Supporting Information

Selective Monoborylation of Methane by Metal-Organic Framework Confined Mononuclear Pyridylimine-Iridium(I) Hydride

 Ghosh, ${ }^{\text {b }}$ Balendra, ${ }^{a}$ Himani Bisht, ${ }^{\text {a }}$ Kuntal Manna*a
${ }^{\text {a}}$ Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
${ }^{\text {b }}$ BARC Beamlines Section, Indus-2, RRCAT, Indore 452013, India
*Email: kmanna@chemistry.iitd.ac.in

Table of contents

1. General experimentS2-S3
2. Synthesis and characterization of pyrim-UiO-68 MOF S3-S4
3. Post synthetic metalation of pyrim-UiO-68 MOF S5-S7
4. Pyrim-UiO-IrH catalysed borylation of methane S8-S14
5. GC-MS analysis of the products S15-S19
6. DFT calculations S20-S29
7. X-ray absorption spectroscopic analysis S30-S33
8. XPS analysis S34-S36
9. References S37-S38
10. General experiment. All the experiments were performed under inert conditions inside the glovebox, except if any case was demonstrated. All the solvents were purchased from Finar and used without further purification. Tetrahydrofuran and cyclohexane were dried with calcium hydride followed by distillation over $\mathrm{Na} /$ benzophenone. All the reagents are commercially available and used directly as received. 2,5-Dibromoaniline was purchased from Alfa Aesar, $\mathrm{IrCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}$ was purchased from TCI chemicals and ZrCl_{4} was purchased from GLR Innovations. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker NMR 500 DRX spectrometer at 500 MHz and referenced to the proton resonance resulting from $\operatorname{DMSO}_{-1}(\delta 2.5)$ and CDCl_{3} ($\delta 7.26$). Thermogravimetric analysis (TGA) was performed on a PerkinElmer TGA7 system on well-ground samples under the flowing nitrogen atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ with a range of $40-800^{\circ} \mathrm{C}$. Room temperature powder X-ray diffraction data were collected on a Bruker Advance diffractometer using Ni-filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5406$ \AA A). Data were collected with a step size of 0.05° and at count time of 1 s per step over the range $4^{\circ}<2 \theta<70^{\circ}$. The experimental and simulated PXRD patterns are in good agreement indicating the monophasic nature of the bulk samples. For powder X-ray diffraction measurement of MOFs, moist sample was mounted on a PXRD groove. After catalysis, pyrim-UiO-Ir was recovered after centrifugation and stored in THF. Just before the PXRD measurement, the THF was removed, and the moist sample was mounted on a PXRD groove. The catalysis was carried out without any mechanical stirring, and the recovered MOF was not dried before the measurement of PXRD to prevent any mechanical degradation and pore collapse of the MOF. The liquid phase of catalytic reactions was determined by gas chromatograph using Agilent 7890B gas chromatograph equipped with flame ionisation detector (FID) and mass detector (Agilent 5977B GC/MSD). The following chromatographic conditions were employed; carrier gas: $\mathrm{He}, \mathrm{N}_{2}$, flow rate: $1 \mathrm{~mL} \mathrm{~min}^{-1}$, injection volume: $5.0 \mu \mathrm{~L}$, column oven temperature was initially $40.0^{\circ} \mathrm{C}$ and then increased up to $240^{\circ} \mathrm{C}$ with the rate of $5^{\circ} \mathrm{C}$ per minute, and detector temperature was $250{ }^{\circ} \mathrm{C}$. ICP-OES data were obtained with an Agilent 5110 ICP-OES and analyzed using Dichroic Spectral Combiner (DSC). Samples were diluted in a 5\% HNO_{3} matrix and analyzed with a four-point standard curve over the range from 1 ppm to 10 ppm . The correlation coefficient was >0.9990 for all analytes of interest. All the borylation reactions were performed using 100 mL Parr pressure vessels [4793 (VGR)-T-SS-3000-DVD]. The vessel was pressurized directly from a CH_{4} gas tank using a gauge ($0-3000$ psi displayed, 0-200 bar). To analyse the chemical state of transition elements, XPS were recorded on an X-ray photoelectron spectrometer, PHI 5000 VersaProbe III using Al-K $\alpha(h v=1486.6 \mathrm{eV}$) X-ray source. MOF samples were vacuum dried at room temperature, and then powder samples were
measured ultra-high vacuum environment. Surface area and pore volume were measured with a BELLSORP MAX II-high performance gas and vapor adsorption system with three microporous ports. For BET surface area measurement, MOF sample was first dried via freezedrying method. For freeze-drying, MOF was first soaked with benzene. Then, the MOF slurry was frozen at $-10^{\circ} \mathrm{C}$ and dried slowly under vacuum at the same temperature. Then, samples were degassed under vacuum at $80^{\circ} \mathrm{C}$ for 24 h before measurement. The morphology and chemical compositions were analysed with a Ziess Fe-SEM ultra plus55 operating at 20 KV . After vacuum drying, a very small amount of the powder samples of MOF ($1-2 \mathrm{mg}$) were dispersed on the carbon tape for FE-SEM imaging. Infra-red (IR) spectra of samples were recorded with FT-IR Spectrometer (MS-632). The MOF samples were vacuum dried at $100{ }^{\circ} \mathrm{C}$ to remove the moisture, which was then taken inside the glovebox, and a KBr pellet of powder sample was made. The pellets were kept in inert conditions and IR was recorded under a nitrogen atmosphere.

2. Synthesis and characterization of pyridylimine-functionalized UiO-68 MOFs.

2.1. Synthesis of UiO-68-NH2 MOF. ${ }^{1}$

In a 10 mL glass vial, TPDC-NH2 (2'-amino-[1, $1^{\prime}: 4^{\prime}, 1$ "-terphenyl]-4,4"-dicarboxylic acid) ligand $(0.010 \mathrm{~g}, 0.03 \mathrm{mmol})$, which was synthesized with the help modified procedure ${ }^{2,3}$, and benzoic acid ($0.073 \mathrm{~g}, 0.6 \mathrm{mmol}$) were dissolved in a DMF solution (1.22 mL) followed by the addition of $\mathrm{ZrCl}_{4}(0.007 \mathrm{~g}, 0.03 \mathrm{mmol})$. The resulting mixture was sonicated for few minutes and then kept it in a preheated oven at $70^{\circ} \mathrm{C}$ for 3 d . After cooling to room temperature, the crystalline solid was isolated by centrifugation and washed it by DMF several times to afford $\mathrm{UiO}-68-\mathrm{NH}_{2}$ MOFs in 41% yield.

2.2. Synthesis of pyrim-UiO MOFs via post-synthetic modification of UiO-68-NH2 MOFs. ${ }^{4}$

In a centrifuge tube inside the glovebox, UiO-68- $\mathrm{NH}_{2} \mathrm{MOF}(0.017 \mathrm{~g}, 0.006 \mathrm{mmol})$ was added in 1 mL DMF followed by the addition of 2-pyridinecarboxaldehyde ($4 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$). It was then left overnight with periodic shaking. The resultant solid was washed multiple times with DMF to obtain pyrim-UiO-68 MOF as a light brown solid.
2.2.1. Analysis of digested pyrim-UiO MOFs by ${ }^{1} \mathbf{H}$ NMR. Sample of pyrim-UiO MOF was charged in a vial containing 0.5 mL of $\mathrm{DMSO}-d_{6}$, and then 0.5 mL saturated solution of $\mathrm{K}_{3} \mathrm{PO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ was added to it and mixed well. The top organic layer was taken and analyzed by ${ }^{1} \mathrm{H}$ NMR.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz , DMSO- d_{6}) of pyrim-UiO MOF digested in $\mathrm{K}_{3} \mathrm{PO}_{4} / \mathrm{D}_{2} \mathrm{O} / \mathrm{DMSO}-d_{6}$.

3. Post synthetic metalation of pyrim-MOF. ${ }^{5}$

3.1. Synthesis of pyrim-UiO- IrCl_{3}.

Pyrim-UiO MOF ($0.030 \mathrm{~g}, 0.009 \mathrm{mmol}$) in THF was charged into a vial to which a 1 mL THF solution of $\mathrm{IrCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}(0.019 \mathrm{~g}, 0.054 \mathrm{mmol}$ was added. The mixture was stirred slowly overnight at room temperature. The resultant solid was centrifuged out of suspension and washed with THF 4-5 times. Pyrim-UiO-IrCl ${ }_{3}$ has 28% solvent weight based on TGA analysis and 32% Ir-loading based on ICP-OES analysis.
a)

b)

Figure S2. (a) TGA curve of freshly prepared pyrim-UiO-68 and pyrim-UiO- IrCl_{3}. A solvent weight loss of 45% was observed in pyrim-UiO-68 and 28% in pyrim-UiO-IrCl ${ }_{3}$ at the range of temperature from $40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. (b) TGA curve of freshly prepared pyrim-UiO-68 (black) and pyrim-UiO- IrCl_{3} (red) from $200-700{ }^{\circ} \mathrm{C}$. The increased weight of metalated MOF is due to the presence of iridium within the MOF.

3.2 Synthesis of pyrim-UiO-IrH.

Pyrim-UiO-IrCl ${ }_{3}(0.016 \mathrm{~g}, 0.0038 \mathrm{mmol})$ was charged into a vial containing 3 mL of THF. $\mathrm{NaEt}_{3} \mathrm{BH}(15 \mu \mathrm{~L}, 1 \mathrm{M}$ in toluene) was added dropwise to the vial, and the mixture was stirred gently for 1 h at room temperature to give pyrim-UiO-IrH as black colored solid. The resultant MOF catalyst was separated via centrifugation and then washed with THF several times. Pyrim-UiO-IrH was then used directly for the catalysis.

Figure S3. PXRD patterns of simulated UiO-68 MOF (black), pristine UiO-68-NH2 MOF (red), pyrim-UiO-68 MOF (blue), pyrim-UiO- IrCl_{3} (green), pyrim-UiO-IrH (violet), pyrim-UiO-Ir after run 1 (mustard brown) and pyrim-UiO-Ir after run 3 (light blue).

Figure S4. a) Brunauer-Emmett-Teller (BET) nitrogen sorption isotherms of pyrim-UiO-68, pyrim-UiO-IrH and pyrim-UiO-Ir after catalysis measured at 77 K. Pyrim-UiO-68 and pyrim-UiO-IrH have a BET surface area of $2342 \mathrm{~m}^{2} / \mathrm{g}$ and $1245 \mathrm{~m}^{2} / \mathrm{g}$ respectively. b) HK pore distribution plot of pyrim-UiO-IrH. Pore size for pyrim-UiO-IrH was determined to be 0.8 nm .

Figure S5. SEM-EDX analysis of pyrim-UiO-IrH.

3.3. Synthesis of homogeneous pyridylimine-iridium complex.

Under inert condition, dimethyl 2^{\prime}-amino-[1, $1^{\prime}: 4$ ', 1 "-terphenyl]-4,4"-dicarboxylate (0.200 g , 0.553 mmol) was dissolved in 30 mL of DMSO in a 50 mL Schlenk flask. To the reaction mixture, 1 mL of methanol was added followed by the addition of 2-pyridine carboxaldehyde ($0.073 \mathrm{~mL}, 0.774 \mathrm{mmol}$). The resulting clear light-yellow colour solution was stirred for 24 h at room temperature. A light-yellow precipitate was formed, which was isolated through centrifugation followed by washing with methanol for three times and then dried under vacuum to afford the pyridylimine ligand as a yellow solid $(0.180 \mathrm{~g}, 0.399 \mathrm{mmol}, 72 \%) .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.71(\mathrm{~s}, 2 \mathrm{H}), 8.14\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.09(\mathrm{~s}, 2 \mathrm{H}), 8.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.77\left(\mathrm{dd},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=14.0,8.2 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.66-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.36$ $(\mathrm{m}, 1 \mathrm{H}), 3.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}, 6 \mathrm{H}\right) . \mathrm{m} / \mathrm{z}(\mathrm{ESI})$ Anal calcd. for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 451.1658; Found: 451.1641 (err. -3.7 ppm).

In a vial, the pyridylimine ligand, dimethyl 2^{\prime}-((pyridin-2-ylmethylene)amino)[1, 1':4', 1"-terphenyl]-4,4"-dicarboxylate ($0.036 \mathrm{~g}, 0.080 \mathrm{mmol}$), was added to a solution of $\mathrm{IrCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}(0.028 \mathrm{~g}, 0.080 \mathrm{mmol})$ in THF (until saturated). It was then left overnight, the pyridylimine-iridium complex was obtained. $\mathrm{NaEt}_{3} \mathrm{BH}(15 \mu \mathrm{~L}, 1 \mathrm{M}$ in toluene) was added dropwise to the vial containing complex, and the mixture was stirred gently for 1 h at room temperature to give pyridylimine-iridium hydride complex.

