Supporting Information

Dearomative Pyrrole (3 + 2) Reaction with Geminal

Bromonitroalkane: Synthesis of 2,3-Dihydropyrroles

Lin Shi, Lidong Liu, Xingyu Lei, Yihan Wang, Yeguang Fang* and Peng Jiao* College of Chemistry, Beijing Normal University, Beijing 100875, China E-mail: pjiao@bnu.edu.cn; fangyg2021@nanoctr.cn

Table of contents

1. General information	S1
2. Optimization of reaction conditions	S1
3. Preparation of pyrroles	S3
3.1 Preparation of pyrroles	S3
3.2 Physical data	S5
4. Physical data of <i>gem</i> -bromonitroalkanes	S15
5. Cycloaddition reactions	S17
5.1 Typical procedure	S17
5.2 Physical data	S17
6. Gram-scale reaction	S32
7. Conversions of 3aa	S32
7.1 Conversions of 3aa	S32
7.2 Physical data	S34
8. Mechanism experiments	S37
8.1 Radical trapping experiment using TEMPO	S37
8.2 Powder X-ray diffraction spectrum	S38
9. DFT calculations	S38
10. Unsuccessful reactants	S39
11. Crystal data	S40
12. References	S45
13. NMR spectra	S47

1. General information

All the solvents and reagents were obtained from commercial sources and used without purification unless stated otherwise. THF, Et₂O and 1,4-dioxane were distilled over CaH₂ and LiAlH₄ under N₂ atmosphere. Toluene, CH₂Cl₂ and CH₃CN were distilled over CaH₂ under N₂. Acetone, AcOEt, DMSO, DMA, DMF, DME, CHCl₃, C₂H₅NO₂, CH₃NO₂ and DBU were dried over activated 4A molecular sieves. All glassware was dried overnight at 100 °C prior to use. Thin-layer chromatography (TLC) was performed on silica gel plates (0.2-0.25 mm thickness). Visualization of TLC was achieved by the use of UV light (254 nm). Flash column chromatography was performed on a silica gel (Qingdao Haiyang, 200-300 mesh) column. ¹H and ¹³C NMR spectra were recorded on a JEOL ECZ 400 MHz or 600 MHz spectrometer. The chemical shift (δ) values are given in ppm and are referenced to TMS or residual solvent peaks. Chemical shifts of ¹⁹F NMR are referred to CFCl₃ ($\delta = 0$). Infrared spectra were obtained on a Nicolet AVATAR 360 FT-IR spectrometer. Melting points were measured on a WRX-4 (Shanghai Yice) micro melting point apparatus. Mass spectra were obtained on an AB Sciex TripleTOF 5600+ mass spectrometer. X-ray diffraction experiment was performed on a Rigaku XtalLAB Synergy diffractometer using Cu K α radiation. Visible light promoted reactions were conducted in a tube irradiated with blue light LEDs (456 nm, 15 W, approximately 3.0 cm distance from the tube). For reactions that require heating, a silicone oil bath was used.

2. Optimization of reaction conditions

	N +	NO ₂ t Et Br	base or silver salt MeCN, N ₂ , rt	- N ^{···} Et Boc	
	1a	2a		(±)- 3aa	
Entry	Base or Ag salt	Yield (%) ^a	Entry	Base or Ag salt	Yield (%) ^a
1	Na ₂ CO ₃	trace	14	A = CO	50^b
2	NaHCO ₃	0	15		0^c
3	NaH ₂ PO ₄	0	16	Ag_2CO_3	75^d
4	CH ₃ CO ₂ Na	0	17		0^e
5	$KF \cdot 2H_2O$	0	18	Cu(OH) ₂	0
6	Ag ₂ O	12	19	DABCO	0
7	AgF	31	20	DBU	0

Table S1 Effect of base or Ag(I) salt.

8	AgPF ₆	17	21	Et ₃ N	0
9	Ag_2SO_4	0	22	DIPEA	0
10	AgOAc	0	23	2,6-lutidine	0
11	AgNO ₂	0	24	pyridine	0
12	AgNO ₃	0	25	none	0
13	Ag ₂ CO ₃	0	26	TBSCl/Et ₃ N	0^{f}

^a Isolated yield. ^b The mixture was irradiated with blue light LEDs (456 nm). ^c 10 mol % PPh₃ was added.
^d 10 mol % PPh₃ was added. The mixture was irradiated with blue light LEDs (456 nm). ^e 10 mol % (*R*)-BINAP was added. The mixture was irradiated with blue light LEDs (456 nm). ^f Reaction time: 7 days.

Table S2 Effect of solvent.

	N + Boc	NO ₂ Et Br	Ag_2CO_3 Solvent, N ₂ , rt	$N^{,0} + O^{-}$ $N^{,0} + O^{-}$ Et Boc	
- En torre		Za	E.t	(±)-saa	\mathbf{x}^{*} , 1,1, (0/)g
Entry	Solvent	Yield $(\%)^{\mu}$	Entry	Solvent	Yield (%)"
1	THF	0	9	AcOEt	0
2	DME	0	10	Acetone	0
3	Et ₂ O	0	11	DMF	20
4	1,4-Dioxane	12	12	DMA	33
5	Benzene	31	13	DMSO	80
6	Toluene	17	14	Methanol	0
7	DCM	0	15	Ethanol	0
8	Chloroform	0			

^{*a*} Isolated yield.

Table S3 Effect of the molar ratio.

N Boc 1a	$Et Br + Ag_2CO_3$	$\xrightarrow{, 0, +}_{N}$ DMSO, N ₂ , rt Boc (±)-3aa	_I ∽O Et
1a : 2a : Ag ₂ CO ₃	Yield (%) ^{<i>a</i>}	1a : 2a : Ag ₂ CO ₃	Yield $(\%)^a$
1.0 : 1.0 : 2.0	31	1.0 : 2.0 : 1.0	63
1.0:2.0:2.0	80	1.0 : 2.0 : 1.5	75
1.0:3.0:2.0	78	1.0 : 2.0 : 3.0	82

^{*a*} Isolated yield.

3. Preparation of pyrroles

3.1 Preparation of pyrroles

General procedure A^[1]

$$\begin{array}{c} \mathsf{R}_{\mathcal{V}} \\ \mathsf{N} \\ \mathsf{H} \end{array} + \mathsf{Boc}_2\mathsf{O} \quad \underbrace{\mathsf{DMAP}}_{\mathsf{CH}_3\mathsf{CN}} \\ \mathsf{R}_{\mathcal{V}} \\ \mathsf{N} \\ \mathsf{H} \\ \mathsf{Boc} \end{array}$$

Boc₂O (1.4 mL, 6.0 mmol) and 4-dimethylaminopyridine (61 mg, 0.5 mmol) were added to a solution of pyrrole (5.0 mmol) in acetonitrile. The solution was stirred at rt overnight, diluted with Et₂O, washed with NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the corresponding product.

General procedure B^[2]

Ar + TosMIC
$$\xrightarrow{tBuONa}$$
 \xrightarrow{Ar} \xrightarrow{NH} $\xrightarrow{Boc_2O, DMAP}$ \xrightarrow{Ar} $\xrightarrow{N-Boc}$

To a suspension of 'BuONa (384 mg, 4.0 mmol) in dry DMSO (10 mL) at room temperature was added a solution of arylalkene (2.0 mmol) and tosylmethyl isocyanate (508 mg, 2.6 mmol) in DMSO (10 mL) via cannular. The beige solution was stirred at room temperature for 2 h whereupon it was diluted with EtOAc (50 mL) and brine (50 mL). The aqueous layer was extracted with EtOAc (3×50 mL). The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel to give the 3-arylpyrrole. *N*-Boc-3-arylpyrrole was synthesized according to General procedure A.

General procedure C^[3]

To a stirred solution of the appropriate aryl iodide or bromide (3.6 mmol), *N*-Boc-pyrrole-2-boronic acid (1.06 g, 5.0 mmol) and *tetrakis*-(triphenylphosphine)palladium (0.21 g, 0.18 mmol) in 1,2-dimethoxyethane (20 mL) at room temperature under argon was added a solution of sodium carbonate (1.6 g, 15 mmol) in water (8 mL). The mixture was heated at reflux for 4 h, cooled, then partitioned

between water (50 mL) and dichloromethane (4 \times 20 mL). The combined extracts were dried over Na₂SO₄ and evaporated in vacuo to give an oil. The residue was purified by flash chromatography on silica gel to give the *N*-Boc-2-arylpyrrole.

General procedure D^[4]

Triethylamine (1.0 mL, 7.5 mmol) was added to a stirred solution of pyrrole (0.4 mL, 5.0 mmol) and chloroformate, acyl chloride or sulfonyl chloride (7.5 mmol) in dry DCM at 0 °C. DMAP (61 mg, 0.5 mmol) was added to the mixture. After stirring the reaction mixture at room temperature for 5 min, the reaction was completed. Water was added to the mixture. The aqueous layer was extracted with 3 portions of EtOAc. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by flash column chromatography on silica gel to give the corresponding product.

General procedure E^[5]

To a solution of acyl-substituted pyrrole (10 mmol) in 30 mL THF at 0 °C, NaBH₄ (379 mg, 10 mmol) was added in portions, and the mixture was stirred for 1.5 h at 0 °C. The reaction mixture was supplemented with 100 mL Et₂O, poured onto 50 mL ice water and extracted with Et₂O (3×100 mL). The combined organic phase was washed with brine (3×50 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude material was purified by silica gel column chromatography to give the corresponding product.

General procedure F

$$\begin{array}{c}
\swarrow & CH(OH)R \\
N & + & Ac_2O \\
Boc \\
\end{array} \xrightarrow{DCM} DCM \\
\end{array}
\begin{array}{c}
\swarrow & CH(OAc)R \\
N \\
Boc \\
\end{array}$$

The hydroxyalkyl-substituted pyrrole (10 mmol) and Ac₂O (0.95 mL, 10 mmol) in CH₂Cl₂ (30 mL) were treated with Et₃N (2 mL, 10 mmol) and DMAP (122 mg, 1 mmol), and the mixture was stirred at rt overnight. The mixture was diluted with CH₂Cl₂. The organic layer was washed with brine (3×50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude material was purified by silica gel chromatography to give the corresponding product.

3.2 Physical data

Phenylmethyl-1*H*-pyrrole-1-carboxylate (1b)^[6]

General procedure D

Clear oil (0.9 g, 90% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 – 7.05 (m, 7H), 6.33 (d, *J* = 2.5 Hz, 2H), 5.43 (d, *J* = 3.1 Hz, 2H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 150.1, 134.8, 134.8, 128.5, 128.2, 120.0, 112.4, 68.7 ppm.

2,2-Dimethyl-1-(1*H*-pyrrol-1-yl)-1-propanone (1c)^[7]

General procedure D

Clear oil (0.7 g, 97% yield); ¹H NMR (400 MHz, Chloroform-d) δ 7.27 (t, J = 2.4 Hz, 2H), 6.08 (t, J =

2.4 Hz, 2H), 1.29 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 175.8, 120.5, 111.8, 40.5, 28.4

ppm.

Phenyl-H-pyrrole-1-ylmethanone (1d)^[8]

General procedure D

White solid (0.7 g, 80% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.78 – 7.70 (m, 2H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.28 (m, 2H), 6.35 (t, *J* = 2.3 Hz, 2H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.5, 133.1, 132.1, 129.3, 128.3, 121.1, 113.0 ppm.

(4-Nitrophenyl)-1*H*-pyrrole-1-ylmethanone (1e)^[9]

 NO_2

General procedure D

White solid (0.8 g, 75% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.37 (d, *J* = 8.7 Hz, 2H), 7.90 (d, *J* = 8.7 Hz, 2H), 7.24 – 7.20 (m, 2H), 6.41 – 6.37 (m, 2H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 165.6, 149.8, 138.9, 130.3, 123.7, 121.0, 114.2 ppm.

1,1-Dimethylethyl 2-methyl-1*H*-pyrrole-1-carboxylate (1f)

DUC

General procedure A

Clear oil (0.8 g, 91% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.21 (dd, *J* = 3.6, 1.8 Hz, 1H), 6.08 (t, *J* = 3.3 Hz, 1H), 5.99 – 5.74 (m, 1H), 2.46 (s, 3H), 1.62 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.6, 131.4, 120.4, 111.7, 109.8, 83.1, 27.9, 15.3 ppm.

