Supporting Information

Iron-Catalyzed Benzylic C-H Thiolation via Photoinduced Ligand-to-Metal Charge-Transfer

Kaiting Sun,^{‡a, b} Tianyi Sun,^{‡a, b} Yuxin Jiang,^{‡b} Jiayue Shi,^b Wenlu Sun,^b Youyou Zheng,^b Zhixuan Wang,^b Ziyu Li,^b Xiaoqing Lv,^b Xingxian Zhang,^{*a} Fan Luo,^{*b} and Shihui Liu^{*b}

^a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China. Email:zhangxx@zjut.edu.cn.

^b College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China. Email: luofan@zjxu.edu.cn; liushihui12310@zjxu.edu.cn.

[‡] These authors contributed equally to this work.

Table of Contents

1. The Optimization of Benzylic C-H Thiolation	S1
2. The Study of the Mechanism of Benzylic C-H Thiolation	S6
3. Synthesis of Starting Compounds	
4. Experiment Procedures and Product Characterization	S12
5. References	
6. Spectral Data for Products	S38

1. The Optimization of Benzylic C-H Thiolation

Table S1. The optimization of metal catalysts ^a

+	SH 2a	390 nm Leds Metal catalyst MeCN (0.1 M) 35 °C, air , 16 h		a
Entry	Metal c	atalyst	yield(3a) ^b	
 1	FeCl ₃ (10) mol%)	16%	
2	FeCl ₂ (10	Omol%)	$n.d.^{c}$	
3	FeBr ₃ (10) mol%)	$\mathbf{n.d.}^{c}$	
4	Fe(acac) ₃ (10 mol%)	n.d. ^{<i>c</i>}	
5	CuCl ₂ (10) mol%)	n.d. ^{<i>c</i>}	
6	NiCl ₂ (10) mol%)	$n.d.^{c}$	
7	FeCl ₃ (5	mol%)	9%	
8	FeCl ₃ (20) mol%)	14%	
9	FeCl ₃ (50) mol%)	13%	

^{*a*} Conditions employed 390 nm Leds, **1a** (1.0 mmol), **2a** (0.2 mmol), Metal catalyst (5-50 mol%), CH₃CN (2 mL), the reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, 16 h, unless otherwise noted; ^{*b*} Isolated yields were reported; ^{*c*} Not detected.

Table S2. The optimization of the additive ^{*a*}

~

	390 nm Leds FeCl ₃ (10 mol%)	s s
SH 2a	Additive MeCN (0.1 M) 35 °C, air , 16 h	0 3a
Α	dditive	yield(3a) ^b
TBAB	8 (10 mol%)	24%
CuBr ₂	(10 mol%)	trace
FeBr	s (10mol%)	42%
LiBr	(10 mol%)	33%
NaBr	(10 mol%)	45%
6 KBr (10 mol%)		56%
NiBr ₂	(10 mol%)	trace
$NiBr_2 \cdot dme (10 mol\%)$		trace
NBS	(10 mol%)	31%
CBr ₄	10 mol%)	trace
TMSE	8r 10 mol%)	n.d. ^{<i>c</i>}
LiCl	(10 mol%)	55%
NH ₄ C	l (10 mol%)	20%
NaCl	(10 mol%)	51%
$NiCl_2 \cdot d$	lme (10 mol%)	54%
KCl	(10 mol%)	59%
TBAC	C (10 mol%)	25%
KCl	(5 mol%)	46%
	Za Za Za A TBAE CuBr ₂ FeBr ₃ LiBr NaBr KBr NiBr ₂ NiBr ₂ ONBS CBr ₄ TMSE LiCl NH4C NaCl NiCl ₂ O KCl	$\begin{tabular}{ c c c c } & & & & & & & & & & & & & & & & & & &$

19	KCl (20 mol%)	61%
20	KCl (50 mol%)	47%
21	KCl (100 mol%)	42%

^{*a*} Conditions employed 390 nm Leds, **1a** (1.0 mmol), **2a** (0.2 mmol), FeCl₃ (10 mol%), additive (5-100 mol%), CH₃CN (2 mL), the reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, 16 h, unless otherwise noted; ^{*b*} Isolated yields were reported; ^{*c*} Not detected.

Table S3. The optimization of the solvent ^a

	H) + SH	390 nm Leds FeCl ₃ (10 mol%) KCl (20 mol%)	S S S S S S S S S S S S S S S S S S S
 1a	0 24	35 °C, air , 16 n	_00 3a
Entry	Sc	olvent	yield(3a) ^b
1	CH ₃ C	N (0.1 M)	61%
2	anhydrous (CH ₃ CN (0.1 M)	61%
3	DCE	(0.1 M)	trace
4	DCM	DCM (0.1 M)	
5	EtOAc (0.1 M)		trace
6	CH ₃ OH (0.1 M)		n.d. ^c
7	CH ₃ CO	CH ₃ COOH (0.1 M)	
8	THF	THF (0.1 M)	
9	DMS	O (0.1 M)	n.d. ^c
10	HFIP	(0.1 M)	trace
11	Aceton	e (0.1 M)	26%
12	DCE: HFI	P=1: 1 (0.1 M)	trace
13	DMSO: MeC	N=1: 10 (0.1 M)	n.d. ^c
14	anhydrous CH ₃ CN	+2 equiv H ₂ O (0.1 M)	56%
15	anhydrous CH ₃ CN-	+10 equiv H ₂ O (0.1 M)) 45%
16	anhydrous CH ₃ CN-	+20 equiv H ₂ O (0.1 M)) 27%
17	anhydrous CH ₃ CN-	+50 equiv H ₂ O (0.1 M)) trace

^{*a*} Conditions employed 390 nm Leds, **1a** (1 mmol), **2a** (0.2 mmol), FeCl₃ (10 mol%), KCl (20 mol%), solvent (2 mL), the reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, 16 h, unless otherwise noted; ^{*b*} Isolated yields were reported; ^{*c*} Not detected.

