Supporting Information

Synthesis of Quinazolinone Scaffolds via Zinc(II) Stabilized Amidyl Radical Promoted Deaminative Approach

Subarna Manna, Sangita Sahoo, and Arnab Rit*
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
*E-mail: arnabrit@iitm.ac.in

Table of contents:

General experimental description S2
General procedure for the synthesis of amidated imidazolium salts L1-2 S2-S5
General procedure for the synthesis of compounds $\mathbf{1 a - b}$ and $\mathbf{1 a} \mathbf{a}^{\mathbf{\prime}} \mathbf{- b}{ }^{\prime}$ S5-S10
General procedure for synthesis of various quinazolinone $/ 2 \mathrm{H}$ - S11
benzo[1,2,4]thiadiazine 1,1-dioxide from 2-aminobenzamide/ 2-aminobenzenesulfonamide and nitriles
General procedure for synthesis of various quinazolinones from methyl S11
anthranilate and nitriles
General synthetic method for the synthesis of 2-phenylquinazolin-4(3H)- S13
one/2-methylquinazolin-4(3 H)-one in gram scale General procedure for competitive experiments S13-S14
Post-synthetic modification of quinazolinones S15-S16
EPR analyses S16-S17
Calculation of bond dissociation enthalpy (BDE) S17-S18
Electrochemical analyses of L1 and 1a S19
Control experiments for establishing radical-mediated pathway S19-S21
Kinetic studies S21-S22
Analytical data of isolated compounds S22-S35
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the isolated compounds S36-S88
Mechanistic study S89
Crystallographic data for the compound 1a S90-S91
Computational data S91-S106
References S106-S107

General experimental description:

All the reactions were performed under an argon atmosphere using a glove box and/or standard Schlenk techniques unless stated otherwise. All non-deuterated solvents used for the synthesis were distilled, degassed by standard methods and kept under an inert atmosphere over $4 \AA$ molecular sieves, whereas the deuterated solvents were used as received from the commercial sources. NMR spectra were recorded using the Bruker 400 and 500 MHz FT-NMR spectrometers at ambient temperature and all the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced internally to the residual solvent signals. ${ }^{19}$ F NMR spectra were referenced externally to α, α, α -trifluorotoluene $\left(0.05 \% \mathrm{CDCl}_{3}, \delta=-63.73 \mathrm{ppm}\right)$. The ESI-MS spectra were measured with an Agilent 6545A Q-TOF Mass spectrometer. Infrared spectra were recorded on an ATR 4000 Series Spectrometer. UV-vis absorption spectra were recorded on JASCO V-650 spectrometer. Either Metrohm autolab potentiostat or galvanostat MAC90009 instrument was used for the electrochemical analysis. EPR spectra were measured using JES-FA200 ESR Spectrometer. Zinc salts (from TCI) and all other chemicals were purchased from commercial sources and used directly without further purification. Employed amidated salts (L1-2) were synthesized according to the literature procedures. ${ }^{1}$

1. General procedure for the synthesis of amidated salts, L1-2

The N, N-dimethylimidazolium salt and the amidated salts were prepared using the reported procedure. ${ }^{1}$ In a pressure tube (25 mL), N, N-dimethylimidazolium salt ($0.669 \mathrm{mmol}, 1$ equiv.), isocyanate ($1.204 \mathrm{mmol}, 1.8$ equiv.), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.1 equiv.) were stirred in $\mathrm{DCM}(2 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ (oil bath temperature) for 24 h . After completion of the reaction, the reaction mixture was purified by column chromatography using methanol and DCM solvent mixture as eluent to provide the desired C2-amidated imidazolium salts, L1-2. ${ }^{1}$

Scheme S1. Synthesis and characterization of amidated salts, L1-2

L1: L1 was synthesized according to the general procedure using 200 mg of imidazolium salt, 12 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 214.0 mg of p-tolyl-isocyanate (yield: $280 \mathrm{mg}, 0.783 \mathrm{mmol}, 87 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.30(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.98(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ $150.7,138.0,135.0,134.3,129.5,123.9,120.4,36.4,20.6 \mathrm{ppm}$. IR (KBr): 3428, 1683, and $1530 \mathrm{~cm}^{-1}$.

L2: L2 was synthesized according to the general procedure using 200 mg of imidazolium salt, 12 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 205.4 mg of 4-chlorophenyl isocyanate (yield: $274 \mathrm{mg}, 0.726 \mathrm{mmol}$, $81 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.49(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 151.1, 137.7, 135.9, 129.4, 129.1, 124.1, 122.2, 36.4 ppm . IR (KBr): 3443, 1688, and $1527 \mathrm{~cm}^{-1}$.

Figure S1. ${ }^{l}{ }^{1}$ NMR of $\boldsymbol{L} 1$ in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

Figure S2. $\left.{ }^{13} C_{l}{ }^{1} H\right\}$ NMR of L1 in DMSO-d ${ }_{6}$

Figure S3. ${ }^{l} \mathrm{H}$ NMR of $\boldsymbol{L} 2$ in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

Figure S4. $\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of $\mathbf{L} \mathbf{2}$ in $\mathrm{DMSO}-d_{6}$

2. General Procedure for the synthesis of compounds (1a-b and 1a'-b')

The precursor $\mathrm{ZnBr}_{2} / \mathrm{ZnI}_{2}$ (1 equiv.) and amidated salts, $\mathbf{L 1 - 2}$ (2 equiv.) were placed in a Schlenk tube containing methanol (2 mL) with constant stirring at ambient temperature for 12 h. After that, all the volatiles were removed under high vacuum and the residue was then dissolved in dichloromethane. After filtration, the filtrate was concentrated and precipitated with diethyl ether. The precipitate was then collected and dried to yield a white solid.

Compound 1a. Compound 1a was synthesized according to the general procedure using 50 mg of $\mathbf{L 1}$ and 16 mg of ZnBr_{2} (yield: $82.3 \mathrm{mg}, 0.087 \mathrm{mmol}, 70 \%$). Suitable crystals of $\mathbf{1 a}$ for single-crystal X-ray diffraction study were obtained via slow evaporation from a methanolic solution of 1a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.32(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.96(\mathrm{~s}, 12 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 150.9,138.3,137.5,134.8,129.4,123.8,120.5,36.3,20.6 \mathrm{ppm}$. IR (KBr): 3447.6, 1685.7 , and $1543.3 \mathrm{~cm}^{-1}$.

Compound $\mathbf{1 b}$. Compound $\mathbf{1 b}$ was synthesized according to the general procedure using 50 mg of $\mathbf{L} \mathbf{2}$ and 12 mg of ZnBr_{2} (yield: $\left.75.7 \mathrm{mg}, 0.077 \mathrm{mmol}, 65 \%\right)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 11.54(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 4 \mathrm{H}), 7.74(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.98(\mathrm{~s}$,
$12 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 151.1, 137.7, 135.9, 129.4, 129.1, 124.1, $122.2,36.4 \mathrm{ppm}$. IR (KBr): 3451.1, 1694.1, and $1526.9 \mathrm{~cm}^{-1}$.

Compound $\mathbf{1 a}$ '. Compound $\mathbf{1 a}$ ' was synthesized according to the general procedure using 50 mg of $\mathbf{L 1}$ and 22.4 mg of ZnI_{2} (yield: $108.15 \mathrm{mg}, 0.102 \mathrm{mmol}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.28(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~s}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H})$, $3.96(\mathrm{~s}, 12 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 150.8,138.1$, 135.1, $134.4,129.6,124.0,120.5,36.4,20.7 \mathrm{ppm}$. IR (KBr): $3460.5,1688.7$, and $1529.8 \mathrm{~cm}^{-1}$.

Compound $\mathbf{1 b}$ '. Compound $\mathbf{1 b}$ ' was synthesized according to the general procedure using 50 mg of $\mathbf{L 2}$ and 21.1 mg of ZnI_{2} (yield: $96.4 \mathrm{mg}, 0.089 \mathrm{mmol}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right) \delta 11.47(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.98(\mathrm{~s}$, 12H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 151.1, 137.7, 136.0, 129.4, 129.1, 124.2, $122.2,36.5 \mathrm{ppm}$. IR (KBr): $3449.2,1685.6$, and $1533.2 \mathrm{~cm}^{-1}$.

Figure S5. ${ }^{l} H$ NMR of compound 1a in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d ${ }_{6}$

Figure S6. $\left.{ }^{13} C_{l}{ }^{1} H\right\}$ NMR of compound 1 a in DMSO-d d_{6}

Figure S7. ${ }^{1} \mathrm{H} N M R$ of compound $\mathbf{1 b}$ in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d 6

Figure S8. $\left.{ }^{13} C_{l}{ }^{1} H\right\}$ NMR of compound $\mathbf{1 b}$ in DMSO-d d_{6}

Figure S9. ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 a}$ ' in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d ${ }_{6}$

Figure S10. $\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of compound $1 a$ ' in DMSO- d_{6}

Figure S11. ${ }^{1}{ }^{H}$ NMR of compound $\mathbf{1 b}^{\prime}$ ' in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

Figure S12. $\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of compound $\mathbf{1 b}$ ' in DMSO- d_{6}

Table S1. Optimization of the reaction conditions for synthesis of quinazolinone starting from 2-aminobenzamide ${ }^{a}$

$\begin{gathered} \text { Ent } \\ \text { ry } \end{gathered}$	3 a	Catalyst	Base	Solvent	Temp	$\begin{array}{\|l\|} \hline \text { Yield (\%) } \\ \text { 5a } \\ \text { 5a' } \\ \hline \end{array}$	
1	0.2 mL	$\mathrm{ZnBr}_{2}+\mathbf{L} 1$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	-	$140{ }^{\circ} \mathrm{C}$	75	-
2	0.2 mL	$\mathrm{ZnCl}_{2}+\mathbf{L} 1$	$\mathrm{LiO}^{t} \mathrm{Bu}$	-	$140{ }^{\circ} \mathrm{C}$	65	-
3	0.2 mL	$\mathrm{ZnI}_{2}+\mathrm{L} 1$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	-	$140{ }^{\circ} \mathrm{C}$	72	-
4	0.2 mL	$\begin{aligned} & \mathrm{Zn}(\mathrm{OAc})_{2} / \mathrm{Zn}(\\ & \left.\mathrm{NO}_{3}\right)_{2}+\mathbf{L 1} \\ & \hline \end{aligned}$	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	-	$140{ }^{\circ} \mathrm{C}$	15/41	-
5	0.2 mL	1a/1a'	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	-	$140{ }^{\circ} \mathrm{C}$	81/79	-
6	0.2 mL	1b/1b ${ }^{\text {' }}$	$\mathrm{LiO}^{t} \mathrm{Bu}$	-	$140{ }^{\circ} \mathrm{C}$	55/54	
7	0.2 mL	1a/1a'	$\mathrm{LiO}^{\prime} \mathrm{Bu}$	-	$120^{\circ} \mathrm{C}$	86/83	-
8	0.2 mL	1a	$\begin{gathered} \hline \mathrm{KO}^{t} \mathrm{Bu} / \\ \mathrm{NaO}^{\prime} \mathrm{Bu} / \\ \mathrm{K}_{2} \mathrm{CO}_{3} \end{gathered}$	-	$120^{\circ} \mathrm{C}$	$\begin{array}{\|l\|l} \hline 65 / 55 \\ 27 / 14 \\ \text { /Trace } \\ \text { /N.D. }{ }^{f} \\ \hline \end{array}$	

9	0.2 mL	-	$\mathrm{LiO}^{t} \mathrm{Bu}$	-	$120^{\circ} \mathrm{C}$	23	-
10	0.2 mL	$\mathbf{1 a}$	-	-	$120^{\circ} \mathrm{C}$	Trace	
11^{b}	0.2 mL	$\mathbf{L 1}$	$\mathrm{LiO}^{t} \mathrm{Bu}$	-	$120^{\circ} \mathrm{C}$	18	-
12	0.2 mL	ZnBr_{2}	-	-	$120^{\circ} \mathrm{C}$	Trace	

${ }^{a}$ Reaction conditions: 2-amino benzamide ($\mathbf{2 a}, 0.25 \mathrm{mmol}$), catalyst ($5 \mathrm{~mol} \%$), base (0.125 $\mathrm{mmol}), \mathbf{3 a}(0.2 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under inert condition. Isolated yield. ${ }^{b} \mathbf{L} \mathbf{1}(10 \mathrm{~mol} \%)$, base $(0.250 \mathrm{mmol}) .{ }^{c}$ Base $(0.075 \mathrm{mmol}) .{ }^{d}$ Base $(0.050 \mathrm{mmol}) .{ }^{e} \mathbf{1} \mathbf{a}(3 \mathrm{~mol} \%) .{ }^{\dagger} \mathrm{N} . \mathrm{D} .=$ Not detected.
3. General procedure for synthesis of various quinazolinones/2H-benzo[1,2,4]thiadiazine 1,1-dioxides from 2-aminobenzamide/ $\mathbf{2}$-aminobenzenesulfonamide and nitriles

An oven-dried pressure tube (25 mL) was charged with 2 -aminobenzamide, 2a/2aminobenzenesulfonamide, $\mathbf{2 b}$ (0.25 mmol , 1 equiv.), $\mathrm{LiO}^{\dagger} \mathrm{Bu}(0.125 \mathrm{mmol}, 0.50$ equiv.), and $1 \mathbf{a}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ followed by the addition of nitrile (0.2 mL) under inert condition. Then, the tube was kept in an oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

4. General procedure for synthesis of various quinazolinone from methyl anthranilate and nitriles

An oven-dried pressure tube $(25 \mathrm{~mL})$ was charged with methyl anthranilate $(\mathbf{1 0}, 0.25 \mathrm{mmol}, 1$ equiv.), $\mathrm{KO}^{t} \mathrm{Bu}$ ($0.187 \mathrm{mmol}, 0.75$ equiv.), and $\mathbf{1 a}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$) followed by the addition of nitrile $(0.2 \mathrm{~mL})$ under inert condition. Then, the tube was kept in an oil bath at 120 ${ }^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.