4. Catalytic reactions with pyrim-UiO-IrH.

4.1. General procedure for pyrim-UiO-IrH catalysed borylation of methane.

In the glovebox, pyrim-UiO-IrH ($0.5 \mathrm{~mol} \%$ of Ir) in 2 mL solvent was transferred into a glass liner. $\mathrm{B}_{2} \mathrm{pin}_{2}$ was subsequently added to the liner, which was then securely fitted into a highpressure reactor and sealed. The sealed Parr reactor was then removed from the glovebox and purged with CH_{4} two to three times. Subsequently, the Parr reactor was pressurized to 20-40 bar with CH_{4} and heated to a temperature range of $110-150^{\circ} \mathrm{C}$, where it was maintained for a duration of 10 to 48 hours. The reactor was subsequently cooled, and the pressure was released. The MOF was separated from the reaction mixture through centrifugation, and the resulting supernatant was analyzed using GC-MS and GC-FID to determine the conversion and yield for CH_{3} Bpin.

Table S1. Optimization reaction conditions for borylation of methane. ${ }^{\text {a }}$

$$
\mathrm{CH}_{4}+\mathrm{B}_{2} \mathrm{pin}_{2} \xrightarrow[\text { Pyrim-UiO-IrH }]{\text { Solvent, Time, Pressure, Temp. }} \mathrm{CH}_{3} \text { Bpin }
$$

Entry	Catalyst	Borylating agent	Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Pressure (bar)	Time (h)	Solvent	$\begin{gathered} \text { \% GC- } \\ \text { Yield } \\ \text { (Selectivity) } \\ \hline \end{gathered}$
1	$\begin{gathered} \hline \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	12 h	CyH	54 (98)
2	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	18 h	CyH	85 (98)
3	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathbf{B}_{2} \text { pin }_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	24 h	CyH	98 (98)
4	$\begin{gathered} \hline \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	30 h	CyH	90 (90)
5	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	48 h	CyH	82 (82)
6	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	110	40	24 h	CyH	19 (95)
$7^{\text {b }}$	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	150	40	24 h	CyH	78 (78)
8	$\begin{gathered} \hline \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	20	24 h	CyH	26 (96)
9	$\begin{gathered} \hline \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	30	24 h	CyH	47 (98)

10	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.3 \mathrm{~mol} \%) \end{gathered}$	$\begin{array}{\|c} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{array}$	130	40	24 h	CyH	30 (98)
11	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{array}{\|c} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{array}$	130	40	24 h	THF	29 (33)
12	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	24 h	Toluene	35 (44)
13	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{array}$	130	40	24 h	Heptane	72 (86)
14	$\begin{gathered} \text { Pyrim-UiO-IrH } \\ (0.5 \mathrm{~mol} \%) \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	24 h	DMF	21 (24)
15	No catalyst	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	24 h	CyH	0
16	Pyrim-UiO-68	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.2 \mathrm{mmol}) \end{gathered}$	130	40	24 h	CyH	0
17	$\begin{aligned} & \mathrm{IrCl}_{3} 3 \mathrm{H}_{2} \mathrm{O} \\ & (0.5 \mathrm{~mol} \%) \end{aligned}$	$\begin{gathered} \mathrm{B}_{2} \mathrm{pin}_{2} \\ (0.5 \mathrm{mmol}) \end{gathered}$	130	40	24 h	CyH	0
$18^{\text {c }}$	Pyrim-UiO-IrH ($0.5 \mathrm{~mol} \%$)	HBpin (0.2 mmol)	130	40	24 h	CyH	0

${ }^{\text {aR Reaction conditions: }} 1.9 \mathrm{mg}$ of pyrim-UiO-IrH ($1.02 \mu \mathrm{~mol}$ of Ir), $51 \mathrm{mg} \mathrm{B} \mathrm{B}_{2} \mathrm{pin}_{2}(0.2 \mathrm{mmol}), 2 \mathrm{~mL}$ solvents. ${ }^{\text {b }}$ Lower yield was due to the generation of sol-Bpin and oxygenated byproducts such as HOBpin and pinBOBpin, stemming from the interaction of $\mathrm{B}_{2} \mathrm{pin}_{2}$ with OH groups residing on the Zr_{6} nodes of the MOF. ${ }^{6,7}{ }^{\mathrm{c}} \mathrm{HB}$ pin was used as the borylating agent.

4.2. Blank reaction of pyrim-UiO-IrH with \mathbf{B}_{2} pin 2 under \mathbf{N}_{2} without methane.

In the glovebox, pyrim-UiO-IrH ($1.9 \mathrm{mg}, 0.5 \mathrm{~mol} \%$ of Ir) in 2 mL cyclohexane was transferred into a glass liner. $\mathrm{B}_{2} \mathrm{pin}_{2}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$ was subsequently added to the liner, which was then securely fitted into a high-pressure reactor and sealed. The sealed Parr reactor was then removed from the glovebox and purged with N_{2} two to three times. The reactor was pressurized with 40 bar nitrogen and then heated at $130^{\circ} \mathrm{C}$ for 24 h without any mechanical stirring. The reactor was subsequently cooled, and the pressure was released. The MOF was separated from the reaction mixture through centrifugation, and the resulting supernatant was analyzed using GC-MS and GC-FID to determine the conversion and yield for CH_{3} Bpin. In this reaction, no trace of products was formed, suggesting CH_{4} as the sole carbon source for CH_{3} Bpin in the pyrim-UiO-IrH catalyzed methane borylation.

4.3. Test for "heterogeneity" of pyrim-UiO-IrH in borylation of CH_{4}.

Figure S6. Heterogeneity test of pyrim-UiO-IrH for the borylation of methane.
In the glovebox, pyrim-UiO-IrH ($1.9 \mathrm{mg}, 0.5 \mathrm{~mol} \%$ of Ir) in 2 mL cyclohexane was transferred into a glass liner. $\mathrm{B}_{2} \operatorname{pin}_{2}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$ was subsequently added to the liner, which was then securely fitted into a high-pressure reactor and sealed. The sealed Parr reactor was then removed from the glovebox and purged with CH_{4} two to three times. The reactor was pressurized with 40 bar methane and then heated at $130^{\circ} \mathrm{C}$ for 24 h without any mechanical stirring. The system was subsequently cooled, and the pressure was released. The solid MOF was removed from suspension to separate the solid and the supernatant, inside the glove box and washed with cyclohexane multiple times.

Two reactions were set up separately in two different Parr reactors, one with the solid and the other one with the supernatant recovered from the previous reaction. The extracted solid and supernatant were added into two separate liners, and $B_{2} \operatorname{pin}_{2}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to each liner. 2 mL cyclohexane was added to the liner containing the solid MOF. Then both the liners were fitted into two separate Parr reactors and sealed. The sealed Parr reactors were taken out from the glovebox and purged with CH_{4} gas two times. The Parr reactors were pressurized to 40 bar of CH_{4} and stirred at $130^{\circ} \mathrm{C}$ for 24 h . After the completion of the reaction, the pressure of the reactors was released. The reactions were analysed with the GC-MS and GC-FID, which showed that the reaction with the solid MOF gave 98% yield, while the reaction with supernatant gave 0% conversion. This experiment excludes the potential of any leached Ir-species responsible for catalysis and confirms that solid pyrim-UiO-IrH was the actual catalyst for the borylation of methane.

4.4. Recycling of pyrim-UiO-IrH for the borylation of methane.

The recycle and reuse experiment was conducted at $\sim 50-60 \%$ conversion to check the stability of the pyrim-UiO-IrH MOF-catalyst (Table S2). The detailed procedure of recycling experiment given below.
In the glovebox, pyrim-UiO-IrH ($1.9 \mathrm{mg}, 0.5 \mathrm{~mol} \%$ of Ir) in 2 mL cyclohexane was transferred into a glass liner. $\mathrm{B}_{2} \mathrm{pin}_{2}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$ was subsequently added to the

Figure S7. Recycle and reuse of pyrim-UiO-IrH in borylation of methane.
liner, which was then securely fitted into a high-pressure reactor and sealed. The sealed Parr reactor was then removed from the glovebox and purged with CH_{4} two to three times. The reactor was pressurized with 40 bar methane and then heated at $130^{\circ} \mathrm{C}$ for 12 h without any mechanical stirring. The system was subsequently cooled, and the pressure was released. The solid MOF was removed from suspension to separate the solid and the supernatant, inside the glove box and washed with cyclohexane multiple times. The yield of $\mathrm{CH}_{3} \mathrm{Bpin}$ was determined by GC-MS and GC-FID analysis. The solid MOF was then recycled.

Inside the glovebox, the recovered MOF-catalyst was again added to the glass liner. 2 mL cyclohexane and $\mathrm{B}_{2} \operatorname{pin}_{2}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$ were added to the glass liner and sealed it in a Parr reactor. The Parr reactor was taken out from the glove box and was purged with the CH_{4} gas and then pressurized it to 40 bar of CH_{4}. The reactor was heated at $130^{\circ} \mathrm{C}$ for 12 h . After the reaction, the solution was analyzed in the same way as mentioned previously in run 1 . The recycling and reuse experiments were performed up to 5 times in total.

Table S2. \% Conversion of B_{2} pin $_{2}$, \% GC-Yield of $\mathrm{CH}_{3} \mathrm{Bpin}$ and the leaching of Ir and Zr at various runs of the recycling of pyrim-UiO-IrH in the borylation of methane.

Run	Time	\%Conv. (B2pin2)	\%GC-Yield	\%Leaching (Ir, Zr)
Run-1	12 h	56	55	$0.013,0.03$
Run-2	12 h	55	54	
Run-3	12 h	59	58	$0.04,0.06$
Run-4	12 h	53	51	
Run-5	12 h	54	52	$0.06,0.08$
Run-6	12 h	53	50	

Figure S8. PXRD patterns of simulated UiO-68 MOF (black), pyrim-UiO-Ir after run 1 (red), pyrim-UiO-Ir after run 2 (blue), pyrim-UiO-Ir after run 3 (green), pyrim-UiO-Ir after run 4 (violet), pyrim-UiO-Ir after run 5 (mustard brown) and pyrim-UiO-Ir after run 6 (light blue).
4.5. Investigation of the effect of pore sizes on the rate of catalysis. The effect of pore sizes on the rate of catalytic reaction was investigated by comparing the rate of borylation reactions of methane catalyzed by pyrim-UiO-IrH with that of pyrim-UiO-66-IrH under identical reaction conditions. Pyrim-UiO-66-IrH has the same topology but smaller pore sizes compared to pyrim-UiO-IrH.
4.5.1 Synthesis and characterizations of pyrim-UiO-66-IrH. The synthesis was performed following a modified procedure. ${ }^{8}$ In a vial, 2- aminoterephthalic acid ($0.032 \mathrm{~g}, 0.176 \mathrm{mmol}$) was dissolved in a DMF solution (4.5 mL) followed by the addition of $\mathrm{ZrCl}_{4}(0.044 \mathrm{~g}, 0.188$ $\mathrm{mmol})$. The mixture was sonicated for 20 minutes and then placed in a teflon sealed hydro bomb and heated at $120^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the crystalline solids were isolated by centrifugation and washed by DMF several times to afford UiO-66- NH_{2} MOF. $\mathrm{UiO}-66-\mathrm{NH}_{2}$-MOF was functionalized with pyridylimine moiety. In a 1.5 mL centrifuge tube, UiO- $66-\mathrm{NH}_{2} \mathrm{MOF}(0.017 \mathrm{~g}, 0.016 \mathrm{mmol})$ was added in 1 mL DMF followed by addition of 2pyridinecarboxaldehyde ($6 \mu \mathrm{~L}, 0.056 \mathrm{mmol}$). It was then left overnight with periodic shaking. The solid was washed various times with DMF to obtain pyrim-UiO-66 as light brown solid. Pyrim-UiO-66 MOF ($0.020 \mathrm{~g}, 0.009 \mathrm{mmol}$) in THF was charged into a vial, and then 1 mL THF solution of $\mathrm{IrCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}(0.019 \mathrm{~g}, 0.054 \mathrm{mmol})$ was added to it. The mixture was stirred slowly overnight at room temperature. The resultant solid was centrifuged out of suspension and washed with THF 4-5 times. Pyrim-UiO-66-IrCl ${ }_{3}$ has 28% Ir-loading based on ICP-OES
analysis. Treatment of $\mathrm{NaEt}_{3} \mathrm{BH}\left(15 \mu \mathrm{~L}, 1 \mathrm{M}\right.$ in toluene) to pyrim-UiO-66- $\mathrm{IrCl}_{3}(0.012 \mathrm{~g}$, 0.00369 mmol) gave pyrim-UiO-66-IrH as black colored solid.

Figure S9. PXRD patterns of simulated UiO-66 MOF (black), pyrim-UiO-66 MOF (red), pyrim-UiO-66- IrCl_{3} (blue) and pyrim-UiO-66-IrH (green).