Table S4. The optimization of the oxidant ^a

+ +	SH 2a	390 nm Leds FeCl ₃ (10 mol%) KCl (20 mol%) Oxidant CH ₃ CN (0.1 M) 35 °C, air , 16 h	
Entry	0	xidant	yield(3a) ^b
1	TPPO	(10 mol%)	53%
2	UHP	(10 mol%)	66%
3	APS	(10 mol%)	40%
4	PIDA	(10 mol%)	67%

5	PIFA (10 mol%)	43%
6	NFSI (10 mol%)	53%
7	SelectFluor (10 mol%)	33%
8	NIS (10 mol%)	n.d. ^c
9	NCS (10 mol%)	27%
10	NBS (10 mol%)	63%
11	DMSO (10 mol%)	52%
12	ACS (10 mol%)	47%
13	Oxone (10 mol%)	57%
14	PIDA (5 mol%)	64%
15	PIDA (20 mol%)	55%
16	PIDA (50 mol%)	55%

^{*a*} Conditions employed 390 nm Leds, **1a** (1.0 mmol), **2a** (0.2 mmol), FeCl₃ (10 mol%), KCl (20 mol%), oxidant (5-50 mol%), anhydrous CH₃CN (2 mL), the reaction mixture was degassed via freeze pump thaw (\times 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, 16 h, unless otherwise noted; ^{*b*} Isolated yields were reported. ^{*c*}Not detected.

Table S5. The optimization of the sulfur source ^{*a*}

^{*a*} Conditions employed Leds, **1a** (1.0 mmol), sulfur source (0.2 mmol), FeCl₃ (10 mol%), KCl (20 mol%), PIDA (10 mol%), anhydrous CH₃CN (2 mL), the reaction mixture was degassed via freeze pump thaw (\times 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, 16 h, unless otherwise noted; ^{*b*} Isolated yields were reported.

Table S6. The optimization of the light source ^a

	H +		Light source FeCl ₃ (10 mol%) KCl (20 mol%)	× ×
/	0 1a	∽ 'SH 2a	PIDA (10 mol%) CH₃CN (0.1 M) 35 ºC, air , 16 h	000 3a
	Entry	Lig	ht source	yield(3a) ^b
	1	390	nm Leds	67%
	2	12 W	Blue Leds	trace
	3	360 nr	n Blue Leds	38%

^{*a*} Conditions employed Leds, **1a** (1.0 mmol), **2a** (0.2 mmol), FeCl₃ (10 mol%), KCl (20 mol%), PIDA (10 mol%), anhydrous CH₃CN (2 mL), the reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, 16 h, unless otherwise noted; ^{*b*} Isolated yields were reported.

Table S7. The optimization of the reaction time ^a

H +	SH 2a	390 nm Leds FeCl ₃ (10 mol%) KCl (20 mol%) PIDA (10 mol%) CH ₃ CN (0.1 M) 35 °C, air , time	S S S a
Entry	Rea	ction time	yield(3a) ^b
1	4 h		trace
2	8 h		32%
3		12 h	45%
4		16 h	67%
5		24 h	61%
6		48 h	49%

^{*a*} Conditions employed 390 nm Leds, **1a** (1.0 mmol), **2a** (0.2 mmol), FeCl₃ (10 mol%), KCl (20 mol%), PIDA (10 mol%), anhydrous CH₃CN (2 mL), the reaction mixture was degassed via freeze pump thaw (\times 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, reaction time (4 - 48 h), unless otherwise noted; ^{*b*} Isolated yields were reported.

Table S8. Control Experiments^{*a*}

[H +	SH 2a	390 nm Leds FeCl ₃ (10 mol%) KCl (20 mol%) PIDA (10 mol%) CH ₃ CN (0.1 M) 35 °C, air, 16 h	S S S S S S S S S S S S S S S S S S S
	Entry	Conditions		yield(3a) ^b
	1	Standard		67%
	2	N	o FeCl ₃	n.d. ^c
	3	In darkness		n.d. ^{<i>c</i>}
	4	No KCl		16%
	5	N	o PIDA	61%
	6	U	nder N ₂	7%

^{*a*} Conditions employed 390 nm Leds, **1a** (1.0 mmol), **2a** (0.2 mmol), FeCl₃ (10 mol%), KCl (20 mol%), PIDA (10 mol%), anhydrous CH₃CN (2 mL), the reaction mixture was degassed via freeze

pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C, 16 h, unless otherwise noted; ^{*b*} Isolated yields were reported; ^{*c*} Not detected.