Table S2. Optimization of the reaction conditions for synthesis of quinazolinone starting from methyl anthranilate ${ }^{a}$

Entry	Catalyst	Base	Temp.	Yield (\%)	
				$\mathbf{5 a}$ 5a	
1^{b}	$\mathbf{1 a}$	$\mathrm{LiO}^{t} \mathrm{Bu}$	$120^{\circ} \mathrm{C}$	Trace	
2^{b}	$\mathbf{1 a}$	$\mathrm{LiO}^{t} \mathrm{Bu}$	$140^{\circ} \mathrm{C}$	Trace	
3^{b}	$\mathbf{1 a}$	$\mathrm{NaO}^{t} \mathrm{Bu}$	$120^{\circ} \mathrm{C}$	42	15
4^{b}	$\mathbf{1 a}$	$\mathrm{KO}^{t} \mathrm{Bu}$	$120^{\circ} \mathrm{C}$	53	18
5	$\mathbf{1 a}$	$\mathrm{KO}^{t} \mathrm{Bu}$	$120^{\circ} \mathrm{C}$	65	21

${ }^{a}$ Reaction conditions: Methyl anthranilate ($\left.\mathbf{1 0}, 0.25 \mathrm{mmol}\right), \mathbf{1 a}(0.0125 \mathrm{mmol}), \mathrm{KO}{ }^{\dagger} \mathrm{Bu}(0.187 \mathrm{mmol})$, benzonitrile (0.2 mL), 24 h , under inert condition. Isolated yield. ${ }^{ }{ }^{\circ} \mathrm{KO}{ }^{\dagger} \mathrm{Bu}(0.125 \mathrm{mmol})$.

Figure S13: ${ }^{1} \mathrm{H}$ spectra of reaction mixture between methyl anthranilate (10) and benzonitrile (3a) under standard condition showing removal of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ as a by-product

Table S3. Substrate scope of nitriles with methyl anthranilate ${ }^{a}$

${ }^{a}$ Reaction conditions: Methyl anthranilate ($\mathbf{1 0}, 0.25 \mathrm{mmol}$), $\mathbf{1 a}(5 \mathrm{~mol} \%), \mathrm{KO}^{t} \mathrm{Bu}(0.187$ $\mathrm{mmol}), \mathrm{ArCN}, 120^{\circ} \mathrm{C}, 24 \mathrm{~h}$, under inert condition, isolated yield. ${ }^{b} \mathbf{1 a}(10 \mathrm{~mol} \%), \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(0.375$ mmol).

5. General synthetic method for the synthesis of 2-phenylquinazolin-4(3H)-one (5a)/2-methylquinazolin-4(3H)-one (8a) in gram scale

An oven-dried pressure tube (25 mL) was charged with 2 -aminobenzamide ($\mathbf{2 a}, 1 \mathrm{~g}, 7.345$ mmol, 1 equiv.), $\mathrm{LiO}^{t} \mathrm{Bu} / \mathrm{KO}^{t} \mathrm{Bu}$ ($3.673 \mathrm{mmol}, 0.50$ equiv.), and $\mathbf{1 a}$ ($0.367 \mathrm{mmol}, 5 \mathrm{~mol} \%$) followed by the addition of benzonitrile (3 mL)/acetonitrile (3 mL) under inert condition. Then, the tube was kept in an oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products 5a and 8a were isolated by column chromatography over silica gel using hexane/ethyl and DCM/MeOH acetate as eluent, respectively.

6. Procedure for competitive experiments

(a) Synthesis of quinazolinones via coupling between 2-aminobenzamide, benzonitrile and benzyl cyanide: An oven-dried pressure tube (25 mL) was charged with 2-aminobenzamide ($\mathbf{2 a}, 0.25 \mathrm{mmol}$), $\mathrm{LiO}^{t} \mathrm{Bu}(0.125 \mathrm{mmol}, 0.50$ equiv.), and $\mathbf{1 a}(0.012 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of benzonitrile $(0.1 \mathrm{~mL})$ and benzyl cyanide $(0.1 \mathrm{~mL})$. Then, the tube was kept in oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products $\mathbf{5 a}$ (yield: $\mathbf{6 1 \%}, 33.9 \mathrm{mg}$) and $\mathbf{6 a}$ (yield: $22 \%, 13 \mathrm{mg}$) were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluents.
(b) Synthesis of quinazolinones via coupling between 2-aminobenzamide, benzonitrile and acetonitrile: An oven-dried pressure tube (25 mL) was charged with 2-aminobenzamide (2a, $0.25 \mathrm{mmol}), \mathrm{LiO}^{t} \mathrm{Bu}(0.125 \mathrm{mmol}, 0.50$ equiv.), and $\mathbf{1 a}(0.012 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of benzonitrile $(0.1 \mathrm{~mL})$ and acetonitrile $(0.1 \mathrm{~mL})$. Then, the tube was kept in oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products $\mathbf{5 a}$ (yield: $62 \%, 34.4 \mathrm{mg}$) and $\mathbf{8 a}$ (yield: $18 \%, 7.2 \mathrm{mg}$) were isolated by column chromatography over silica gel using hexane/ethyl acetate and $\mathrm{DCM} / \mathrm{MeOH}$ as eluents, respectively.
(c) Synthesis of quinazolinones via coupling between 2-aminobenzamide, 2aminobenzenesulfonamide, and benzonitrile: An oven-dried pressure tube (25 mL) was charged with 2 -aminobenzamide ($\mathbf{2 a}, 0.25 \mathrm{mmol}$), 2-aminobenzenesulfonamide ($\mathbf{2 b}, 0.25$ $\mathrm{mmol}) \mathrm{LiO}^{t} \mathrm{Bu}(0.125 \mathrm{mmol}, 0.50$ equiv.), and $\mathbf{1 a}(0.012 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of benzonitrile $(0.2 \mathrm{~mL})$. Then, the tube was kept in oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products $\mathbf{5 a}$ (yield: $58 \%, 32.2 \mathrm{mg}$) and $\mathbf{9 a}$ (yield: $24 \%, 15.5 \mathrm{mg}$) were isolated by column chromatography over silica gel using hexane/ethyl acetate and $\mathrm{DCM} / \mathrm{MeOH}$ as eluents, respectively.

Scheme S2: Competitive experiments

Scheme S3. Post-synthetic modification of quinazolinones

(a) Compound 11a was synthesized following the reported procedure. ${ }^{2}$ Equimolar amounts of
 compound $\mathbf{8 a}$ ($30 \mathrm{mg}, 0.186 \mathrm{mmol}$) and 4-chlorobenzaldehyde (28 $\mathrm{mg}, 0.186 \mathrm{mmol}$) were refluxed in glacial acetic acid (2 mL) for 8 h in presence of anhydrous sodium acetate ($0.4 \mathrm{mg}, 0.004 \mathrm{mmol}$). The reaction mixture was allowed to cool then poured onto crushed ice. The obtained product was filtered, washed with water and recrystallized from ethanol to yield compound $\mathbf{1 1 a}(40.9 \mathrm{mg}$, isolated yield: 78\%).
(b) Compound 11b was synthesized as follows. Equimolar amounts of compound $\mathbf{8 a}$ (30 mg ,

0.186 mmol) and 2-chlorobenzaldehyde ($32 \mu \mathrm{~L}, 0.186 \mathrm{mmol}$) were refluxed in glacial acetic acid (2 mL) in presence of anhydrous sodium acetate (0.4 $\mathrm{mg}, 0.004 \mathrm{mmol})$ for 8 h . The reaction mixture was allowed to cool then poured onto crushed ice. The obtained solid was filtered off, washed with water and recrystallized from ethanol to yield compound $\mathbf{1 1 b}$ (37.2 mg , isolated yield: 71\%).
(c) Compound 11c was synthesized following the reported procedure. ${ }^{3}$ A mixture of 2-
 phenylquinazolin- $4(3 H)$-one, 5a ($20 \mathrm{mg}, 0.089 \mathrm{mmol}$), diphenyl acetylene ($24 \mathrm{mg}, 0.135 \mathrm{mmol}$), $\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}\right.$ ($5 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{mg}, 0.179 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(36 \mathrm{mg}, 0.197 \mathrm{mmol})$, and toluene (2 mL) were added to a reaction tube followed by stirring the reaction mixture at $90^{\circ} \mathrm{C}$ for 16 h . Upon completion of reaction, the
reaction mixture was purified through column chromatography over silica gel using ethyl acetate/hexane as eluent, providing 11c (26.6 mg , isolated yield: 75%).
(d) Compound 11d was synthesized following the procedure. ${ }^{4}$ 2-phenylquinazolin- $4(3 \mathrm{H})$-one
 ($\mathbf{5 a}, 100 \mathrm{mg}$) was dissolved in phosphorus oxychloride (2 mL) and heated under reflux to give the intermediate 4-chloro-2-phenylquinazoline. Then the obtained 4-chloro-2-phenylquinazoline ($60 \mathrm{mg}, 1 \mathrm{mmol}$) was reacted with aniline ($23 \mu \mathrm{~L}, 1 \mathrm{mmol}$) in ethanol under room temperature overnight and completion of the reaction was checked by thin-layer chromatography. Upon completion of the reaction, reaction mixture was purified by column chromatography providing the compound $\mathbf{1 1 d}(52.8 \mathrm{mg}$, isolated yield: $71 \%)$.
(e) Compound 11e was synthesized as follows. An oven-dried pressure tube (25 mL) was
 charged with $8 \mathbf{c}(20 \mathrm{mg}, 0.094 \mathrm{mmol})$, followed by addition of $0.5(\mathrm{M})$ aq. NaOH solution. Then, the tube was kept in oil bath at $100{ }^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, reaction mixture was transferred into a 25 mL round bottom flask, followed by dilution with $\mathrm{DCM}(5 \mathrm{~mL})$, and MgSO_{4} was added into the resulted solution, followed by filtration. Afterwards, the organic layer was concentrated under vacuum and then purified through column chromatography over silica gel using $\mathrm{MeOH} / \mathrm{DCM}$ as eluent, providing 11e (17.7 mg , isolated yield: 81%).

7. EPR analysis

(a) Procedure for singly reduced product of compound $\mathbf{1 a}$:

In a Schlenk tube, 1 equiv. of $\mathbf{1 a}$ and 1 equiv. of $\mathrm{LiO}^{t} \mathrm{Bu}$ were added followed by the addition of methanol (2 mL). The reaction mixture was stirred for 30 mins . During that time colour of the solution changed to light yellow. Then, EPR measurement of this solution was carried out at room temperature under inert condition.

EPR Detail:

The possible one-electron reduced product generated from 1a was analysed by X-band EPR (Bruker) at room temperature. The parameters during the data collection were following. Microwave frequency 9.43 GHz ; Microwave Power 0.99 MW ; Modulation frequency 100 kHz ; Modulation amplitude 0.2 mT .

Figure S14. EPR signal obtained from singly reduced product of $\mathbf{1 a}$.
(b) Procedure for singly reduced product of $\boldsymbol{L 1}$:

In a Schlenk tube, 1 equiv. of $\mathbf{L} \mathbf{1}$, and 1 equiv. of $\mathrm{LiO}^{t} \mathrm{Bu}$ were added followed by methanol (2 $\mathrm{mL})$. The reaction mixture was stirred for 30 mins, no change in colour was observed. Then the EPR measurement of this solution was carried out both at room temperature and liquid nitrogen temperature under inert condition. No signal was observed.

EPR details:

The resultant solution was analysed by X-band EPR (Bruker) at room temperature. The parameters during the data collection were following. Microwave frequency 9.43 GHz ; Microwave Power 2 MW; Modulation frequency 100 kHz ; Modulation amplitude 0.35 mT .

Figure S15. EPR spectrum obtained from L1 and base.

8. Calculation of Bond-Dissociation Enthalpy (BDE)

The BDE ($\mathrm{N}-\mathrm{H}$) values of amidated compound ($\mathbf{1 a - b}, \mathbf{1 a}$) were estimated following the theoretical scheme reported by Zipse et al. ${ }^{5}$ The stabilities of amidyl radicals ($\mathbf{1 a - 1 / 1 b} \mathbf{- 1} / \mathbf{1 a}$ '1) relative to the reference aminyl radical $\left(\cdot \mathrm{NH}_{2}\right)$ were calculated as the reaction enthalpies at 298.15 K for the hydrogen atom transfer reaction shown below $\left(\Delta \mathrm{H}_{\mathrm{rxn}}\right)$. We could estimate the BDE of $\mathbf{1 a - b} / \mathbf{1} \mathbf{a}$ ' by adding the calculated reaction enthalpy to the experimentally determined BDE value of ammonia ($450.1 \mathrm{~kJ} \mathrm{~mol}^{-1}=107.6 \mathrm{kcal} \mathrm{mol}^{-1}$).

