data was performed using SADABS.¹⁰ Data conversion from XDS to SADABS file format was performed using XDS2SAD.¹¹ The space group was confirmed by XPREP.¹²

Single crystal X-ray diffraction (scXRD) data for (±)-3 was obtained using a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made on a Bruker Kappa Axis Apex2 diffractometer at Western University. The unit cell dimensions were determined from a symmetry constrained fit of 9760 reflections with $4.84^{\circ} < 2\theta < 60.92^{\circ}$. The data collection strategy used φ and ω scans which collected data up to 61.06° (2 θ). The frame integration was performed using SAINT.¹³ The resulting raw data was scaled, and absorption corrected using a multi-scan averaging of symmetry equivalent data using SADABS.¹⁴

Routine checkCIF and structure factor analyses were performed using Platon.¹⁵ CCDC **2311411-2311413** contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Compound	(±)-1	(±)-2
Empirical formula	$C_{25}H_{49}IrP_2$	$C_{25}H_{47}IrP_2$
Formula weight	603.78	601.76
Temperature/K	170.0	170.0
Crystal system	Orthorhombic	Orthorhombic
Space group	Pbca	Pbca
a/Å	17.8681(5)	10.0014(3)
b/Å	14.8775(4)	17.1653(5)
c/Å	38.0030(10)	28.5541(9)
a/°	90	90
β/°	90	90
γ/°	90	90
V/Å ³	10102.4(5)	4901.6(3)
Z	16	8
$ ho_{calc}$ g/cm ⁻³	1.588	1.631
μ/ mm ⁻¹	5.423	5.588
F(000)	4896.0	2432.0
Crystal size/ mm ³	$0.12 \times 0.11 \times 0.08$	$0.15 \times 0.1 \times 0.07$
Radiation	MoK α (λ = 0.71073)	MoK α (λ = 0.71073)
2θ range for datacollection/°	3.72 to 56.672	4.746 to 56.632
	-23 \leq h \leq 23, -19 \leq k \leq 19, -50 \leq	-13 \leq h \leq 13, -22 \leq k \leq 22, -38 \leq
Index ranges	$l \le 60$	1≤37
	$12555 [R_{int} = 0.0940, R_{sigma} =$	$6082 [R_{int} = 0.0441, R_{sigma} =$
Independent reflections	0.0209]	0.0177]
Data/restraints/parameters	12555/27/507	6082/0/263
Goodness-of-fit on F ²	1.207	1.149
R [I>=2θ (I)] (R1, wR2)	$R_1 = 0.0540$, $wR_2 = 0.1090$	$R_1 = 0.0204$, $wR_2 = 0.0445$
R (all data) (R1, wR2)	$R_1 = 0.0716$, $wR_2 = 0.1191$	$R_1 = 0.0238$, $wR_2 = 0.0465$
Largest diff. peak/hole / (e Å ⁻³)	6.37/-3.69	1.90/-1.10

 Table S2. Crystallographic data for (±)-1 and (±)-2.

 $R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR2 = [\Sigma(w(F_{o^{2}} - F_{c^{2}})^{2}) / \Sigma w(F_{o^{2}})^{2}]^{1/2}$

Compound	(±)-3	
Empirical formula	$C_{25}H_{47}IrP_2$	
Formula weight	601.76	
Temperature/K	110.0	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
a/Å	10.405(9)	
b/Å	18.494(13)	
c/Å	13.748(10)	
α/°	90	
β/°	109.51(3)	
γ/°	90	
V/Å ³	2494(3)	
Z	4	
$\rho_{calc} g/cm^{-3}$	1.603	
μ/ mm ⁻¹	5.492	
F(000)	1216.0	
Crystal size/ mm ³	$0.102 \times 0.098 \times 0.042$	
Radiation	MoK α (λ = 0.71073)	
2θ range for datacollection/°	3.838 to 51.43	
	-12 \leq h \leq 12, -22 \leq k \leq 22, -16 \leq	
Index ranges	$l \le 16$	
	$4783 [R_{int} = 0.1374, R_{sigma} =$	
Independent reflections	0.0633]	
Data/restraints/parameters	4738/0/262	
Goodness-of-fit on F^2	1.034	
R [I>=2θ (I)] (R1, wR2)	$R_1 = 0.0384$, $wR_2 = 0.0812$	
R (all data) (R1, wR2)	$R_1 = 0.0658$, $wR_2 = 0.0914$	
Largest diff. peak/hole / (e Å-³)	1.60/-1.45	

 Table S3. Crystallographic data for (±)-3.

 $R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|; wR2 = [\Sigma(w(F_{o^{2}} - F_{c^{2}})^{2}) / \Sigma w(F_{o^{2}})^{2}]^{1/2}$

References:

- ¹ A. Abiko. Org. Synth. 2002, 79, 103.
- ² Clapson, M. L.; Sharma, H.; Zurakowski, J. A.; Drover, M. W. *Chem. Eur. J.* **2023**, 29, e202203763.
- ³ Neese, F. Software Update: The ORCA Program Version 5.0. *WIREs Comput. Mol. Sci.* **2022**, 12, e1606.
- ⁴ a) S. Grimme, S. Ehrlich, L. Goerigk, *J. Comput. Chem.* **2011**, 32, 1456; b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, 132, 154104; c) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, 7, 3297.
- ⁵ F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, 8, 1057.
- ⁶ a) C. Riplinger, P. Pinski, U. Becker, E.F. Valeeve, F. Neese, J. Chem. Phys. 2016, 144,
- 024109; b) C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese, J. Chem. Phys. 2013, 139,
- 134101; c) C. Riplinger, F. Neese, J. Chem. Phys. 2013, 138, 034106.
- ⁷ A. Hellweg, C. Hattig, S. Hofener, W. Klopper, *Theor. Chim. Acta* 1990, 77, 123.
- ⁸ a) G. Knizia, J.E.M.N. Klein, *Angew. Chem. Int. Ed.* **2015**, 54, 5518; b) G. Knizia, *J. Chem. Theory Comput.* **2013**, 9, 4834.
- ⁹ Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- ¹⁰L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke, J. Appl. Cryst. 2015, 48, 3-10.
- ¹¹ XDS2SAD, G. M. Sheldrick, **2008**, University of Gottingen, Germany.
- ¹²a) XPREP, **2014**, Bruker AXS Inc., Madison, Wisconsin, USA. b) XPREP Version 2008, G.
- M. Sheldrick, 2008 Bruker AXS Inc., Madison, Wisconsin, USA.
- ¹³ Bruker-AXS, SAINT version 2013.8, 2013, Bruker-AXS, Madison, WI 53711, USA
- ¹⁴ Bruker-AXS, SADABS version 2012.1, 2012, Bruker-AXS, Madison, WI 53711, USA
- ¹⁵ A. L. Spek, Acta Cryst. **2009**, D65, 148.