2. The Study of the Mechanism of Benzylic C-H Thiolation

Scheme S1. The radical quenching and trappinmg experiments

Scheme S2. The kinetic isotopic effect determination from intermolecular competition reactions employing toluene and d^8 -toluene as coupling partner

Scheme S3. The kinetic isotopic effect determination from two parallel reactions employing toluene and d^8 -toluene as coupling partner

	40	5	0.01	
	50	6.5	0.013	
_	60	7.5	0.015	
Entry	Time(min)	NMR Yield (%)	[Product](M)	V ₀
	10	0.5	0.001	
<i>d</i> ⁸ -toluene	20	1	0.002	
	30	2	0.004	0.000111//
	40	2.5	0.005	0.0001M/min
	50	3	0.005	
	60	3.5	0.007	

^{*a*} Conditions employed 390 nm Leds, toluene (or d^8 -toluene) (1 mmol), **2b'** (0.2 mmol), FeCl₃ (10 mol%), KCl (20 mol%), PIDA (10 mol%), anhydrous CH₃CN (2 mL) the reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂), 35 °C; ^{*b*} Analyzed by NMR spectroscopy for the formation of product with 1,3,5-trimethoxybenzene as an internal standard.

Fig. S1 The initial rate study of toluene and d^8 -toluene based coupling reaction with 2b'

3. Synthesis of Starting Compounds

methyl 3-(4-chlorophenyl)propanoate (10):

10 was prepared according to literature procedures.^[1] 3-(4-Chlorophenyl)propanoic acid (10.0 mmol) was dissolved in 30 mL methanol contained in a 100 mL round bottom flask equipped with a magnetic stirring bar. Into this solution was added dropwise 107 uL of conc. sulfuric acid (2.0 mmol) over 5 min at room temperature. The resulting solution was stirred at reflux for 3 h. The reaction mixture was then cooled down to room temperature, and into the flask were added 1.0 M aqueous NaOH solution (15 mL) and water (15 mL). The product was extracted three times with ethyl acetate (3×30 mL). The combined organic layers were washed twice with water (30 mL), dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (2 % ethyl acetate/petroleum ether) to provide **10** as a colorless oil (1.82 g, 92% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 3.69 (s, 3H), 2.94 (t, *J* = 7.7 Hz, 2H), 2.63 (t, *J* = 7.7 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 173.26, 138.82, 131.99, 129.61, 128.54, 51.71, 35.45, 30.16.

Spectral data is in agreement with the literature.^[2]

methyl 3-(4-ethylphenyl)propanoate (1p):

1p was prepared according to literature procedures.^[1] 3-(4-ethylphenyl)propanoic acid (10.0 mmol) was dissolved in 30 mL methanol contained in a 100 mL round bottom flask equipped with a magnetic stirring bar. Into this solution was added dropwise 107 uL of conc. sulfuric acid (2.0 mmol) over 5 min at room temperature. The resulting solution was stirred at reflux for 3 h. The reaction mixture was then cooled down to room temperature, and into the flask were added 1.0 M aqueous NaOH solution (15 mL) and water (15 mL). The product was extracted three times with ethyl acetate (3× 30 mL). The combined organic layers were washed twice with water (30 mL), dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (2 % ethyl acetate/petroleum ether) to provide **1p** as a colorless oil (1.73 g, 90% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.17 - 7.08 (m, 4H), 3.68 (s, 3H), 2.96 - 2.88 (m, 2H), 2.68 - 2.57 (m, 4H), 1.23 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.48, 142.2, 137.70, 128.22, 128.01, 51.62, 35.83, 30.56, 28.45, 15.63.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₂H₁₇O₂ 193.1223, found 193.1232.

((3a*R*,5*S*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl 4-ethylbenzoate (1z):

procedures.^[3] 1z prepared according was to literature 1,2;3,4-di-O-isopropylidene- α -D-galactopyranose (2.0 g, 7.7 mmol) was dissolved in dry CH₂Cl₂ (25 mL). To the mixture was added DMAP (0.1 g, 0.77 mmol), Et₃N (1.6 mL, 12 mmol) and finally 4-ethylbenzoyl chloride (4.6 mL, 31 mmol). The solution was stirred at room temperature for 2 hours and then quenched by addition of 3-(dimethylamino)-1-propylamine (3.9 mL, 31 mmol). The mixture was stirred for an additional 30 min. before diluted with CH₂Cl₂ and washed thrice with hydrochloric acid (1 M.), aqueous saturated bicarbonate solution and then brine. The organic layer was dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (20 % ethyl acetate/petroleum ether) to provide 1z as a white solid (2.72 g, 90% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 2H), 7.26 (t, J = 5.8 Hz, 2H), 5.57 (d, J = 4.9 Hz, 1H), 4.65 (dd, J = 7.9, 2.4 Hz, 1H), 4.52 (dd, J = 11.5, 4.9 Hz, 1H), 4.41 (dd, J = 11.5, 7.5 Hz, 1H), 4.37 - 4.31 (m, 2H), 4.21 - 4.16 (m, 1H), 2.70 (q, J = 7.6 Hz, 2H), 1.50 (d, J = 22.0 Hz, 6H), 1.35 (d, J = 13.9 Hz, 6H), 1.25 (t, J = 7.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 166.45, 149.79, 129.81, 127.83, 127.49, 109.61, 108.76, 96.29, 66.12, 63.62, 28.92, 25.99, 25.94, 24.95, 24.45, 15.20.