4.5.2 Comparison of the catalytic activities of pyrim-UiO-IrH with that of pyrim-UiO-66IrH in the borylation of methane under identical conditions.

$$
\begin{aligned}
& \mathrm{CH}_{4} \xrightarrow[\mathrm{~B}_{2} \mathrm{Pin}_{2}, \mathrm{CyH}, 130^{\circ} \mathrm{C}, 24 \mathrm{~h}]{\text { Pyrim-UiO-IrH }(0.5 \mathrm{~mol} \% \mathrm{Ir})} \underset{\substack{\mathbf{9 8} \text { yield }}}{\mathrm{CH}_{3} \mathrm{Bpin}} \\
& \mathrm{CH}_{4} \xrightarrow[\mathrm{~B}_{2} \mathrm{Pin}_{2}, \mathrm{CyH}, 130^{\circ} \mathrm{C}, 24 \mathrm{~h}]{\text { Pyrim-UiO-66-IrH }(0.5 \mathrm{~mol} \% \mathrm{Ir})} \underset{\substack{ \\
\mathbf{2 1 \%} \text { yield }}}{\mathrm{CH}_{3} \mathrm{Bpin}}
\end{aligned}
$$

Figure S10. The borylation of methane catalyzed by pyrim-UiO-IrH with that of pyrim-UiO-$66-\mathrm{IrH}$ under identical reaction conditions.

In a glovebox, two separate 5 mL vials were charged with pre-activated pyrim-UiO-IrH (1.9 $\mathrm{mg}, 0.5 \mathrm{~mol} \%$ of Ir) and pyrim-UiO-66- $\mathrm{IrH}(1.6 \mathrm{mg}, 0.5 \mathrm{~mol} \%$ of Ir) each and washed with THF multiple times. Each MOF slurry in 2 mL cyclohexane were transferred to two different glass liners containing $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($51 \mathrm{mg}, 0.2 \mathrm{mmol}$). The liners were fitted into the Parr reactors and sealed properly. The sealed Parr reactors were taken out from the glove box. The reactors were purged twice with the CH_{4}, then charged with 40 bar CH_{4} each and stirred at $130^{\circ} \mathrm{C}$ for 24 h . After the completion of the reaction, the pressure from the reactors were released. The solid MOF was then removed from suspension inside the glove box and the supernatant were analysed by GC-MS. The yield of CH_{3} Bpin were 98% and 21% with pyrim-UiO-IrH and pyrim-UiO-66-IrH respectively. This experiment indicates that the larger pore size MOF
(pyrim-UiO-IrH) have comparatively higher effieciency than the smaller pore size pyrim-UiO-66-IrH MOF due to the facile diffusion of substrates into the larger pores of pyrim-UiO-IrH.
4.6. $\mathrm{C}-\mathrm{H}$ borylation of methane using pyrim-MOF-IrH and its homogeneous control $\left[\mathrm{Ph}(\right.$ pyrim $\left.)\left(\mathrm{PhCO}_{2} \mathrm{Me}\right)_{2}\right] \mathrm{IrH}$ as catalysts under identical conditions to compare their catalytic activities.

Out of the two Parr reactors, one was charged with $\mathrm{B}_{2} \mathrm{pin}_{2}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\left[\mathrm{Ph}(\right.$ pyrim $\left.)\left(\mathrm{PhCO}_{2} \mathrm{Me}\right)_{2}\right] \operatorname{IrH}(0.0007 \mathrm{~g}, 0.0011 \mathrm{mmol})$ and cyclohexane $(2 \mathrm{~mL})$ and another reactor was charged with $\mathrm{B}_{2} \operatorname{pin}_{2}(51 \mathrm{mg}, 0.2 \mathrm{mmol})$, pyrim-UiO-IrH ($1.9 \mathrm{mg}, 0.5 \mathrm{~mol} \% \mathrm{Ir}$) and cyclohexane (2 mL) in a glovebox. Both the reactors were purged twice with CH_{4}, then charged with 40 bar CH_{4} each and stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After the completion of the reaction, the pressure from the reactors were released. The yield (\%) of the products were monitored by GCMS and GC-FID (Figure S11).

Figure S11. C-H borylation of methane using pyrim-UiO-IrH and its homogeneous control $\left[\mathrm{Ph}(\right.$ pyrim $\left.)\left(\mathrm{PhCO}_{2} \mathrm{Me}\right)_{2}\right] \mathrm{IrH}$ as catalysts under identical conditions.

Table S3. Comparison of pyrim-UiO-IrH with its homogeneous control $\left[\mathrm{Ph}(\mathrm{pyrim})\left(\mathrm{PhCO}_{2} \mathrm{Me}\right)_{2}\right]$ IrH in the borylation of methane under similar condition.

Catalyst	Ir $(\mu \mathrm{mol})$	Conv. of $\mathrm{B}_{2} \mathrm{Pin}_{2}$ $(\%)$	CH_{3} Bpin $(\%)$	$\mathrm{CH}_{2}(\text { Bpin })_{2}$ $(\%)$	HBpin $(\%)$	HOBpin $(\%)$	solvBpin $(\%)$	TON
Pyrim-UiO-IrH	1.02	100	98	0	0	1	1	196
$[\mathrm{Ph}($ pyrim $)(\mathrm{Ph}$ $\left.\left.\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right] \mathrm{IrH}$	1.1	11	4	1	0	5	1	8

Reaction conditions: 2 mL of $\mathrm{C}_{6} \mathrm{H}_{12}, 51 \mathrm{mg} \mathrm{B} \mathrm{B}_{2} \mathrm{pin}_{2}(0.2 \mathrm{mmol}), 130^{\circ} \mathrm{C}, 40$ bar CH_{4} and 24 h .

5. Analysis and quantification of $\mathrm{CH}_{3} B$ pin by GC-MS and GC-FID.

A) The conversions and yields of the reactions were determined by Agilent 7890B gas chromatograph equipped with a flame ionisation detector (FID) and a mass detector (Agilent 5977B GC/MSD) and a HP-5MS Ultra Inert $30 \mathrm{~m}-250 \mu \mathrm{~m}-0.25 \mu \mathrm{~m}$ column. GC conditions: Inj: $220^{\circ} \mathrm{C}$; Det: $250^{\circ} \mathrm{C}$; Column temp: $40^{\circ} \mathrm{C}$ followed by a ramp of $5^{\circ} \mathrm{C} / \mathrm{min}$ to $240^{\circ} \mathrm{C}$; Column flow: $1.0 \mathrm{~mL} / \mathrm{min}$.

The conversion and yield of CH_{3} Bpin were determined for each reaction run by measuring the relative amount of boron species through the corrected integration of GC-MS peaks as follows. ${ }^{7}$

$$
\text { Conversion } \%=\left[1-\frac{\mathrm{B}_{2} \mathrm{Pin}_{2} \text { remaining }}{\left(\mathrm{B}_{2} \mathrm{Pin}_{2}+\mathrm{CH}_{3} \text { Bpin }+ \text { HOBpin }+ \text { SolBpin }+ \text { etc }\right)}\right] \times 100 \%
$$

$$
\text { Yield of } \mathrm{CH}_{3} \mathrm{Bpin} \%=\left[\frac{\mathrm{CH}_{3} \mathrm{BPin}}{\left(\mathrm{~B}_{2} \mathrm{Pin}_{2}+\mathrm{CH}_{3} \mathrm{Bpin}+\text { HOBpin }+ \text { SolBpin }+ \text { etc }\right)}\right] \times 100 \%
$$

TON of $\mathrm{CH}_{3} \mathrm{Bpin}=\frac{\% \text { Yield of } \mathrm{CH}_{3} \mathrm{Bpin}}{\% \text { Ir Loading }}$
a)

b)

Figure S12. The GC-MS spectra of the crude reaction mixture after 18 h of catalysis (87% $\mathrm{B}_{2} \mathrm{pin}_{2}$ conversion) using pyrim-UiO-IrH. Reaction conditions: 1.9 mg of pyrim-UiO-IrH (1.02 $\mu \mathrm{mol}$ of Ir$), 2 \mathrm{~mL}$ of $\mathrm{C}_{6} \mathrm{H}_{12}, 51 \mathrm{mg} \mathrm{B}_{2} \operatorname{pin}_{2}(0.2 \mathrm{mmol}), 130^{\circ} \mathrm{C}, 40 \mathrm{bar}_{\mathrm{CH}}^{4}$ and 18 h .
a)

b)

Figure S13. The GC-MS spectra of the crude reaction mixture after 24 h of catalysis (100% B_{2} pin $_{2}$ conversion) using pyrim-UiO-IrH. Reaction conditions: 1.9 mg of pyrim-UiO-IrH (1.02 $\mu \mathrm{mol}$ of Ir$), 2 \mathrm{~mL}$ of $\mathrm{C}_{6} \mathrm{H}_{12}, 51 \mathrm{mg}$ B2 $\mathrm{pin}_{2}(0.2 \mathrm{mmol}), 130^{\circ} \mathrm{C}, 40$ bar CH_{4} and 24 h .
a)

b)

c)

d) $\times 10^{3}+$ El Scan (rt: 18.207-18.273 min, 14 scans)

Figure S14. The GC-MS spectra of the crude reaction mixture after 24 h of catalysis ($11 \% \mathrm{~B}_{2} \mathrm{pin}_{2}$ conversion) using $\left[\mathrm{Ph}(\right.$ pyrim $\left.)\left(\mathrm{PhCO}_{2} \mathrm{Me}\right)_{2}\right] \mathrm{IrH}$ as the homogeneous control. Reaction conditions 0.0007 g of $\left[\mathrm{Ph}(\right.$ pyrim $\left.)\left(\mathrm{PhCO}_{2} \mathrm{Me}\right)_{2}\right] \operatorname{IrH}(1.1 \mu \mathrm{~mol}$ of Ir$), 2 \mathrm{~mL}$ of $\mathrm{C}_{6} \mathrm{H}_{12}, 51 \mathrm{mg} \mathrm{B}_{2} \mathrm{pin}_{2}(0.2$ mmol), $130^{\circ} \mathrm{C}, 40$ bar CH_{4} and 24 h .
B) The yield of $\mathrm{CH}_{3} \mathrm{Bpin}$ under optimized conditions $\left[1.02 \mu \mathrm{~mol}\right.$ of $\mathrm{Ir}, \mathrm{B}_{2} \operatorname{pin}_{2}(0.2 \mathrm{mmol}), 2 \mathrm{~mL}$ $\mathrm{C}_{6} \mathrm{H}_{12}, 130{ }^{\circ} \mathrm{C}, 40$ bar CH_{4} and 24 h] was also determined by GC analysis using mesitylene as an internal standard. First, we made a GC-calibration curve using known quantities of MeBpin with mesitylene as an internal standard (I.S.) as shown below.

Figure S15. GC calibration plot employing various concentrations of MeBpin with mesitylene as an internal standard.

From the above calibration plot, slope $=1.0052$

Analysis: $[$ Mesitylene $]=0.07188618 \mathrm{M}$
$\%$ GC-Area of MeBpin peak $=57.68 \%$
\%GC-Area of Mesitylene peak $=42.32 \%$
[MeBpin] $=$?
Now,
\%GC-Area of MeBpin / \%GC-Area of I.S. $=$ Slope \times [MeBpin] $/[$ I.S. $]$
$\Rightarrow 57.68 / 42.32=1.0052 \times[\mathrm{MeBpin}] / 0.07188618$
$\Rightarrow[$ MeBpin $]=0.0975 \mathrm{M}$
$\mathrm{M}=\mathrm{n} / \mathrm{V}$
$\mathrm{n}(\mathrm{mmol})=\mathrm{M} \times \mathrm{V}(\mathrm{mL})$
mmol of MeBpin produced $=0.0975 \times 2=0.195 \mathrm{mmol}$ [Since 2 mL of solvent was used]
$\%$ Yield $($ MeBpin $)=m m o l$ of product $($ MeBpin $) / \mathrm{mmol}$ of reactant taken $\times 100 \%$

$$
=(0.195 / 0.2) \times 100=97.5 \%
$$

(The absence of a peak corresponding to $\mathrm{B}_{2} \mathrm{pin}_{2}$ in the GC spectrum indicates complete consumption of the reactant, signifying a full conversion rate)

The yields of MeBpin obtained using the GC-calibration curve is close to the value afforded from the alternative method described in above section 5A (SI), thereby confirming the reliability of our experimental protocol.
6. DFT calculations. All quantum chemical calculations were done using the density functional theory (DFT) functional B3LYP/genecp along with sdd basis set method for Ir and 6-31G basis set for C, N, H, O and B atoms as implemented in the Gaussian 16 software suite. ${ }^{9-}$
${ }^{13}$ Electronic structure complexes were optimized at the unrestricted level. All calculations were performed in the solvated state and at 403.15 K. We used the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM) as the default SCRF method by using THF as the solvent for pyrim-UiO- $\mathrm{IrCl}_{3}(\mathrm{THF})$ at room temperature (298.15 K) and cyclohexane as the solvent for all other molecules in this DFT calculation at 403.15 K. Each structure was first optimized, and then frequency calculation was performed to confirm its geometry and to obtain the thermochemical data.