Geometry optimizations of amidated compound ($\mathbf{1 a}$ and $\mathbf{1 a} \mathbf{a}^{\prime}$) and their corresponding radical forms ($\mathbf{1 a} \mathbf{- 1}, \mathbf{1 b} \mathbf{- 1}$ and $\mathbf{1 a} \mathbf{- 1}$ radicals) were performed at the B3LYP/6-31G(d). Thermochemical corrections to 298.15 K with a scaling factor of 0.9806 were used to obtain an enthalpy of the systems at same level of theory. The components of the calculations are summarized in Table S3. The Gaussian 16, Revision B. 01 program was used for all calculations.

Table S4. Enthalpies and BDE data for $\mathbf{1 a - b}$ and 1a' systems in reaction

	$\mathrm{H}_{298} / \mathrm{Hf}$
NH_{3}	-56.519520
$\mathrm{NH}_{2} \bullet$	-55.856231
$\mathbf{1 a}$	-6719.847896
$\mathbf{1 a - 1}$	-6719.203457

$\Delta \mathrm{H}_{\mathrm{rxn}}=-11.828 \mathrm{kcal} \mathrm{mol}^{-1}$
BDE of $\mathrm{N}-\mathrm{H}$ in $\mathbf{1 a}=95.7 \mathrm{kcal} \mathrm{mol}^{-1}$

	$\mathrm{H}_{298} / \mathrm{Hf}$
NH_{3}	-56.519520
$\mathrm{NH}_{2} \bullet$	-55.856231
$\mathbf{1 b}$	-2443.986198
$\mathbf{1 b - 1}$	-2443.338296

	$\mathrm{H}_{298} / \mathrm{Hf}$
NH_{3}	-56.519520
$\mathrm{NH}_{2} \bullet$	-55.856231
$\mathbf{1 a}$	-1599.793429
1a'-1	-1599.149366

$\Delta H_{\mathrm{rxn}}=-12.067 \mathrm{kcal} \mathrm{mol}^{-1}$
BDE of $\mathrm{N}-\mathrm{H}$ in $\mathbf{1 a}{ }^{\prime}=95.5 \mathrm{kcal} \mathrm{mol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=-9.657 \mathrm{kcal} \mathrm{mol}^{-1}$
BDE of $\mathrm{N}-\mathrm{H}$ in $\mathbf{1 b}=97.9 \mathrm{kcal} \mathrm{mol}^{-1}$

9. Electrochemical analysis of L1 and 1a:

The electrochemical measurements, cyclic voltammetry (CV), of the synthesized salt $\mathbf{L} 1$ and compound 1a were carried out at ambient temperature with Metrohm auto lab potentiostat and galvanostat MAC90009 instrument, respectively. The measurements of salt $\mathbf{L} 1$ and $\mathbf{1 a}$ were performed at a sweep rate of $100 \mathrm{mV} / \mathrm{sec}$ with three-electrode configuration with auxiliary electrode: Pt wire; working electrode: Glassy carbon; reference electrode: $\mathrm{Ag} / \mathrm{Ag}^{+}$. All the measurements were calibrated externally using Ferrocene $\left(\mathrm{E}_{1 / 2}, \mathrm{Fc} / \mathrm{Fc}^{+}=0.22\right.$ volts vs. $\left.\mathrm{Ag} / \mathrm{Ag}^{+}\right)$.

Figure S16. Cyclic voltammogram of L1 and 1a in acetonitrile using auxiliary electrode: Pt wire; working electrode: Glassy carbon; reference electrode: $\mathrm{Ag} / \mathrm{Ag}^{+}$. All the measurements were calibrated externally using Ferrocene $\left(\mathrm{E}_{1 / 2}, \mathrm{Fc} / \mathrm{Fc}^{+}=0.22\right.$ volts $\left.v s . \mathrm{Ag} / \mathrm{Ag}^{+}\right)$.

10. Control experiments for establishing radical mediated pathway

(a) Radical scavenger experiments:
(i) An oven-dried pressure tube (25 mL) was charged with 2 -aminobenzamide, 2a/2aminobenzenesulfonamide, $\mathbf{2 b}$ (0.25 mmol , 1 equiv.), $\mathrm{LiO}^{t} \mathrm{Bu}(0.125 \mathrm{mmol}, 0.50$ equiv.), and 1a ($0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and radical scavenger, BHT (0.25 mmol)/ galvinoxyl (0.125 $\mathrm{mmol}) / \mathrm{CuCl}_{2}(0.25 \mathrm{mmol})$ followed by the addition of benzonitrile $(0.2 \mathrm{~mL})$ under inert condition. Then, the tube was kept in an oil bath at $120^{\circ} \mathrm{C} / 140^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the desired products were isolated by column chromatography over silica gel using hexane/ethyl acetate as eluent.
(ii) An oven-dried pressure tube (25 mL) was charged with 2-aminobenzamide ($\mathbf{2 a}, 0.25 \mathrm{mmol}$, 1 equiv.), $\mathrm{LiO}^{t} \mathrm{Bu}$ ($0.125 \mathrm{mmol}, 0.50$ equiv.), and $\mathbf{1 a}$ ($0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and radical scavenger, BHT (0.25 mmol) followed by the addition of xylene $(2 \mathrm{~mL})$. Then, the tube was kept in an oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, an aliquot of reaction mixture was taken in a mass vial and diluted with methanol, and then subjected to HRMS analysis.

Figure S17: HRMS of BHT-2-aminobenzamidyl radical adduct. M corresponds to 2aminobenzamide radical trapped with BHT
(iii) An oven-dried pressure tube (25 mL) was charged with methyl anthranilate ($\mathbf{1 0}, 0.25$ mmol, 1 equiv.), $\mathrm{KO}^{t} \mathrm{Bu}$ ($0.187 \mathrm{mmol}, 0.75$ equiv.), and $\mathbf{1 a}$ ($0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), and radical scavenger, BHT (0.25 mmol$) /$ TEMPO $(0.25 \mathrm{mmol}) / \mathrm{CuCl}_{2}(0.25 \mathrm{mmol})$ followed by the addition of benzonitrile $(0.2 \mathrm{~mL})$. Then, the tube was kept in an oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, an aliquot of reaction mixture was diluted with dichloromethane and subjected to HRMS analysis.

Figure S18: HRMS of TEMPO-Methoxy radical adduct. M corresponds to methoxy radical trapped with TEMPO
(b) (i) Experiment for detection of $\mathrm{CH}_{3} \mathrm{NH}_{2}$:

An oven-dried pressure tube (25 mL) was charged with 2-amino- N-methylbenzamide ($\mathbf{2 c}, 0.25$ mmol, 1 equiv.), $\mathrm{LiO}^{t} \mathrm{Bu}$ ($0.125 \mathrm{mmol}, 0.50$ equiv.), and $\mathbf{1 a}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of benzonitrile $(0.2 \mathrm{~mL})$. Then, the tube was kept in an oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of the reaction, the reaction mixture was taken in DMSO- d_{6} and analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Figure S19: ${ }^{1} H$ NMR spectrum of reaction mixture between 2-amino- N-methylbenzamide (2c) and benzonitrile (3a) under standard condition showing removal of methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ as a by-product
(ii) Experiment for detection of NH_{3} :

An oven-dried pressure tube (25 mL) was charged with 2-aminobenzamide ($\mathbf{2 a}, 0.25$ mmol, 1 equiv.), $\mathrm{LiO}^{t} \mathrm{Bu}$ ($0.187 \mathrm{mmol}, 0.75$ equiv.), and $\mathbf{1 a}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, followed by the addition of benzonitrile $(0.2 \mathrm{~mL})$. Then, the tube was kept in an oil bath at $120^{\circ} \mathrm{C}$ and heated for 24 h . After completion of reaction, a glass rod dipped in conc. HCl was held near the mouth of pressure tube containing reaction mixture, which resulted in the formation of a dense white fume as well as white solid of $\mathrm{NH}_{4} \mathrm{Cl}$ on glass rod. Subsequently, this white solid was dissolved in distilled water and the solution was added dropwise to AgNO_{3} solution, yielding white color AgCl ppt.

11. Kinetics analysis

(a) Procedure to find out the order of reaction with respect to catalyst loading, 2aminobenzamide, and acetonitrile

To find out the order of our present catalytic reaction with respect to catalyst 1a, different sets of reactions were carried out by varying the amount of catalyst (3-6 mol $\%$) $/ 2$-aminobenzamide ($\mathbf{2 a}, 0.2-0.35 \mathrm{mmol}$)/acetonitrile ($\mathbf{7 a}, 0.2-0.35 \mathrm{~mL}$) keeping the other factors constant. An aliquot of the reaction mixture from each set was then taken after a certain time interval and amount of product 8a formed over time was calculated (from GC-MS analysis) in each case. Then, the obtained rates were plotted against the amount of catalyst/2a/acetonitrile, and the obtained straight lines indicated that the reaction is pseudo first order w. r. t. catalyst 1a and 2a. However, it is zeroth order w. r. t. nitrile.

Figure S20: (a) $K_{\text {obs }}$ vs catalyst loading. Reaction conditions: $2 \boldsymbol{a}$ (0.25 mmol), acetonitrile (7a, 0.2 mL), $1 \boldsymbol{a}$ (variable catalyst loading, 3-6 mol\%), $K O^{t} \mathrm{Bu}\left(0.125 \mathrm{mmol}\right.$), $120{ }^{\circ} \mathrm{C}$, (b) Plot of $K_{\text {obs }}$ vs amount of $2 \boldsymbol{a}$. Reaction conditions: $\mathbf{2 a}$ (variable amount, 0.20-0.35 mmol), acetonitrile ($7 \boldsymbol{a}, 0.2 \mathrm{~mL}$), 1a ($5 \mathrm{~mol} \%$), $K O^{t} \mathrm{Bu}$ (0.125 mmol), $120{ }^{\circ} \mathrm{C}$, (c) Plot of $K_{\text {obs }}$ vs amount of acetonitrile (7a). Reaction conditions: 2a (0.25 mmol), acetonitrile (variable amount, 0.2-0.35 mL), $\boldsymbol{1} \boldsymbol{a}(5 \mathrm{~mol} \%), \mathrm{KO} \mathrm{Bu}(0.125 \mathrm{mmol}), 120^{\circ} \mathrm{C}$.

12. Analytical data:

2-phenylquinazolin-4(3H)-one (Compound-5a): ${ }^{6}$ Following the general procedure, the titled
 compound was isolated as white solid $(48.3 \mathrm{mg}, 0.217 \mathrm{mmol}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.55(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~m}, 3 \mathrm{H})$, 7.83 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60-7.50 (m, 4H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 162.3, 152.4, 148.7, $134.6,132.8,131.4,128.6,127.8,127.5,126.6,125.9,121.0 \mathrm{ppm}$.

2-(p-tolyl)quinazolin-4(3H)-one (Compound-5b): ${ }^{6}$ Following the general procedure, the titled
 compound was isolated as white solid ($45.4 \mathrm{mg}, 0.192 \mathrm{mmol}, 77 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.47$ ($\mathrm{s}, 1 \mathrm{H}$), 8.14 ($\mathrm{d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.38 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.3$, 152.3, 148.9, 141.5, 134.7, $129.9,129.3,127.7,127.5,126.5,125.9,120.9,21.1 \mathrm{ppm}$.

2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound-5c): ${ }^{7}$ Following the general

procedure, the titled compound was isolated as white solid (48.3 $\mathrm{mg}, 0.217 \mathrm{mmol}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 12.75 ($\mathrm{s}, 1 \mathrm{H}$), 8.37 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.17$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.2,151.2,148.5,136.6,134.8,128.8,127.7,127.2,125.9,125.6,125.5,122.6$, $121.2 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($\left.471 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta-61.33 \mathrm{ppm}$.

2-(m-tolyl)quinazolin-4(3H)-one (Compound-5d): ${ }^{6}$ Following the general procedure, the titled
 compound was isolated as white solid $(41.3 \mathrm{mg}, 0.174 \mathrm{mmol}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.46(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38$ $(\mathrm{m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 162.3, 152.5, 138.0, 134.7, 132.7, 132.1, 128.6, 128.3, 127.5, 126.6, 125.9, 124.9, 121.0, 21.0 ppm.

2-(naphthalen-2-yl)quinazolin-4(3H)-one (Compound-5e): ${ }^{6}$ Following the general
 procedure, the titled compound was isolated as white solid (41.5 $\mathrm{mg}, 0.152 \mathrm{mmol}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $12.68(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.3,152.3,148.8,148.0,134.8,134.2,132.3,130.0$, 129.0, 128.2, 128.2, 128.0, 127.7, 127.6, 127.0, 126.8, 126.0, 124.6, 121.1 ppm.

2-(pyridin-2-yl)quinazolin-4(3H)-one (Compound-5f): ${ }^{6}$ Following the general procedure, the
 titled compound was isolated as white solid $(40.2 \mathrm{mg}, 0.180 \mathrm{mmol}$, 72% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.79$ (s, 1H), 8.75 (s , $1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ (s, 1H), $7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $\left.d_{6}\right) \delta 160.8,149.9,149.0,148.7,148.4,138.0,134.7,127.7,127.3,126.6,126.1,122.2$, 122.0 ppm .