Spectral data is in agreement with the literature.^[3]

methyl (4-ethylbenzoyl)-*L*-leucinate (1aa):

1aa was prepared according to literature procedures.^[4] A 100 mL oven dried round bottom flask containing a stirring bar was charged with methyl *L*-leucinate hydrochloride (10 mmol). Dichloromethane (30 mL) and 4-ethylbenzoyl chloride (10 mmol) were added respectively followed by slow addition of triethyl amine (22 mmol). The resulting mixture was stirred over night at r.t. After complete disappearance of the substrate on TLC board, the reaction mixture was washed with hydrochloric acid (1 M, 50 mL). The organic layer was dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (2 % ethyl acetate/petroleum ether) to provide **1aa** as a white solid (2.35 g, 85% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.2 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 6.59 (d, J = 8.1 Hz, 1H), 4.90 - 4.83 (m, 1H), 3.76 (s, 3H), 2.69 (q, J = 7.6 Hz, 2H), 1.79 - 1.61 (m, 3H), 1.24 (t, J = 7.6 Hz, 3H), 0.98 (dd, J = 7.3, 6.3 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.77, 166.99, 148.37, 131.24, 128.00, 127.12, 52.30, 51.00, 41.83, 28.74, 24.93, 22.80, 22.01, 15.29. Spectral data is in agreement with the literature.^[4]

4-ethylphenyl 2-(4-isobutylphenyl)propanoate (1ab):

1ab was prepared according to literature procedures.^[5] To a solution of 2-(4-isobutylphenyl)propanoic acid (2.06 g, 10.0 mmol) and 4-ethylphenol (1.22 g, 10.0 mmol) in CH₂Cl₂ (20 mL) were added 1-(3-dimethylaminopropyl) -3-ehtylcarbodiimide hydrochloride (2.11 g, 11.0 mmol) and 4-dimethylaminopyridine (305 mg, 2.50 mmol). The reaction mixture was stirred at room temperature for 12 h, then concentrated under reduced pressure. Purification of the crude product by flash chromatography (5 % ethyl acetate/petroleum ether) to provide **1ab** as a colorless oil (2.54 g, 82% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.1 Hz, 2H), 7.16 (dd, J = 8.4, 2.7 Hz, 4H), 6.96 - 6.88 (m, 2H), 3.95 (q, J = 7.1 Hz, 1H), 2.64 (q, J = 7.6 Hz, 2H), 2.49 (d, J = 7.2 Hz, 2H), 2.00 - 1.77 (m, 1H), 1.62 (d, J = 7.2 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 173.37, 148.73, 141.59, 140.70, 137.32, 129.44, 128.59, 127.19, 121.05, 45.22, 45.02, 30.16, 28.23, 22.36, 18.53, 15.56. Spectral data is in agreement with the literature.^[5]

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-4-ethylbenzamide (1ac):

1ac was prepared according to literature procedures.^[4] A 100 mL oven dried round bottom flask containing a stirring bar was charged with Mexiletine hydrochloride (10 mmol). Dichloromethane (30 mL) and 4-ethylbenzoyl chloride (10 mmol) were added respectively followed by slow addition of triethyl amine (22 mmol). The resulting mixture was stirred over night at r.t. After complete disappearance of the substrate on TLC board, the reaction mixture was washed with hydrochloric acid (1 M, 50 mL). The organic layer was dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (5 % ethyl acetate/petroleum ether) to provide **1ac** as a white solid (2.65 g, 85% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 6.93 (d, J = 7.4 Hz, 2H), 6.85 (dd, J = 8.2, 6.6 Hz, 1H), 6.55 (d, J = 8.0 Hz, 1H), 4.54 - 4.39 (m, 1H), 3.79 (ddd, J = 12.0, 9.1, 3.4 Hz, 2H), 2.62 (q, J = 7.6 Hz, 2H), 2.20 (s, 6H), 1.44 (d, J = 6.8 Hz, 3H), 1.18 (t, J = 7.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.75, 154.80, 148.08, 131.96, 130.73, 128.99, 128.06, 126.91, 124.11, 73.92, 45.73, 28.73, 17.86, 16.19, 15.29.

HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₂₀H₂₆NO₂ 312.1958, found 312.1969.

methyl 2-(4-isobutylphenyl)propanoate (1ad):

1ad was prepared according to literature procedures.^[1] 2-(4-isobutylphenyl)propanoic acid (10.0 mmol) was dissolved in 30 mL methanol contained in a 100 mL round bottom flask equipped with a magnetic stirring bar. Into this solution was added dropwise 107 uL of conc. sulfuric acid (2.0 mmol) over 5 min at room temperature. The resulting solution was stirred at reflux for 3 h. The reaction mixture was then cooled down to room temperature, and into the flask were added 1.0 M aqueous NaOH solution (15 mL) and water (15 mL). The product was extracted three times with ethyl acetate (3×30 mL). The combined organic layers were washed twice with water (30 mL), dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (5 % ethyl acetate/petroleum ether) to provide **1ad** as a colorless oil (2.05 g, 93% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 3.71 (q, J = 7.2 Hz, 1H), 3.66 (s, 3H), 2.45 (d, J = 7.2 Hz, 2H), 1.91 - 1.80 (m, 1H), 1.49 (d, J = 7.2 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 175.1, 140.51 137.71, 129.31, 127.09, 51.94, 45.00, 44.98, 30.14, 22.36, 18.58.