1,1-Dimethylethyl 2-(hydroxymethyl)-1*H*-pyrrole-1-carboxylate (1g)

General procedure E

Clear oil (0.9 g, 93% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.16 (dd, *J* = 3.4, 1.8 Hz, 1H), 6.17 (dd, *J* = 3.3, 1.7 Hz, 1H), 6.09 (t, *J* = 3.3 Hz, 1H), 4.64 (d, *J* = 6.4 Hz, 2H), 1.61 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 150.0, 134.7, 121.8, 113.4, 110.2, 84.4, 57.6, 27.8 ppm.

tert-Butyl 2-(1-hydroxyethyl)-1H-pyrrole-1-carboxylate (1h)

General procedure E

Clear oil (0.9 g, 90% yield); $R_f = 0.5$ (3:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.16 (dd, J = 3.4, 1.7 Hz, 1H), 6.25 - 6.16 (m, 1H), 6.09 (t, J = 3.4 Hz, 1H), 5.08 - 5.05 (m, 1H), 4.16 (d, J = 3.4 Hz, 1H), 1.61 (s, 9H), 1.57 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.3, 139.1, 121.9, 110.9, 110.2, 84.5, 62.0, 28.0, 20.3 ppm; IR (film) v_{max} 3428, 1366, 1130, 788 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₁H₁₇NO₃Na 234.1101; Found 234.1106.

1,1-Dimethylethyl-2-phenyl-1*H*-pyrrole-1-carboxylate (1i)^[10]

Boc

General procedure C

Clear oil (0.9 g, 78% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.35 (d, *J* = 4.5 Hz, 6H), 6.23 (t, *J* = 3.3 Hz, 1H), 6.21 – 6.18 (m, 1H), 1.35 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 135.0, 134.4, 129.1, 127.5, 127.1, 122.5, 114.3, 110.5, 83.5, 27.5 ppm.

tert-Butyl 2-(2-chlorophenyl)-1H-pyrrole-1-carboxylate (1j)

General procedure C

Clear oil (0.7 g, 54% yield); $R_f = 0.5$ (50:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (dd, J = 3.3, 1.8 Hz, 1H), 7.40 – 7.36 (m, 1H), 7.35 – 7.29 (m, 1H), 7.29 – 7.18 (m, 2H), 6.26 (d, J = 3.3 Hz, 1H), 6.15 (dd, J = 3.3, 1.8 Hz, 1H), 1.29 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0, 135.0, 134.4, 131.4, 131.1, 128.9, 128.8, 126.2, 121.9, 114.5, 110.4, 83.4, 27.4 ppm; IR (film) v_{max} 1738, 1312, 1137, 851, 739 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₇ClNO₂ 278.0942; Found 278.0940.

1,1-Dimethylethyl 2-(3-methylphenyl)-1*H*-pyrrole-1-carboxylate (1k)^[11]

General procedure C

White solid (1.0 g, 82% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.35 (dd, *J* = 3.3, 1.8 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.19 – 7.08 (m, 3H), 6.23 (t, *J* = 3.3 Hz, 1H), 6.19 (dd, *J* = 3.3, 1.8 Hz, 1H), 2.38 (d, *J* = 0.8 Hz, 3H), 1.36 (d, *J* = 0.8 Hz, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 136.9, 135.1, 134.3, 129.9, 127.9, 127.5, 126.2, 122.4, 114.2, 110.5, 83.4, 27.6, 21.3 ppm.

1,1-Dimethylethyl 2-(3-fluorophenyl)-1*H*-pyrrole-1-carboxylate (11)

General procedure C

Yellow oil (0.7 g, 57% yield); $R_f = 0.5$ (50:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.27 (m, 2H), 7.18 – 6.92 (m, 3H), 6.23 (dq, J = 5.2, 3.2 Hz, 2H), 1.39 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.1 (d, J = 245.0 Hz), 149.2, 136.4 (d, J = 8.6 Hz), 133.6, 128.9 (d, J = 8.4 Hz), 124.9 (d, J = 2.8 Hz), 123.0, 116.2 (d, J = 22.0 Hz), 114.9, 113.9 (d, J = 21.0 Hz), 110.6, 83.8, 27.6 ppm; ¹⁹F NMR (565 MHz, Chloroform-*d*) δ –115.04 ppm; IR (film) v_{max} 1750, 1501, 1301, 1150, 809, 752 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₅H₁₆NO₂FNa 284.1057; Found 284.1052.

1,1-Dimethylethyl 2-(3-methoxyphenyl)-1*H*-pyrrole-1-carboxylate (1m)

General procedure C

Yellow oil (1.2 g, 88% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (dd, *J* = 3.4, 1.8 Hz, 1H), 7.25 (t, *J* = 7.7 Hz, 1H), 7.02 – 6.69 (m, 3H), 6.51 – 5.89 (m, 3H), 3.80 (s, 3H), 1.36 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.9, 149.3, 135.6, 134.8, 128.5, 122.5, 121.8, 114.8, 114.3, 112.8, 110.5, 83.5, 55.2, 27.5 ppm.

1,1-Dimethylethyl 2-(4-cyanophenyl)-1*H*-pyrrole-1-carboxylate (1n)^[12]

General procedure C

White solid (1.2 g, 89% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 7.39 (dt, *J* = 3.2, 1.6 Hz, 1H), 6.27 (tt, *J* = 6.5, 2.1 Hz, 2H), 1.42 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.9, 138.8, 133.1, 131.4, 129.6, 123.9, 119.0, 116.1, 111.0, 110.5, 84.4, 27.7 ppm.

1,1-Dimethylethyl 2-(4-chlorophenyl)-1*H*-pyrrole-1-carboxylate (10)^[12]

General procedure C

White solid (1.1 g, 78% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 7.01 (m, 5H), 6.37 – 5.91 (m, 2H), 1.39 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.2, 133.8, 133.1, 132.8, 130.5, 127.7, 122.8, 114.8, 110.6, 83.9, 27.7 ppm.

1,1-Dimethylethyl 2-[4-(methoxycarbonyl)phenyl]-1*H*-pyrrole-1-carboxylate (1p)^[13]

General procedure C

White solid (1.2 g, 81% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 – 7.82 (m, 2H), 7.66 – 7.33 (m, 3H), 6.62 – 5.89 (m, 2H), 3.93 (s, 3H), 1.37 (d, *J* = 1.8 Hz, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.9, 149.1, 138.9, 133.9, 128.9, 128.9, 128.5, 123.5, 115.4, 110.8, 84.0, 52.0, 27.6 ppm.

1,1-Dimethylethyl 2-(3,4-dimethoxyphenyl)-1*H*-pyrrole-1-carboxylate (1q)^[14]

General procedure C

Yellow oil (0.9 g, 65% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.32 (dd, *J* = 3.4, 1.8 Hz, 1H), 6.90 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.87 (d, *J* = 2.0 Hz, 1H), 6.85 (d, *J* = 8.2 Hz, 1H), 6.20 (t, *J* = 3.3 Hz, 1H), 6.15 (dd, *J* = 3.3, 1.8 Hz, 1H), 3.87 (d, *J* = 13.2 Hz, 6H), 1.38 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.3, 148.4, 148.0, 134.9, 127.1, 122.2, 121.6, 114.0, 112.9, 110.4, 110.4, 83.4, 55.9, 55.8, 27.7 ppm.

2-(3-Fluoro-4-nitrophenyl)-1*H*-pyrrole (1r)

General procedure C

Yellow solid (0.7 g, 44% yield); $R_f = 0.4$ (50:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (t, J = 8.3 Hz, 1H), 7.41 (dd, J = 3.3, 1.7 Hz, 1H), 7.31 – 7.27 (m, 2H), 6.35 (dd, J = 3.4, 1.7 Hz, 1H), 6.27 (t, J = 3.4 Hz, 1H), 1.47 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.4, 153.8, 148.8,142.1 (d, J = 9.3 Hz), 131.7, 125.5 (d, J = 2.4 Hz), 124.9, 124.9, 118.5 (d, J = 22.0 Hz), 117.2, 111.4, 85.0, 27.8 ppm; ¹⁹ F NMR (565 MHz, Chloroform-*d*) δ -116.9 ppm; IR (film) v_{max} 1700, 1605, 1520, 1356, 1172, 809, 665 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₅H₁₅N₂O₄FNa 329.0908; Found 329.0912.

tert-Butyl 2-(3,5-dimethylphenyl)-1H-pyrrole-1-carboxylate (1s)[15]

General procedure C

White solid (0.9 g, 67% yield); R_f = 0.3 (100:1 hexanes/AcOEt); m.p. 55.1–56.3 °C; ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.36 (dt, *J* = 3.3, 1.7 Hz, 1H), 7.07 – 6.91 (m, 3H), 6.23 (td, *J* = 3.3, 1.1 Hz, 1H), 6.19 (dt, *J* = 3.2, 1.6 Hz, 1H), 2.36 (dd, *J* = 1.4, 0.7 Hz, 6H), 1.38 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 136.8, 135.3, 134.2, 128.8, 127.0, 122.3, 114.0, 110.4, 83.3, 27.5, 21.2 ppm; IR (film) v_{max} 1739, 1315, 1150, 849, 729 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₇H₂NO₂Na 294.1465; Found 294.1461.

1,1-Dimethylethyl 2-[3,5-bis(trifluoromethyl)phenyl]-1*H*-pyrrole-1-carboxylate (1t)^[16]

General procedure C

Clear oil (1.4 g, 72% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (s, 3H), 7.43 (dd, *J* = 3.4, 1.8 Hz, 1H), 6.49 – 5.90 (m, 2H), 1.37 (d, *J* = 1.9 Hz, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.9, 136.4, 131.6, 131.0 (q, *J* = 33.3 Hz), 129.2, 124.0, 123.3 (q, *J* = 272.6 Hz), 120.6, 116.3, 111.0, 84.6, 27.5 ppm.

1,1-Dimethylethyl 2-[1,1'-biphenyl]-4-yl-1*H*-pyrrole-1-carboxylate (1u)^[17]

General procedure C

White solid (1.3 g, 79% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.79 – 7.64 (m, 2H), 7.63 – 7.60 (m, 2H), 7.51 – 7.43 (m, 4H), 7.42 – 7.36 (m, 2H), 6.28 (td, *J* = 3.2, 2.2 Hz, 2H), 1.42 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4, 140.9, 140.0, 134.7, 133.3, 129.5, 128.8, 127.2, 127.0, 126.3, 122.7, 114.5, 110.7, 83.7, 27.6 ppm.

1,1-Dimethylethyl 2-(2-naphthalenyl)-1*H*-pyrrole-1-carboxylate (1v)^[18]

General procedure C

White solid (1.3 g, 90% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 – 7.77 (m, 4H), 7.47 (ddd, *J* = 8.0, 3.6, 1.7 Hz, 3H), 7.40 (dd, *J* = 3.3, 1.8 Hz, 3H), 6.29 (dd, *J* = 3.3, 1.8 Hz, 3H), 6.27 (t, *J* = 3.3 Hz, 3H), 6.29 (dd, *J* = 3.3, 1.8 Hz, 3H), 6.27 (t, *J* = 3.3 Hz, 3H), 6.29 (dd, *J* = 3.3, 1.8 Hz, 3H), 6.27 (t, *J* = 3.3 Hz), 6.29 (dd, *J* = 3.3, 1.8 Hz), 6.29 (dd, *J* = 3.3, 1.8 Hz), 6.27 (t, *J* = 3.3 Hz), 6.27 (t, J = 3.3 Hz),

3H), 1.32 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.4, 135.0, 133.0, 132.5, 131.9, 127.9, 127.9, 127.6, 127.3, 126.7, 126.1, 125.9, 122.7, 114.9, 110.7, 83.7, 77.2, 77.0, 76.8, 27.6 ppm.