2-(thiophen-3-yl)quinazolin-4(3H)-one (Compound-5g): ${ }^{6}$ Following the general procedure,
 the titled compound was isolated as white solid $(42.8 \mathrm{mg}, 0.191$ mmol, 75% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.46$ (s, $1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 162.1, $148.9,148.3,135.4,134.6,128.7,127.4,127.3,127.1,126.4,125.9,121.0 \mathrm{ppm}$.

2-(pyridin-4-yl)quinazolin-4(3H)-one (Compound-5h): ${ }^{8}$ Following the general procedure, the
 titled compound was isolated as white solid ($26.23 \mathrm{mg}, 0.117 \mathrm{mmol}$, 47% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.77$ (s, 1H), 8.78 (d, $J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 162.2, 150.7, 150.3, 148.3, 140.0, 134.8, $127.8,127.5,126.0,121.7,121.5 \mathrm{ppm}$.

2-(4-methoxyphenyl)quinazolin-4(3H)-one (Compound-5i): ${ }^{8}$ Following the general
 procedure, the titled compound was isolated as white solid (32.8 $\mathrm{mg}, 0.130 \mathrm{mmol}, 52 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $12.41(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ $162.4,161.9,151.9,149.0,134.6,129.5,127.3,126.2,125.9,124.8,120.7,114.0,55.5 \mathrm{ppm}$.

2-(4-fluorophenyl)quinazolin-4(3H)-one (Compound-5j): ${ }^{6}$ Following the general procedure,
 the titled compound was isolated as white solid $(25.8 \mathrm{mg}, 0.103$ mmol, 41% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.57$ ($\mathrm{s}, 1 \mathrm{H}$), 8.26-8.22 (m, 2H), $8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 162.2, 150.7, $150.3,148.3,140.0,134.8,127.8,127.5,126.0,121.7,121.5 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (471 MHz , DMSO- d_{6}) $\delta-108.86 \mathrm{ppm}$.

2-(4-aminophenyl)quinazolin-4(3H)-one (Compound-5k): Following the general procedure,
 the titled compound was isolated as yellow solid $(26.1 \mathrm{mg}, 0.110$ mmol, 44% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.07$ ($\mathrm{s}, 1 \mathrm{H}$), $8.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $5.84(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.4,152.5,152.2$, 149.4, 134.4, 129.2, 127.0, 125.8, 125.3, 120.3, 118.8, 113.1 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$ 238.0910; Found 238.0911.

2-(4-bromophenyl)quinazolin-4(3H)-one (Compound-5l): ${ }^{6}$ Following the general procedure,
 the titled compound was isolated as white solid ($34.6 \mathrm{mg}, 0.115$ mmol, 46% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.59$ (s, $1 \mathrm{H}), 8.16-8.11(\mathrm{~m}, 3 \mathrm{H}), 7.85(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}$, $3 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 162.3$, 148.6, 134.7, 131.7, 129.9, 128.7, 127.8, $127.5,126.8,126.6,125.9,121.0 \mathrm{ppm}$.

2-([1,1'-biphenyl]-4-yl)quinazolin-4(3H)-one (Compound-5m): ${ }^{6}$ Following the general
 procedure, the titled compound was isolated as white solid $\left(41.0 \mathrm{mg}, 0.137 \mathrm{mmol}, 55 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.57(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88-7.75 (m, 5H), 7.55-7.50 (m, $2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $\left.d_{6}\right) \delta 162.5,152.2,149.8,143.0,139.1,134.8,131.7,129.2,128.5,128.3,127.5$, 127.0, 126.9, 126.7, 126.0, 121.1, 115.8 ppm .

7-methyl-2-phenylquinazolin-4(3H)-one (Compound-5n): ${ }^{9}$ Following the general procedure,
 the titled compound was isolated as white solid ($54.3 \mathrm{mg}, 0.230$ mmol, 92% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.43$ ($\mathrm{s}, 1 \mathrm{H}$), 8.17 (d, $J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 4 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.1,152.3,148.9,145.1,132.8,131.3,128.6,128.0,127.7,127.2,125.7,118.6$, 21.4 ppm .

7-methyl-2-(pyridin-2-yl)quinazolin-4(3H)-one (Compound-5o): Following the general
 procedure, the titled compound was isolated as white solid (52.8 $\mathrm{mg}, 0.222 \mathrm{mmol}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $11.67(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 8.09-8.05 (m, 2H), 7.67-7.64 (m, 1H), 7.60 (s, 1H), 7.39 (d, $J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.48 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 160.6, 149.9, 149.0, 148.7, 148.5, 145.2, 138.0, 128.7, 127.4, 126.5, 125.9, 122.0, 119.6, 21.3 ppm. HRMS (ESI) m/z: [M $+\mathrm{H}^{+}$: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ 238.0936; Found 238.0926.

7-methyl-2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound-5p): Following
 the general procedure, the titled compound was isolated as white solid ($50.9 \mathrm{mg}, 0.167 \mathrm{mmol}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.65(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.05$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.38$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.1,151.2,145.3,136.7,128.7,128.6,127.3,125.8,125.5,125.5,125.3$, 122.6, 118.8, 115.7, $21.4 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (471 MHz, DMSO- d_{6}) $\delta-61.03 \mathrm{ppm}$.

8-amino-2-phenylquinazolin-4(3H)-one (Compound-5q): Following the general procedure,
 the titled compound was isolated as white solid $(49.8 \mathrm{mg}, 0.209$ $\mathrm{mmol}, 84 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.32(\mathrm{~s}, 1 \mathrm{H})$, $8.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 162.6, 149.0, 145.1, 135.6, 132.8, 131.0, 128.5, 127.6, 127.2, 121.2, 115.7, 111.5 ppm. HRMS (ESI) $m / z:[\mathrm{M}+$ Na^{+}: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{ONa} 260.0799$; Found 260.0793.

7-nitro-2-phenylquinazolin-4(3H)-one (Compound-5r): ${ }^{10}$ Following the general procedure,
 the titled compound was isolated as yellow solid ($31.4 \mathrm{mg}, 0.118$ mmol, 47% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.42$ ($\mathrm{s}, 1 \mathrm{H}$), $8.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.63-7.55(\mathrm{~m}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , DMSO- d_{6}) δ 161.8, 155.0, $151.3,149.3,132.4,131.9,128.7,128.2,128.1,125.3,122.3,119.9 \mathrm{ppm}$. HRMS (ESI) m / z : $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3}$ 285.0988; Found 285.0998.

6-methoxy-2-phenylquinazolin-4(3H)-one (Compound-5s): ${ }^{11}$ Following the general
 procedure, the titled compound was isolated as white solid (47.3 $\mathrm{mg}, 0.187 \mathrm{mmol}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ $12.48(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-$ 7.52 (m, 4H), 7.44 (dd, $J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.1,157.8,150.2,143.2,132.8,131.1,129.3,128.6$, 127.5, 124.1, 121.8, 105.9, 55.7 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ 253.0977; Found 253.0977.

2-benzylquinazolin-4(3H)-one (Compound-6a): ${ }^{6}$ Following the general procedure, the titled
 compound was isolated as white solid ($40.2 \mathrm{mg}, 0.170 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.42$ (s, 1 H), 8.07 (d, J $=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $161.9,156.0,148.9,136.6,134.4,128.9,128.5,127.0,126.8,126.3,125.7,120.8,40.8 \mathrm{ppm}$.

2-(3-methoxybenzyl)quinazolin-4(3H)-one (Compound-6b): ${ }^{12}$ Following the general
 procedure, the titled compound was isolated as white solid (43.3 $\mathrm{mg}, 0.162 \mathrm{mmol}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.40(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H})$, 3.72 (s, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 162.1, 159.4, 156.1, 149.0, 138.1, 134.7, 129.8, 127.1, 126.5, 125.9, 121.2, 120.8, 115.0, 112.3, 55.2, 40.9 ppm.

2-(4-methylbenzyl)quinazolin-4(3H)-one (Compound-6c): Following the general procedure,
 the titled compound was isolated as white solid (40.0 mg , $0.160 \mathrm{mmol}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $12.38(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.0,156.3,149.0,136.0,134.5,133.5,129.1,128.8,127.0,126.3$, 125.8, 120.8, 40.5, 20.7 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O} 251.1195$; Found 251.1194.

2-(4-methoxybenzyl)quinazolin-4(3H)-one (Compound-6d): ${ }^{13}$ Following the general
 procedure, the titled compound was isolated as white solid (32.6 $\mathrm{mg}, 0.122 \mathrm{mmol}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.9,158.2,156.4,149.0,142.7,134.5,130.0,128.4,126.9,126.2,125.7$, 114.0, 55.1 ppm .

2-(4-chlorobenzyl)quinazolin-4(3H)-one (Compound-6e): ${ }^{14}$ Following the general procedure,
 the titled compound was isolated as white solid (42.6 mg , $0.157 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.40(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 1 \mathrm{H})$, 7.58 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}$, 4H), 3.93 (s, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 161.9, 155.6, 148.8, 135.5, $134.4,131.6,130.9,128.4,126.9,126.3,125.7,120.8,40.1 \mathrm{ppm}$.

2-(4-fluorobenzyl)quinazolin-4(3H)-one (Compound-6f): ${ }^{14}$ Following the general procedure,
 the titled compound was isolated as white solid $(38.1 \mathrm{mg}$, $0.150 \mathrm{mmol}, 60 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $8.06(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{t}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.92 (s, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.4,160.0,134.2,133.0,130.9$, $130.8,126.8,126.1,125.8,120.8,115.3,115.1,40.1 \mathrm{ppm} .{ }^{19}$ F NMR (471 MHz, DMSO- d_{6}) δ -116.10 ppm .

2-benzyl-7-methylquinazolin-4(3H)-one (Compound-6g): Following the general procedure,
 the titled compound was isolated as white solid ($51.3 \mathrm{mg}, 0.205$ mmol, 82% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.31$ (s, 1H), $7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.22(\mathrm{~m}, 7 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 161.8, 156.0, 149.1, 144.9, 136.7, 129.9, $128.9,128.5,127.6,126.8,126.7,125.6,118.4,40.8,21.3 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ 251.1140; Found 251.1149.

7-methyl-2-(4-methylbenzyl)quinazolin-4(3H)-one (Compound 6h): Following the general
 procedure, the titled compound was isolated as white solid (56.2 $\mathrm{mg}, 0.212 \mathrm{mmol}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $12.27(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.9,156.3,149.1,144.9,135.9,133.6,129.1,128.8,127.6$, 126.6, 125.6, 118.3, 40.4, 21.4, 20.7 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$ 265.1323; Found 265.1314.

2-phenethylquinazolin-4(3H)-one (Compound-6i): ${ }^{9}$ Following the general procedure, the
 titled compound was isolated as white solid ($43.8 \mathrm{mg}, 0.175 \mathrm{mmol}$, 70% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.24(\mathrm{~s}, 1 \mathrm{H}), 8.08$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H})$, 3.07-3.03 (m, 2H), 2.92-2.88 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 161.8, $156.6,148.9,140.8,134.3,128.4,128.3,126.8,126.1,126.0,125.7,120.9,36.3,32.5 \mathrm{ppm}$.
(E)-2-styrylquinazolin-4(3H)-one (Compound-6j): ${ }^{9}$ Following the general procedure, the
 titled compound was isolated as white solid ($37.2 \mathrm{mg}, 0.150$ mmol, 60% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.35$ (s, 1 H), 8.11 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.95 (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.80 (t, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.1,161.8,151.5,138.3,135.0$, $134.6,129.8,129.1,129.1,127.7,127.1,126.3,125.9,121.1 \mathrm{ppm}$.

2-((phenylthio)methyl)quinazolin-4(3H)-one (Compound-6k): Following the general
 procedure, the titled compound was isolated as white solid (47.8 $\mathrm{mg}, 0.178 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ $12.39(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) δ 161.6, 153.9, $148.4,135.0,134.5,129.1,129.0,127.0,126.6,126.5,125.8,120.9,36.4 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}:$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{OS}$ 269.0749; Found 269.0748.

2-methylquinazolin-4(3H)-one (Compound-8a): ${ }^{8}$ Following the general procedure, the titled
 compound was isolated as light-yellow solid ($28.4 \mathrm{mg}, 0.178 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 12.19$ ($\mathrm{s}, 1 \mathrm{H}$), 8.06 (dd, $J=7.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, DMSO- d_{6}) δ 161.7, $154.3,149.0,134.3,126.6,125.9,125.7,120.6,21.4 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O} 161.0714$; Found 161.0717.

2-(but-3-en-2-yl)quinazolin-4(3H)-one (Compound-8b): Following the general procedure, the
 titled compound was isolated as white solid ($27.53 \mathrm{mg}, 0.137$ $\mathrm{mmol}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.93(\mathrm{~s}, 1 \mathrm{H})$, $8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.61(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.85-$ $1.82(\mathrm{~m}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 162.1, 154.3, 148.7, 134.5, 131.8, $130.3,127.4,126.3,125.8,120.9,14.5,13.2 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$ 201.1027; Found 201.1029.

4-(4-oxo-3,4-dihydroquinazolin-2-yl)butanenitrile (Compound-8c): Following the general
 procedure, the titled compound was isolated as white solid ($36.23 \mathrm{mg}, 0.170 \mathrm{mmol}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.20(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101 MHz , DMSO- d_{6}) $\delta 161.7,155.8,148.7,134.3,126.9,126.1,125.7,121.0,120.3,32.9$, 22.0, 15.7 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}$ 214.0980; Found 214.0981.

