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Supplementary Note 1: Data mining

1.1 Data acquire sources

The dataset was derived from synthesis reactions catalyzed by transition metal. To 

acquire the data, we conducted a search using keywords such as transition metal, 

synthesis, and flow in the Reaxys database. We performed deduplication and 

discarded passages without product entities. Finally, we obtained an initial dataset 

comprising 200 passages for annotation. Each passages contains 2-4 sentences 

describing a synthesis process and encompasses chemical components such as 

reactants, catalysts, solvents, products, yields, temperature, time, reactions, and 

reagents.

1.2 Data annotations

For this work, we focused on collecting a corpus consisting of experimental 

sections. These sections typically provided detailed procedures for chemical reactions, 

which were aligned with our concept of reaction extraction. We manually selected a 

large number of synthesis passages from Reaxys and discarded passages without 

product entities. Then we obtained an initial dataset comprising 200 passages for 

annotation. 

Firstly, tokenization was conducted using ChemDataExtractor1 toolkit. The toolkit 

was specifically designed for the tokenization and segmentation of chemical texts, 

playing a significant role in preprocessing organic chemical passages. Following 

tokenization, chemical entities are split into separate tokens (e.g., a product entity 6-
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(4-morpholinyl)-3-pyridinamine becomes two separate tokens, 6-(4-morpholinyl)-3- 

and pyridinamine). Next, we utilized the “BIO” tagging scheme for annotation. In this 

approach, there were “B-Type”, “I-Type”, and “O” tags to represent each token, where 

“B-Type” indicated the beginning of an entity and “I-Type” indicated the inside of it 

(e.g., token [6-(4-morpholinyl)-3-] was labelled as “B-Prod”, token [pyridinamine] was 

labelled as “I-Prod”). We adopted nine major chemical labels, including Reactants, 

Catalyst, Solvent, Product, Yield, Temperature, Time, Reactions, and Reagents, to 

classify essential reaction entities. For tokens that belong to no reaction entity were 

labelled as “O”. Finally, we obtained a corpus consisting of 200 annotated 

experimental passages. Each passages contained 2-4 sentences describing a synthesis 

process. The statistics for each entity are summarized in Table S1.

Table S1 Quantities statistics of each entity in annotated dataset.

Label Count

O 13992
B-Reactants 427
I-Reactants 212

B-Catalyst_Reagents 154
I-Catalyst_Reagents 104
B-Workup_reagents 75
I-Workup_reagents 19

B-Reaction 6
I-Reaction 1
B-Solvent 236
I-Solvent 41
B-Yield 131
I-Yield 132

B-Temperature 141
I-Temperature 200

B-Time 180

I-Time 170
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1.3 Data augmentation

This work focused on obtaining a larger-scale annotated corpus. We performed 

tenfold data augmentation by permutating all texts on training and validation sets. 

This method was developed based on a Python script without any trained model.

Supplementary Note 2: DACRER: Transformer-based extraction 

approach

For this work, the aim was to train a novel model in identifying chemical entities 

accurately. We trained a sequence tagging model to recognize chemical entities and 

classify them according to the provided labels, with 19 labels in total.

In this experiment, we employed the natural language processing model to 

convert complex chemical reaction concepts such as substances-conditions 

relationships into a computer-understandable high-dimensional vectors2, thus 

characterizing the natural semantic information of chemical texts with word 

embeddings3. The input for sequence label task was packed token sequences. There 

were three types of embeddings that generated by encoder layer for each token: 

token embeddings, segment embeddings, and position embeddings, respectively. 

These embeddings were used to capture semantic information, and each token will 

be assigned a unique embedding different from that of others. As a result, complex 

chemical language was encoded into information-dense word embeddings, which 

were used to parse out chemical reaction semantic features and teach machine the 

correspondences between words and specific entity types. The word embeddings 
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were combined by three types of embeddings, which can be represented as follows :

                        （1）х= х𝑇𝑜𝑘𝑒𝑛 ⊕ х𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ⊕ х𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

After obtaining representative features, we employed DNN with two fully connected 

layers and activation function to obtain the probability scores of entity-label pairs4, 

which can be used for sequence label. Each token was corresponded to a specific label.