Pyrim-UiO-IrH

TS-1

INT-1

INT-2

INT-3

INT-4

TS-3

TS-2

INT-5

INT-6

TS-4
Figure S16. DFT-optimized structures of intermediates and transition states of the catalytic cycle in pyrim-UiO-IrH catalysed methane borylation using $\mathrm{B}_{2} \mathrm{pin}_{2}$.

6.1. Cartesian coordinates of the DFT-optimized structures.

Cartesian coordinates of Pyrim-UiO-IrH

S.No.	Coordinates (Angstroms)			
	Atoms	X	Y	Z
1	C	-14.186325	-5.662331	-12.600542
2	C	-13.696708	-4.661369	-11.705306
3	N	-14.333675	-5.282408	-13.858102
4	C	-12.955394	-2.410745	-11.535603
5	C	-13.480725	-4.847629	-10.331602
6	C	-12.732818	-2.568860	-10.174692
7	C	-12.997000	-3.802325	-9.552443
8	N	-13.435550	-3.430502	-12.316832
9	H	-12.765836	-1.481978	-12.050312
10	H	-12.355178	-1.728139	-9.605455
11	H	-12.827447	-3.934828	-8.490954
12	H	-13.698262	-5.817356	-9.898437
13	C	-14.758960	-6.206432	-14.862166
14	C	-15.608466	-5.740958	-15.880226
15	C	-14.322602	-7.543773	-14.871096
16	C	-16.032715	-6.610653	-16.888433
17	H	-15.940581	-4.707588	-15.856861
18	C	-14.745689	-8.404998	-15.887911
19	H	-13.634676	-7.895579	-14.109833
20	C	-15.602640	-7.944369	-16.896365
21	H	-16.696151	-6.247364	-17.666089
22	H	-14.397810	-9.432588	-15.897680
23	H	-15.925215	-8.615935	-17.684823
24	H	-14.434135	-6.660362	-12.254966
25	Ir	-13.784312	-3.294161	-14.232310
26	H	-13.286125	-1.725904	-14.413264

Cartesian coordinates of INT-1

S.No.	Coordinates (Angstroms)			
	Atoms	X	Y	Z
1	C	-13.876811	-5.699012	-12.934968
2	C	-13.062349	-4.846612	-12.083608

-14.209485	-5.306337	-14.130494
-11.902242	-2.816219	-11.888750
-12.744079	-5.197099	-10.765923
-11.558690	-3.112052	-10.563518
-11.981147	-4.316503	-9.993501
-12.640894	-3.666922	-12.638150
-11.594864	-1.906946	-12.393919
-10.966725	-2.403644	-9.996265
-11.724638	-4.565721	-8.970076
-13.094687	-6.139040	-10.358910
-15.000907	-6.175041	-14.953397
-16.098188	-5.633963	-15.641170
-14.692169	-7.541861	-15.066029
-16.902449	-6.477626	-16.412592
-16.306389	-4.574304	-15.539318
-15.491858	-8.369878	-15.860043
-13.815083	-7.942651	-14.567863
-16.603460	-7.842637	-16.527805
-17.762030	-6.065834	-16.931431
-15.241799	-9.421003	-15.961142
-17.225335	-8.486919	-17.140834
-14.224532	-6.650760	-12.533004
-13.285015	-3.339631	-14.783555
-14.832899	-0.725751	-14.297569
-16.197391	-0.269809	-13.892823
-17.116161	-1.394715	-14.506358
-11.951421	-0.996241	-16.412322
-11.269160	0.312018	-16.188780
-10.545731	0.070442	-14.811240
-14.847362	-2.125970	-14.538091
-12.190573	-1.648481	-15.169758
-11.435215	-0.944031	-14.172203
-16.200161	-2.579081	-14.490704
-10.474592	1.287124	-13.890054
-9.987051	1.009377	-12.949474
-9.888332	2.091575	-14.350573
-11.471126	1.667165	-13.657462
-9.165260	-0.588137	-14.952217
-8.426445	0.107866	-15.364732
-8.821157	-0.907870	-13.963395

43	H	-9.214906	-1.469558	-15.598493
44	C	-12.380138	1.369731	-16.119575
45	H	-11.970481	2.376970	-15.982518
46	H	-12.941161	1.348649	-17.058936
47	H	-13.078361	1.145885	-15.308951
48	C	-10.339933	0.576127	-17.372433
49	H	-10.935012	0.688271	-18.284254
50	H	-9.770841	1.501811	-17.222287
51	H	-9.638232	-0.246485	-17.526073
52	C	-17.483657	-1.147543	-15.975516
53	H	-17.988735	-2.036287	-16.366923
54	H	-18.162728	-0.293916	-16.079341
55	H	-16.589296	-0.979634	-16.580536
56	C	-18.354557	-1.743896	-13.683776
57	H	-19.031598	-0.883598	-13.616881
58	H	-18.894978	-2.563584	-14.167774
59	H	-18.091073	-2.062280	-12.672882
60	C	-16.207784	-0.241773	-12.357918
61	H	-15.398536	0.408633	-12.012465
62	H	-17.155310	0.147053	-11.968672
63	H	-16.042851	-1.241297	-11.944083
64	C	-16.415794	1.130057	-14.462201
65	H	-17.434459	1.480397	-14.256024
66	H	-15.714832	1.829003	-13.994687
67	H	-16.246900	1.150162	-15.540468
68	H	-13.608677	-3.338509	-16.309609

Cartesian coordinates of TS-1

S.No.	Coordinates (Angstroms)			
	Atoms	X	Y	Z
1	C	-13.831763	-5.735345	-12.948223
2	C	-13.017301	-4.882945	-12.096864
3	N	-14.164436	-5.342670	-14.143750
4	C	-11.857193	-2.852553	-11.902006
5	C	-12.699030	-5.233432	-10.779179
6	C	-11.513641	-3.148385	-10.576774
7	C	-11.936098	-4.352836	-10.006756
8	N	-12.595845	-3.703255	-12.651405
9	H	-11.549815	-1.943279	-12.407175
10	H	-10.921676	-2.439977	-10.009520
11	H	-11.679589	-4.602054	-8.983331
12	H	-13.049638	-6.175373	-10.372165
13	C	-14.955859	-6.211374	-14.966652
14	C	-16.053139	-5.670296	-15.654425
15	C	-14.647120	-7.578195	-15.079285
16	C	-16.857401	-6.513959	-16.425847
17	H	-16.261340	-4.610637	-15.552573
18	C	-15.446810	-8.406211	-15.873298
19	H	-13.770035	-7.978984	-14.581118
20	C	-16.558411	-7.878970	-16.541060
21	H	-17.716982	-6.102167	-16.944686
22	H	-15.196750	-9.457336	-15.974397
23	H	-17.180286	-8.523252	-17.154089
24	H	-14.179483	-6.687093	-12.546259
25	Ir	-13.239966	-3.375964	-14.796810
26	O	-14.787851	-0.762084	-14.310824
27	C	-16.152342	-0.306142	-13.906078
28	C	-17.071112	-1.431048	-14.519613
29	O	-11.906373	-1.032574	-16.425577
30	C	-11.224111	0.275685	-16.202036
31	C	-10.500682	0.034109	-14.824496
32	B	-14.802314	-2.162303	-14.551346
33	B	-12.145524	-1.684814	-15.183014
34	O	-11.390167	-0.980364	-14.185459
35	O	-16.155113	-2.615415	-14.503959
36	C	-10.429543	1.250791	-13.903310
37	H	-9.942002	0.973044	-12.962729
38	H	-9.843283	2.055242	-14.363828
39	H	-11.426078	1.630832	-13.670718
40	C	-9.120211	-0.624470	-14.965472
41	H	-8.381396	0.071533	-15.377987
42	H	-8.776108	-0.944203	-13.976650
43	H	-9.169857	-1.505892	-15.611748

44	C	-12.335090	1.333398	-16.132830
45	H	-11.925432	2.340637	-15.995774
46	H	-12.896113	1.312316	-17.072191
47	H	-13.033312	1.109552	-15.322206
48	C	-10.294884	0.539794	-17.385688
49	H	-10.889963	0.651938	-18.297509
50	H	-9.725792	1.465478	-17.235542
51	H	-9.593183	-0.282818	-17.539329
52	C	-17.438608	-1.183876	-15.988771
53	H	-17.943686	-2.072620	-16.380178
54	H	-18.117679	-0.330249	-16.092597
55	H	-16.544247	-1.015967	-16.593791
56	C	-18.309508	-1.780229	-13.697032
57	H	-18.986550	-0.919931	-13.630136
58	H	-18.849930	-2.599917	-14.181029
59	H	-18.046024	-2.098613	-12.686137
60	C	-16.162736	-0.278106	-12.371173
61	H	-15.353487	0.372300	-12.025720
62	H	-17.110262	0.110720	-11.981927
63	H	-15.997802	-1.277630	-11.957339
64	C	-16.370745	1.093724	-14.475457
65	H	-17.389410	1.444064	-14.269279
66	H	-15.669783	1.792670	-14.007942
67	H	-16.201851	1.113829	-15.553723
68	H	-13.842928	-3.061514	-16.200790
69	H	-11.795354	-3.881995	-15.097857
70	C	-13.273335	-4.877812	-16.162182
71	H	-12.964560	-5.790262	-15.696356
72	H	-14.266464	-4.990619	-16.544110
73	H	-12.606569	-4.644169	-16.965757

Cartesian coordinates of INT-2

S.No.	Coordinates (Angstroms)			
	Atoms	X	Y	Z
1	C	-13.831763	-5.735345	-12.948223
2	C	-13.017301	-4.882945	-12.096864
3	N	-14.164436	-5.342670	-14.143750
4	C	-11.857193	-2.852553	-11.902006
5	C	-12.699030	-5.233432	-10.779179
6	C	-11.513641	-3.148385	-10.576774
7	C	-11.936098	-4.352836	-10.006756
8	N	-12.595845	-3.703255	-12.651405
9	H	-11.549815	-1.943279	-12.407175
10	H	-10.921676	-2.439977	-10.009520
11	H	-11.679589	-4.602054	-8.983331
12	H	-13.049638	-6.175373	-10.372165
13	C	-14.955859	-6.211374	-14.966652
14	C	-16.053139	-5.670296	-15.654425
15	C	-14.647120	-7.578195	-15.079285
16	C	-16.857401	-6.513959	-16.425847
17	H	-16.261340	-4.610637	-15.552573
18	C	-15.446810	-8.406211	-15.873298
19	H	-13.770035	-7.978984	-14.581118
20	C	-16.558411	-7.878970	-16.541060
21	H	-17.716982	-6.102167	-16.944686
22	H	-15.196750	-9.457336	-15.974397
23	H	-17.180286	-8.523252	-17.154089
24	H	-14.179483	-6.687093	-12.546259
25	Ir	-13.239966	-3.375964	-14.796810
26	O	-14.787851	-0.762084	-14.310824
27	C	-16.152342	-0.306142	-13.906078
28	C	-17.071112	-1.431048	-14.519613
29	O	-11.906373	-1.032574	-16.425577
30	C	-11.224111	0.275685	-16.202036
31	C	-10.500682	0.034109	-14.824496
32	B	-14.802314	-2.162303	-14.551346
33	B	-12.145524	-1.684814	-15.183014
34	O	-11.390167	-0.980364	-14.185459
35	O	-16.155113	-2.615415	-14.503959
36	C	-10.429543	1.250791	-13.903310
37	H	-9.942002	0.973044	-12.962729
38	H	-9.843283	2.055242	-14.363828
39	H	-11.426078	1.630832	-13.670718

40	C	-9.120211	-0.624470	-14.965472
41	H	-8.381396	0.071533	-15.377987
42	H	-8.776108	-0.944203	-13.976650
43	H	-9.169857	-1.505892	-15.611748
44	C	-12.335090	1.333398	-16.132830
45	H	-11.925432	2.340637	-15.995774
46	H	-12.896113	1.312316	-17.072191
47	H	-13.033312	1.109552	-15.322206
48	C	-10.294884	0.539794	-17.385688
49	H	-10.889963	0.651938	-18.297509
50	H	-9.725792	1.465478	-17.235542
51	H	-9.593183	-0.282818	-17.539329
52	C	-17.438608	-1.183876	-15.988771
53	H	-17.943686	-2.072620	-16.380178
54	H	-18.117679	-0.330249	-16.092597
55	H	-16.544247	-1.015967	-16.593791
56	C	-18.309508	-1.780229	-13.697032
57	H	-18.986550	-0.919931	-13.630136
58	H	-18.849930	-2.599917	-14.181029
59	H	-18.046024	-2.098613	-12.686137
60	C	-16.162736	-0.278106	-12.371173
61	H	-15.353487	0.372300	-12.025720
62	H	-17.110262	0.110720	-11.981927
63	H	-15.997802	-1.277630	-11.957339
64	C	-16.370745	1.093724	-14.475457
65	H	-17.389410	1.444064	-14.269279
66	H	-15.669783	1.792670	-14.007942
67	H	-16.201851	1.113829	-15.553723
68	H	-13.842928	-3.061514	-16.200790
69	H	-11.795354	-3.881995	-15.097857
70	C	-13.273335	-4.877812	-16.162182
71	H	-12.964560	-5.790262	-15.696356
72	H	-14.266464	-4.990619	-16.544110
73	H	-12.606569	-4.644169	-16.965757