1,1-Dimethylethyl 2-(2-thienyl)-1*H*-pyrrole-1-carboxylate (1w)^[19]

General procedure C

Yellow oil (0.9 g, 96% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (dd, *J* = 3.4, 1.8 Hz, 1H), 7.31 (dd, *J* = 5.1, 1.3 Hz, 1H), 7.07 (dd, *J* = 3.5, 1.3 Hz, 1H), 7.03 (dd, *J* = 5.2, 3.5 Hz, 1H), 6.33 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.23 (dd, *J* = 4.2, 2.5 Hz, 1H), 1.44 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0, 134.9, 127.7, 126.8, 126.3, 125.5, 123.1, 116.5, 110.5, 83.7, 27.6 ppm.

tert-Butyl 2-(5-methylpyridin-2-yl)-1H-pyrrole-1-carboxylate (1x)^[20]

General procedure C

White solid (0.9 g, 70% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (dd, *J* = 1.6, 0.8 Hz, 1H), 7.65 – 7.41 (m, 1H), 7.33 (dd, *J* = 3.3, 1.8 Hz, 1H), 7.29 (dd, *J* = 7.8, 0.9 Hz, 1H), 6.37 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.22 (t, *J* = 3.3 Hz, 1H), 2.35 (s, 3H), 1.37 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.2, 149.3, 149.2, 136.2, 134.1, 131.2, 123.2, 123.1, 115.2, 110.5, 83.5, 27.6, 18.2 ppm.

1,1-Dimethylethyl 2-(5-methyl-2-pyridinyl)-1*H*-pyrrole-1-carboxylate (1y)^[21]

General procedure C

White solid (0.9 g, 66% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.37 (ddd, *J* = 4.9, 2.0, 0.8 Hz, 2H), 7.66 (ddd, *J* = 7.5, 1.9, 0.7 Hz, 2H), 7.53 – 7.40 (m, 2H), 7.28 (dd, *J* = 4.8, 0.7 Hz, 1H), 6.32 – 6.26 (m, 2H), 6.21 (dd, *J* = 3.3, 1.8 Hz, 1H), 1.32 (s, 12H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.0, 148.7, 148.3, 139.4, 131.2, 128.8, 122.6, 121.9, 115.4, 110.7, 84.0, 27.4 ppm.

tert-Butyl 2-(pyridin-4-yl)-1H-pyrrole-1-carboxylate (1z)

General procedure C

Yellow oil (1.0 g, 80% yield); $R_f = 0.4$ (3:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.67 – 8.42 (m, 2H), 7.39 (dd, J = 3.4, 1.7 Hz, 1H), 7.30 – 7.14 (m, 2H), 6.30 (dd, J = 3.4, 1.7 Hz, 1H), 6.25 (t, J = 3.3 Hz, 1H), 1.40 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0, 141.8, 132.3, 124.2, 116.2, 111.0, 84.4, 27.6 ppm; IR (film) v_{max} 1719, 1697, 1411, 1293, 849 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₁₇N₂O₂ 245.1285; Found 245.1278.

1,1-Dimethylethyl 3-methyl-1*H*-pyrrole-1-carboxylate (1a')^[22]

General procedure A

Clear oil (0.9 g, 96% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.14 (s, 1H), 6.97 (s, 1H), 6.05 (dd, *J* = 3.3, 1.7 Hz, 1H), 2.06 (s, 3H), 1.58 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 148.9, 122.3, 119.8, 117.1, 113.9, 82.9, 82.9, 27.8, 11.7 ppm.

1,1-Dimethylethyl 3-(hydroxymethyl)-1*H*-pyrrole-1-carboxylate (1b')

General procedure E

Clear oil (0.9 g, 92% yield); $R_f = 0.4$ (3:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.19 (d, J = 1.9 Hz, 2H), 6.23 (q, J = 2.0, 1.5 Hz, 1H), 4.52 (d, J = 1.7 Hz, 2H), 3.73 (d, J = 1.0 Hz, 1H), 1.58 (d, J = 0.6 Hz, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.7, 127.2, 120.4, 117.4, 111.5, 83.4, 57.9, 27.7 ppm; IR (film) v_{max} 3387, 1735, 1481, 1350, 1165, 972 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₀H₁₅NO₃Na 220.0944; Found 220.0948.

tert-Butyl 3-(1-hydroxyethyl)-1*H*-pyrrole-1-carboxylate (1c')

General procedure E

Clear oil (0.9 g, 85% yield); $R_f = 0.5$ (3:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-d) δ 7.19 –

7.09 (m, 2H), 6.47 - 5.96 (m, 1H), 4.81 (d, J = 6.7 Hz, 1H), 1.57 (s, 9H), 1.47 (dd, J = 6.5, 2.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.7, 132.4, 120.2, 115.8, 110.1, 83.4, 63.9, 27.7, 23.8 ppm; IR (film) v_{max} 3341, 1726, 1470, 972 cm⁻¹; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₁H₁₇NO₃Na 234.1101; Found 234.1107.

tert-Butyl 3-(acetoxymethyl)-1H-pyrrole-1-carboxylate (1d')

General procedure F

Clear oil (1.1 g, 91% yield); $R_f = 0.4$ (10:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-d) δ 7.24 (s, 1H), 7.20 – 7.16 (m, 1H), 6.42 – 6.08 (m, 1H), 4.94 (s, 2H), 2.05 (s, 3H), 1.57 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-d) & 170.8, 148.5, 122.0, 120.5, 119.4, 112.3, 83.8, 59.5, 27.8, 20.9 ppm; IR (film) v_{max} 1736, 1474, 1351, 972 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₂H₁₇NO₄Na 262.1050; Found 262.1050.

1,1-Dimethylethyl-3-phenyl-1*H*-pyrrole-1-carboxylate (1e')^[23]

General procedure B

Clear oil (0.80 g, 63% yield); ¹H NMR (600 MHz, Chloroform-*d*) & 7.54 (dd, *J* = 8.3, 1.2 Hz, 2H), 7.51 (s, 1H), 7.36 (dd, *J* = 8.4, 7.1 Hz, 2H), 7.29 (d, *J* = 3.0 Hz, 1H), 7.25 – 7.21 (m, 1H), 6.55 (dd, *J* = 3.3, 1.8 Hz, 1H), 1.62 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-d) δ 148.8, 134.3, 128.7, 127.8, 126.6, 125.5, 120.9, 115.7, 110.4, 83.8, 28.0 ppm.

1,1-Dimethylethyl 3-(2-pyridinyl)-1H-pyrrole-1-carboxylate (1f')^[24]

General procedure B

Yellow oil (0.70 g, 54% yield); ¹H NMR (600 MHz, Chloroform-d) & 8.57 (ddd, J = 4.9, 1.9, 1.0 Hz, 1H), 7.81 (d, *J* = 1.9 Hz, 1H), 7.65 (td, *J* = 7.7, 1.8 Hz, 1H), 7.54 - 7.43 (m, 1H), 7.31 (dd, *J* = 3.3, 2.1 Hz, 1H), 7.11 (ddd, *J* = 7.4, 4.9, 1.1 Hz, 1H), 6.74 (dd, *J* = 3.3, 1.7 Hz, 1H), 1.62 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.0, 149.3, 148.5, 136.2, 127.9, 121.0, 120.9, 119.4, 118.0, 110.1, 83.8, 27.7 ppm.

1,1-Dimethylethyl 4,5,6,7-tetrahydro-1*H*-indole-1-carboxylate (1g')^[25]

General procedure A

Clear oil (1.1 g, 94% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 3.7 Hz, 1H), 6.29 – 5.64 (m, 1H), 3.07 – 2.67 (m, 2H), 2.56 – 2.28 (m, 2H), 1.78 (dt, *J* = 6.1, 2.4 Hz, 2H), 1.70 (d, *J* = 6.1 Hz, 2H), 1.57 (s, 9H) ppm.

tert-Butyl 1H-indole-1-carboxylate (1h')[26]

General procedure A

Clear oil (1.1 g, 96% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 3.7 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.40 (tt, *J* = 7.1, 1.2 Hz, 1H), 7.34 – 7.27 (m, 1H), 6.63 (d, *J* = 3.7 Hz, 1H), 1.75 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 149.8, 130.5, 125.8, 124.1, 122.6, 120.9, 115.1, 107.2, 83.5, 28.1 ppm.

4. Physical data of gem-bromonitroalkanes

1-Bromo-1-nitropropane (2a)^[27]

Yellow oil (4.2 g, 86% yield); ¹H NMR (600 MHz, Chloroform-d) δ 5.93 – 5.80 (m, 1H), 2.53 – 2.19 (m,

2H), 1.06 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 81.2, 31.0, 10.4 ppm.

1-Bromo-1-nitroethane (2b)

Yellow oil (4.3 g, 94% yield); ¹H NMR (600 MHz, Chloroform-*d*) δ 6.04 (q, *J* = 6.4 Hz, 1H), 2.14 (d, *J* = 6.5 Hz, 3H) ppm; ¹³C NMR (150 MHz, Chloroform-*d*) δ 74.5, 24.2 ppm.

(2-Bromo-2-nitroethyl)benzene (2c)

Yellow oil (1.1 g, 75% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.31 (m, 3H), 7.21 (dd, *J* = 7.3, 2.3 Hz, 2H), 6.06 (dd, *J* = 8.3, 6.1 Hz, 1H), 3.76 (dd, *J* = 14.5, 8.2 Hz, 1H), 3.52 (dd, *J* = 14.5, 6.1 Hz, 1H) ppm; ¹³C NMR (100 MHz, Chloroform-*d*) δ 133.2, 129.1, 129.0, 128.3, 79.2, 43.4 ppm.

2-(2-Bromo-2-nitroethoxy)tetrahydro-2*H*-pyran (2d)

Clear oil (1.3 g, 71% yield); $R_f = 0.1$ (10:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.02 (ddd, J = 12.6, 9.4, 3.6 Hz, 1H), 4.70 (dd, J = 33.0, 2.9 Hz, 1H), 4.47 – 4.20 (m, 1H), 4.01 (dddd, J = 50.0, 11.7, 3.7, 1.8 Hz, 1H), 3.85 – 3.69 (m, 1H), 3.60 – 3.49 (m, 1H), 1.99 – 1.14 (m, 6H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 100.5, 75.4, 69.7, 62.6, 30.0, 25.0, 18.9 ppm; IR (film) v_{max} 1540, 1483, 1241, 556 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₇H₁₃NO₄Br 254.0022; Found 254. 0020.

6-Bromo-6-nitrohexan-3-one (2e)

Clear oil (1.3 g, 76% yield); $R_f = 0.1$ (20:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.41 – 5.81 (m, 1H), 2.71 – 2.52 (m, 4H), 2.45 (q, *J* = 7.3 Hz, 2H), 1.07 (t, *J* = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 208.3, 78.9, 37.5, 36.0, 31.2, 7.7 ppm; IR (film) v_{max} 2915, 1630, 1560, 1033, 656 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₆H₁₀NO₃BrNa 245.9736; Found 245.9737.

$$O_2N$$
 O_2N O_2N

Clear oil (0.7 g, 41% yield); $R_f = 0.2$ (20:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.29 – 5.92 (m, 1H), 3.96 – 3.09 (m, 3H), 2.77 – 2.64 (m, 1H), 2.61 – 2.44 (m, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.4, 78.5, 52.1, 32.1, 29.8 ppm; IR (film) v_{max} 2950, 1731, 1569, 1270, 1225, 858, 650 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₅H₈BrNO₄Na 247. 9529; Found 247.9527.

5. Cycloaddition reactions

5.1 Typical procedure

A dry Schlenk tube charged with a stirring bar was evacuated and backfilled with N_2 (three times). Substituted 1-Boc-pyrrole (1, 0.50 mmol), 1-bromo-1-nitroalkane (2, 1.00 mmol), Ag₂CO₃ (275 mg, 1.00 mmol) and anhydrous DMSO (6.0 mL) were added under N_2 atmosphere. After stirring at rt under N_2 for 12 h, the mixture was diluted with AcOEt, washed with brine (3 × 50 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (5:1 hexanes/AcOEt) to give **3aa**.

5.2 Physical data

4-(tert-Butoxycarbonyl)-3-ethyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3aa)

White solid (101 mg, 80% yield); $R_f = 0.3$ (5:1 hexanes/AcOEt); m.p. 110.6–111.5 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.84 (d, J = 61.8 Hz, 1H), 5.98 – 5.74 (m, 1H), 5.56 (t, J = 9.5 Hz, 1H), 5.21 (d, J = 23.9 Hz, 1H), 2.58 – 2.41 (m, 2H), 1.48 (s, 9H), 1.13 (td, J = 7.5, 2.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.7, 135.2, 115.5, 105.9, 82.2, 79.4, 65.8, 28.1, 19.0, 9.3 ppm; IR (film) v_{max} 1709, 1636, 1458, 1354, 1138, 899, 786 cm⁻¹; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₂H₁₈N₂O₄Na 277.1159; Found 277.1156.