Spectral data is in agreement with the literature.^[6]

methyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate (1ae):

1ae prepared according to literature procedures.^[1] was 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoic acid (10.0 mmol) was dissolved in 30 mL methanol contained in a 100 mL round bottom flask equipped with a magnetic stirring bar. Into this solution was added dropwise 107 uL of conc. sulfuric acid (2.0 mmol) over 5 min at room temperature. The resulting solution was stirred at reflux for 3 h. The reaction mixture was then cooled down to room temperature, and into the flask were added 1.0 M aqueous NaOH solution (15 mL) and water (15 mL). The product was extracted three times with ethyl acetate (3×30 mL). The combined organic layers were washed twice with water (30 mL), dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (5 % ethyl acetate/petroleum ether) to provide 1ae as a colorless oil (2.48 g, 94%) yield).

¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 7.5 Hz, 1H), 6.67 (d, *J* = 7.5 Hz, 1H), 6.62 (s, 1H), 3.93 (t, *J* = 5.2 Hz, 2H), 3.68 (s, 3H), 2.32 (s, 3H), 2.19 (s, 3H), 1.73 (d, *J* = 2.9 Hz, 4H), 1.24 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 178.27, 156.89, 136.39, 130.24, 123.52, 120.62, 111.87, 67.81, 51.68, 42.05, 37.07, 25.14, 21.36, 15.70. Spectral data is in agreement with the literature.^[7]

dimethyl 3,3'-disulfanediyl(2*S*,2'*S*)-bis(2-((*tert*-butoxycarbonyl)amino)propanoate) (**2k**):

2k was prepared according to literature procedures.^[8] A 250 mL round bottom flask charged with a stir bar was added dimethyl 3,3'-disulfanediyl(2R,2'R)-bis (2-aminopropanoate) dihydrogen chloride (5.12 g, 15 mmol), water (75 mL), tetrahydrofuran (75 mL), 10 mL of triethylamine (7.6 g, 75 mmol), and *di-tert*-butyl dicarbonate (6.9 g, 31.5 mmol) in an ice bath. The reaction mixture was allowed to stir at room temperature for 12 h. After completion, THF was removed under reduced pressure and the resulting aqueous solution was extracted with ethyl acetate (3 × 150 mL). The combined organic layers were washed three times with brine and dried with anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography (20 % ethyl acetate/petroleum ether) to provide **2k** as a white solid (5.1 g, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.39 (d, *J* = 7.2 Hz, 2H), 4.59 (d, *J* = 7.3 Hz, 2H), 3.76 (s, 6H), 3.15 (d, *J* = 4.9 Hz, 4H), 1.44 (s, 18H).

¹³C NMR (100 MHz, CDCl₃) δ 171.15, 155.02, 80.28, 52.74, 52.62, 41.25, 28.27. Spectral data is in agreement with the literature.^[8]

4. Experiment Procedures and Product Characterization

Commercial reagents and solvents were used as received, unless otherwise stated. Organic solution was concentrated under reduced pressure on a IKA rotary evaporator using an alcohol bath. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel plates (Qingdao Haiyang Chemical China), and the compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with KMnO4. Flash chromatography was performed on silica gel 200-300 mesh (purchased from Qingdao Haiyang Chemical China) with commercial solvents (purchased from Energy Chemical® and Adamas-beta®). The ¹H and ¹³C NMR spectra were recorded on a Bruker AM 400/600 Spectrometer (400/600 and 100/150 MHz for ¹H and ¹³C NMR, respectively) and are internally referenced to residual solvent signals (note: CDCl₃ referenced at 7.26 and 77.00 ppm in ¹H and ¹³C NMR, respectively). Multiplicities were given as s (singlet), d (doublet), t (triplet), dd (double of doublet) and m (multiplets). Coupling constants were reported in Hertz (Hz). Data for ¹³C NMR are reported in terms of chemical shift. High-resolution mass spectrometry (HRMS) was recorded on Waters Xevo G2 TOF MS.

General Procedure A:

To a 10 mL vial equipped with a Teflon septum and magnetic stir bar were added the corresponding alkylarene substrate (if solid, 2.5 mmol, 5.0 equiv.), the corresponding thiol substrate (if solid, 0.5 mmol, 1.0 equiv.), FeCl₃ (0.05 mmol, 10 mol%), KCl (0.1 mmol, 20 mol%), and PIDA (0.05 mmol, 10 mol%). The vial was sealed and placed under dry air atmosphere, then anhydrous CH₃CN (5.0 mL, 0.1 M), alkylarene substrate (if liquid, 2.5 mmol, 5.0 equiv.), thiol substrate (if liquid, 0.5 mmol, 1.0 equiv.) were added into the vial via injection through the cap, the reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂). The sealed vial was placed in 390 nm Led (Kessil Photoredox LED Lights PR160 Series) and irradiated for 16 hours. When the reaction finished, the reaction mixture was diluted with saturated NaHCO₃ aqueous solution, extracted with ethyl acetate (3×20 mL), the combined organic extracts were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