Cartesian coordinates of INT-3

S.No.	Atoms	Coordinates (Angstroms)		
		X	Y	Z
1	C	-13.831763	-5.735345	-12.948223
2	C	-13.017301	-4.882945	-12.096864
3	N	-14.164436	-5.342670	-14.143750
4	C	-11.857193	-2.852553	-11.902006
5	C	-12.699030	-5.233432	-10.779179
6	C	-11.513641	-3.148385	-10.576774
7	C	-11.936098	-4.352836	-10.006756
8	N	-12.595845	-3.703255	-12.651405
9	H	-11.549815	-1.943279	-12.407175
10	H	-10.921676	-2.439977	-10.009520
11	H	-11.679589	-4.602054	-8.983331
12	H	-13.049638	-6.175373	-10.372165
13	C	-14.955859	-6.211374	-14.966652
14	C	-16.053139	-5.670296	-15.654425
15	C	-14.647120	-7.578195	-15.079285
16	C	-16.857401	-6.513959	-16.425847
17	H	-16.261340	-4.610637	-15.552573
18	C	-15.446810	-8.406211	-15.873298
19	H	-13.770035	-7.978984	-14.581118
20	C	-16.558411	-7.878970	-16.541060
21	H	-17.716982	-6.102167	-16.944686
22	H	-15.196750	-9.457336	-15.974397
23	H	-17.180286	-8.523252	-17.154089
24	H	-14.179483	-6.687093	-12.546259
25	Ir	-13.239966	-3.375964	-14.796810
26	O	-14.787851	-0.762084	-14.310824
27	C	-16.152342	-0.306142	-13.906078
28	C	-17.071112	-1.431048	-14.519613
29	O	-11.906373	-1.032574	-16.425577
30	C	-11.224111	0.275685	-16.202036
31	C	-10.500682	0.034109	-14.824496
32	B	-14.802314	-2.162303	-14.551346
33	B	-12.145524	-1.684814	-15.183014
34	O	-11.390167	-0.980364	-14.185459
35	O	-16.155113	-2.615415	-14.5039

36	C	-10.429543	1.250791	-13.903310
37	H	-9.942002	0.973044	-12.962729
38	H	-9.843283	2.055242	-14.363828
39	H	-11.426078	1.630832	-13.670718
40	C	-9.120211	-0.624470	-14.965472
41	H	-8.381396	0.071533	-15.377987
42	H	-8.776108	-0.944203	-13.976650
43	H	-9.169857	-1.505892	-15.611748
44	C	-12.335090	1.333398	-16.13283
45	H	-11.925432	2.340637	-15.995774
46	H	-12.896113	1.312316	-17.072191
47	H	-13.033312	1.109552	-15.322206
48	C	-10.294884	0.539794	-17.385688
49	H	-10.889963	0.651938	-18.297509
50	H	-9.725792	1.465478	-17.235542
51	H	-9.593183	-0.282818	-17.539329
52	C	-17.438608	-1.183876	-15.988771
53	H	-17.943686	-2.072620	-16.380178
54	H	-18.117679	-0.330249	-16.092597
55	H	-16.544247	-1.015967	-16.593791
56	C	-18.309508	-1.780229	-13.697032
57	H	-18.986550	-0.919931	-13.630136
58	H	-18.849930	-2.599917	-14.181029
59	H	-18.046024	-2.098613	-12.686137
60	C	-16.162736	-0.278106	-12.371173
61	H	-15.353487	0.372300	-12.025720
62	H	-17.110262	0.110720	-11.981927
63	H	-15.997802	-1.277630	-11.957339
64	C	-16.370745	1.093724	-14.475457
65	H	-17.389410	1.444064	-14.269279
66	H	-15.669783	1.792670	-14.007942
67	H	-16.201851	1.113829	-15.553723
68	H	-13.842928	-3.061514	-16.200790
69	C	-11.360118	-4.034453	-15.188557
70	H	-11.113469	-3.823310	-16.208107
71	H	-10.666316	-3.537142	-14.543406
72	H	-11.309715	-5.089993	-15.020644
73	H	-13.265609	-4.53009	15.8

Cartesian coordinates of TS-2

S.No.	Atoms	Coordinates (Angstroms)		
		X	Y	Z
1	C	-13.831763	-5.735345	-12.948223
2	C	-13.017301	-4.882945	-12.096864
3	N	-14.164436	-5.342670	-14.143750
4	C	-11.857193	-2.852553	-11.902006
5	C	-12.699030	-5.233432	-10.779179
6	C	-11.513641	-3.148385	-10.576774
7	C	-11.936098	-4.352836	-10.006756
8	N	-12.595845	-3.703255	-12.651405
9	H	-11.549815	-1.943279	-12.407175
10	H	-10.921676	-2.439977	-10.009520
11	H	-11.679589	-4.602054	-8.983331
12	H	-13.049638	-6.175373	-10.372165
13	C	-14.955859	-6.211374	-14.966652
14	C	-16.053139	-5.670296	-15.654425
15	C	-14.647120	-7.578195	-15.079285
16	C	-16.857401	-6.513959	-16.425847
17	H	-16.261340	-4.610637	-15.552573
18	C	-15.446810	-8.406211	-15.873298
19	H	-13.770035	-7.978984	-14.581118
20	C	-16.558411	-7.878970	-16.541060
21	H	-17.716982	-6.102167	-16.944686
22	H	-15.196750	-9.457336	-15.974397
23	H	-17.180286	-8.523252	-17.154089
24	H	-14.179483	-6.687093	-12.546259
25	Ir	-13.239966	-3.375964	-14.796810
26	O	-14.787851	-0.762084	-14.310824
27	C	-16.152342	-0.306142	-13.906078
28	C	-17.071112	-1.431048	-14.519613
29	O	-11.906373	-1.032574	-16.425577
30	C	-11.224111	0.275685	-16.202036
31	C	-10.500682	0.034109	-14.824496

32	B	-14.802314	-2.162303	-14.551346
33	B	-12.145524	-1.684814	-15.183014
34	O	-11.390167	-0.980364	-14.185459
35	O	-16.155113	-2.615415	-14.503959
36	C	-10.429543	1.250791	-13.903310
37	H	-9.942002	0.973044	-12.962729
38	H	-9.843283	2.055242	-14.363828
39	H	-11.426078	1.630832	-13.670718
40	C	-9.120211	-0.624470	-14.965472
41	H	-8.381396	0.071533	-15.377987
42	H	-8.776108	-0.944203	-13.976650
43	H	-9.169857	-1.505892	-15.611748
44	C	-12.335090	1.333398	-16.132830
45	H	-11.925432	2.340637	-15.995774
46	H	-12.896113	1.312316	-17.072191
47	H	-13.033312	1.109552	-15.322206
48	C	-10.294884	0.539794	-17.385688
49	H	-10.889963	0.651938	-18.297509
50	H	-9.725792	1.465478	-17.235542
51	H	-9.593183	-0.282818	-17.539329
52	C	-17.438608	-1.183876	-15.988771
53	H	-17.943686	-2.072620	-16.380178
54	H	-18.117679	-0.330249	-16.092597
55	H	-16.544247	-1.015967	-16.593791
56	H	-18.309508	-1.780229	-13.697032
57	H	-18.986550	-0.919931	-13.630136
58	H	-18.849930	-2.599917	-14.181029
59	H	-18.046024	-2.098613	-12.686137
60	C	-16.162736	-0.278106	-12.371173
61	H	-15.353487	0.372300	-12.025720
62	H	-17.110262	0.110720	-11.981927
63	H	-15.997802	-1.277630	-11.957339
64	C	-16.370745	1.093724	-14.475457
65	H	-17.389410	1.444064	-14.269279
66	H	-15.669783	1.792670	-14.007942
67	H	-16.201851	1.113829	-15.553723
68	H	-13.842928	-3.061514	-16.200790
69	C	-11.360118	-4.034453	-15.188557
70	H	-11.113469	-3.823310	-16.208107
71	H	-10.666316	-3.537142	-14.543406
72	H	-11.309715	-5.089993	-15.020644
73	H	-13.265609	-4.530094	-15.846061

Cartesian coordinates of INT-4

S.No.	Coordinates (Angstroms)			
	Atoms	X	Y	Z
1	C	-14.458348	-5.433514	-13.016727
2	C	-13.565883	-4.696650	-12.136223
3	N	-14.687958	-5.006695	-14.224723
4	C	-12.142864	-2.845781	-11.900412
5	C	-13.349257	-5.078849	-10.806776
6	C	-11.893903	-3.177315	-10.562545
7	C	-12.500893	-4.307451	-10.007166
8	N	-12.963909	-3.590790	-12.676136
9	H	-11.693238	-1.991523	-12.394917
10	H	-11.230947	-2.554101	-9.974213
11	H	-12.320228	-4.582815	-8.974286
12	H	-13.842510	-5.960130	-10.411955
13	C	-15.560961	-5.762706	-15.075884
14	C	-16.545672	-5.079221	-15.805962
15	C	-15.441275	-7.159905	-15.174446
16	C	-17.429835	-5.808297	-16.606211
17	H	-16.608178	-4.000238	-15.713838
18	C	-16.317888	-7.874278	-15.997121
19	H	-14.647818	-7.675190	-14.642477
20	C	-17.319448	-7.202367	-16.707727
21	H	-18.203661	-5.284692	-17.158185
22	H	-16.212802	-8.950619	-16.086905
23	H	-18.001361	-7.758241	-17.343046
24	H	-14.949918	-6.324942	-12.626826
25	Ir	-13.475065	-3.192012	-14.845115
26	O	-14.661605	-0.385181	-14.422833
27	C	-15.963691	0.258648	-14.071270

-17.006218	-0.731944	-14.717675
-10.698181	0.271425	-15.666623
-9.720792	-0.245052	-14.679494
-10.385044	-1.601807	-14.235295
-14.861581	-1.771444	-14.661491
-11.982141	-0.271840	-15.444952
-11.833248	-1.324342	-14.468585
-16.265061	-2.031924	-14.665124
-10.202464	-1.965703	-12.762813
-10.726921	-2.902630	-12.546842
-9.141448	-2.109051	-12.524875
-10.607664	-1.190602	-12.109634
-10.017853	-2.787849	-15.139605
-8.977945	-3.100161	-14.993012
-10.668076	-3.634514	-14.897175
-10.162542	-2.536710	-16.194609
-9.671206	0.806958	-13.562070
-8.952847	0.532692	-12.781127
-9.362938	1.763036	-13.996205
-10.659644	0.946099	-13.116689
-8.359269	-0.380845	-15.359246
-8.005003	0.608609	-15.665172
-7.620398	-0.808042	-14.670137
-8.413858	-1.010368	-16.249977
-17.280225	-0.446265	-16.200199
-17.888894	-1.258918	-16.609204
-17.829599	0.492673	-16.331271
-16.349077	-0.408386	-16.770859
-18.311207	-0.900046	-13.942472
-18.864071	0.046393	-13.902882
-18.941765	-1.640044	-14.445461
-18.132787	-1.244960	-12.921737
-16.027835	0.298444	-12.537930
-15.149583	0.832510	-12.162838
-16.926055	0.817787	-12.185809
-16.019189	-0.711421	-12.116495
-15.963724	1.671319	-14.650819
-16.930803	2.161168	-14.484291
-15.190470	2.269336	-14.157971
-15.753220	1.660331	-15.721872
-14.079809	-3.310725	-16.278221
-12.222099	-4.024223	-15.258759
-13.387356	0.206020	-16.165729
-13.778136	-0.598162	-16.753506
-14.099247	0.477377	-15.414413
-13.195944	1.048731	-16.796681