4-((Benzyloxy)carbonyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3ba)

Yellow oil (78 mg, 54% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (s, 5H), 7.02 – 6.81 (m, 1H), 5.79 (d, J = 9.5 Hz, 1H), 5.69 – 5.52 (m, 1H), 5.23 (d, J = 24.7 Hz, 2H), 2.53 (ddd, J = 52.7, 14.3, 7.2 Hz, 2H), 1.16 (s, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.6, 134.9, 134.3, 128.6, 128.1, 115.1, 107.1, 79.1, 68.1, 66.1, 18.9, 9.3 ppm; IR (film) v_{max} 1735, 1609, 1594, 1441, 809 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C₁₅H₁₇N₂O₄ 289.1183; Found 289.1185.

3-Ethyl-4-pivaloyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3ca)

Yellow oil (62 mg, 52% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.12 (d, J = 4.2 Hz, 1H), 5.92 (d, J = 9.5 Hz, 1H), 5.70 (d, J = 9.6 Hz, 1H), 5.38 (d, J = 2.9 Hz, 1H), 3.06 – 1.99 (m, 2H), 1.29 (s, 9H), 1.13 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 175.0, 134.4, 116.0, 108.6, 77.1, 67.4, 39.3, 27.6, 19.4, 9.5 ppm; IR (film) v_{max} 1713, 1612, 1474, 1120, 768 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₂H₁₉N₂O₃ 239.1390; Found 239.1387.

4-Benzoyl-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3da)

Yellow oil (77 mg, 60% yield); $R_f = 0.1$ (5:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.53 (d, J = 7.5 Hz, 3H), 7.47 (dd, J = 8.3, 6.9 Hz, 2H), 6.82 (d, J = 4.4 Hz, 1H), 6.06 (d, J = 9.6 Hz, 1H), 5.82 (dd, J = 9.5, 2.3 Hz, 1H), 5.37 (dd, J = 4.5, 2.3 Hz, 1H), 2.79 – 2.44 (m, 2H), 1.22 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.4, 135.9, 133.9, 131.6, 128.9, 127.8, 115.5, 108.9, 78.4, 66.1, 19.4, 9.5 ppm; IR (film) v_{max} 1715, 1604, 1466, 1322, 856 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₄N₂O₃Na 281.0897; Found 281. 0894.

3-Ethyl-4-(4-nitrobenzoyl)-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3ea)

White solid (71 mg, 47% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); m.p. 190.6–191.5 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.91 – 8.16 (m, 2H), 7.85 – 7.58 (m, 1H), 6.68 (d, *J* = 4.4 Hz, 1H), 6.06 (dd, *J* =

9.5, 0.9 Hz, 1H), 5.88 – 5.80 (m, 1H), 5.48 (ddd, J = 4.5, 2.4, 0.8 Hz, 1H), 2.72 – 2.48 (m, 2H), 1.23 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.1, 149.4, 139.6, 134.6, 128.9, 124.2, 114.9, 110.6, 78.1, 66.4, 19.4, 9.6 ppm; IR (film) v_{max} 1717, 1632, 1609, 1524, 1346, 829 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₃N₃O₅Na 326.0747; Found 326.0751.

4-(tert-Butoxycarbonyl)-3-ethyl-5-methyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3fa)

White solid (36 mg, 27% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 83.6–85.5 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.01 – 5.40 (m, 2H), 5.09 – 4.72 (m, 1H), 2.75 – 2.36 (m, 2H), 2.13 (s, 3H), 1.49 (s, 9H), 1.13 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 151.5, 146.3, 116.0, 106.4, 82.3, 77.8, 68.1, 28.2, 19.0, 16.3, 9.5 ppm; IR (film) v_{max} 1715, 1630, 1401, 1170, 864 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₂₁N₂O₄ 269.1495; Found 269.1489.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(hydroxymethyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3ga)

Clear oil (100 mg, 71% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 5.92 – 5.52 (m, 2H), 5.28 (s, 1H), 4.36 (s, 2H), 2.92 – 2.02 (m, 2H), 1.54 (s, 9H), 1.14 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.2, 148.7, 115.4, 106.8, 83.0, 77.7, 67.9, 58.2, 27.8, 18.6, 9.1 ppm; IR (film) v_{max} 3448, 1715, 1603, 1391, 972 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₂₁N₂O₅ 285.1444; Found 285.1447.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(1-hydroxyethyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxidee (3ha)

Total 92 mg, 62% yield, dr = 1:1.

Clear oil (48 mg, 33% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 5.99 - 5.54 (m, 2H), 5.21 (s, 1H), 4.84 - 4.37 (m, 1H), 2.70 - 2.17 (m, 2H), 1.53 (s, 9H), 1.39 (dd, J = 6.5,

1.8 Hz, 3H), 1.11 (td, J = 7.5, 1.8 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.1, 151.7, 115.1, 106.3, 83.6, 77.8, 68.5, 62.4, 28.2, 20.4, 18.8, 9.5 ppm; IR (film) v_{max} 3426, 1710, 1596, 1397, 992 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₃N₂O₅ 299.1601; Found 299.1603. Clear oil (43 mg, 29% yield); R_f = 0.1 (3:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 5.81 – 5.61 (m, 1H), 5.33 – 5.27 (m, 1H), 4.69 (d, J = 6.8 Hz, 1H), 2.56 – 2.25 (m, 2H), 1.50 (s, 9H), 1.39 (dd, J = 6.0, 1.8 Hz, 3H), 1.14 – 1.06 (m, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.7, 115.1, 106.3, 83.6, 77.8, 68.5, 62.4, 28.2, 20.4, 18.8, 9.5 ppm.

4-(tert-Butoxycarbonyl)-3-ethyl-5-phenyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3ia)

White solid (137 mg, 83% yield); $R_f = 0.1$ (5:1 hexanes/AcOEt); m.p. 113.9–115.5 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.34 (d, J = 4.7 Hz, 3H), 7.29 (d, J = 6.1 Hz, 2H), 5.90 (d, J = 3.7 Hz, 2H), 5.35 (s, 1H), 2.80 – 2.37 (m, 2H), 1.27 (dt, J = 9.5, 5.7 Hz, 3H), 1.19 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 152.5, 148.8, 133.0, 128.9, 127.9, 126.8, 115.5, 110.0, 82.2, 78.7, 69.7, 27.7, 18.8, 9.5 ppm; IR (film) v_{max} 1720, 1373, 1257, 1150, 709 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₃N₂O₄ 331.1652; Found 331.1654.

4-(*tert*-Butoxycarbonyl)-5-(2-chlorophenyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3ja)

Yellow oil (114 mg, 63% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (d, J = 7.7 Hz, 1H), 7.33 – 7.19 (m, 3H), 5.90 (s, 2H), 5.28 (s, 1H), 2.66 – 2.49 (m, 2H), 1.24 (t, J =7.4 Hz, 3H), 1.13 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.3, 132.6, 132.4, 129.9, 129.7, 129.2, 126.4, 115.7, 110.5, 81.8, 77.8, 77.2, 68.3, 27.4, 18.8, 9.3 ppm; IR (film) v_{max} 1715, 1649, 1490, 1370, 1128, 845 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₂N₂O₄Cl 365.1262; Found 365.1259.

4-(tert-Butoxycarbonyl)-3-ethyl-5-(m-tolyl)-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3ka)

White solid (103 mg, 60% yield); $R_f = 0.3$ (5:1 hexanes/AcOEt); m.p. 119.6–121.5 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.22 (t, J = 7.9 Hz, 1H), 7.17 – 7.12 (m, 1H), 7.09 – 7.05 (m, 2H), 5.88 (d, J = 1.5 Hz, 2H), 5.33 (d, J = 1.3 Hz, 1H), 2.73 – 2.47 (m, 2H), 2.35 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H), 1.19 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.5, 148.9, 137.4, 132.7, 129.6, 127.8, 127.4, 123.9, 115.6, 109.7, 82.1, 78.7, 69.6, 27.6, 21.3, 18.7, 9.5 ppm; IR (film) v_{max} 1717, 1615, 1474, 1348, 1119, 766 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₅N₂O₄ 345.1808; Found 345.1809.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(3-fluorophenyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3la)

White solid (93 mg, 54% yield); $R_f = 0.3$ (5:1 hexanes/AcOEt); m.p. 153.6–154.4 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30 (td, J = 8.1, 5.7 Hz, 1H), 7.07 (dd, J = 7.7, 1.4 Hz, 1H), 7.03 (td, J = 8.4, 2.6 Hz, 1H), 6.98 (dd, J = 9.6, 2.1 Hz, 1H), 5.89 (s, 2H), 5.38 (s, 1H), 2.85 – 2.22 (m, 2H), 1.25 (t, J = 7.5 Hz, 3H), 1.21 (s, 6H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.3 (d, J = 246.0 Hz), 152.3, 147.6, 135.0 (d, J = 8.0 Hz), 129.5 (d, J = 8.2 Hz), 122.6, 122.5, 115.7 (d, J = 21.3 Hz), 115.3, 114.0 (d, J = 23.0 Hz), 110.9, 82.5, 78.5, 70.0, 27.7, 18.7, 9.5 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ –113.3ppm; IR (film) v_{max} 1705, 1643, 1342, 1141, 849 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₂FN₂O₄ 349.1558; Found 349.1564.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(3-methoxyphenyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3ma)

H₃CO

White solid (119 mg, 66% yield); $R_f = 0.2$ (3:1 hexanes/AcOEt); m.p. 128.6–130.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.07 (m, 1H), 6.93 – 6.86 (m, 2H), 6.83 (p, J = 1.1 Hz, 1H), 5.89 (s, 2H), 5.36 (s, 1H), 3.80 (s, 3H), 2.62 – 2.53 (m, 2H), 1.26 (t, J = 7.5 Hz, 3H), 1.21 (s, 9H) ppm; ¹³C NMR (101

MHz, Chloroform-*d*) δ 159.1, 152.4, 148.5, 134.1, 128.9, 119.2, 115.6, 114.1, 112.6, 110.0, 82.1, 78.6, 69.5, 55.2, 27.6, 18.6, 9.4 ppm; IR (film) *v_{max}* 1701, 1639, 1369, 1342, 1049, 698 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₅N₂O₅ 361.1758; Found 361.1768.

4-(*tert*-Butoxycarbonyl)-5-(4-cyanophenyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3na)

White solid (137 mg, 77% yield); $R_f = 0.2$ (3:1 hexanes/AcOEt); m.p. 93.8–94.9 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 5.92 (d, J = 1.0 Hz, 2H), 5.47 (s, 1H), 3.07 – 2.20 (m, 2H), 1.29 – 1.19 (m, 12H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.1, 147.1, 137.4, 131.8, 127.5, 118.3, 115.0, 112.5, 112.4, 83.1, 78.3, 69.7, 27.7, 18.7, 9.5 ppm; IR (film) v_{max} 2147, 1725, 1674, 1378, 1119, 776 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₂₂N₃O₄ 356.1604; Found 356.1608.

4-(*tert*-Butoxycarbonyl)-5-(4-chlorophenyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (30a)

White solid (129 mg, 71% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 98.6–99.3 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.33 (d, J = 8.5 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 5.89 (s, 2H), 5.36 (s, 1H), 2.60 – 2.54 (m, 2H), 1.26 (t, J = 7.6 Hz, 3H), 1.24 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 152.3, 147.8, 134.8, 131.3, 128.2, 128.1, 115.3, 110.5, 82.6, 78.5, 69.6, 53.4, 27.7, 18.7, 9.5 ppm; IR (film) v_{max} 1705, 1639, 1474, 1489, 1369, 1146, 1092, 845 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₈H₂₂N₂O₄Cl 365.1262; Found 365.1259.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(4-(methoxycarbonyl)phenyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3*d*]isoxazole 2-oxide (3pa)

White solid (157 mg, 81% yield); $R_f = 0.1$ (5:1 hexanes/AcOEt); m.p. 88.3–89.5 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.45 – 7.75 (m, 2H), 7.57 – 7.03 (m, 2H), 5.90 (d, J = 1.1 Hz, 2H), 5.43 (s, 1H), 3.91 (s, 3H), 2.85 – 2.15 (m, 2H), 1.25 (t, J = 7.5 Hz, 3H), 1.17 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.4, 152.3, 147.9, 137.4, 130.3, 129.2, 126.8, 115.2, 111.5, 82.7, 78.5, 70.0, 52.2, 27.7, 18.7, 9.5 ppm; IR (film) v_{max} 1720, 1639, 1369, 1280, 1149, 1111, 771 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₀H₂₅N₂O₆ 389.1707; Found 389.1708.