General Procedure B:

To a 10 mL vial equipped with a Teflon septum and magnetic stir bar were added the corresponding alkylarene substrate (if solid, 2.5 mmol, 5.0 equiv.), the corresponding disulfide substrate (if solid, 0.5 mmol, 1.0 equiv.), FeCl₃ (0.05 mmol, 10 mol%), KCl (0.1 mmol, 20 mol%), and PIDA (0.05 mmol, 10 mol%). The vial was sealed and placed under dry air atmosphere, then anhydrous CH₃CN (5.0 mL, 0.1 M), alkylarene substrate (if liquid, 2.5 mmol, 5.0 equiv.), disulfide substrate (if liquid, 0.5 mmol, 1.0 equiv.) were added into the vial via injection through the cap, the reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with dry air (dried with anhydrous CaCl₂). The sealed vial was placed in 390 nm Led (Kessil Photoredox LED Lights PR160 Series) and irradiated for 16 hours. When the reaction finished, the reaction mixture was diluted with saturated NaHCO₃ aqueous solution, extracted with ethyl acetate (3×20 mL), the combined organic extracts were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the

crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

methyl 4-(1-(phenylthio)ethyl)benzoate (3a):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (91 mg, 67 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-diphenyldisulfane (109 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%), and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (95 mg, 35 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.2 Hz, 2H), 7.32 (d, *J* = 7.3 Hz, 2H), 7.22 - 7.27 (m, 2H), 7.22 -7.17 (m, 3H), 4.34 (q, *J* =7.6 Hz, 1H), 3.89 (s, 3H), 1.63 (d, *J* = 5.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.83, 148.63, 134.22, 132.83, 129.66, 128.83, 127.46, 127.25, 52.02, 47.86, 21.92.

Spectral data is in agreement with the literature.^[9]

4-(1-(phenylthio)ethyl)benzonitrile (3b):

According to the general procedure A, 4-ethylbenzonitrile (328 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (56 mg, 47 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H),

7.28-7.18 (m, 5H), 4.31 (q, *J* = 6.8 Hz, 1H), 1.63 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.00, 129.84, 129.44, 128.81, 126.33, 121.13, 114.14, 112.90, 55.16, 39.07.

Spectral data is in agreement with the literature.^[10]

1-(4-(1-(phenylthio)ethyl)phenyl)ethan-1-one (**3c**):

According to the general procedure A, 1-(4-ethylphenyl)ethan-1-one (371 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (10 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (71 mg, 55 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 6.9 Hz, 2H), 7.35 (d, *J* = 7.0 Hz, 2H), 7.28 - 7.23 (m, 2H), 7.23 - 7.16 (m, 3H), 4.35 (q, *J* = 7.8 Hz, 1H), 2.56 (s, 3H), 1.64 (d, *J* = 5.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.61, 148.85, 135.90, 134.22, 132.72, 128.73, 128.47, 127.44, 127.40, 47.77, 26.56, 21.92.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₆NaOS 279.0814, found 279.0819.

(1-(4-fluorophenyl)ethyl)(phenyl)sulfane(**3d**):

According to the general procedure A, 1-ethyl-4-fluorobenzene (310 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (1 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (36 mg, 31% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.29 - 7.25 (m, 3H), 7.25 - 7.19 (m, 4H), 6.95 (t, J = 8.6 Hz, 2H), 4.31 (q, J = 7.0 Hz, 1H), 1.60 (d, J = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.99, 138.96, 134.70, 132.75, 128.80, 128.70, 127.31, 115.24 (115.02), 47.35, 22.34.

Spectral data is in agreement with the literature.^[11]

SPh Cl

(1-(4-chlorophenyl)ethyl)(phenyl)sulfane (3e):

According to the general procedure A, 1-chloro-4-ethylbenzene (352 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (1 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (88 mg, 71 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.29 - 7.24 (m, 3H), 7.24 - 7.17 (m, 6H), 4.29 (q, *J* = 7.0 Hz, 1H), 1.60 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.84, 132.71, 128.73, 128.58, 128.45, 127.37, 47.41, 22.18.

Spectral data is in agreement with the literature.^[11]

(1-(4-bromophenyl)ethyl)(phenyl)sulfane (**3f**):

According to the general procedure A, 1-bromo-4-ethylbenzene (463 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (95 mg, 65 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.0 Hz, 2H), 7.29 - 7.18 (m, 5H), 7.14 (d, J = 7.2 Hz, 2H), 4.28 (q, J = 8.0 Hz, 1H), 1.60 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.39, 134.50, 132.70, 131.42, 128.95, 128.75, 127.38, 120.77, 47.47, 22.15.

Spectral data is in agreement with the literature.^[11]

4-((phenylthio)methyl)benzonitrile (**3g**):

According to the general procedure A, 4-methylbenzonitrile (293 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (34 mg, 30 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 7.29 - 7.18 (m, 5H), 4.09 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 143.36, 134.63, 132.19, 130.82, 129.44, 128.99, 127.14, 118.71, 110.90, 39.14.