Cartesian coordinates of INT-5

S.No.	Coordinates (Angstroms)			
	Atoms	X	Y	Z
1	C	-13.497862	-5.738790	-13.700062
2	c	-13.071552	-4.790677	-12.691467
3	N	-13.442749	-5.413773	-14.960612
4	C	-12.175296	-2.661794	-12.262139
5	C	-13.037370	-5.114050	-11.327317
6	C	-12.108432	-2.937915	-10.893759
7	C	-12.554144	-4.176149	-10.414673
8	N	-12.661418	-3.564760	-13.147279
9	H	-11.830114	-1.728579	-12.692699
10	H	-11.710830	-2.188918	-10.218926
11	H	-12.515491	-4.407389	-9.356140
12	H	-13.375784	-6.091202	-11.000841
13	C	-13.769162	-6.375170	-15.968529
14	C	-14.370898	-5.926884	-17.155588
15	C	-13.480543	-7.743663	-15.806458
16	C	-14.718981	-6.843474	-18.150172
17	H	-14.544693	-4.866045	-17.283624
18	C	-13.819504	-8.652002	-16.812978
19	H	-12.958233	-8.089098	-14.920739
20	C	-14.447729	-8.207955	-17.983133
21	H	-15.190373	-6.489818	-19.061059
22	H	-13.580771	-9.703270	-16.688071
23	H	-14.706721	-8.915279	-18.764115

24	H	-13.851108	-6.715916	-13.373399	3	N	-12.966147	-5.333184	-14.083204
25	Ir	-12.733932	-3.305017	-15.311165	4	C	-11.360636	-2.282873	-11.922785
26	O	-15.351845	-1.070858	-14.535231	5	c	-11.527280	-4.780300	-10.750988
27	C	-16.311206	-0.975284	-13.374861	6	C	-10.929979	-2.453444	-10.600959
28	C	-16.928156	-2.432694	-13.332297	7	C	-11.010954	-3.715918	-10.006238
29	O	-12.034610	-1.891473	-15.917082	8	N	-11.861047	-3.311607	-12.645417
30	C	-12.744304	-0.581167	-15.959185	9	H	-11.311848	-1.334212	-12.446345
31	C	-11.617403	0.391549	-16.480065	10	H	-10.536499	-1.603917	-10.055506
32	B	-15.048880	-2.410925	-14.754791	11	H	-10.681397	-3.869983	-8.984984
33	B	-10.631559	-1.695530	-15.818761	12	H	-11.610740	-5.773654	-10.324231
34	O	-10.374928	-0.294349	-16.013066	13	C	-13.513899	-6.394520	-14.877998
35	O	-15.844894	-3.258980	-13.982295	14	C	-14.725897	-6.174015	-15.550502
36	C	-11.639712	1.795753	-15.878080	15	C	-12.857831	-7.633750	-14.978438
37	H	-10.793935	2.374062	-16.264983	16	C	-15.291800	-7.213629	-16.293907
38	H	-12.562882	2.322314	-16.149124	17	H	-15.204244	-5.204808	-15.458742
39	H	-11.562347	1.764845	-14.789028	18	H	-13.423811	-8.657484	-15.744733
40	C	-11.525882	0.457116	-18.011452	19	H	-11.898234	-7.780369	-14.492890
41	H	-12.389270	0.973873	-18.445342	20	C	-14.645654	-8.453726	-16.396752
42	H	-10.621350	1.009178	-18.287558	21	H	-16.237745	-7.052171	-16.800627
43	H	-11.457218	-0.546168	-18.440731	22	H	-12.907326	-9.607430	-15.836708
44	C	-13.198197	-0.285327	-14.522162	23	H	-15.085614	-9.250113	-16.988222
45	H	-13.761163	0.653165	-14.461716	24	H	-12.600732	-6.604561	-12.467734
46	H	-13.846692	-1.100127	-14.185999	25	Ir	-12.603117	-3.204874	-14.781468
47	H	-12.344613	-0.239749	-13.840706	26	O	-14.776914	-1.081981	-14.299362
48	C	-13.950989	-0.729766	-16.885138	27	C	-16.206617	-0.993820	-13.873077
49	H	-14.647707	-1.458336	-16.458700	28	C	-16.806329	-2.331944	-14.452511
50	H	-14.479936	0.224999	-16.996286	29	O	-12.046211	-0.380427	-16.015661
51	H	-13.653926	-1.086511	-17.873263	30	C	-12.004813	1.097433	-15.912329
52	C	-18.166806	-2.604581	-14.219383	31	C	-11.090214	1.315044	-14.649207
53	H	-18.410666	-3.668721	-14.285636	32	B	-14.425848	-2.440831	-14.520613
54	H	-19.030761	-2.076928	-13.801964	33	B	-11.777256	-0.986335	-14.769320
55	H	-17.986884	-2.233090	-15.232409	34	O	-11.326001	0.057318	-13.880288
56	C	-17.170919	-2.998997	-11.936405	35	O	-15.610536	-3.233019	-14.439545
57	H	-17.916047	-2.399681	-11.400690	36	C	-11.477305	2.495142	-13.759551
58	H	-17.553068	-4.020856	-12.020091	37	H	-10.806396	2.540743	-12.895068
59	H	-16.252388	-3.026506	-11.347161	38	H	-11.389358	3.441663	-14.306617
60	C	-15.464824	-0.623509	-12.146958	39	H	-12.500162	2.395490	-13.391524
61	H	-14.927367	0.308640	-12.342909	40	C	-9.590282	1.349349	-14.978339
62	H	-16.093848	-0.480439	-11.261874	41	H	-9.312390	2.272742	-15.498490
63	H	-14.726641	-1.399994	-11.931258	42	H	-9.020180	1.295933	-14.045314
64	C	-17.301082	0.142781	-13.691988	43	H	-9.305633	0.496856	-15.602256
65	H	-18.057629	0.224378	-12.902900	44	C	-13.460859	1.534645	-15.696470
66	H	-16.765640	1.094831	-13.751169	45	H	-13.549086	2.624964	-15.628969
67	H	-17.804028	-0.021439	-14.646527	46	H	-14.058275	1.190573	-16.546351
68	H	-12.651674	-3.288862	-16.909697	47	H	-13.872622	1.078145	-14.792704
69	C	-7.510157	-4.366276	-15.616292	48	C	-11.453961	1.667200	-17.218536
70	C	-7.409756	-3.621168	-14.232885	49	H	-12.139446	1.427836	-18.037639
71	B	-9.199940	-2.683146	-15.495037	50	H	-11.362852	2.758788	-17.159922
72	C	-6.194118	-4.515343	-16.376020	51	H	-10.476339	1.245791	-17.462155
73	H	-5.485228	-5.131706	-15.809876	52	C	-17.249581	-2.217259	-15.917074
74	H	-6.379277	-5.006432	-17.336945	53	H	-17.508912	-3.214635	-16.286070
75	H	-5.734084	-3.544944	-16.574149	54	H	-18.131134	-1.574481	-16.018550
76	C	-8.248460	-5.709508	-15.532082	55	H	-16.440920	-1.831069	-16.542413
77	H	-8.454985	-6.063620	-16.546899	56	C	-17.895564	-2.979519	-13.600215
78	H	-7.648303	-6.467744	-15.016786	57	H	-18.774166	-2.326633	-13.531152
79	H	-9.202839	-5.598345	-15.009096	58	H	-18.208669	-3.921290	-14.061984
80	C	-6.314086	-2.546201	-14.196380	59	H	-17.541258	-3.198694	-12.590695
81	H	-6.449390	-1.937444	-13.297637	60	C	-16.199298	-0.941281	-12.338797
82	H	-5.313270	-2.991654	-14.167797	61	H	-15.584534	-0.094601	-12.018726
83	H	-6.380682	-1.885416	-15.065773	62	H	-17.209389	-0.808416	-11.935601
84	C	-7.318114	-4.527392	-13.007029	63	H	-15.770219	-1.854385	-11.914954
85	H	-6.399737	-5.126601	-13.033508	64	C	-16.795246	0.288513	-14.456732
86	H	-7.298884	-3.913823	-12.100967	65	H	-17.866763	0.362167	-14.234580
87	H	-8.175289	-5.200438	-12.940905	66	H	-16.295749	1.155762	-14.013083
88	O	-8.396574	-3.446097	-16.395660	67	H	-16.655010	0.332519	-15.538390
89	O	-8.715372	-2.895548	-14.177686	68	H	-13.187458	-3.590669	-16.175494
90	H	-14.462252	-2.770441	-15.782506	69	C	-8.645615	-5.784252	-15.788109
					70	C	-8.177031	-4.358481	-16.041135
Cartesian coordinates of TS-3					71	B	-10.377861	-4.253944	-14.941702
					72	C	-8.661629	-6.590074	-17.100357
Coordinates (Angstroms)					73	H	-7.658640	-6.727365	-17.446859
S.No.	Atoms	X	$\mathrm{Y} \quad \mathrm{Z}$		74	H	-9.112982	-7.544647	-16.927236
					75	H	-9.224393	-6.058098	-17.838733
1	C	-12.522559	-5.602415	-12.889516	76	C	-7.679467	-6.502390	-14.827674
2	c	-11.947830	-4.550219	-12.066522	77	H	-7.986497	-7.520397	-14.708111

78	H	-6.688766	-6.473658	-15.230891
79	H	-7.691856	-6.012081	-13.876704
80	C	-7.976456	-4.119370	-17.549179
81	H	-7.882224	-3.069752	-17.734446
82	H	-7.088671	-4.620127	-17.874723
83	H	-8.819112	-4.502094	-18.086164
84	C	-6.819720	-4.107475	-15.358272
85	H	-6.099057	-4.805756	-15.729685
86	H	-6.492798	-3.110895	-15.570052
87	H	-6.924239	-4.231373	-14.300621
88	O	-10.040583	-5.718154	-15.183332
89	O	-9.234811	-3.412279	-15.491232
90	H	-14.142626	-3.469191	-14.919255

Cartesian coordinates of INT-6

S.No.	Coordinates (Angstroms)			
	Atoms	X	Y	Z
1	C	-12.522559	-5.602415	-12.889516
2	c	-11.947830	-4.550219	-12.066522
3	N	-12.966147	-5.333184	-14.083204
4	C	-11.360636	-2.282873	-11.922785
5	c	-11.527280	-4.780300	-10.750988
6	C	-10.929979	-2.453444	-10.600959
7	C	-11.010954	-3.715918	-10.006238
8	N	-11.861047	-3.311607	-12.645417
9	H	-11.311848	-1.334212	-12.446345
10	H	-10.536499	-1.603917	-10.055506
11	H	-10.681397	-3.869983	-8.984984
12	H	-11.610740	-5.773654	-10.324231
13	C	-13.513899	-6.394520	-14.877998
14	C	-14.725897	-6.174015	-15.550502
15	C	-12.857831	-7.633750	-14.978438
16	C	-15.291800	-7.213629	-16.293907
17	H	-15.204244	-5.204808	-15.458742
18	H	-13.423811	-8.657484	-15.744733
19	H	-11.898234	-7.780369	-14.492890
20	C	-14.645654	-8.453726	-16.396752
21	H	-16.237745	-7.052171	-16.800627
22	H	-12.907326	-9.607430	-15.836708
23	H	-15.085614	-9.250113	-16.988222
24	H	-12.600732	-6.604561	-12.467734
25	Ir	-12.603117	-3.204874	-14.781468
26	O	-14.776914	-1.081981	-14.299362
27	C	-16.206617	-0.993820	-13.873077
28	C	-16.806329	-2.331944	-14.452511
29	O	-12.046211	-0.380427	-16.015661
30	C	-12.004813	1.097433	-15.912329
31	C	-11.090214	1.315044	-14.649207
32	B	-14.425848	-2.440831	-14.520613
33	B	-11.777256	-0.986335	-14.769320
34	O	-11.326001	0.057318	-13.880288
35	O	-15.610536	-3.233019	-14.439545
36	C	-11.477305	2.495142	-13.759551
37	H	-10.806396	2.540743	-12.895068
38	H	-11.389358	3.441663	-14.306617
39	H	-12.500162	2.395490	-13.391524
40	C	-9.590282	1.349349	-14.978339
41	H	-9.312390	2.272742	-15.498490
42	H	-9.020180	1.295933	-14.045314
43	H	-9.305633	0.496856	-15.602256
44	C	-13.460859	1.534645	-15.696470
45	H	-13.549086	2.624964	-15.628969
46	H	-14.058275	1.190573	-16.546351
47	H	-13.872622	1.078145	-14.792704
48	C	-11.453961	1.667200	-17.218536
49	H	-12.139446	1.427836	-18.037639
50	H	-11.362852	2.758788	-17.159922
51	H	-10.476339	1.245791	-17.462155
52	C	-17.249581	-2.217259	-15.917074
53	H	-17.508912	-3.214635	-16.286070
54	H	-18.131134	-1.574481	-16.018550
55	H	-16.440920	-1.831069	-16.542413
56	C	-17.895564	-2.979519	-13.600215