4-(*tert*-Butoxycarbonyl)-5-(3,4-dimethoxyphenyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3*d*]isoxazole 2-oxide (3qa)

White solid (132 mg, 68% yield); $R_f = 0.2$ (3:1 hexanes/AcOEt); m.p. 123.6–125.5 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.90 – 6.80 (m, 2H), 6.78 (t, J = 1.7 Hz, 1H), 5.86 (d, J = 1.5 Hz, 2H), 5.30 (d, J = 1.5 Hz, 1H), 3.86 (dd, J = 9.9, 1.4 Hz, 6H), 2.70 – 2.44 (m, 2H), 1.24 (t, J = 1.9 Hz, 12H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.5, 149.6, 148.5, 148.3, 125.3, 119.6, 115.6, 110.4, 110.1, 109.1, 82.1, 78.7, 69.6, 55.9, 55.8, 27.8, 18.7, 9.5 ppm; IR (film) v_{max} 1739, 1505, 1474, 1379, 1171, 765 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂O₆ 391.1863; Found 391.1860.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(3-fluoro-4-nitrophenyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3*d*]isoxazole 2-oxide (3ra)

Yellow solid (84 mg, 43% yield); $R_f = 0.2$ (3:1 hexanes/AcOEt); m.p. 133.6–134.9 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 8.07 (t, J = 8.0 Hz, 1H), 7.24 – 7.19 (m, 2H), 5.91 (d, J = 23.1 Hz, 2H), 5.56 (s, 1H), 2.6 – 2.50 (m, 2H), 1.30 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.1 (d, J = 265.4 Hz), 151.9, 145.8, 140.5 (d, J = 8.6 Hz), 136.8, 125.9, 122.9 (d, J = 3.8 Hz), 116.8 (d, J = 22.4 Hz), 114.8, 113.6, 83.5, 78.2, 69.8, 27.8, 18.7, 9.5 ppm; ¹⁹F NMR (565 MHz, Chloroform-*d*) δ –116.94 ppm; IR (film) v_{max} 1714, 1505, 1494, 1258, 1019, 759 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₁N₃O₆F 394.1408; Found 394.1404.

4-(*tert*-Butoxycarbonyl)-5-(3,5-dimethylphenyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole

2-oxide (3sa)

White solid (116 mg, 65% yield); $R_f = 0.3$ (5:1 hexanes/AcOEt); m.p. 127.6–128.8 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.96 (s, 1H), 6.87 (s, 2H), 5.86 (d, J = 1.8 Hz, 2H), 5.31 (d, J = 1.6 Hz, 1H), 2.74 – 2.47 (m, 2H), 2.30 (s, 6H), 1.26 (m, 3H), 1.19 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.4, 148.9, 137.1, 132.5, 130.3, 124.5, 115.6, 109.3, 81.8, 78.6, 69.4, 27.5, 21.0, 18.6, 9.4 ppm; IR (film) v_{max} 1724, 1642, 1152, 844, 732 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂O₄ 359.1965; Found 359.1960.

5-(3,5-Bis(trifluoromethyl)phenyl)-4-(*tert*-butoxycarbonyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3*d*]isoxazole 2-oxide (3ta)

White solid (137 mg, 59% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 146.9–150.5 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (dt, J = 1.6, 0.9 Hz, 1H), 7.98 – 7.37 (m, 2H), 6.72 – 5.81 (m, 2H), 5.53 (d, J = 1.6 Hz, 1H), 3.40 – 2.18 (m, 2H), 1.27 (t, J = 7.5 Hz, 4H), 1.18 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.0, 146.1, 135.1, 131.6 (q, J = 33.3 Hz), 127.1, 124.4, 122.4, 121.6, 114.9, 112.6, 83.3, 78.1, 69.7, 27.6, 18.8, 9.5 ppm; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ –62.9 ppm; IR (film) v_{max} 1717, 1643, 1281, 1173, 1134, 991, 845 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₁N₂O₄F₆ 467.1400; Found 467.1394.

5-([1,1'-Biphenyl]-4-yl)-4-(*tert*-butoxycarbonyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3ua)

Yellow solid (148 mg, 73% yield); $R_f = 0.3$ (5:1 hexanes/AcOEt); m.p. 89.6–90.6 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 – 7.54 (m, 4H), 7.51 – 7.41 (m, 2H), 7.40 – 7.34 (m, 2H), 5.92 (d, J = 1.0

Hz, 2H), 5.42 (d, J = 1.0 Hz, 1H), 2.69 – 2.49 (m, 2H), 1.29 (t, J = 7.5 Hz, 3H), 1.23 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.5, 148.5, 141.8, 140.4, 131.7, 128.8, 127.6, 127.3, 127.0, 126.6, 115.6, 110.0, 82.4, 78.7, 69.7, 27.7, 18.7, 9.6 ppm; IR (film) v_{max} 1713, 1643, 1366, 1150, 741 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₄H₂₇N₂O₄ 407.1965; Found 407.1964.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(naphthalen-1-yl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3va)

White solid (146 mg, 77% yield); $R_f = 0.3$ (5:1 hexanes/AcOEt); m.p. 151.6–152.4 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.69 (m, 4H), 7.58 – 7.45 (m, 2H), 7.35 (d, J = 8.4 Hz, 1H), 5.94 (d, J = 1.9 Hz, 2H), 5.58 – 5.36 (m, 1H), 2.89 – 2.21 (m, 2H), 1.30 (td, J = 7.6, 2.0 Hz, 3H), 1.13 (d, J = 2.1 Hz, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 152.5, 148.9, 133.4, 132.7, 130.3, 128.0, 127.7, 127.4, 126.6, 126.5, 125.9, 124.7, 115.6, 110.3, 82.4, 78.7, 69.7, 27.6, 18.8, 9.6 ppm; IR (film) v_{max} 1701, 1639, 1380, 1342, 1165, 1138, 844, 748 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₅N₂O₄ 381.1808; Found 381.1803.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(thiophen-2-yl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3wa)

White solid (96 mg, 57% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 97.1–99.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (dd, J = 5.0, 1.2 Hz, 1H), 7.08 (dd, J = 3.7, 1.2 Hz, 1H), 6.99 (dd, J = 5.1, 3.6 Hz, 1H), 6.21 – 5.66 (m, 2H), 5.44 (d, J = 1.6 Hz, 1H), 2.61 – 2.49 (m, 2H), 1.31 (s, 9H), 1.24 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.4, 142.1, 133.8, 127.0, 126.7, 126.2, 115. 5, 110.63, 82.5, 78.4, 70.0, 27.8, 18.7, 9.5 ppm; IR (film) v_{max} 1721, 1625, 1366, 1250, 1150, 845, 733 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₁N₂O₄S 337.1217; Found 337.1215.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(5-methylpyridin-2-yl)-3a,6a-dihydro-4*H*-pyrrolo[2,3*d*]isoxazole 2-oxide (3xa)

White solid (81 mg, 47% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt);); m.p. 168.6–169.8 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 – 8.25 (m, 1H), 7.48 (ddd, J = 8.0, 2.2, 0.8 Hz, 1H), 7.18 – 7.10 (m, 1H), 6.15 – 5.83 (m, 2H), 5.61 (d, J = 1.6 Hz, 1H), 2.61 – 2.52 (m, 2H), 2.34 (s, 3H), 1.24 (t, J = 7.5 Hz, 3H), 1.20 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.4, 149.3, 148.7, 148.0, 136.2, 133.2, 121.9, 115.5, 111.7, 82.3, 78.7, 69.7, 27.7, 18.7, 18.3, 9.4 ppm; IR (film) v_{max} 1710, 1641, 1561, 1482, 1331, 1151, 843 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₄N₃O₄ 346.1761; Found 346.1770. **4**-(*tert*-Butoxycarbonyl)-5-(2-chloropyridin-3-yl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-

d]isoxazole 2-oxide (3ya)

White solid (100 mg, 55% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt);); m.p. 147.3–148.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 (d, J = 5.0 Hz, 1H), 7.64 (dd, J = 7.5, 2.0 Hz, 1H), 7.44 – 7.17 (m, 1H), 5.93 (s, 2H), 5.36 (s, 1H), 2.68 – 2.49 (m, 2H), 1.24 (t, J = 7.4 Hz, 4H), 1.17 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.8, 149.2, 143.9, 137.9, 129.2, 128.7, 122.0, 115.2, 111.4, 82.3, 77.5, 68.2, 27.4, 18.8, 9.2 ppm; IR (film) v_{max} 1704, 1640, 1395, 1136, 842 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₁N₃O₄Cl 366.1215; Found 366.1202.

4-(*tert*-Butoxycarbonyl)-3-ethyl-5-(pyridin-4-yl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3za)

White solid (58 mg, 35% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); m.p. 140.1–141.2 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (d, J = 5.1 Hz, 2H), 7.20 – 7.14 (m, 2H), 5.89 (s, 2H), 5.48 (s, 1H), 2.64 – 2.43 (m, 2H), 1.26 – 1.06 (m, 12H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 152.1, 149.6, 146.6, 140.7, 121.3, 115.0, 112.6, 83.2, 78.3, 69.8, 27.7, 18.7, 9.5 ppm; IR (film) v_{max} 1705, 1639, 1597, 1401,

1293, 1138, 841 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₂₂N₃O₄ 332.1604; Found 332.1603.

4-(tert-Butoxycarbonyl)-3-ethyl-6-methyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3a'a)

White solid (68 mg, 51% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 81.1–83.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 6.43 (d, J = 57.9 Hz, 1H), 5.53 (d, J = 16.6 Hz, 2H), 2.54 – 2.37 (m, 2H), 1.73 (s, 3H), 1.45 (s, 9H), 1.11 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.8, 128.4, 116.2, 115.9, 82.5, 81.4, 65.8, 28.1, 18.9, 10.8, 9.3 ppm; IR (film) v_{max} 1705, 1628, 1396, 1165, 864 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₂₁N₂O₄ 269.1495; Found 269.1493.

4-(*tert*-Butoxycarbonyl)-3-ethyl-6-(hydroxymethyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3b'a)

Clear oil (90 mg, 64% yield); $R_f = 0.2$ (2:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.77 (d, J = 59.8 Hz, 1H), 5.84 (d, J = 19.2 Hz, 1H), 5.66 (d, J = 9.5 Hz, 1H), 4.29 (s, 2H), 2.75 – 2.42 (m, 2H), 2.12 (s, 1H), 1.48 (s, 9H), 1.15 (d, J = 6.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.8, 131.1, 119.6, 116.1, 82.3, 78.9, 66.4, 57.0, 28.1, 19.0, 9.3 ppm; IR (film) v_{max} 3441, 1705, 1643, 1381, 1165, 902 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₂₁N₂O₅ 285.1444; Found 285.1439.

4-(*tert*-Butoxycarbonyl)-3-ethyl-6-(1-hydroxyethyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3c'a)

HO Boć

Total 103 mg, 70% yield, dr = 1:1. Clear oil (50 mg, 35% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 6.62

(d, J = 24.2 Hz, 1H), 5.98 – 5.73 (m, 1H), 5.61 (d, J = 10.0 Hz, 1H), 4.56 (s, 1H), 2.87 – 2.21 (m, 2H),

1.47 (s, 9H), 1.38 (dd, J = 13.9, 6.6 Hz, 3H), 1.14 (d, J = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.8, 129.6, 123.8, 116.1, 82.1, 79.1, 66.5, 63.6, 28.1, 22.2, 19.0, 9.3 ppm; IR (film) v_{max} 3223, 1696, 1401, 1048, 904 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₄H₂₃N₂O₅ 299.1601; Found 299.1603.

Clear oil (53 mg, 35% yield); R_f = 0.1 (3:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.95 - 6.73 (m, 1H), 5.49 (d, *J* = 22.1 Hz, 1H), 5.18 - 5.04 (m, 1H), 4.15 - 3.77 (m, 1H), 2.65 - 2.42 (m, 2H), 1.52 (s, 9H), 1.15 (q, *J* = 7.5, 6.6 Hz, 6H) ppm.