Spectral data is in agreement with the literature.^[12]

1-(4-((phenylthio)methyl)phenyl)ethan-1-one (3h):

According to the general procedure A, 1-(p-tolyl) ethan-1-one (335 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (42 mg, 35 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 6.8 Hz, 2H), 7.35 (d, *J* = 7.3 Hz, 2H), 7.31 - 7.15 (m, 5H), 4.12 (s, 2H), 2.57 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 197.67, 143.26, 135.99, 135.33, 130.44, 128.95, 128.92, 128.55, 126.81, 39.01, 26.59.

Spectral data is in agreement with the literature.^[13]

phenyl(4-(trifluoromethyl)benzyl)sulfane (3i):

According to the general procedure A, 1-methyl-4-(trifluoromethyl)benzene (400 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the

title compound as a colourless oil (51 mg, 38 % yield).

¹H NMR (400 MHz,CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.33 - 7.15 (m, 5H), 4.12 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 141.81, 134.80, 130.34, 129.35 (129.16), 129.03 (128.95), 127.15 (126.95), 126.83 (126.61), 125.35, 38.76.

Spectral data is in agreement with the literature.^[14]

2-fluoro-4-((phenylthio)methyl)benzonitrile (**3j**):

According to the general procedure A, 2-fluoro-4-methylbenzonitrile (338 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (40 mg, 33 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.54 - 7.47 (m, 1H), 7.31 - 7.20 (m, 5H), 7.14 - 7.05 (m, 2H), 4.07 (s, 2H).

¹³C NMR (100 MHz,CDCl₃) δ 164.31 (161.73), 146.78, 134.08, 133.31, 131.09, 129.13, 127.49, 125.13 (125.10), 116.71 (116.51), 113.85, 39.08.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₀FNNaS 266.0410, found 266.0421.

3-fluoro-4-((phenylthio)methyl)benzonitrile (3k):

According to the general procedure A, 3-fluoro-4-methylbenzonitrile (338 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (41 mg, 34% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.32 (m, 2H), 7.32 - 7.30 (m, 2H), 7.30 - 7.26 (m, 5H), 4.10 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 159.29 (158.79), 131.70 (131.68), 131.45, 129.07, 128.00 (127.98), 127.54, 119.17 (118.92), 117.48, 112.27, 32.38.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₀FNNaS 266.0410, found 266.0417.

SPh

methyl 4-((phenylthio)methyl)benzoate (31):

According to the general procedure A, methyl 4-methylbenzoate (375 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (66 mg, 51 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.0 Hz, 2H), 7.40 - 7.12 (m, 7H), 4.11 (s, 2H), 3.89 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.78, 142.96, 135.31, 130.43, 129.71, 128.91, 128.87, 128.74, 126.76, 52.03, 39.02.

Spectral data is in agreement with the literature.^[15]

methyl 3-((phenylthio)methyl)benzoate (**3m**):

According to the general procedure A, methyl 3-methylbenzoate (375 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (59 mg, 46 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 7.3 Hz, 1H), 7.37 - 7.14 (m, 6H), 4.12 (s, 2H), 3.89 (s, 3H).

¹³C NMR (100 MHz,CDCl₃) δ 166.77, 137.96, 135.58, 133.21, 130.31, 130.17, 129.90, 128.85, 128.48, 128.34, 126.60, 52.08, 38.79.

Spectral data is in agreement with the literature.^[16]

methyl 2-((phenylthio)methyl)benzoate (3n):

According to the general procedure A, methyl 2-methylbenzoate (375 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (43 mg, 33 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.5 Hz, 1H), 7.39 - 7.32 (m, 1H), 7.32 - 7.26 (m, 3H), 7.25 - 7.15 (m, 4H), 4.51 (s, 2H), 3.88 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.66, 139.63, 135.94, 131.88, 131.09, 131.02, 130.94, 129.28, 128.73, 127.15, 126.70, 104.98, 52.13, 38.00.

Spectral data is in agreement with the literature.^[17]

methyl 3-(4-chlorophenyl)-3-(phenylthio)propanoate (**30**):

According to the general procedure A, methyl 3-(4-chlorophenyl)propanoate (497 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (77 mg, 50 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.27 (m, 2H), 7.26 - 7.22 (m, 4H), 7.22 - 7.20 (m, 1H), 7.16 (d, *J* = 8.4 Hz, 2H), 4.60 (t, *J* = 7.7 Hz, 1H), 3.60 (s, 3H), 2.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.92, 139.11, 133.54, 133.54, 133.23, 133.09, 128.96, 128.94, 128.61, 128.06, 51.87, 48.49, 40.59.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₅ClNaO₂S 329.0373, found 329.0382.

methyl 3-(4-(1-(phenylthio)ethyl)phenyl)propanoate (**3p**):

According to the general procedure A, methyl 3-(4-ethylphenyl)propanoate (481 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the

title compound as a colourless oil (135 mg, 90 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.31 - 7.26 (m, 2H), 7.25 - 7.15 (m, 5H), 7.10 (d, J = 7.6 Hz, 2H), 4.32(q, J = 6.6 Hz, 1H), 3.66 (s, 3H), 2.90 (t, J = 7.7 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.60 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.26, 141.05, 139.32, 135.14, 132.33, 128.62, 128.24, 127.35, 127.01, 51.56, 47.56, 35.58, 30.50, 22.25.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₈H₂₀NaO₂S 323.1076, found 323.1087.