57	H	-18.774166	-2.326633	-13.531152
58	H	-18.208669	-3.921290	-14.061984
59	H	-17.541258	-3.198694	-12.590695
60	C	-16.199298	-0.941281	-12.338797
61	H	-15.584534	-0.094601	-12.018726
62	H	-17.209389	-0.808416	-11.935601
63	H	-15.770219	-1.854385	-11.914954
64	C	-16.795246	0.288513	-14.456732
65	H	-17.866763	0.362167	-14.234580
66	H	-16.295749	1.155762	-14.013083
67	H	-16.655010	0.332519	-15.538390
68	H	-13.187458	-3.590669	-16.175494
69	C	-8.645615	-5.784252	-15.788109
70	C	-8.177031	-4.358481	-16.041135
71	B	-10.377861	-4.253944	-14.941702
72	C	-8.661629	-6.590074	-17.100357
73	H	-7.658640	-6.727365	-17.446859
74	H	-9.112982	-7.544647	-16.927236
75	H	-9.224393	-6.058098	-17.838733
76	C	-7.679467	-6.502390	-14.827674
77	H	-7.986497	-7.520397	-14.708111
78	H	-6.688766	-6.473658	-15.230891
79	H	-7.691856	-6.012081	-13.876704
80	C	-7.976456	-4.119370	-17.549179
81	H	-7.882224	-3.069752	-17.734446
82	H	-7.088671	-4.620127	-17.874723
83	H	-8.819112	-4.502094	-18.086164
84	C	-6.819720	-4.107475	-15.358272
85	H	-6.099057	-4.805756	-15.729685
86	H	-6.492798	-3.110895	-15.570052
87	H	-6.924239	-4.231373	-14.300621
88	O	-10.040583	-5.718154	-15.183332
89	O	-9.234811	-3.412279	-15.491232
90	H	-14.142626	-3.469191	-14.919255

Cartesian coordinates of TS-4

S.No.	Atoms	Coordinates (Angstroms)		
		s X	Y	Z
1	C	-12.522559	-5.602415	-12.889516
2	C	-11.947830	-4.550219	-12.066522
3	N	-12.966147	-5.333184	-14.083204
4	C	-11.360636	-2.282873	-11.922785
5	C	-11.527280	-4.780300	-10.750988
6	C	-10.929979	-2.453444	-10.600959
7	C	-11.010954	-3.715918	-10.006238
8	N	-11.861047	-3.311607	-12.645417
9	H	-11.311848	-1.334212	-12.446345
10	H	-10.536499	-1.603917	-10.055506
11	H	-10.681397	-3.869983	-8.984984
12	H	-11.610740	-5.773654	-10.324231
13	C	-13.513899	-6.394520	-14.877998
14	C	-14.725897	-6.174015	-15.550502
15	C	-12.857831	-7.633750	-14.978438
16	C	-15.291800	-7.213629	-16.293907
17	H	-15.204244	-5.204808	-15.458742
18	C	-13.423811	-8.657484	-15.744733
19	H	-11.898234	-7.780369	-14.492890
20	C	-14.645654	-8.453726	-16.396752
21	H	-16.237745	-7.052171	-16.800627
22	H	-12.907326	-9.607430	-15.836708
23	H	-15.085614	-9.250113	-16.988222
24	H	-12.600732	-6.604561	-12.467734
25	Ir	-12.603117	-3.204874	-14.781468
26	O	-14.776914	-1.081981	-14.299362
27	C	-16.206617	-0.993820	-13.873077
28	C	-16.806329	-2.331944	-14.452511
29	O	-12.046211	-0.380427	-16.015661
30	C	-12.004813	1.097433	-15.912329
31	C	-11.090214	1.315044	-14.649207
32	B	-14.425848	-2.440831	-14.520613
33	B	-11.777256	-0.986335	-14.769320
34	O	-11.326001	0.057318	-13.880288
35	O	-15.610536	-3.233019	-14.439545

36	C	-11.477305	2.495142	-13.759551	64	C	-16.795246	0.288513	-14.456732
37	H	-10.806396	2.540743	-12.895068	65	H	-17.866763	0.362167	-14.234580
38	H	-11.389358	3.441663	-14.306617	66	H	-16.295749	1.155762	-14.013083
39	H	-12.500162	2.395490	-13.391524	67	H	-16.655010	0.332519	-15.538390
40	C	-9.590282	1.349349	-14.978339	68	H	-13.187458	-3.590669	-16.175494
41	H	-9.312390	2.272742	-15.498490	69	C	-8.645615	-5.784252	-15.788109
42	H	-9.020180	1.295933	-14.045314	70	C	-8.177031	-4.358481	-16.041135
43	H	-9.305633	0.496856	-15.602256	71	B	-10.377861	-4.253944	-14.941702
44	C	-13.460859	1.534645	-15.696470	72	C	-8.661629	-6.590074	-17.100357
45	H	-13.549086	2.624964	-15.628969	73	H	-7.658640	-6.727365	-17.446859
46	H	-14.058275	1.190573	-16.546351	H	-9.112982	-7.544647	-16.927236	
47	H	-13.872622	1.078145	-14.792704	75	H	-9.224393	-6.058098	-17.838733
48	C	-11.453961	1.667200	-17.218536	76	C	-7.679467	-6.502390	-14.827674
49	H	-12.139446	1.427836	-18.037639	77	H	-7.986497	-7.520397	-14.708111
50	H	-11.362852	2.758788	-17.159922	78	H	-6.688766	-6.473658	-15.230891
51	H	-10.476339	1.245791	-17.462155	80	C	-7.691856	-6.012081	-13.876704
52	C	-17.249581	-2.217259	-15.917074	-7.976456	-4.119370	-17.549179		
53	H	-17.508912	-3.214635	-16.286070	81	H	-7.882224	-3.069752	-17.734446
54	H	-18.131134	-1.574481	-16.018550	82	H	-7.088671	-4.620127	-17.874723
55	H	-16.440920	-1.831069	-16.542413	84	H	-8.819112	-4.502094	-18.086164
56	C	-17.895564	-2.979519	-13.600215	C	-6.819720	-4.107475	-15.358272	
57	H	-18.774166	-2.326633	-13.531152	85	H	-6.099057	-4.805756	-15.729685
58	H	-18.208669	-3.921290	-14.061984	86	H	-6.492798	-3.110895	-15.570052
59	H	-17.541258	-3.198694	-12.590695	87	H	-6.924239	-4.231373	-14.300621
60	C	-16.199298	-0.941281	-12.338797	88	C	-10.040583	-5.718154	-15.183332
61	H	-15.584534	-0.094601	-12.018726	89	O	-9.234811	-3.412279	-15.491232
62	H	-17.209389	-0.808416	-11.935601	90	H	-14.142626	-3.469191	-14.919255

6.2. $\mathrm{Ir}^{\mathrm{I}}-\mathrm{Ir}^{\mathrm{II}}-\mathrm{Ir}^{\mathrm{I}}$ catalytic cycle of pyrim-UiO-IrH catalyzed monoborylation of methane.

In pyrim-UiO-IrH catalyzed monoborylation of methane, a $\mathrm{Ir}^{\mathrm{I}}-\mathrm{Ir}^{\mathrm{III}}-\mathrm{Ir}^{\mathrm{I}}$ catalytic cycle (Figure S17, SI) could be an alternative pathway compared to the $\mathrm{Ir}^{\mathrm{III}-} \mathrm{Ir}^{\mathrm{V}}-\mathrm{Ir}^{\mathrm{III}}$ catalytic cycle as described in Figure 4 in the main manuscript. According to this cycle, Ir $^{\text {III }}$ (diboryl)hydride (INT-A) undergoes reductive elimination of a B-H bond, resulting in the formation of the Ir^{I} boryl intermediate (INT-B), instead of oxidative addition to form a 7 coordinate, 18 -electron Ir^{V} intermediate (INT-2, Figure 4, manuscript). Subsequent oxidative addition of methane yields Ir ${ }^{\text {III }}$ (boryl)(methyl)hydride (INT-C), and further reductive elimination of MeBpin and oxidative addition of $\mathrm{B}_{2} \mathrm{pin}_{2}$ regenerates INT-A. Alternatively, pyrim- $\operatorname{Ir}^{\mathrm{I}}(\mathrm{Bpin})$ (INT B) reacts with CH_{4} to form pyrim- $\mathrm{Ir}^{\text {III }}(\mathrm{Bpin})\left(\mathrm{CH}_{3}\right)(\mathrm{H})$ (INT-C), which could undergo reductive elimination to give pyrim- $\mathrm{Ir}^{\mathrm{I}}-\mathrm{CH}_{3}$ species. Then, pyrim- $\mathrm{Ir}^{\mathrm{I}}-\mathrm{CH}_{3}$ reacts with $\mathrm{B}_{2} \mathrm{Pin}_{2}$ to give pyrim- $\mathrm{Ir}^{\text {III }}\left(\mathrm{CH}_{3}\right)(\mathrm{Bpin})_{2}$, which then gives $\mathrm{CH}_{3} B$ pin and regenerates INT-B. However, these above two pathways via $\mathrm{Ir}^{\mathrm{I}}-\mathrm{Ir}^{\mathrm{III}}-\mathrm{Ir}^{\mathrm{I}}$ catalytic cycle are unlikely due to the high barrier associated with the transformation of INT-B to INTC , involving $\mathrm{CH}_{4} \mathrm{C}-\mathrm{H}$ activation. DFT calculations reveal that the activation energy for methane mono borylation via $\operatorname{Ir}^{\mathrm{I}}-\mathrm{Ir}^{\mathrm{III}}-\mathrm{Ir}^{\mathrm{I}}$ cycle is significantly higher compared to that of $\mathrm{Ir}^{\mathrm{III}}-\mathrm{Ir}^{\mathrm{V}}-\mathrm{Ir}^{\mathrm{II}}$ catalytic cycle, as depicted in Figure 4 of the manuscript. Therefore, based on the DFT calculation, we propose that pyrim-UiO-IrH catalyzed methane borylation reaction likely occurs via Ir $^{\text {III }}-$ Ir $^{\mathrm{V}}-$ Ir $^{\text {III }}$ catalytic cycle.
a)

b)

Reaction Coordinate

Figure S17. (a) $\mathrm{Ir}^{\mathrm{I}}-\mathrm{Ir}^{\mathrm{III}}-\mathrm{Ir}^{\mathrm{I}}$ catalytic cycle of pyrim-UiO-IrH catalyzed monoborylation of methane. (b) DFT-calculated free energy profile at 403 K for $\mathrm{Ir}^{\mathrm{I}}-\mathrm{Ir}^{\mathrm{II}}-\mathrm{Ir}^{\mathrm{I}}$ catalytic cycle of pyrim-UiO-IrH catalyzed methane borylation reaction. We used the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM) as the default SCRF method by using cyclohexane as the solvent for all the molecules in this DFT calculation at 403 K .

7. XAS analysis.

7.1. X-ray absorption spectroscopic analysis. X-ray Near-Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) measurements have been carried out at the Energy-Scanning EXAFS beamLine (BL-9) at the Indus-2 Synchrotron Source at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India. ${ }^{14}$ All the measurements were performed at room temperature. This beamLine operates in the energy range of 4 keV to 25 keV . The beamLine optics consist of a $\mathrm{Rh} / \mathrm{Pt}$ coated collimating meridional cylindrical mirror and the collimated beam reflected by the mirror is monochromatized by a Si (111) based double crystal monochromator (DCM). The second crystal of the DCM is a sagittal cylindrical crystal which is used for horizontal focusing of the beam while another $\mathrm{Rh} / \mathrm{Pt}$ coated bendable post mirror facing downward is used for vertical focusing of the beam at the sample position. Two ionization chambers (300 mm length each) have been used for data collection in the transmission mode; one ionization chamber for measuring incident flux, the second one for measuring transmitted flux. For energy calibration, standard metal foils were used. Appropriate gas pressure and gas mixture have been chosen to achieve 10-20\% absorption in the first ionization chamber and $70-90 \%$ absorption in the second ionization chamber to obtain a better signal-to-noise ratio. Pellets were made from powder samples for recording absorption spectra. Sample powder was mixed homogeneously with cellulose powder in appropriate proportion and pressed (2 Ton) into a 15 mm diameter disc. The amount of the sample was estimated such that to get a reasonable edge jump at a particular absorption edge of the element to be probed. Spectra were collected at the iridium L_{3}-edge in transmission mode and were calibrated against the reference spectrum of metallic iridium (11215 eV). Data were processed using Demeter software. ${ }^{15}$ Metallic iridium pellet standard was used as a reference for energy calibration and was measured simultaneously with experimental samples.
7.2. XANES analysis. The oxidation states of the Ir species within pyrim-UiO- $\mathrm{IrCl}_{3}(\mathrm{THF})$ and pyrim-UiO-IrH were determined by the comparison of the energy of its L_{3}-edge positions to that of $\operatorname{Ir}(0)$ and IrO_{2}. The positions of the L_{3}-edge of pyrim-UiO- $\mathrm{IrCl}_{3}(\mathrm{THF})(11219.5 \mathrm{eV})$ was $\sim 1.5 \mathrm{eV}$ lower than $\mathrm{IrO}_{2}(11221.0 \mathrm{eV})$, while L3-edge of pyrim-UiO-IrH $(11216.5 \mathrm{eV})$ was ~ 1.5 eV higher in energy to $\operatorname{Ir}(0)(11215 \mathrm{eV})$. We, therefore, conclude that Ir ion in pyrim-UiO$\mathrm{IrCl}_{3}(\mathrm{THF})$ has +3 oxidation state and in pyrim-UiO-IrH has +1 oxidation state.