6-(Acetoxymethyl)-4-(*tert*-butoxycarbonyl)-3-ethyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3d'a)

Clear oil (93 mg, 57% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 6.83 (d, J = 92.0 Hz, 1H), 5.74 (dd, J = 36.3, 9.9 Hz, 1H), 5.59 (dd, J = 32.8, 10.2 Hz, 1H), 4.72 (dd, J = 13.1, 2.9 Hz, 1H), 4.60 (d, J = 13.0 Hz, 1H), 2.54 – 2.40 (m, 2H), 2.03 (d, J = 2.9 Hz, 3H), 1.46 (s, 9H), 1.11 (t, J = 6.3 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.6, 150.5, 134.0, 115.3, 114.6, 82.5, 78.8, 66.5, 58.1, 28.0, 20.8, 19.0, 9.3 ppm; IR (film) v_{max} 1745, 1566, 1203, 748, 694 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₂₂N₂O₆ 327.1551; Found 327.1555.

4-(*tert*-Butoxycarbonyl)-3-ethyl-6-phenyl-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3e'a)

White solid (48 mg, 29% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 133.1–135.0 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.43 – 7.36 (m, 2H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.09 (s, 1H), 6.10 (dd, *J* = 34.0, 10.0 Hz, 1H), 5.71 (dd, *J* = 33.7, 9.9 Hz, 1H), 2.64 – 2.50 (m, 2H), 1.53 (s, 9H), 1.18 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 150.8, 131.7, 128.7, 128.6, 127.4, 125.0, 120.0, 115.5, 82.6, 79.0, 66.4, 28.2, 19.2, 9.4 ppm; IR (film) ν_{max} 1609, 1366, 1103, 848, 732 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₃N₂O₄ 331.1652; Found 331.1655.

4-(*tert*-Butoxycarbonyl)-3-ethyl-6-(pyridin-2-yl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-

oxide (3f'a)

White solid (28 mg, 17% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); m.p. 136.1–138.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 (d, J = 4.9 Hz, 1H), 7.62 (dd, J = 15.9, 8.0 Hz, 1H), 7.26 (s, 1H), 7.12 (s, 1H), 6.18 (d, J = 9.8 Hz, 1H), 5.81 (d, J = 9.8 Hz, 1H), 2.66 – 2.48 (m, 2H), 1.54 (s, 9H), 1.19 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.3, 150.7, 149.6, 136.6, 132.9, 121.7, 120.4, 120.0, 115.4, 83.0, 78.1, 67.0, 28.2, 19.2, 9.4 ppm; IR (film) v_{max} 1713, 1636, 1389, 1311, 1165, 795 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₂N₃O₄ 332.1605; Found 332.1610.

4-(*tert*-Butoxycarbonyl)-3-ethyl-6-(pyridin-2-yl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2oxide (3g'a)

Clear oil (140 mg, 91% yield); $R_f = 0.2$ (7:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 5.59 (d, J = 9.5 Hz, 1H), 5.52 – 5.40 (m, 1H), 2.51 (dd, J = 14.0, 7.3 Hz, 2H), 2.45 – 2.30 (m, 2H), 2.27 – 2.15 (m, 1H), 1.99 – 1.91 (m, 1H), 1.81 – 1.64 (m, 2H), 1.60 – 1.50 (m, 2H), 1.47 (s, 9H), 1.12 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 151.6, 140.9, 116.3, 116.0, 81.8, 80.0, 66.4, 28.2, 25.2, 22.4, 22.0, 21.6, 18.9, 9.4 ppm; IR (film) v_{max} 1719, 1646, 1350, 1148, 890, 784 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₂₅N₂O₄ 309.1809; Found 309.1818.

4-(tert-Butoxycarbonyl)-3-ethyl-3a,8b-dihydro-4H-isoxazolo[4,5-b]indole 2-oxide (3h'a)

White solid (81 mg, 53% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 130.8–131.9 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 7.90 – 7.43 (m, 1H), 7.37 (d, J = 7.5 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.08 (d, J = 9.4 Hz, 1H), 5.90 (s, 1H), 3.07 – 2.21 (m, 2H), 1.57 (s, 9H), 1.13 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 141.3, 131.0, 127.7, 126.3, 123.8, 116.2, 82.8, 67.8,

28.2, 18.9, 9.3 ppm; IR (film) *v_{max}* 3010, 1460, 1390, 1304, 1290, 720 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₁N₂O₄ 305.1496; Found 305.1501.

4-(tert-Butoxycarbonyl)-3-methyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3ab)

White solid (88 mg, 74% yield); $R_f = 0.3$ (5:1 hexanes/AcOEt); m.p. 131.1–132.0 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 6.85 (d, J = 98.0 Hz, 1H), 5.82 (t, J = 19.3 Hz, 1H), 5.66 – 5.33 (m, 1H), 5.22 (d, J = 37.8 Hz, 1H), 2.09 (s, 3H), 1.50 (s, 9H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 150.6, 135.1, 111.4, 105.6, 82.2, 79.4, 66.6, 28.1, 28.0, 11.4 ppm; IR (film) v_{max} 1707, 1642, 1370, 1171, 895, 765 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₁H₁₇N₂O₄ 241.1183; Found 241.1185.

3-Benzyl-4-(*tert*-butoxycarbonyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3ac)

White solid (35 mg, 22% yield); $R_f = 0.2$ (5:1 hexanes/AcOEt); m.p. 111.3–113.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 (d, J = 7.2 Hz, 2H), 7.27 (dt, J = 17.7, 7.3 Hz, 3H), 6.74 (s, 1H), 5.77 (d, J = 9.7 Hz, 1H), 5.60 (d, J = 9.8 Hz, 1H), 5.19 (s, 1H), 3.83 (s, 2H), 1.44 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.6, 135.5, 135.3, 128.8, 128.6, 126.9, 113.6, 105.8, 82.2, 79.8, 65.7, 30.9, 28.1 ppm; IR (film) v_{max} 1705, 1636, 1381, 1357, 1142, 718 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₁N₂O₄ 317.1495; Found 317.1495.

4-(tert-Butoxycarbonyl)-3-(2-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)-3a,6a-dihydro-4H-

pyrrolo[2,3-d]isoxazole 2-oxide (3ad)

Yellow oil (97 mg, 57% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); ¹H NMR (600 MHz, Chloroform-*d*) δ 6.80 (s, 1H), 5.99 – 5.54 (m, 2H), 5.19 (s, 1H), 4.83 – 4.24 (m, 4H), 4.09 – 3.28 (m, 3H), 2.11 – 1.69 (m, 4H), 1.48 (s, 11H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.5, 135.7, 105.1, 99.2, 99.0, 82.2, 80.2, 65.23, 61.9, 59.7, 30.3, 28.1, 25.2, 19.0 ppm; IR (film) v_{max} 1731, 1636, 1450, 1269, 1241, 1098, 813, 780 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₇H₂₇N₂O₆ 355.1863; Found 355.1853.

4-(tert-Butoxycarbonyl)-3-(3-oxopentyl)-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole 2-oxide (3ae)

Yellow oil (62 mg, 40% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.77 (s, 1H), 5.79 (d, J = 11.1 Hz, 1H), 5.66 (d, J = 9.7 Hz, 1H), 5.18 (s, 1H), 3.32 – 2.88 (m, 2H), 2.71 (ddd, J = 41.4, 16.2, 7.0 Hz, 2H), 2.43 (qd, J = 7.4, 2.6 Hz, 2H), 1.47 (s, 9H), 1.03 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 209.5, 150.8, 135.4, 114.2, 105.6, 82.3, 79.9, 66.4, 36.3, 35.5, 28.1, 19.8, 7.7 ppm; IR (film) v_{max} 1730, 1715, 1670, 1483, 1362, 1242, 740 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₂₃N₂O₅ 311.1601; Found 311.1598.

4-(*tert*-Butoxycarbonyl)-3-(3-methoxy-3-oxopropyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole 2-oxide (3af)

Yellow oil (84 mg, 54% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.99 – 6.71 (m, 1H), 5.81 (d, J = 9.8 Hz, 1H), 5.64 (d, J = 9.7 Hz, 1H), 5.19 (s, 1H), 3.67 (s, 3H), 2.92 – 2.70 (m, 3H), 2.55 (d, J = 17.2 Hz, 1H), 1.48 (s, 9H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.5, 150.7, 135.4, 113.4, 105.5, 82.3, 79.9, 66.1, 51.7, 28.5, 28.0, 20.8 ppm; IR (film) v_{max} 1735, 1448, 1330, 1275, 1140, 540 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₄H₂₁N₂O₆ 313.1399; Found 313.1405.

6. Gram-scale reaction

A dry Schlenk tube charged with a stirring bar was evacuated and backfilled with N₂ (three times). *tert*-Butyl 1*H*-pyrrole-1-carboxylate (**1a**, 1.0 g, 6.0 mmol), 1-bromo-1-nitropropane (**2a**, 1.3 mL, 12 mmol), Ag₂CO₃ (3.3 g, 12.0 mmol) and anhydrous DMSO (20 mL) were added under N₂ atmosphere. The reaction mixture was degassed by freeze-pump-thaw method, and stirred at rt (approximately 25 °C). The reaction was monitored by TLC. Upon completion (12 h), the mixture was diluted with AcOEt and washed with brine (3 × 50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (5:1 hexanes/AcOEt) to give **3aa** (white solid, 1.13 g, 73% yield).

7. Conversions of 3aa

7.1 Conversions of 3aa

According to a literature procedure^[28], a solution of **3aa** (254 mg, 1 mmol) in P(OMe)₃ (3 mL) was stirred in a closed vial at 100 °C for 5 h, diluted with Et₂O (10 mL), washed with three times with 1 M HCl (3 \times 10 mL), once with brine and water, dried over MgSO₄, and concentrated in vacuo. Purification of the residue by column chromatography on silica gel (10:1 hexanes/AcOEt) gave a yellow oil (225 mg, 95% yield).

According to a literature procedure^[29], **3aa** (41 mg, 0.16 mmol) was added to a solution of NH₄Cl (26 mg, 0.48 mmol) in THF (2 mL) and water (1 mL) at room temperature. The reaction mixture was stirred for 5 min, and then Zn powder (158 mg, 2.42 mmol) was added in portions. The reaction was stirred at room temperature for 1 h. At the end, the reaction mixture was concentrated under vacuum, and the

residue was purified by chromatography on silica gel (2:1 hexanes/AcOEt) to give the product (clear oil, 33 mg, 81% yield).

3aa (38 mg, 0.16 mmol) was added to a solution of TFA (0.16 mmol) in DCM (2 mL) at room temperature. The reaction mixture was stirred for 30 min, concentrated under vacuum, and purified by chromatography on silica gel (7:1 hexanes/AcOEt) to give the product (white solid, 19 mg, 87% yield).

K₂HPO₄ (174 mg, 1.0 mmol) and Umemoto reagent II (438 mg, 1.0 mmol) were added to a solution of **3aa** (119 mg, 0.5 mmol) in DMF (4 mL). The reaction mixture was stirred under irradiation with white LEDs (approximately 3.0 cm distance from the tube) at room temperature for 12 hours. The mixture was extracted with ethyl acetate, washed with saturated brine, dried over MgSO₄, filtered, and concentrated in vacuo. Purification by chromatography on silica gel (10:1 hexanes/AcOEt) gave the product (clear oil, 92 mg, 60% yield).

NBS (133 mg, 0.75 mmol) and Trimethylchlorosilane (108 mg, 1.0 mmol) were added in one potion to a solution of **3aa** (119 mg, 0.5 mmol) in CH₃CN (4 mL). The reaction mixture was stirred at room temperature for 4 h, concentrated under vacuum, and purified by chromatography on silica gel (7:1 hexanes/AcOEt) to give the product (clear oil, 142 mg, 90% yield).

Squaric acid (11 mg, 0.1 mmol), aniline (97 mg, 1.05 mmol) and ethyl glyoxylate solution (102 mg, 1.05 mmol, 50% in toluene) were added to a solution of **3aa** (238 mg, 1 mmol) in CH₃CN (4 mL). The reaction mixture was stirred under N₂ at room temperature for 12 hours, concentrated in vacuo, and purified by chromatography on silica gel (7:1 hexanes/AcOEt) to give the major isomer (white solid, 232mg, 56% yield) and the minor isomer (white solid, 78mg, 19% yield). The total yield was 75%. The isomer ratio was determined to be 3:1.

To a stirred solution of the **4d** (0.5 mmol), Phenylboronicacid (72 mg, 0.6 mmol) and tetrakis-(triphenylphosphine)palladium (57 mg, 0.05 mmol) in 1,2-dimethoxyethane (10 mL) at room temperature under argon was added a solution of sodium carbonate (159 mg, 1.5 mmol) in water (5 mL). The mixture was heated at reflux for 9 h, cooled, then partitioned between water (50 mL) and dichloromethane (4×20 mL). The combined extracts were dried over Na₂SO₄ and evaporated in vacuo to give an oil. The residue was purified by flash chromatography on silica gel to give **4f** (110 mg, 71% yield).