2-nonylquinazolin-4(3H)-one (Compound-8d): ${ }^{15}$ Following the general procedure, the titled
 compound was isolated as white solid ($41.67 \mathrm{mg}, 0.153 \mathrm{mmol}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.14(\mathrm{~s}, 1 \mathrm{H}), 8.07$ (d, $J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, 1.22 (s, 9H), 0.85-0.81 (br., 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 161.9,157.5$, $149.0,134.3,126.8,125.9,125.7,120.8,34.5,31.3,28.8,28.7,28.7,28.5,26.8,22.1,14.0$ ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}:$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa} 295.1786$; Found 295.1778.

2-ethylquinazolin-4(3H)-one (Compound-8e): ${ }^{16}$ Following the general procedure, the titled
 compound was isolated as white solid ($27.4 \mathrm{mg}, 0.158 \mathrm{mmol}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.17$ ($\mathrm{s}, 1 \mathrm{H}$), 8.08 (d, $J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (t, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.8,158.4,149.0,134.3,126.8,125.9,125.7,120.8,27.9$, 11.3 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}:$Calcd. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{ONa} 197.0690$; Found 197.0681.

2-cyclopentylquinazolin-4(3H)-one (Compound-8f): ${ }^{6}$ Following the general procedure, the
 titled compound was isolated as white solid ($33.2 \mathrm{mg}, 0.155 \mathrm{mmol}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.06$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.75 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.98(\mathrm{~m}$, 1H), 1.96 (br., 2H), 1.88 (br., 2H), 1.74 (br., 2H), 1.59 (br., 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 162.2,160.7,148.8,134.5$, 126.9, 126.1, 125.8, 120.9, 43.9, 31.0, 25.5 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ 215.1184; Found 251.1170.

2-isopropylquinazolin-4(3H)-one (Compound-8g): ${ }^{17}$ Following the general procedure, the
 titled compound was isolated as white solid ($33.8 \mathrm{mg}, 0.180 \mathrm{mmol}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.12(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.0,161.6,148.9,134.3,127.0,126.0,125.7,121.0,33.3,20.4 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}$ 189.1030; Found 189.1020.

2-isopropyl-7-methylquinazolin-4(3H)-one (Compound-8h): Following the general
 procedure, the titled compound was isolated as white solid $(44 \mathrm{mg}$, $0.217 \mathrm{mmol}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.00$ (s , $1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.90-2.80 (m, 1H), 2.42($\mathrm{s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 161.9,161.6,149.0,144.7,127.4,126.7,125.5,118.5,33.3$, 21.3, 20.4 ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}$ 203.1184; Found 203.1170.

2-isopropyl-6-methoxyquinazolin-4(3H)-one (Compound-8i): Following the general
 procedure, the titled compound was isolated as white solid $(44.2 \mathrm{mg}$, $0.203 \mathrm{mmol}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.06$ (s, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=$ $8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101 MHz, DMSO- d_{6}) $\delta 161.8,159.2,157.2,143.3,128.6,123.7,121.6,105.7,55.6,33.1,20.4$ ppm. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ 219.1134; Found 219.1126.

2-((4-oxo-1,4-dihydroquinazolin-2-yl)methyl)quinazolin-4(3H)-one
(Compound-8j):

Following the general procedure, the titled compound was isolated as white solid ($21.3 \mathrm{mg}, 0.069 \mathrm{mmol}, 56 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.39$ (s, 1H), 8.51 (d, $J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.19$ $(\mathrm{m}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 168.2,167.5,150.5,140.6,134.3,132.9,130.7,127.4,123.0$, 120.8, 117.1, 116.8, 115.3, 113.9, 52.7 ppm . HRMS (ESI) $m / z:\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{2}$ 350.1617; Found 350.1686.

2-((4-oxo-1,4-dihydroquinazolin-2-yl)methyl)quinazolin-4(3H)-one
(Compound-8k):

Following the general procedure, the titled compound was isolated as white solid ($54.2 \mathrm{mg}, 0.137 \mathrm{mmol}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.39(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}$, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) δ 168.1, 167.4, 150.5, 140.6, 134.2, 132.8, 130.7, 127.4, 122.9, 120.7, 117.1, 116.8, 115.2, 113.9, 52.6 ppm. HRMS (ESI) $m / z:[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$: Calcd. for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{2}$ 412.1821; Found 412.1828.

3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9a): ${ }^{6}$ Following the general
 procedure, the titled compound was isolated as white solid $(45.8 \mathrm{mg}$, $0.117 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.21$ (s, $1 \mathrm{H}), 8.05$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.86 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.69$ (m, $2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 155.1,135.8,133.4,133.1,132.1,129.1,128.5,127.0,123.6,121.7$, 118.7 ppm.

3-(m-tolyl)-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9b): ${ }^{18}$ Following the
 general procedure, the titled compound was isolated as white solid ($38.8 \mathrm{mg}, 0.143 \mathrm{mmol}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-$ $7.84(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.50$ (m, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,138.4,135.5$, 133.5, 133.1, 131.8, 128.8, 128.6, 126.7, 125.4, 123.3, 121.5, 118.4, 20.9 ppm .

3-(pyridin-2-yl)-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9c): Following the
 general procedure, the titled compound was isolated as white solid ($40.2 \mathrm{mg}, 0.155 \mathrm{mmol}, 62 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 12.58(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78-7.71 (m, 2H), $7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 151.8,149.2,147.6,138.6,135.0,133.2,127.8,127.0,123.3,123.1,121.7$, 119.2 ppm. HRMS (ESI) $m / z:\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ 279.0915; Found 279.0914.

3-(thiophen-3-yl)-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9d): ${ }^{18}$ Following
 the general procedure, the titled compound was isolated as white solid ($51.5 \mathrm{mg}, 0.195 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ $12.03(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 3 \mathrm{H})$, $7.62(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101 MHz, DMSO- d_{6}) $\delta 150.1,135.5,134.0,133.2,131.9,128.2,126.9,126.6,123.4,121.6$, 118.3 ppm .

3-benzyl-4H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9e): ${ }^{19}$ Following the general
 procedure, the titled compound was isolated as white solid (44.3 $\mathrm{mg}, 0.163 \mathrm{mmol}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) δ 7.47-7.37 (m, 2H), $7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 4 \mathrm{H}), 6.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (br.s, 1H), $3.92(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 167.3,163.3,162.6$, $139.5,139.4,134.8,130.4,129.6,129.4,129.0,128.6,128.5,126.5,126.4,114.8,45.5 \mathrm{ppm}$.
(E)-2-(4-chlorostyryl)quinazolin-4(3H)-one (Compound-11a): ${ }^{2}$ Following the general
 procedure, the titled compound was isolated as white solid (41 mg , $0.145 \mathrm{mmol}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.11$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.69-7.66$ (m, 3H), 7.53-7.46 (m, 3H), 7.02 (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 161.8,151.3,148.9,136.9,134.6,134.2,134.0$, 129.3, 129.1, 127.1, 126.4, 125.9, 121.9, 121.1 ppm .

5-oxo-5,6-dihydroquinolino[1,2-a]quinazolin-13-ium chloride (Compound-11b): Following
 the general procedure, the titled compound was isolated as white solid (37.3 $\mathrm{mg}, 0.132 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.49$ (s, $1 \mathrm{H}), 8.23$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, $J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}$, $2 \mathrm{H}), 7.71$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.46-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- d_{6}) $\delta 161.7,151.0,148.8,138.1,134.6,133.4,132.9,131.1,130.1,127.9,127.6,127.3$, 126.5, 125.9, 124.2, 121.2 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$: Calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{Na}$ 305.0434; Found 305.0408.

5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (Compound-11c): ${ }^{3}$ Following the
 general procedure, the titled compound was isolated as white solid ($26.6 \mathrm{mg}, 0.067 \mathrm{mmol}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.13$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13-7.12 (m, 3H), 7.10-7.08 (m, 4H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,147.6$, $147.0,137.1,135.6,135.3,134.6,134.1,132.1,131.3,128.6,128.5,128.2,127.9,127.4,127.4$,
$127.3,127.3,127.3,127.0,127.0,126.4,125.8,120.4 \mathrm{ppm}$. HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$: Calcd. for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa} 421.1317$; Found 421.1324.

N,2-diphenylquinazolin-4-amine (Compound-11d): ${ }^{4}$ Following the general procedure, the
 titled compound was isolated as white solid ($52.8 \mathrm{mg}, 0.177 \mathrm{mmol}, 71 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.01$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46$ (m, 7H), $7.20(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.6,157.5,151.3,138.9,133.0,130.4,129.6,128.7,128.5,126.2$,
$124.2,121.5,120.3,114.0 \mathrm{ppm}$.

4-(4-oxo-3,4-dihydroquinazolin-2-yl)butanoic acid (Compound-11e): ${ }^{20}$ Following the
 general procedure, the titled compound was isolated as white solid ($17.6 \mathrm{mg}, 0.076 \mathrm{mmol}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.17$ ($\mathrm{s}, 1 \mathrm{H}$), 8.07 (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- d_{6}) $\delta 174.2,161.9,156.9,148.8,134.3,126.8,126.0,125.7$, 120.9, 33.6, 32.9, 21.9 ppm . HRMS (ESI) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$: Calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na} 255.0746$; Found 255.0735.
13. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectra for desired products:

${ }^{1}$ H NMR of 2-phenylquinazolin-4(3H)-one (Compound-5a) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2-phenylquinazolin-4(3H)-one (Compound-5a) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of 2-(p-tolyl)quinazolin-4(3H)-one (Compound-5b) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

[^0]
${ }^{1}$ H NMR of 2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound-5c) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

$\left.{ }^{13}{ }^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound-5c) in DMSO- d_{6}

${ }^{19}$ F NMR of 2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound-5c) in DMSO-d 6

${ }^{1} H$ NMR of 2-(m-tolyl)quinazolin-4(3H)-one (Compound-5d) in DMSO-d 6 . \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(m-tolyl)quinazolin-4(3H)-one(Compound-5d) in DMSO-d ${ }_{6}$

\qquad

${ }^{1}$ H NMR of 2-(naphthalen-2-yl)quinazolin-4(3H)-one (Compound-5e) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of 2-(naphthalen-2-yl)quinazolin-4(3H)-one (Compound-5e) in DMSO-d ${ }_{6}$. Intensity of the signals are low due to poor solubility of the compound.

${ }^{1} H$ NMR of 2-(pyridin-2-yl)quinazolin-4(3H)-one (Compound-5f) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(pyridin-2-yl)quinazolin-4(3H)-one (Compound-5f) in DMSO-d d_{6}

${ }^{1}{ }^{1}$ NMR of 2-(thiophen-3-yl)quinazolin-4(3H)-one (Compound-5g) in DMSO-d 6 . \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 2-(thiophen-3-yl)quinazolin-4(3H)-one (Compound-5g) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 2-(pyridin-4-yl)quinazolin-4(3H)-one (Compound-5h) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(pyridin-4-yl)quinazolin-4(3H)-one (Compound-5h) in DMSO-d d_{6}

${ }^{1}$ H NMR of 2-(4-methoxyphenyl)quinazolin-4(3H)-one (Compound-5i) in DMSO-d ${ }_{6}$. \# and \$ indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ and grease in DMSO- d_{6}

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 2-(4-methoxyphenyl)quinazolin-4(3H)-one (Compound-5i) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of 2-(4-fluorophenyl)quinazolin-4(3H)-one (Compound-5j) in DMSO-d d_{6}. indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(4-fluorophenyl)quinazolin-4(3H)-one (Compound-5j) in DMSO-d ${ }_{6}$

[^1]
${ }^{1}$ H NMR of 2-(4-aminophenyl)quinazolin-4(3H)-one (Compound-5l) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13}{ }^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 2-(4-aminophenyl)quinazolin-4(3H)-one (Compound-5l) in DMSO-d ${ }_{6}$

```
\(-12.59\)
```


${ }^{1}$ H NMR of 2-(4-bromophenyl)quinazolin-4(3H)-one (Compound-5k) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2-(4-bromophenyl) quinazolin-4(3H)-one (Compound-5k) in DMSO-d 6 . Intensity of the signals are low due to poor solubility of the compound.

${ }^{1} H$ NMR of 2-([1,1'-biphenyl]-4-yl)quinazolin-4(3H)-one (Compound-5m) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$. \$ indicates grease.

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of 2-([1, l^{\prime}-biphenyl $\left.]-4-y l\right)$ quinazolin-4(3H)-one (Compound-5m) in DMSO-d 6

${ }^{1}$ H NMR of 7-methyl-2-phenylquinazolin-4(3H)-one (Compound-5n) in DMSO-d d_{6}. indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 7-methyl-2-phenylquinazolin-4(3H)-one (Compound-5n) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of 7-methyl-2-(pyridin-2-yl)quinazolin-4(3H)-one (Compound-5o) in DMSO-d ${ }_{6}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

[^2](
${ }^{1} H$ NMR of 7-methyl-2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound-5p) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

[^3]

${ }^{19}$ F NMR of 7-methyl-2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound-5p) in DMSO- d_{6}

${ }^{1} H$ NMR of 8-amino-2-phenylquinazolin-4(3H)-one (Compound-5q) in DMSO-d. d_{6}. indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 8-amino-2-phenylquinazolin-4(3H)-one (Compound-5q) in DMSO-d6
(
${ }^{1}$ H NMR of 7-nitro-2-phenylquinazolin-4(3H)-one (Compound-5r) in DMSO-d ${ }_{6}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 7-nitro-2-phenylquinazolin-4(3H)-one (Compound-5r) in DMSO- d_{6}

${ }^{1}$ H NMR of 6-methoxy-2-phenylquinazolin-4(3H)-one (Compound-5s) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 6-methoxy-2-phenylquinazolin-4(3H)-one (Compound-5s) in DMSO- d_{6}.