Figure S18. Ir L_{3}-edge XANES spectra of $\operatorname{Ir}(0)$ (black), pyrim-UiO-IrH (blue), pyrim-UiOIrCl_{3} (THF) (red) and IrO_{2} (green).
7.3. EXAFS fitting using DFT optimized structures. The spectra were calibrated against the reference spectra and aligned to the first peak in the smoothed first derivative of the absorption spectrum, the background noise was removed, and the spectra were processed to obtain a normalized unit edge step. The fitting parameters of pyrim-UiO- IrCl_{3} and pyrim-UiO-IrH are summarized in Table S4, and Table S5, respectively.

Figure S19. (a) EXAFS spectra (red and black hollow squares) and fits (red and black solid lines) of pyrim-UiO-IrCl ${ }_{3}$ in the R space from 1.15-3.5 \AA. (b) DFT optimised structure of (pyrim) IrCl_{3} (THF) molecule.

Table S4. Summary of the EXAFS fitting parameters of pyrim-UiO- IrCl_{3}.

Sample	Pyrim- $\mathrm{IrCl}_{3}(\mathrm{THF}$)	Fitting range	$\begin{gathered} k 3-11 \AA^{-1} \\ \text { R 1.15-3.5 } \AA \end{gathered}$
Independent points	11	R-factor	0.003
Variables	10	$\mathbf{S o}^{2}$	0.55
Reduced chi-square	621	$\Delta \mathrm{E}_{0}(\mathrm{eV})$	6.18
R(Ir-H26) (i)	1.56 ± 0.06	$\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{(I r - H 3)}\left(\AA^{\mathbf{2}}\right.$)	0.005 ± 0.001
R(Ir-N3) (${ }_{\text {(}}$)	1.99 ± 0.07	$\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{(I r - N 3)}\left({ }^{\text {a }}\right.$)	0.003 ± 0.004
R(Ir-N8) (A)	1.99 ± 0.07	$\sigma^{\mathbf{2}}$ (Ir-N8) $\left(\AA^{\mathbf{2}}\right.$)	0.003 ± 0.004
$\mathbf{R}(\mathbf{I r}-\mathbf{C l 3 9})(\mathbf{8})$	2.37 ± 0.08	$\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{(I r - C 1 3 9)}$ ($\mathbf{\AA}^{\mathbf{2}}$)	0.006 ± 0.006
$\mathbf{R}(\mathbf{I r}-\mathbf{C l 4 0})(\mathbf{\AA})$	2.37 ± 0.08		0.006 ± 0.006
$\mathbf{R (I r - C 1 4 1) ~ (~} \mathbf{(8)}$	2.37 ± 0.08	$\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{(I r - C 1 4 1)}$ ($\mathbf{\AA}^{\mathbf{2}}$)	0.006 ± 0.004
R(Ir-C1) (${ }_{\text {(}}$)	2.80 ± 0.04	$\sigma^{\mathbf{2}}$ (Ir-C1) (${ }^{\mathbf{2}}{ }^{\text {a }}$)	0.002 ± 0.004
R(Ir-C2) (${ }_{\text {(}}$)	2.80 ± 0.04	$\sigma^{\mathbf{2}}$ (Ir-C2) $\left(\AA^{\mathbf{2}}\right.$)	0.002 ± 0.001
R(Ir-C13) (A)	3.02 ± 0.05	$\boldsymbol{\sigma}^{\mathbf{2}}$ (Ir-C13) ($\mathbf{\AA}^{\mathbf{2}}$)	0.002 ± 0.001
\mathbf{R} (Ir-C4) (${ }_{\text {(}}$)	3.02 ± 0.05	$\sigma^{\mathbf{2}} \mathbf{(I r - C 4)}\left(\AA^{\mathbf{2}}\right.$)	0.002 ± 0.001

(b)
(a)

Figure S20. (a) EXAFS spectra (red and black hollow squares) and fits (red and black solid lines) of pyrim-UiO-IrH in the R space from 1.15-4.0 \AA. (b) DFT optimised structure of pyrim-IrH.

Table S5. Summary of the EXAFS fitting parameters of pyrim-IrH.

Sample	Pyrim-IrH	Fitting range	$\begin{aligned} & \hline k \text { 3-10.5 } \AA^{-1} \\ & \text { R 1.15-4.0 } \AA \end{aligned}$
Independent points	13	R-factor	0.017
Variables	11	$\mathbf{S o}^{2}$	0.81
Reduced chi-square	889	$\Delta \mathrm{E}_{0}(\mathrm{eV})$	9.65
R(Ir-N3) (${ }_{\text {(}}$)	1.99 ± 0.06	$\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{(I r - N 3)}\left(\AA^{\mathbf{2}}\right.$)	0.008 ± 0.004
R(Ir-N8) (A)	1.99 ± 0.06	$\sigma^{\mathbf{2}}$ (Ir-N8) (® $^{\mathbf{2}}$)	0.008 ± 0.004
R(Ir-C1) (A)	2.70 ± 0.08		0.009 ± 0.006
R(Ir-C2) (${ }_{\text {(}}$)	2.70 ± 0.08	$\sigma^{\mathbf{2}}$ (Ir-C2) $\left(\AA^{\mathbf{2}}\right.$)	0.009 ± 0.006
R(Ir-C13) (A)	3.01 ± 0.07	$\sigma^{\mathbf{2}}$ (Ir-C13) $\left(\AA^{\mathbf{2}}\right.$)	0.009 ± 0.004
R(Ir-C4) (${ }_{\text {(}}$)	3.01 ± 0.07	$\boldsymbol{\sigma}^{\mathbf{2}}$ (Ir-C4) ($\mathbf{\AA}^{\mathbf{2}}$)	0.009 ± 0.004
\mathbf{R} (Ir-C14) (${ }_{\text {(}}^{\text {) }}$)	3.26 ± 0.09	$\sigma^{\mathbf{2}}$ (Ir-C14) (${ }^{\text {²}}$)	0.003 ± 0.001
R(Ir-C15) (${ }_{\text {(}}$)	4.31 ± 0.05	$\sigma^{\mathbf{2}}$ (Ir-C15) $\left(\AA^{\mathbf{2}}\right.$)	0.005 ± 0.001
R(Ir-C5) (A)	4.31 ± 0.05	$\sigma^{\mathbf{2}}$ (Ir-C5) $\left(\AA^{\mathbf{2}}\right.$)	0.005 ± 0.001
\mathbf{R} (Ir-C4) (${ }_{\text {(}}$)	4.32 ± 0.05	$\boldsymbol{\sigma}^{\mathbf{2}} \mathbf{(I r - C 4)}\left(\AA^{\mathbf{2}}{ }^{\mathbf{2}}\right.$	0.005 ± 0.001

8. XPS analysis. All the binding energies were corrected with reference to the C1s peak at 284.8 eV . MULTIPAK software was used for peak analysis and de-convolution studies.
a)

b)

c)

Figure S21. a) Raw XPS data of pyrim-UiO-IrCl ${ }_{3}$; b) Zr 3 d XPS spectrum of pyrim-UiO$\left.\mathrm{IrCl}_{3} ; \mathrm{c}\right)$ Ir 4f XPS spectrum of pyrim-UiO- IrCl_{3}.

Figure S22. a) Raw XPS data of pyrim-UiO-IrH; b) Zr 3d XPS spectrum of pyrim-UiO-IrH; c) Ir 4 f XPS spectrum of pyrim-UiO-IrH.

Figure S23. a) Raw XPS data of pyrim-UiO-IrH(Bpin $)_{2}$; b) Zr 3 d XPS spectrum of pyrim-UiO-IrH(Bpin)2; c) Ir 4f XPS spectrum of pyrim-UiO-IrH(Bpin)2.

Table S6. Comparison of catalytic activity of pyrim-UiO-IrH with that of other reported catalysts in borylation of CH_{4}.

Catalysts	CH_{4} pressure	Temperature/ Reaction time	Yield (TON) of $\mathrm{CH}_{3} \mathrm{Bpin}$	Reference
$[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}+2 \text { equiv. }$ dmpe	34.47 bar	$150{ }^{\circ} \mathrm{C}$ (16 h)	52 \% (104)	$\begin{aligned} & \text { Science 2016, } 351 \\ & (6280), 1424-1427 . \end{aligned}$
(MesH)Ir(Bpin) $)_{3}+3,4,7,8$ tetramethylphenanthroline	35 bar	$150{ }^{\circ} \mathrm{C}(14 \mathrm{~h})$	45% (15)	Science 2016, 351 (6280), 1421-1424.
(dmpe) $\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}$	500 psi	$150{ }^{\circ} \mathrm{C}(16 \mathrm{~h})$	31\% (153)	ACS Catal. 2018, 8 (11), 10021-10031.
UiO-67-Mix-Ir (0.49)	34 bar	$150{ }^{\circ} \mathrm{C}(14 \mathrm{~h})$	19.5\% (67)	Nat. Catal. 2018, 1 (5), 356-362.
Zr-P1-Ir (0.3)	50 bar	$110{ }^{\circ} \mathrm{C}(15 \mathrm{~h})$	38.0\% (127)	J. Am. Chem. Soc. 2019, 141, 11196-11203.
CAL-3-Ir	34 bar	$150{ }^{\circ} \mathrm{C}(9 \mathrm{~h})$	29\% (126)	Angew. Chem. Int. Ed. 2019, 58, 10671 - $10676 .$
$\begin{aligned} & {[(\text { dmpe }) \mathrm{Ir}(\mathrm{cod})]-\mathrm{SiO}_{2}} \\ & (0.069) \end{aligned}$	34.47 bar	$150{ }^{\circ} \mathrm{C}(16 \mathrm{~h})$	82.8\% (1204	$\begin{aligned} & \text { J. Am. Chem. Soc. } \\ & \text { 2023, 145, } \\ & 7992-8000 . \end{aligned}$
Pyrim-UiO-IrH (0.5)	40 bar	$130{ }^{\circ} \mathrm{C}(24 \mathrm{~h})$	98\% (196)	This work

9. References.

1 J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130, 13850-13851.
2 K. Manna, T. Zhang, M. Carboni, C. W. Abney and W. Lin, J. Am. Chem. Soc., 2014, 136, 1318213185.

3 T. Zhang, K. Manna and W. Lin, J. Am. Chem. Soc., 2016, 138, 3241-3249.
4R. Newar, W. Begum, N. Antil, S. Shukla, A. Kumar, N. Akhtar, Balendra and K. Manna, Inorg. Chem., 2020, 59, 10473-10481.
5 R. Newar, N. Akhtar, N. Antil, A. Kumar, S. Shukla, W. Begum and K. Manna, Angew. Chem. Int. Ed., 2021, 60, 10964-10970.
6X. Zhang, Z. Huang, M. Ferrandon, D. Yang, L. Robison, P. Li, T. C. Wang, M. Delferro and O. K. Farha, Nat. Catal., 2018, 1, 356-362.
7 X. Feng, Y. Song, Z. Li, M. Kaufmann, Y. Pi, J. S. Chen, Z. Xu, Z. Li, C. Wang and W. Lin, J. Am. Chem. Soc., 2019, 141, 11196-11203.
8 S. N. Tambat, P. K. Sane, S. Suresh, N. Varadan O., A. B. Pandit and S. M. Sontakke, Adv. Powder Technol., 2018, 29, 2626-2632.
9 H. Park, E. N. Brothers and K. M. Merz, J. Am. Chem. Soc., 2005, 127, 4232-4241.
10 T. Vreven, K. S. Byun, I. Komáromi, S. Dapprich, J. A. Montgomery, K. Morokuma and M. J. Frisch, J. Chem. Theory Comput., 2006, 2, 815-826.

11 M. Araújo, B. Lasorne, A. L. Magalhães, G. A. Worth, M. J. Bearpark and M. A. Robb, J. Chem. Phys., 2009, 131, 144301.
12 V. Yempally, S. J. Kyran, R. K. Raju, W. Y. Fan, E. N. Brothers, D. J. Darensbourg and A. A. Bengali, Inorg. Chem., 2014, 53, 4081-4088.
13 S. Canneaux, F. Bohr and E. Henon, J. Comput. Chem., 2014, 35, 82-93.
14 A. K. Poswal, A. Agrawal, A. K. Yadav, C. Nayak, S. Basu, S. R. Kane, C. K. Garg, D. Bhattachryya, S. N. Jha and N. K. Sahoo, Thapar University, Patiala, Punjab, India, 2014, pp. 649651.

15 B. Ravel and M. Newville, J. Synchrotron Radiat., 2005, 12, 537-541.