7.2 Physical data

tert-Butyl 3-ethyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole-4-carboxylate (4a)

Clear oil (225 mg, 95% yield); $R_f = 0.1$ (7:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.83 – 6.37 (m, 1H), 5.67 (t, J = 8.4 Hz, 1H), 5.35 (dd, J = 31.0, 9.9 Hz, 1H), 5.09 (d, J = 15.2 Hz, 1H), 2.33 (m, 2H), 1.38 (s, 9H), 1.11 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.4, 150.7, 132.4, 107.1, 85.2, 81.4, 69.4, 27.9, 20.3, 10.4 ppm; IR (film) ν_{max} 1709, 1393, 1362, 1138, 930 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₂H₁₉N₂O₃ 239.1390; Found 239.1391.

tert-Butyl 3-hydroxy-2-(1-(hydroxyimino)propyl)-2,3-dihydro-1H-pyrrole-1-carboxylate (4b)

Clear oil (33 mg, 81% yield); $R_f = 0.1$ (3:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 9.81 (s, 1H), 6.74 (d, J = 61.3 Hz, 1H), 5.35 – 4.89 (m, 2H), 4.56 (s, 1H), 3.74 (s, 1H), 2.31 (m, 2H), 1.41 (s, 9H), 1.09 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.3, 151.5, 150.8, 133.3, 108.9, 81.3, 75.9, 74.9, 63.9, 63.4, 28.3, 28.2, 28.0, 27.8, 21.4, 10.0, 9.6 ppm; IR (film) v_{max} 3391, 1705, 1396, 1146, 1049, 764 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₂H₂₁N₂O₄ 257.1495; Found 257.1493.

1-(1H-pyrrol-2-yl)propan-1-one oxime

White solid (23 mg, 91% yield); $R_f = 0.1$ (5:1 hexanes/AcOEt); m.p. 99.1–101.0 °C; ¹H NMR (600 MHz, Chloroform-*d*) δ 10.63 (s, 1H), 6.97 (q, J = 2.3 Hz, 1H), 6.58 (t, J = 2.2 Hz, 1H), 6.27 (q, J = 2.8 Hz, 1H), 2.63 (q, J = 7.5 Hz, 2H), 1.27 (t, J = 7.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.3, 125.1, 120.9, 113.0, 108.6, 25.8, 12.7 ppm; IR (film) v_{max} 3414, 3237, 1423, 1381, 926, 733 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₇H₁₁N₂O 139.0865; Found 139.0864.

tert-Butyl 3-ethyl-6-(trifluoromethyl)-3a,6a-dihydro-4*H*-pyrrolo[2,3-*d*]isoxazole-4-carboxylate (4c) F₃C

Clear oil (92 mg, 60% yield); $R_f = 0.2$ (10:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (s, 1H), 5.89 (d, J = 10.4 Hz, 2H), 5.67 (d, J = 10.1 Hz, 1H), 2.48 (td, J = 21.1, 18.7, 10.9 Hz, 2H), 1.53 (s, 9H), 1.25 (t, J = 7.4 Hz, 3H). ppm; ¹³C NMR (151 MHz, Chloroform-*d*) δ 157.2, 150.3, 136.0, 122.6 (q, J = 267.2 Hz), 110.7 (q, J = 35.9 Hz), 83.9, 82.8, 71.8, 28.1, 20.6, 10.7 ppm; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₃H₁₇F₃N₂O₃ 307.1264; Found 307.1261.

tert-Butyl 6-bromo-3-ethyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole-4-carboxylate (4d)

Clear oil (142 mg, 90% yield); $R_f = 0.1$ (5:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 6.74 (s, 1H), 5.67 (d, J = 10.5 Hz, 1H), 5.56 (d, J = 9.9 Hz, 1H), 2.70 – 2.16 (m, 2H), 1.50 (s, 9H), 1.23 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.9, 150.3, 131.5, 100.4, 86.8, 82.6, 70.3, 28.1, 20.4, 10.6 ppm; IR (film) v_{max} 1740, 1630, 1311, 1356, 1242, 709 cm⁻¹; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₂H₁₈BrN₂O₃ 317.0495; Found 317.0504.

 10-(*tert*-Butyl)
 6-ethyl
 (6S,6aS,6bR,9aR,10aS)-9-ethyl-5,6,6a,6b,9a,10a-hexahydro-10H

 isoxazolo[5',4':4,5]pyrrolo[3,2-c]quinoline-6,10-dicarboxylate (4e)

White solid (186 mg, 45% yield); $R_f = 0.15$ (5:1 hexanes/AcOEt, less polar); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.51 (d, J = 7.9 Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 6.70 (t, J = 7.5 Hz, 1H), 6.60 (d, J = 8.1 Hz, 1H), 5.50 – 5.04 (m, 3H), 4.77 – 4.08 (m, 4H), 2.97 (d, J = 34.1 Hz, 1H), 2.51 (s, 2H), 1.59 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H), 1.22 (d, J = 7.5 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.7, 142.4, 129.0, 128.5, 118.6, 115.2, 81.2, 79.7, 79.3, 69.2, 62.0, 55.9, 52.3, 46.0, 28.4, 21.8, 14.1, 11.1 ppm; IR (film) v_{max} 3101, 1750, 1660, 1380, 1377, 1142, 718 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₃₀N₃O₅ 416.2179; Found 416.2187.

 10-(*tert*-Butyl)
 6-ethyl
 (6R,6aS,6bR,9aR,10aS)-9-ethyl-5,6,6a,6b,9a,10a-hexahydro-10H

 isoxazolo[5',4':4,5]pyrrolo[3,2-c]quinoline-6,10-dicarboxylate (4e')

White solid (124 mg, 30% yield); $R_f = 0.13$ (5:1 hexanes/AcOEt, more polar); m.p. 156.1–158.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (s, 1H), 7.17 – 6.98 (m, 1H), 6.77 – 6.66 (m, 1H), 6.60 (dd, J = 8.1, 1.2 Hz, 1H), 5.32 – 4.94 (m, 3H), 4.40 (s, 1H), 4.17 (dq, J = 7.2, 3.7 Hz, 2H), 4.07 (t, J = 2.6 Hz, 1H), 2.88 (td, J = 7.4, 3.3 Hz, 1H), 2.53 (q, J = 7.5 Hz, 2H), 1.55 (s, 9H), 1.24 (td, J = 7.2, 2.2 Hz, 6H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.3, 161.3, 154.6, 142.1, 129.5, 128.9, 119.0, 115.2, 81.8, 81.3, 68.8, 61.7, 52.9, 44.1, 28.4, 21.6, 14.1, 10.9 ppm; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₂₂H₃₀N₃O₅ 416.2179; Found 416.2187.

tert-Butyl (3aS,6aS)-3-ethyl-6-phenyl-3a,6a-dihydro-4H-pyrrolo[2,3-d]isoxazole-4-carboxylate (4f)

Clear oil (110 mg, 71% yield); $R_f = 0.3$ (10:1 hexanes/AcOEt); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 7.8 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.24 – 7.14 (m, 2H), 6.10 (dd, J = 15.9, 9.8 Hz, 1H), 5.61 (dd, J = 40.4, 9.9 Hz, 1H), 2.50 (tt, J = 16.9, 8.3 Hz, 2H), 1.55 (s, 9H), 1.26 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.0, 151.0, 132.3, 128.6, 127.0, 126.4, 125.1, 121.2, 85.0, 82.2, 70.2, 28.2, 20.5, 10.7 ppm; IR (film) v_{max} 1740, 1370, 1270, 1180, 701 cm⁻¹; HRMS (ESI-TOF) *m/z*: [M + H]⁺ Calcd for C₁₈H₂₃N₂O₃ 315.1703; Found 315.1698.

8. Mechanism experiments

8.1 Radical trapping experiment using TEMPO

A dry Schlenk tube charged with a stirring bar was evacuated and backfilled with N₂ (three times). 1-Boc-pyrrole (**1a**, 1.00 mmol, 167 mg), 1-bromo-1-nitropropane (**2a**, 2.0 mmol, 0.20 mL), TEMPO (2.00 mmol, 312 mg), Ag₂CO₃ (2.00 mmol, 551 mg) and anhydrous DMSO (6.0 mL) were added under N₂ atmosphere. After stirring at rt under N₂ for 12 h, the mixture was diluted with AcOEt, washed with brine (3×50 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (5:1 hexanes/AcOEt) to give **3aa** (76 mg, 30% yield).

8.2 Powder X-ray diffraction spectrum

9. DFT calculations

Figure S1 XRD patterns of the precipitate in the mechanism experiment.

0 - Figure S2. Free energy profile for the [3+2] cycloaddition between 1a and the Ag(I) nitronate of 2a.
 Three explicit DMSO molecules and implicit PCM model are included to account for the solvent effect

Three explicit DMSO molecules and implicit PCM model are included to account for the solvent effect. Energies and selected bond distances are given in kcal/mol and angstrom, respectively.

Figure S3. The HOMO and LUMO orbitals along with their energies (in eV) of 1a and the Ag(I) nitronate of 2a calculated at the B3LYP-D3/6-31G*&SDD level. Three DMSO coordinate with the Ag⁺.

10. Unsuccessful reactants

11.Crystal data

CCDC numbers: 2268832 (3aa); 2268866 (3ia); 2306811 (3e'a); 2306810 (4e').

Single crystals of **3aa**, **3ia**, **3e'a** and **4e'** were obtained by layering an ethyl acetate solution with *n*-hexane and subsequent slow evaporation of the solvents at rt. The ellipsoid contour probability level is 50%.

Crystal data and structure refinement for 3aa.

Temperature/K	100(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	23.2511(5)
b/Å	6.0802(7)
c/Å	18.4786(9)
α/°	90
β/°	97.790(3)
$\gamma^{/\circ}$	90
Volume/Å ³	2588.2(3)
Ζ	8
pcalcg/cm ³	1.305
μ/mm ⁻¹	0.820
F(000)	1088.0
Crystal size/mm ³	$0.500\times0.500\times0.200$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.676 to 152.408
Index ranges	$-28 \le h \le 28, 5 \le k \le 7, 23 \le l \le 21$
Reflections collected	12333
Independent reflections	2612 [Rint = 0.0436, Rsigma = 0.0283]
Data/restraints/parameters	2612/0/168
Goodness-of-fit on F ²	1.052
Final R indexes [I>= 2σ (I)]	R1 = 0.0392, $wR2 = 0.1039$
Final R indexes [all data]	R1 = 0.0434, wR2 = 0.1070
Largest diff. peak/hole / e Å-3	0.25/-0.23

Temperature/K100(2)Crystal systemtriclinicSpace groupP-1

Space group	P-1
a/Å	9.5021(8)
b/Å	9.6751(5)
c/Å	10.0293(9)
α/°	77.914(6)
β/°	71.586(8)
γ/°	89.936(6)
Volume/Å ³	853.33(12)
Z	2
pcalcg/cm ³	1.286
μ/mm ⁻¹	0.749
F(000)	352.0
Crystal size/mm ³	$0.100\times0.100\times0.100$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.372 to 151.894
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -12 \le l \le 12$
Reflections collected	22766
Independent reflections	3413 [Rint = 0.0860, Rsigma = 0.0477]
Data/restraints/parameters	3413/0/222
Goodness-of-fit on F ²	1.064
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0439, wR2 = 0.1074
Final R indexes [all data]	R1 = 0.0581, $wR2 = 0.1147$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.21

Crystal data and structure refinement for **3e'a**.