${ }^{1}$ H NMR of 2-benzylquinazolin-4(3H)-one (Compound-6a) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

$\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2-benzylquinazolin-4(3H)-one (Compound-6a) in DMSO- d_{6}

${ }^{1} H$ NMR of 2-(3-methoxybenzyl)quinazolin-4(3H)-one (Compound- $6 \boldsymbol{b}$) in DMSO-d ${ }_{6}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

$\left.{ }^{13} C^{1}{ }^{1} H\right\}$ NMR of 2-(3-methoxybenzyl)quinazolin-4(3H)-one (Compound- $\boldsymbol{6} \boldsymbol{b}$) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 2-(4-methylbenzyl)quinazolin-4(3H)-one (Compound-6c) in DMSO-d. ${ }_{6}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(4-methylbenzyl)quinazolin-4(3H)-one (Compound- 6 c) in DMSO-d ${ }_{6}$

${ }^{1}{ }^{1}$ N NMR of 2-(4-methoxybenzyl)quinazolin-4(3H)-one (Compound-6d) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(4-methoxybenzyl)quinazolin-4(3H)-one (Compound- $6 \boldsymbol{d}$) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 2-(4-chlorobenzyl)quinazolin-4(3H)-one (Compound-6e) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(4-chlorobenzyl)quinazolin-4(3H)-one (Compound-6e) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 2-(4-fluorobenzyl)quinazolin-4(3H)-one (Compound-6f) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO-d d_{6}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(4-fluorobenzyl)quinazolin-4(3H)-one (Compound-6f) in DMSO-d ${ }_{6}$

\qquad

[^4]

${ }^{1} H$ NMR of 2-benzyl-7-methylquinazolin-4(3H)-one (Compound- $\mathbf{6 g}$) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13}{ }^{13}{ }^{1}{ }^{1} H\right\}$ NMR of 2-benzyl-7-methylquinazolin-4(3H)-one (Compound-6g) in DMSO-d d_{6}

${ }^{1}$ H NMR of 7-methyl-2-(4-methylbenzyl)quinazolin-4(3H)-one (Compound-6h) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $D M S O-d_{6}$

${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR of 7-methyl-2-(4-methylbenzyl)quinazolin-4(3H)-one (Compound-6h) in DMSO- d_{6}

${ }^{1} H$ NMR of 2-phenethylquinazolin-4(3H)-one (Compound-6i) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

[^5]
${ }^{1} H$ NMR of (E)-2-styrylquinazolin-4(3H)-one (Compound-6j) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

${ }^{13}$ C\{ ${ }^{1}$ H\} NMR of (E)-2-styrylquinazolin-4(3H)-one (Compound- $\mathbf{6 j}$) in DMSO- d_{6}

${ }^{1}$ H NMR of 2-((phenylthio)methyl)quinazolin-4(3H)-one (Compound- 6 k) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 2-((phenylthio)methyl)quinazolin-4(3H)-one (Compound- $\boldsymbol{\sigma k}$) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 2-methylquinazolin-4(3H)-one (Compound-8a) in DMSO-d 6 . \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

[^6]
${ }^{1}$ H NMR of 2-(but-3-en-2-yl)quinazolin-4(3H)-one (Compound-8b) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

[^7]

${ }^{1}$ H NMR of 4-(4-oxo-3,4-dihydroquinazolin-2-yl)butanenitrile (Compound-8c) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

[^8]
${ }^{1} H$ NMR of 2-nonylquinazolin-4(3H)-one (Compound-8d) in DMSO-d ${ }^{6}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

$\left.{ }^{13} C^{\{ }{ }^{1} H\right\}$ NMR of 2-nonylquinazolin-4(3H)-one (Compound-8d) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of 2-ethylquinazolin-4(3H)-one (Compound-8e) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

[^9]
${ }^{1} H$ NMR of 2-cyclopentylquinazolin-4(3H)-one (Compound-8f) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 2-cyclopentylquinazolin-4(3H)-one (Compound-8f) in DMSO-d d_{6}

${ }^{1} H$ NMR of 2-isopropylquinazolin-4(3H)-one (Compound-8g) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 2-isopropylquinazolin-4(3H)-one (Compound-8g) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of 2-isopropyl-7-methylquinazolin-4(3H)-one (Compound-8h) in DMSO-d ${ }_{6}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 2-isopropyl-7-methylquinazolin-4(3H)-one (Compound-8h) in DMSO-d 6

${ }^{1} H$ NMR of 2-isopropyl-6-methoxyquinazolin-4(3H)-one (Compound-8i) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{1} H$ NMR of 2-((4-oxo-1,4-dihydroquinazolin-2-yl)methyl)quinazolin-4(3H)-one (Compound8 j) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 2-((4-oxo-1,4-dihydroquinazolin-2-yl)methyl)quinazolin-4(3H)-one (Compound-8j) in DMSO- d_{6}

${ }^{1} H \quad N M R$ of 2-(2-((4-oxo-1,4,4a,8a-tetrahydroquinazolin-2-yl)methyl)benzyl)quinazolin$4(3 \mathrm{H})$-one (Compound-8k) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

$\left.{ }^{13}{ }^{13}{ }^{1} H\right\}$ NMR of 2-(2-((4-oxo-1,4,4a,8a-tetrahydroquinazolin-2-yl)methyl)benzyl)quinazolin$4(3 \mathrm{H})$-one (Compound-8k) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9a) in DMSO-d ${ }_{6}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13}{ }^{13}\left\{{ }^{1} H\right\}$ NMR of 3-phenyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9a) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 3-(m-tolyl)-2H-benzo[e] [1,2,4] thiadiazine 1,1-dioxide (Compound-9b) in DMSOd_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 3-(m-tolyl)-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9b) in DMSO- d_{6}

${ }^{1} H$ NMR of 3-(pyridin-2-yl)-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9c) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 3-(pyridin-2-yl)-2H-benzo[e] [1,2,4] thiadiazine 1,1-dioxide (Compound-9c) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of 3-(thiophen-3-yl)-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9d) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 3-(thiophen-3-yl)-2H-benzo[e] [1,2,4]thiadiazine 1,1-dioxide (Compound-9d) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 3-benzyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9e) in DMSO-d d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13} C\left\{{ }^{1} H\right\} \quad$ NMR of 3-benzyl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxide (Compound-9e) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of (E)-2-(4-chlorostyryl)quinazolin-4(3H)-one (Compound-11a) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of (E)-2-(4-chlorostyryl) quinazolin-4(3H)-one (Compound-11a) in DMSO-d ${ }_{6}$

${ }^{1}$ H NMR of 5-oxo-5,6-dihydroquinolino[1,2-a]quinazolin-13-ium chloride (Compound-11b) in DMSO- d_{6}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in DMSO- d_{6}

$\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 5-oxo-5,6-dihydroquinolino[1,2-a]quinazolin-13-ium chloride (Compound11b) in DMSO-d ${ }_{6}$

${ }^{1} H$ NMR of 5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (Compound-11c) in CDCl_{3}. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

[^10]
${ }^{1} H$ NMR of N,2-diphenylquinazolin-4-amine (Compound-11d) in CDCl $_{3}$. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in CDCl_{3}

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of N,2-diphenylquinazolin-4-amine (Compound-11d) in CDCl $_{3}$. \$ indicates the grease in CDCl_{3}

${ }^{1}$ H NMR of 4-(4-oxo-3,4-dihydroquinazolin-2-yl)butanoic acid (Compound-11e) in DMSO-d6. \# indicates the solvent impurity of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{DMSO}-d_{6}$

${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 4-(4-oxo-3,4-dihydroquinazolin-2-yl)butanoic acid (Compound-11e) in DMSO- d_{6}

14. Mechanistic study

Figure S21. Stacking of ${ }^{1} H$ spectra between $1 \mathbf{1 a}$ and \mathbf{I} in DMSO- d_{6}. * indicates the byproduct ${ }^{t} \mathrm{BuOH}$

Figure S22. Stacking of ${ }^{1} H$ spectra between benzonitrile and the reaction mixture containing $1 \mathbf{1 a}$ and benzonitrile indicating interaction between compound $1 \mathbf{1 a}$ and benzonitrile.

Single crystal X-ray Crystallography:

Single crystal X-ray diffraction data were collected on a Bruker AXS Kappa Apex II equipped with a CCD detector (for 1a). The compound was measured using MoK α radiation ($\lambda=0.71073$ \AA). Crystals were selected using a polarizing optical microscope and then mounted in a crystalmounting loop using Paraton oil. The mounted crystal was then placed on a goniometer head and the crystal was centered with the help of a video microscope. The automatic cell determination routine, with $24 / 36$ frames (10 sec exposure time per frame) at two/three different orientations of the detector, respectively was employed to collect reflections for unit cell determination. The collected reflections were indexed using inbuilt APEX software ${ }^{21 a}$ to obtain unit cell parameters. Further, intensity data for structure determination were collected through an optimized strategy, which gave an average 4-fold redundancy for the reflections. The program Bruker-SAINT ${ }^{21 b}$ was used for integrating the frames and multi-scan absorption correction was applied using the program SADABS. ${ }^{21 c}$ The structure was solved by SHELXS $97^{21 d}$ and refined by full-matrix least squares techniques on F^{2} using SHELXL ${ }^{21 e}$ computer program incorporated in WinGX ${ }^{21 f}$ system. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were fixed at chemically meaningful positions and riding model refinement was applied. The graphical representations were performed using the program Mercury. ${ }^{21 g}$ The crystal data (CCDC No. 2335188) and refinement details are summarized in Table S 4 . Halide scrambling during crystallization leads to slight redistribution of halide ions in compound 1a.

Table S4. Crystallographic data for the compound 1a

Compound	1a
CCDC No	2335188
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Br}_{2.31} \mathrm{I}_{1.69} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Zn}$
Formula weight	925.23
Crystal system	Triclinic
Space group	$P-1$
$\mathrm{a}(\AA)$	$8.6011(3)$
$\mathrm{b}(\AA)$	$12.1473(4)$
$\mathrm{c}(\AA)$	$17.1881(6)$
$\alpha\left({ }^{\circ}\right)$	$71.2360(10)$
$\beta\left({ }^{\circ}\right)$	$80.4740(10)$
$\gamma\left({ }^{\circ}\right)$	$79.4660(10)$
$\mathrm{V}\left(\AA^{3}\right)$	$1660.70(10)$

Z	2
D calc $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.850
$\mathrm{~F}(000)$	893
$\mu\left(\mathrm{~mm}^{-1}\right)$	5.120
θ Range $\left(^{\circ}\right)$	1.788 to 24.994
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.120 \times 0.100 \times 0.070$
No. of total reflns collected	18171
No. of unique reflns $[\mathrm{I}>2 \sigma(\mathrm{I})]$	5838
Data/restraints/ parameters	$5838 / 20 / 396$
Goodness-of-fit on F^{2}	1.025
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$0.0258,0.0483$
R indices $($ all data $)$	$0.0419,0.0525$

17. Computational data

All the calculations were performed using the Gaussian 16, Revision B. 01 program. ${ }^{22}$ All structures were optimized with B3LYP ${ }^{23}$ functional. Metals (Zn) and I were treated with LANL2DZ basis set with an effective core potential, while the other atoms were treated using using 6-31G**, a double- ζ Pople type basis set.