In addition, to achieve function optimization on the train process, the loss was 

adjusted using backpropagation algorithm. For each parameter θ, gradient updates 

iteratively can be computed by:

                                （2）

∂𝐿
∂𝜃

=
𝑛

∑
𝑖= 1

∂𝑙𝑜𝑠𝑠(𝑦𝑖,𝑦𝜈)

∂𝜃𝑖

where  is the true label of the model,  indicates the prediction, and  is a loss function 𝑦𝑖 𝑦𝜈

∂𝑙𝑜𝑠𝑠(𝑦𝑖,𝑦𝜈)
∂𝜃

to calculate the gradient through the following formula:

                               （3）
𝐿=

𝑛

∑
𝑖= 0

𝑙𝑜𝑠𝑠(𝑦𝑖,𝑦𝜈)

The model was trained according to maximum likelihood estimation. In this way, the 

probability of each token can be calculated. Assuming the input token sequence as х1, 

х2,…, хn, the prediction probability as , each token label according to Ｐ(х𝑖|𝜃)

probability distribution is obtained by accumulating the argmax:

                        （4）
Ｐ(𝑋|𝜃)= argmax 𝜃

ｎ

∏
𝑖= 1

Ｐ(х𝑖|𝜃)

We added sentence representation such as “[CLS]” token and “[SEP]” token to 

differentiate the sentences and improve the identification5.

Supplementary Note 3: Results and Discussion
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3.1 Model validation on independent dataset

To further investigate the effectiveness of our model, we selected an extra 

annotated dataset, named Product Dataset, to examine the generalization 

performance of model. The independent dataset includes three labels to distinguish 

product entities from others, which were annotated in the form of token-label pairs 

by the same method. It was also noteworthy that Product Dataset containing new 

chemical texts were not presented in the original datasets. We used the same 

procedure to perform tenfold augmentation for the product dataset, then followed 

an 8:1:1 split, such that there were 2400, 300 and 30 passages in the training, 

validation, and test sets respectively.

The prediction results were shown in Table S2. Clearly, we can see that the 

performance of the model was improved on augmentation dataset. The accuracy of 

the model was consistent with the number of augmented chemical texts, which 

aligned with the observations above. When using tenfold data augmentation, the 

proposed model achieved the highest scores, with F1-score and accuracy about 91% 

and 99%. Even for the baseline dataset without any augmentation, the model 

achieved higher F1-score and accuracy than before, with 71% and 98% respectively. 

This was mainly due to a fewer number of labels in this product dataset, which was 

beneficial for the model to comprehend sematic associations of token-label pairs. The 

above results indicated that DACRER model has excellent generalization performance 

and can predict various of chemical labels effectively.

Table S2 Experimental results on Product Dataset. Precision(P), Recall(R), F1-score(F1), 
Accuracy(ACC).
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Product Dataset P(%) R(%) F1(%) ACC(%)

baseline 60.7 85.0 70.8 98.5

5*fold data augmentation 80.0 80.0 80.0 98.7

10*fold augmentation 86.4 95.0 90.5 99.7

                                
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃+ 𝑇𝑁
𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+ 𝐹𝑁

(1)

                                      
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃
𝑇𝑃+ 𝐹𝑃

(2)

                                      (3)
𝑅𝑒𝑐𝑎𝑙𝑙=

𝑇𝑃
𝑇𝑃+ 𝐹𝑁

                            (4)
𝐹1= 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where TP and FP respectively indicate the true positives that the model correctly 

predicted and the instances that the model incorrectly predicted as positives. TN and 

FN respectively indicate the true negatives that the model correctly identified and the 

false negatives that the model failed to identify.

3.2 Performance analysis

Figure S1 visualized confusion matrix of 17 labels. Most predicted labels showed 

correct correspondence with truth labels. The few false positives appeared on labels 

with low frequency. , Model struggled to distinguish labels that only appeared few 

times. 
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Figure S1 Confusion matrix of predicted labels and true labels. Rows represented 
predicted labels, while columns represented actual labels.

Figure S2 visualized two cases of entity extraction from the test dataset. The first 

row provided the true labels, and the second row represented the predicted label. To 

qualitatively understand the reaction extraction ability of our model, we illustrated 

correct predictions and mistake instances, respectively. Example (a) showed that the 

model successfully annotated reaction product as well as reaction conditions such as 

reactants, solvent, temperature, and time. In comparison, Example (b) showed a 

typical error made by model, where the Reactants label was predicted as Catalyst label 

mistakenly. We found that the classifier confuses Reactants and Catalyst labels several 
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times, this was mainly because reactants entities and catalyst entities have similar 

context patterns, including the same reactants and solvents. For example, as shown 

in Example (b), Reactant [PPh3] and Catalyst [TBBDA] shared the same contextual 

representation, thereby causing semantic ambiguity to the model. This kind of error 

was in line with the analysis above and also provided insights to improve our model.

Figure S2 Examples of chemical reaction extraction. Example (a) showed a correct 
prediction instance, while Example (b) depicted an instance with an error.

To offer further clarification in the effect of data augmentation, we decrease the training 
data size to 100 passages and keep the data augmentation, the prediction results were 
given in Table below. The results illustrate that data augmentation is more pronounced at 
smaller datasets.

Table S3 Results on utilizing augmentation to 100 passages.

Data augmentation P(%) R(%) F1(%) ACC(%)

baseline 44.9 57.1 50.9 81.1

10*fold 65.9 82.8 73.0 95.3
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