5	
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	15.1005(18)
b/Å	9.9090(10)
c/Å	11.5159(15)
α/°	90
β/°	93.934(11)
$\gamma/^{\circ}$	90
Volume/Å ³	1719.1(4)
Z	4
pcalcg/cm ³	1.269
μ/mm ⁻¹	0.724
F(000)	700.0
Crystal size/mm ³	$0.150\times0.100\times0.100$
Radiation	$CuK\alpha (\lambda = 1.54184)$
20 range for data collection/°	10.686 to 153.67
Index ranges	$-19 \le h \le 19, -11 \le k \le 12, -14 \le l \le 13$
Reflections collected	23697
Independent reflections	3496 [Rint = 0.0780, Rsigma = 0.0496]
Data/restraints/parameters	3496/0/222
Goodness-of-fit on F2	1.050
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0390, wR2 = 0.0949
Final R indexes [all data]	R1 = 0.0491, $wR2 = 0.1004$
Largest diff. peak/hole / e Å ⁻³	0.24/-0.21

Crv	stal	data	and	structure	refinement	for	4e'.
-----	------	------	-----	-----------	------------	-----	------

Crystal data and structure fermier	Crystal data and structure remement for 4e.		
Temperature/K	100(2)		
Crystal system	triclinic		
Space group	P-1		
a/Å	9.6012(7)		
b/Å	10.4718(6)		
c/Å	11.4984(9)		
α/°	86.861(6)		
β/°	70.637(7)		
γ/°	79.609(5)		
Volume/Å ³	1072.78(14)		
Z	2		
pcalcg/cm ³	1.286		
μ/mm^{-1}	0.092		
F(000)	444.0		
Crystal size/mm ³	$0.3 \times 0.2 \times 0.2$		
Radiation	MoKa ($\lambda = 0.71073$)		
2Θ range for data collection/°	7.404 to 59.594		
Index ranges	$-13 \leq h \leq 13, -13 \leq k \leq 14, -14 \leq l \leq 15$		
Reflections collected	9167		
Independent reflections	4892 [Rint = 0.0487, Rsigma = 0.0692]		
Data/restraints/parameters	4892/0/276		
Goodness-of-fit on F ²	1.041		
Final R indexes [I>= 2σ (I)]	R1 = 0.0622, $wR2 = 0.1522$		
Final R indexes [all data]	R1 = 0.0831, $wR2 = 0.1740$		
Largest diff. peak/hole / e Å ⁻³	0.38/-0.37		

12.References

[1] Kamlar, M.; Hybelbauerová, S.; Císařová, I.; Veselý, J. Organocatalytic enantioselective allylic alkylation of MBH carbonates with β -keto esters. *Org Biomol Chem.*, **2014**, *12*, 5071.

[2] Smith, N. D.; Huang, D.; Cosford, N. D. P. One-step Synthesis of 3-aryl- and 3,4-diaryl-(1*H*)-pyrroles using Tosylmethyl isocyanide (TOSMIC). *Org Lett.*, **2002**, *4*, 3537-3539.

[3] Johnson, C. N.; Stempa, G.; Anandb, N.; Stephenb, S. C.; Gallagherb, T. Palladium (0)-catalysed arylations using pyrrole and indole 2-boronic acids. *Synlett.*, **1998**, *29*, 1025-1027.

[4] Hodgson, D. M.; Bebbington, M. W. P.; Willis, P. Development of two processes for the synthesis of bridged azabicyclic systems: intermolecular radical addition-homoallylic rearrangements leading to 2-azanorborn-5-enes and neophyl-type radical rearrangements to 2-azabenzonorbornanes. *Org Biomol Chem.*, **2003**, *1*, 3787-3798.

[5] Cartwright, K. C.; Tunge, J. A. Organophotoredox/palladium dual catalytic decarboxylative Csp^3 -Csp³ coupling of carboxylic acids and π -electrophiles. *Chem. Sci.*, **2020**, *11*, 8167-8175.

[6] D'Silva, C.; Iqbal, R. A new method to *N*-(arylmethyl)pyrroles from *N*-acylpyrroles. *Synthesis* (*Stuttg*)., **1996**, 457-458.

[7] Marcos Atanes, D.; Vidal, C.; Navo, C. D.; Peccati, F.; Jiménez Osés, G.; Mascareñas, J. L. Iridiumcatalyzed ortho-selective borylation of aromatic amides enabled by 5-trifluoromethylated bipyridine ligands. *Angew. Chem. Int. Ed.*, **2023**, *62*, e202214510.

[8] Sreedharan, R.; Gandhi, T. Brønsted base prompted sp³C–H latent nucleophiles to access α -branched amines bearing β -carbonyl by cleaving amide and ester bonds. *J. Org Chem.*, **2023**, *88*, 8480-8492.

[9] Chen, H.; Chen, D.; Huang, P. Ni-catalyzed direct alcoholysis of *N*-acylpyrrole-type tertiary amides under mild conditions. *Sci. Chi. Chem*, **2020**, *63*, 370-376.

[10] Yilmaz, R. F.; Derin, Y.; Misir, B. A.; Atalay, V. E.; Tutar, Ö. F.; Ökten, S.; Tutar, A. Synthesis and spectral properties of symmetrically arylated BODIPY dyes: Experimental and computational approach. *J. Mol Struct.*, **2023**, *1291*, 135962.

[11] Maeda, H.; Haketa, Y.; Nakanishi, T. Aryl-substituted C₃-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. *J. Am. Chem. Soc.*, **2007**, *129*, 13661-13674.

[12] Janaagal, A.; Sanyam; Mondal, A.; Gupta, I. Robust zinc(II)porphyrin catalyst for visible light induced C–H arylation of heteroarenes. *J. Org Chem.*, **2023**, *88*, 9424-9431.

[13] Michelet, B.; Deldaele, C.; Kajouj, S.; Moucheron, C.; Evano, G. A general copper catalyst for photoredox transformations of organic halides. *Org Lett.*, **2017**, *19*, 3576-3579.

[14] Belov, D. S.; Ivanov, V. N.; Curreli, F.; Kurkin, A. V.; Altieri, A.; Debnath, A. K. Synthesis of 5arylpyrrole-2-carboxylic acids as key intermediates for NBD series HIV-1 entry inhibitors. *Synthesis (Stuttgart).*, **2017**, *49*, 3692-3699.

[15] Zhang, S.; Tang, Z.; Bao, W.; Li, J.; Guo, B.; Huang, S.; Zhang, Y.; Rao, Y. Perylenequinonoidcatalyzed photoredox activation for the direct arylation of (het)arenes with sunlight. *Org Biomol Chem.*, 2019, 17, 4364-4369.

[16] Arnold, J.; Scott, P. d0 Organometallics in catalysis. Dalton Trans., 2011, 40, 7665.

[17] Michelet, B.; Deldaele, C.; Kajouj, S.; Moucheron, C.; Evano, G. A general copper catalyst for photoredox transformations of organic halides. *Org Lett.*, **2017**, *19*, 3576-3579.

[18] Zweig, J. E.; Ko, T. A.; Huang, J.; Newhouse, T. R. Effects of *π*-extension on pyrrole hemithioindigo photoswitches. *Tetrahedron.*, **2019**, *75*, 130466.

[19] Billingsley, K.; Buchwald, S. L. Highly efficient monophosphine-based catalyst for the palladiumcatalyzed Suzuki-Miyaura reaction of heteroaryl halides and heteroaryl boronic acids and esters. *J. Am.* Chem. Soc., 2007, 129, 3358-3366.

[20] Curreli, F.; Ahmed, S.; Benedict Victor, S. M.; Iusupov, I. R.; Belov, D. S.; Markov, P. O.; Kurkin, A. V.; Altieri, A.; Debnath, A. K. Preclinical optimization of gp120 entry antagonists as anti-HIV-1 agents with improved cytotoxicity and ADME properties through rational design, synthesis, and antiviral evaluation. *J. Med Chem.*, **2020**, *63*, 1724-1749.

[21] Maity, P.; Kundu, D.; Ranu, B. C. Visible-light-photocatalyzed metal-free C–H heteroarylation of heteroarenes at room temperature: A sustainable synthesis of biheteroaryls. *European J. Org Chem.*, **2015**, *2015*, 1727-1734.

[22] Komine, K.; Lambert, K. M.; Savage, Q. R.; Cox, J. B.; Wood, J. L. Synthetic studies toward longeracemine: a SmI₂-mediated spirocyclization and rearrangement cascade to construct the 2-azabicyclo[2.2.1]heptane framework. *Chem. Sci.*, **2020**, *11*, 9488-9493.

[23] Calvet, G.; Blanchard, N.; Kouklovsky, C. Synthesis of polysubstituted pyrroles from nitroso-Diels-Alder cycloadducts. *Synthesis (Stuttg).*, **2005**, 3346-3354.

[24] Song, J.; Wang, Q.; Fu, H.; Fu, S.; Li, S.; Shi, F.; Wu, C. Copper-catalyzed *N*-alkynylation of *Ntert*-Butyloxycarbonyl (Boc)-protected indoles. *Asian J. Org. Chem.*, **2013**, *2*, 877-881.

[25] Reddy, R. P.; Davies, H. M. L. Asymmetric synthesis of tropanes by Rhodium-catalyzed [4 + 3] cycloaddition. J. Am. Chem. Soc., 2007, 129, 10312-10313.

[26] Zhang, W.; Liu, T.; Ang, H. T.; Luo, P.; Lei, Z.; Luo, X.; Koh, M. J.; Wu, J. Modular and practical 1,2-aryl(alkenyl) heteroatom functionalization of alkenes through iron/photoredox dual catalysis. *Angew. Chem. Int. Ed.*, **2023**, *62*, e202310978.

[27] Guo, Y.; Ma, S.; Shi, L.; Liu, L.; Lei, X.; Jiao, P. *gem*-Bromonitrocyclobutane induced radical cyclization of acrylanilides to construct 2-oxindoles via photoredox catalysis. *Org. Chem. Front.*, **2023**, *10*, 2257-2262.

[28] Qi, M.; Li, M.; Bai, L.; Liu, J.; Luan, X. Rapid assembly of spiroisoxazolidines by [4 + 1] dearomative spiroannulation of α -bromo- β -naphthol and nitroolefin. *J. Org Chem.*, **2023**, *88*, 5997-6007. [29] Ma, S.; Guo, Y.; Liu, L.; Shi, L.; Lei, X.; Duan, X.; Jiao, P. gem-Bromonitroalkane involved radical 1,2-aryl migration of α,α -diaryl allyl alcohol TMS ether via visible-light photoredox catalysis. *The J. Org Chem.*, **2023**, *88*, 4743-4756.

13.NMR spectra

1b ¹H NMR, CDCl₃, 400 MHz

210 190 170 150 130 110 90 70 50 30 10 -10 f1 (ppm)

1e ¹H NMR, CDCl₃, 600 MHz

fl (ppm)

1r ¹⁹F NMR, CDCl₃, 565MHz

_ -116.94

 $1w~^1\text{H}$ NMR, $\text{CDCI}_{3,}$ 400 MHz

1w ¹³C NMR, CDCl₃, 101 MHz

1x ¹³C NMR, CDCl₃, 101 MHz

2a ¹H NMR, CDCI₃, 600 MHz

NO₂ Br

2a ¹³C NMR, CDCI_{3,} 150 MHz

 $\mathbf{2b}~^{1}\!\mathrm{H}~\mathrm{NMR},~\mathrm{CDCI}_{3,}~600~\mathrm{MHz}$

2c ¹H NMR, CDCl₃, 400 MHz

2c ¹³C NMR, CDCI₃, 100 MHz

2e ¹H NMR, CDCI₃, 400 MHz

 $2e^{13}C$ NMR, CDCI₃, 101 MHz

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

3ba ¹H NMR, CDCI₃, 400 MHz

3ea ¹H NMR, CDCl₃, 400 MHz

3ea ¹³C NMR, CDCI₃, 101 MHz

3ja ¹H NMR, CDCI₃, 400 MHz

3ja ¹³C NMR, CDCl₃, 101 MHz

3ka ¹H NMR, CDCI₃, 600 MHz

3Ia ¹⁹F NMR, CDCl₃, 565 MHz

3ra ¹H NMR, CDCI₃, 600 MHz

3ra 19 F NMR, CDCl₃, 565 MHz

_ -116.94

3sa ¹³C NMR, CDCl₃, 101 MHz

___62.89

3xa ¹³C NMR, CDCI₃, 101 MHz

3a'a ¹H NMR, CDCl₃, 400 MHz

3a'a ¹³C NMR, CDCI₃, 101 MHz

3c'a ¹H NMR, CDCI₃, 600 MHz

3c'a ¹³C NMR, CDCl₃, 101 MHz

S122

3f'a ¹H NMR, CDCI₃, 400 MHz

3f'a ¹³C NMR, CDCl₃, 101 MHz

3ad 1 H NMR, CDCI₃, 400 MHz

210 190 170 150 130 110 90 70 50 30 10 -1(f1 (ppm)

4c 19 F NMR, CDCl₃, 565 MHz

_ -62.46