Cartesian Coordinates of all the optimized geometries:

30	-0.149401000	-0.549873000	-0.737304000
53	-2.199288000	0.440525000	-2.377590000
6	-0.953766000	3.899994000	0.272464000
1	0.080911000	4.100412000	0.492639000
6	-1.730016000	4.265590000	-0.785231000
1	-1.508931000	4.874122000	-1.646467000

6	-2.927945000	2.927311000	0.512416000
6	-4.076368000	2.186367000	1.162021000
6	-5.555167000	0.224624000	0.778485000
6	-6.447529000	0.436674000	1.836736000
1	-6.339698000	1.306073000	2.470123000
6	-7.464387000	-0.491122000	2.063623000
1	-8.153390000	-0.318368000	2.886689000
6	-7.620103000	-1.631161000	1.267359000
6	-6.713674000	-1.820162000	0.213567000
1	-6.805124000	-2.695383000	-0.424454000
6	-5.692686000	-0.910616000	-0.034048000
1	-4.994584000	-1.077107000	-0.849865000
6	-8.708997000	-2.640302000	1.543776000
1	-8.308398000	-3.528938000	2.047401000
1	-9.182864000	-2.982467000	0.617788000
1	-9.488128000	-2.221965000	2.187436000
6	-4.067797000	3.742330000	-1.569549000
1	-3.898223000	3.015287000	-2.368112000
1	-4.106337000	4.754430000	-1.974414000
1	-5.004560000	3.520864000	-1.059772000
7	-1.720487000	3.087369000	1.078462000
7	-2.961165000	3.664693000	-0.613245000
8	-4.502190000	2.614912000	2.232277000
7	-4.506147000	1.121471000	0.451909000
1	-3.921843000	0.846274000	-0.346232000
6	-1.286362000	2.455474000	2.332642000
1	0.741616000	-3.062197000	2.570793000
6	3.606183000	-2.193013000	1.343724000
1	-1.992654000	2.720788000	3.119962000
1	-0.290459000	2.828386000	2.564245000
1	-1.246453000	1.370163000	2.197116000
6	2.294598000	-3.975776000	1.264237000
1	1.953755000	-4.939733000	0.925345000
6			
6			

6	4.842539000	-1.344260000	1.184623000
6	5.600371000	0.949303000	0.616879000
6	5.167706000	2.154241000	0.042318000
1	4.125554000	2.269246000	-0.239730000
6	6.071424000	3.190508000	-0.163172000
1	5.717330000	4.115665000	-0.611153000
6	7.422162000	3.065241000	0.190974000
6	7.831304000	1.857210000	0.766473000
1	8.871721000	1.730135000	1.055367000
6	6.945809000	0.801438000	0.982220000
1	7.290436000	-0.124422000	1.419094000
6	8.402480000	4.184393000	-0.067046000
1	9.283346000	4.101198000	0.576207000
1	7.947221000	5.164629000	0.107298000
1	8.754346000	4.172446000	-1.106358000
6	4.366091000	-4.050451000	-0.162097000
1	3.989279000	-3.797948000	-1.157143000
1	4.342754000	-5.130945000	-0.016738000
1	5.378190000	-3.680365000	-0.013879000
6	2.267697000	-0.757083000	2.924448000
1	3.204262000	-0.387836000	3.343531000
1	1.586579000	-1.031450000	3.728432000
1	1.803769000	0.002345000	2.290555000
7	2.533196000	-1.963374000	2.128826000
7	3.485321000	-3.434816000	0.836566000
8	5.930411000	-1.876166000	1.402722000
7	4.619340000	-0.060858000	0.814905000
1	3.666933000	0.199050000	0.536825000
53	1.262849000	-2.467142000	-2.069114000
35	-1.207031000	-1.202493000	1.436487000
35	1.475189000	1.322412000	-0.039217000

30	0.293425000	-0.563022000	0.654911000
53	2.358280000	0.470963000	2.153590000

$6 \quad 1.050041000 \quad 3.858525000 \quad-0.168947000$
$1 \begin{array}{llll}-0.013880000 & 4.019816000 & -0.213135000\end{array}$
$6 \quad 1.967133000 \quad 4.196066000 \quad 0.783369000$
$1 \quad 1.853389000 \quad 4.739452000 \quad 1.706754000$
$6 \quad 3.004322000 \quad 2.998233000 \quad-0.765913000$
$6 \quad 3.988230000 \quad 2.189301000 \quad-1.555731000$
$6 \quad 5.694040000 \quad 0.664712000 \quad-0.917541000$
$6 \quad 4.979824000 \quad-0.527607000 \quad-1.280338000$
$1 \quad 3.937095000 \quad-0.469336000 \quad-1.575000000$
$6 \quad 5.607844000 \quad-1.751728000 \quad-1.209766000$
$1 \quad 5.047139000 \quad-2.645869000 \quad-1.467101000$
$6 \quad 6.951807000 \quad-1.874297000 \quad-0.790144000$
$6 \quad 7.658121000 \quad-0.702548000 \quad-0.433816000$
$1 \quad 8.691915000 \quad-0.785112000 \quad-0.109853000$
$6 \quad 7.052214000 \quad 0.533760000 \quad-0.482483000$
$1 \quad 7.585252000 \quad 1.437124000 \quad-0.204901000$
$6 \quad 7.597375000 \quad-3.227846000 \quad-0.684276000$
$1 \quad 7.288145000 \quad-3.727003000 \quad 0.243563000$
$1 \quad 8.688315000 \quad-3.157658000 \quad-0.673310000$
$1 \quad 7.297088000 \quad-3.878764000 \quad-1.511285000$

6	4.372914000	3.721014000	1.242745000
1	4.395425000	2.820878000	1.862866000
1	4.297379000	4.610611000	1.869163000
1	5.261353000	3.762467000	0.618415000
7	1.707683000	3.133100000	-1.128201000
7	3.174142000	3.668423000	0.397886000
8	3.733498000	1.923694000	-2.726137000
7	5.147319000	1.888556000	-0.895762000
6	1.047300000	2.557369000	-2.312835000
1	1.447960000	3.017896000	-3.214699000
1	-0.018468000	2.748292000	-2.201233000
1	1.217147000	1.479264000	-2.335221000
6	-2.359824000	-3.917862000	-1.263588000
1	-2.001637000	-4.886131000	-0.956859000
6	-1.816469000	-2.996861000	-2.107440000
1	-0.886783000	-2.992435000	-2.651929000
6	-3.663751000	-2.127928000	-1.236292000
6	-4.885780000	-1.278215000	-0.993069000
6	-5.595738000	1.013312000	-0.358706000
6	-5.120511000	2.214369000	0.190132000
1	-4.062220000	2.320998000	0.408211000
6	-6.002825000	3.256182000	0.452453000
1	-5.615600000	4.178184000	0.879072000
6	-7.373587000	3.140675000	0.181669000
6	-7.825606000	1.936316000	-0.368859000
1	-9.248030000	4.189529000	-0.087033000
1	-8.882741000	1.816740000	-0.593157000
6	-6.962227000	0.874982000	-0.640152000
1	-7.338887000	-0.047978000	-1.056345000
6	-82888000	4.266311000	0.500375000
6			

1	-7.878182000	5.243555000	0.298146000
1	-8.615236000	4.256409000	1.559521000
6	-4.330747000	-3.997490000	0.297245000
1	-3.875914000	-3.767401000	1.264920000
1	-4.335173000	-5.075682000	0.133690000
1	-5.345528000	-3.611312000	0.231012000
6	-2.413739000	-0.673785000	-2.871977000
1	-3.369801000	-0.290736000	-3.230235000
1	-1.780194000	-0.936285000	-3.717674000
1	-1.909410000	0.069078000	-2.249378000
7	-2.641527000	-1.893025000	-2.084754000
7	-3.517684000	-3.377107000	-0.754072000
8	-5.986778000	-1.803592000	-1.155118000
7	-4.635149000	-0.001377000	-0.619624000
1	-3.666262000	0.247278000	-0.388760000
53	-1.011760000	-2.585195000	1.972209000
35	1.149022000	-1.187355000	-1.644054000
35	-1.454766000	1.281600000	0.114115000

$53 \quad-1.599005000 \quad 1.642353000 \quad-2.735343000$
$6 \quad-1.124020000 \quad 3.658334000 \quad 0.955640000$
$1 \begin{array}{llll}1 & -0.105084000 & 3.683824000 & 1.305522000\end{array}$
$6 \quad-1.754817000 \quad 4.361997000 \quad-0.025469000$
$1 \begin{array}{lllll} & -1.388488000 & 5.132347000 & -0.683487000\end{array}$

6	-3.191723000	2.875478000	0.766477000
6	-4.505127000	2.178659000	1.017232000
6	-5.538245000	-0.064546000	1.248459000
6	-6.793599000	0.356588000	1.712507000
1	-6.980592000	1.403626000	1.900366000
6	-7.564716000	-1.930707000	1.659138000
6	-5.309684000	-1.424680000	0.989529000
1	-4.338913000	-1.749348000	0.626975000
6	-4.017304000	4.300060000	-1.127746000
1	-3.866908000	3.689193000	-2.021907000
1	-3.840233000	5.350698000	-1.358883000
1	-5.020117000	4.172843000	-0.725919000
7	-2.033592000	2.745821000	1.446000000
7	-3.042770000	3.885924000	-0.111359000
8	-5.501423000	2.879799000	1.182133000
7	-4.450379000	0.823912000	1.033508000
6	-1.758880000	1.820913000	2.554089000
1	-2.683599000	1.623236000	3.095718000
1	-1.040961000	2.298748000	3.220100000
1	-1.346887000	0.889063000	2.159838000
6	1.755354000	-4.362391000	-0.025487000
1	1.389431000	-5.132987000	-0.683443000
6	1.124127000	-3.658732000	0.955335000
6	7.564494000	1.931026000	1.659094000
1	0.105123000	-3.684429000	1.304997000
6	3.191679000	-2.875375000	0.766588000
6	4.504909000	-2.178345000	1.017727000
6	5.538007000	0.064865000	1.248464000
6	5.309744000	1.424877000	0.988632000
60000	1.749450000	0.625430000	
60000			

6	6.793082000	-0.356140000	1.713390000
1	6.979869000	-1.403085000	1.901953000
6	4.018091000	-4.299976000	-1.127224000
1	3.867319000	-3.689657000	-2.021696000
1	3.841818000	-5.350868000	-1.357828000
1	5.020793000	-4.171854000	-0.725412000
6	1.758073000	-1.820854000	2.553657000
1	2.682544000	-1.623018000	3.095622000
1	1.039902000	-2.298696000	3.219340000
1	1.346219000	-0.889100000	2.159084000
7	2.033340000	-2.745882000	1.445771000
7	3.043223000	-3.886011000	-0.111102000
8	5.501137000	-2.879453000	1.183286000
7	4.450147000	-0.823613000	1.033474000
1	3.573311000	-0.372968000	0.756047000
53	1.599169000	-1.642708000	-2.735216000
6	-7.803588000	-0.582586000	1.916609000
6	-6.320991000	-2.357434000	1.194212000
6	7.803082000	0.583031000	1.917460000
6	6.321056000	2.357630000	1.193295000
35	-1.544199000	-1.259661000	0.484361000
35	1.544497000	1.259921000	0.483933000
30	-0.000228000	-0.000359000	-1.290957000
1	-3.573499000	0.373227000	0.756420000
1	6.144199000	3.407510000	0.988934000
1	8.775017000	0.262529000	2.275673000
1	-8.775744000	-0.261999000	2.274147000
1	-6.143914000	-3.407411000	0.990538000
17	-8.844320000	-3.105710000	1.920417000
17	8.844110000	3.106039000	1.920340000

53	-1.027226000	-2.227761000	2.378909000
6	-1.734748000	-3.673246000	-1.553989000
1	-0.806798000	-3.780409000	-2.091754000
6	-2.266199000	-4.391278000	-0.526595000
1	-1.892106000	-5.258482000	-0.008428000
6	-3.605574000	-2.667761000	-0.907467000
6	-4.849418000	-1.814288000	-0.843881000
6	-5.632434000	0.523806000	-0.584076000
6	-6.990486000	0.296747000	-0.853899000
1	-7.330334000	-0.688901000	-1.136144000
6	-7.461337000	2.613851000	-0.365777000
6	-5.201617000	1.803729000	-0.201840000
1	-4.150844000	1.976567000	0.010438000
6	-4.249214000	-4.160518000	1.005561000
1	-3.828673000	-3.693004000	1.899889000
1	-4.208802000	-5.246113000	1.099144000
1	-5.276783000	-3.845070000	0.837977000
7	-2.580623000	-2.607569000	-1.781864000
7	-3.436910000	-3.771018000	-0.152743000
8	-5.934386000	-2.387401000	-0.920220000
7	-4.638327000	-0.484973000	-0.688307000
6	-2.377481000	-1.637697000	-2.866350000

1	-3.128383000	-0.854608000	-2.800091000
1	-2.463438000	-2.157260000	-3.823473000
1	-1.382806000	-1.203185000	-2.751429000
6	1.267356000	4.654908000	0.186788000
1	0.762244000	5.386759000	0.795322000
6	0.807029000	3.867359000	-0.825454000
1	-0.176778000	3.766658000	-1.252513000
6	2.941924000	3.364339000	-0.488628000
6	4.312771000	2.745865000	-0.554801000
6	5.318312000	0.605579000	-0.932893000
6	5.071629000	-0.698079000	-1.463600000
1	4.071311000	-0.919153000	-1.822832000
6	7.320943000	-1.354116000	-0.948865000
6	6.613316000	0.882328000	-0.390520000
1	6.815330000	1.863709000	0.015437000
6	3.421012000	4.874998000	1.464215000
1	3.478010000	4.124398000	2.257025000
1	2.938213000	5.775591000	1.843855000
1	4.417281000	5.097838000	1.091303000
6	1.749147000	2.088211000	-2.321293000
1	2.563311000	2.229428000	-3.031456000
1	0.788080000	2.245455000	-2.808576000
1	1.795505000	1.079915000	-1.911319000
7	1.857113000	3.082222000	-1.242392000
6	-7.900806000	1.347081000	-0.743393000
7	2.597230000	4.350268000	0.368572000
8	5.283840000	3.457640000	-0.274497000
7	4.261037000	1.453948000	-0.975859000
53	2.273365000	0.839252000	1.921257000
6	2.847944000	-0.092495000	
600			

6	7.597985000	-0.086897000	-0.408680000
6	6.057063000	-1.665967000	-1.470884000
35	-1.488957000	1.039542000	-0.472179000
35	1.245019000	-1.738199000	-1.495118000
30	0.278877000	-0.610427000	0.631758000
1	-3.674811000	-0.165717000	-0.531649000
1	5.859253000	-2.657362000	-1.862029000
1	8.584202000	0.120505000	-0.008226000
1	-8.951374000	1.176072000	-0.950262000
1	-5.780408000	3.835404000	0.205985000
17	-8.616714000	3.930848000	-0.229585000
17	8.576819000	-2.564711000	-0.962978000

30	0.182866000	-0.528709000	0.758648000
53	-1.556792000	1.556027000	-0.198572000
53	2.248968000	0.512940000	2.307579000
53	1.295616000	-1.449126000	-1.643557000
6	1.379252000	3.975400000	-0.587722000
1	0.386902000	4.209853000	-0.934954000
6	2.032936000	4.332189000	0.552465000
1	1.728948000	4.961920000	1.372213000
6	3.336571000	2.938466000	-0.575072000

6	4.533068000	2.154531000	-1.068809000
6	5.919823000	0.180149000	-0.463763000
6	6.925953000	0.341829000	-1.424423000
1	6.903116000	1.188600000	-2.095918000
6	7.945361000	-0.606897000	-1.505599000
1	8.722751000	-0.473517000	-2.253792000
6	7.993392000	-1.719312000	-0.658010000
6	6.974347000	-1.857710000	0.295819000
1	6.980122000	-2.710419000	0.969728000
6	5.948238000	-0.926183000	0.398000000
1	5.162737000	-1.054437000	1.137682000
6	9.087323000	-2.753080000	-0.779665000
1	8.733647000	-3.643446000	-1.314389000
1	9.435399000	-3.085911000	0.203653000
1	9.948572000	-2.361724000	-1.328738000
6	4.243903000	3.763099000	1.617398000
1	3.942737000	3.086146000	2.420962000
1	4.289270000	4.791255000	1.979017000
1	5.220700000	3.470330000	1.235088000
7	2.211215000	3.126690000	-1.285320000
7	3.255240000	3.690636000	0.538769000
8	5.088399000	2.541576000	-2.094609000
7	4.855683000	1.102151000	-0.286179000
1	4.180159000	0.859631000	0.447180000
6	1.897199000	2.476321000	-2.566218000
1	2.780375000	2.521418000	-3.202932000
1	1.072196000	3.020000000	-3.024337000
1	1.604505000	1.436888000	-2.390007000
6	-2.587789000	-4.011663000	-0.980804000
1	-2.202063000	-4.932328000	-0.575847000

6	-2.078839000	-3.177914000	-1.929166000
1	-1.162627000	-3.222925000	-2.495957000
6	-3.938510000	-2.261486000	-1.132192000
6	-5.185931000	-1.429216000	-0.956746000
6	-5.984587000	0.864052000	-0.444307000
6	-5.570584000	2.080735000	0.117415000
1	-4.525866000	2.228305000	0.374724000
6	-6.496959000	3.092835000	0.341978000
1	-6.156766000	4.028768000	0.777780000
6	-7.851938000	2.928926000	0.021248000
6	-8.242304000	1.708259000	-0.540601000
1	-9.285570000	1.551861000	-0.803380000
6	-7.333266000	0.677081000	-0.776364000
1	-7.663569000	-0.259140000	-1.202282000
6	-8.855255000	4.022703000	0.298698000
1	-9.759771000	3.898288000	-0.303641000
1	-8.438885000	5.012236000	0.084247000
1	-9.160909000	4.022993000	1.352528000
6	-4.546606000	-3.973875000	0.599206000
1	-4.106668000	-3.624810000	1.537246000
1	-4.511451000	-5.062792000	0.554307000
1	-5.574706000	-3.635177000	0.490841000
6	-2.745333000	-0.991639000	-2.963556000
1	-3.610535000	-0.333079000	-2.925899000
1	-2.641327000	-1.407750000	-3.967284000
1	-1.848516000	-0.434759000	-2.685710000
7	-2.931687000	-2.096591000	-2.015019000
7	-3.752272000	-3.444343000	-0.515182000
	-6.267907000	-1.999694000	-1.081964000
	-481977000	-0.121742000	-0.667122000

1	-4.023789000	0.180348000	-0.470809000
53	-1.305891000	-2.307833000	2.175436000

30	-0.146273000	-0.010468000	0.524128000
53	-1.382173000	2.152679000	-0.778266000
53	1.897309000	0.799595000	2.261120000
53	1.106981000	-1.478147000	-1.534907000
6	1.927339000	3.939802000	-1.178309000
1	1.030853000	4.283775000	-1.666146000
6	2.518098000	4.334050000	-0.016180000
1	2.252238000	5.109998000	0.682389000
6	3.651600000	2.600656000	-0.805662000
6	4.727244000	1.565883000	-1.051313000
6	5.668140000	-0.503300000	-0.042460000
6	6.785410000	-0.640673000	-0.875715000
1	6.987354000	0.099501000	-1.637184000
6	7.620988000	-1.745971000	-0.714317000
1	8.486435000	-1.844384000	-1.364993000
6	7.376377000	-2.726133000	0.253930000
6	6.251179000	-2.565239000	1.075688000
1	6.030573000	-3.308406000	1.837585000
6	5.403423000	-1.473033000	0.935834000
1	4.531189000	-1.369477000	1.575323000

6	8.274149000	-3.932190000	0.395212000
1	7.829901000	-4.815683000	-0.080217000
1	8.443926000	-4.184586000	1.447077000
1	9.248034000	-3.763270000	-0.073353000
6	4.472341000	3.554205000	1.368930000
1	3.979164000	3.048099000	2.202881000
1	4.661918000	4.600534000	1.612441000
1	5.415304000	3.058661000	1.142401000
7	2.656228000	2.877102000	-1.665580000
7	3.597469000	3.499887000	0.195261000
8	5.442756000	1.704277000	-2.040913000
7	4.775644000	0.597448000	-0.110607000
1	3.998228000	0.576257000	0.559057000
6	2.359015000	2.122226000	-2.892003000
1	3.287902000	1.975394000	-3.442783000
1	1.653995000	2.706252000	-3.481466000
1	1.911792000	1.158617000	-2.630676000
6	-2.555723000	-4.450954000	-0.994624000
1	-2.131579000	-5.396727000	-0.700463000
6	-2.112810000	-3.518609000	-1.887439000
1	-1.216607000	-3.484127000	-2.485290000
6	-3.972533000	-2.746372000	-0.956514000
6	-5.119741000	-1.888500000	-0.523888000
6	-5.570247000	0.444035000	-0.605763000
6	-5.823691000	1.913354000	1.321151000
1	-5.958924000	1.534200000	-1.449697000
6	-6.277975000	2.760631000	-0.911492000
6.573916000	3.576903000	-1.564454000	
600000	2.983082000	0.482853000	
6	1.356577000	-2.519153000	
6			

1	-5.755460000	2.079879000	2.392431000
6	-5.508655000	0.673775000	0.810468000
1	-5.185162000	-0.127310000	1.463532000
6	-6.496513000	4.340908000	1.060365000
1	-6.965155000	4.267601000	2.046297000
1	-7.145110000	4.931079000	0.407060000
1	-5.560665000	4.900911000	1.188762000
6	-4.418680000	-4.633611000	0.666796000
1	-4.289760000	-4.044534000	1.576239000
1	-3.968970000	-5.618872000	0.791552000
1	-5.478280000	-4.717511000	0.438470000
6	-2.824150000	-1.249820000	-2.659489000
1	-3.703047000	-1.085145000	-3.280903000
1	-1.931153000	-1.391044000	-3.266489000
1	-2.669379000	-0.392104000	-2.002725000
7	-3.002845000	-2.474911000	-1.861894000
7	-3.711468000	-3.968523000	-0.435575000
8	-5.918944000	-2.329138000	0.300677000
7	-5.227204000	-0.707028000	-1.200006000
53	-2.031589000	-1.470281000	1.896233000

References:

1. S. Bauri, A. Ramachandran and A. Rit, Chem Asian J., 2023, 18, e2022013.
2. A. Y. H. Helali, M. T. M. Sarg, M. M. S. Koraa and M. S. F. El-Zoghbi, Open J. Med. Chem., 2014, 4, 12-37.
3. H. Lu, Q. Yang, Y. Zhou, Y. Guo, Z. Deng, Q. Ding and Y. Peng, Org. Biomol. Chem., 2014, 12, 758-764.
4. Z. Niu, S. Ma, L. Zhang, Q. Liu and S. Zhang, Molecules, 2022, 27, 3906.
5. D. Šakić and H. Zipse, Adv. Synth. Catal., 2016, 358, 3983-3991.
6. S. Halder, S. Mandal, A. Biswas and D. Adhikari, Green Chem., 2023, 25, 2840-2845.
7. X. X. Qi, Z. Z. Song, J. L. Gong, Z. Y. Fang and X. F. Wu, Chinese Chemical Letters, 2016, 27, 21-24.
8. K. Wang, H. Chen, X. Dai, X. Huang and Z. Feng, RSC Adv., 2021, 11, 13119-13123.
9. W. Wu, S. Fan, X. Wu, L. Fang and J. Zhu, J. Org. Chem., 2023, 88, 1945-1962.
10. H. Hou, X. Ma, Y. Lin, J. Lin, W. Sun, L. Wang, X. Xu and F. Ke, RSC Adv., 2021, 11, 17721-17726.
11. S. Huang, L. Jin, Y. Liu, G. Yang, A. Wang, Z. Le, G. Jiang, Z. Xie, Org. Biomol. Chem. 2024, 22, 784-789.
12. N. Baltaş, J. Chem. Res., 2022, 46, 174751982210965.
13. X. Wang, S. Shang, Q. Tian, Y. Wang, H. Wu, Z. Li, S. Zhou, H. Liu, Z. Dai, W. Luo, D. Li, X. Xiao and S. Wang, Yuan, J. Tetrahedron, 2020, 76, 131480.
14. Y. Shen, C. Han, S. Cai, P. Lu and Y. Wang, Tetrahedron Lett., 2012, 53, 5671-5673.
15. D. Pal, A. Mondal and D. Srimani, Catal. Sci. Technol., 2022, 12, 3202-3208.
16. T. Abe, K. Kida and K. Yamada, Chem. Commun., 2017, 53, 4362-4365.
17. H. Zhao, Y. Wu, D. Zhang and H. Huang, Tetrahedron, 2022, 115, 132811.
18. M. Sharif, J. Opalach, P. Langer, M. Beller and X. Wu, RSC Adv., 2014, 4, 8-17.
19. J. Kim, S. Y. Lee, J. Lee and Y. Do and S. Chang, J. Org. Chem. 2008, 73, 9454-9457.
20. G. Fan, S. Chen, L. Liang, H. Zhang and R. Yu, Int. J. Mol. Sci., 2022, 23, 15996.
21. a) Bruker AXS APEX Inc., 5465 east Cheryl Parkway, Madison, WI53711; b) BrukerSAINT V8.40B, 2016; c) SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction. Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. J. Appl. Cryst., 2015, 48, 3-10; d) G. M. Sheldrick (2015) SHELXT-Integrated space-group and crystal structure determination, Acta Cryst. A71, 3-8; e) Sheldrick, G. M. "SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement," University of Gottingen, Gottingen, 1997; f) Sheldrick, G. M. (2015) Crystal structure refinement with SHELXL, Acta Cryst., C71, 3-8; g) WingX, An integrated system of windows programs for the solution, Refinement and Analysis of Single crystal diffraction data, L. J. Farrugia, J. appl. Cryst., 2012, 45, 849-854.
22. Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
23. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785-789.

[^0]: $\left.{ }^{13} C_{\{ }{ }^{1} H\right\}$ NMR of 2-(p-tolyl)quinazolin-4(3H)-one (Compound-5b) in DMSO-d ${ }_{6}$

[^1]: ${ }^{19}$ F NMR of 2-(4-fluorophenyl)quinazolin-4(3H)-one (Compound-5j) in DMSO-d ${ }_{6}$

[^2]: $\left.{ }^{13} C^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 7-methyl-2-(pyridin-2-yl)quinazolin-4(3H)-one (Compound-5o) in DMSO-d 6

[^3]: ${ }^{13}$ C\{ ${ }^{1}$ H\} NMR of 7-methyl-2-(4-(trifluoromethyl)phenyl)quinazolin-4(3H)-one (Compound5p) in DMSO-d ${ }_{6}$

[^4]: ${ }^{19}$ F NMR of 2-(4-fluorobenzyl)quinazolin-4(3H)-one (Compound-6f) in DMSO-d d_{6}

[^5]: ${ }^{13}$ C $\left.^{1}{ }^{1} \mathrm{H}\right\}$ NMR of 2-phenethylquinazolin-4(3H)-one (Compound-6i) in DMSO- d_{6}

[^6]: ${ }^{13}{ }^{13}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of 2-methylquinazolin-4(3H)-one (Compound-8a) in DMSO-d ${ }_{6}$

[^7]: $\left.{ }^{13} C_{\{ }{ }^{1} \mathrm{H}\right\}$ NMR of 2-(but-3-en-2-yl)quinazolin-4(3H)-one (Compound-8b) in DMSO-d ${ }_{6}$

[^8]: ${ }^{13} C_{\{ }\left\{{ }^{1} H\right\}$ NMR of 4-(4-oxo-3,4-dihydroquinazolin-2-yl)butanenitrile (Compound-8c) in DMSOd_{6}

[^9]: ${ }^{13} C\left\{{ }^{1} H\right\}$ NMR of 2-ethylquinazolin-4(3H)-one (Compound-8e) in DMSO- d_{6}

[^10]: ${ }^{13} C\left\{{ }^{1}{ }^{1} H\right\}$ NMR of 5,6-diphenyl-8H-isoquinolino[1,2-b]quinazolin-8-one (Compound-11c) in CDCl_{3}