(1-(4-methoxyphenyl)ethyl)(phenyl)sulfane (**3q**):

According to the general procedure A, 1-ethyl-4-methoxybenzene (340 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (106 mg, 87 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.25 (m, 2H), 7.24 - 7.12 (m, 5H), 6.80 (d, J = 7.2 Hz, 2H), 4.32 (q, J = 6.6Hz, 1H), 3.76 (s, 3H), 1.59 (d, J = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.54, 135.14, 132.38, 128.61, 128.26, 126.97, 113.67, 55.18, 47.30, 22.38.

Spectral data is in agreement with the literature.^[11]

(1-([1,1'-biphenyl]-4-yl)ethyl)(phenyl)sulfane (**3r**):

According to the general procedure A, 4-ethyl-1,1'-biphenyl (456 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (67 mg, 46 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.46 - 7.39 (m, 2H), 7.38 - 7.29 (m, 5H), 7.22 (d, *J* = 5.9 Hz, 3H), 4.38 (q, *J* = 6.6 Hz, 1H), 1.66 (d, *J* = 6.9 Hz, 3H).

 ^{13}C NMR (100 MHz, CDCl₃) δ 142.24, 140.73, 139.95, 135.03, 132.49, 128.71, 128.70, 127.65, 127.20, 127.14, 127.07, 126.98, 47.68, 22.26 . HRMS (ESI) m/z: [M+Na]^+ Calcd. for C_{20}H_{18}NaS 313.1021, found 313.1028.

(4-methoxybenzyl)(phenyl)sulfane (**3s**):

According to the general procedure A, 1-methoxy-4-methylbenzene (305 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (70 mg, 61 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.33 - 7.22 (m, 4H), 7.22 - 7.14 (m, 3H), 6.81 (d, J = 8.4 Hz, 2H), 4.07 (s, 2H), 3.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.72, 136.51, 129.89, 129.74, 129.35, 128.78, 126.22, 113.87, 55.23, 38.43.

Spectral data is in agreement with the literature.^[18]

SPh

(3-methoxybenzyl)(phenyl)sulfane (**3t**):

According to the general procedure A, 1-methoxy-3-methylbenzene (305 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (46 mg, 40 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 7.3 Hz, 2H), 7.28 – 7.22 (m, 2H), 7.22 – 7.15 (m, 2H), 6.88 (d, *J* = 7.5 Hz, 1H), 6.83 (s, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 4.09 (s, 2H), 3.76 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.62, 138.99, 129.82, 129.43, 128.81, 126.33, 121.12, 114.13, 112.90, 55.16, 39.06.

Spectral data is in agreement with the literature.^[19]

SPh

phenyl(1-phenylethyl)sulfane (**3u**):

According to the general procedure A, ethylbenzene (265 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl3 (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (1 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (59 mg, 55 % yield).

¹H NMR (600 MHz, CDCl₃) δ 7.43 - 7.28 (m, 5H), 7.28 - 7.15 (m, 5H), 4.33 (q, J = 6.6 Hz, 1H), 1.62 (d, J = 6.6 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.19, 132.46, 128.64, 128.36, 127.24, 127.09, 47.74, 21.70.

Spectral data is in agreement with the literature.^[20]

(2,3-dihydro-1*H*-inden-1-yl)(phenyl)sulfane (**3v**):

According to the general procedure A, 2,3-dihydro-1*H*-indene (295 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (1 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (92 mg, 81 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.36 (m, 2H), 7.35 - 7.27 (m, 3H), 7.26 - 7.19(m, 3H), 7.17 (d, *J* = 7.3 Hz, 1H), 4.76 (dd, *J* = 6.7, 3.8 Hz, 1H), 3.10 - 2.95 (m, 1H), 2.90 - 2.80 (m, 1H), 2.60 - 2.47 (m, 1H), 2.27 - 2.13 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 143.72, 142.70, 135.94, 134.73, 131.17, 128.97, 127.70, 126.62, 126.43, 124.86, 124.64, 51.74, 33.54, 30.72.

Spectral data is in agreement with the literature.^[21]

4-(phenylthio)-3,4-dihydronaphthalen-1(2*H*)-one (**3**w):

According to the general procedure A, 3,4-dihydronaphthalen-1(2*H*)-one (365 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (86 mg, 68 % yield).

¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.5 Hz, 1H), 7.55 - 7.44 (m, 3H), 7.42 - 7.25 (m, 5H), 4.68 - 4.62 (m, 1H), 3.30 - 3.20 (m, 1H), 2.60 (d, J = 17.5 Hz, 1H), 2.44 (t, J = 13.5 Hz, 1H), 2.31 - 2.21 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 197.23, 142.34, 134.25, 133.55, 133.10, 131.96, 129.45, 129.18, 128.12, 127.98, 127.36, 47.43, 34.07, 27.27.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₄NaOS 277.0658, found 277.0669.

1-(phenylthio)isochromane (**3x**):

According to the general procedure A, isochromane (335 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (84 mg, 69 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.1 Hz, 2H), 7.39 - 7.30 (m, 3H), 7.28 (d, J = 7.2 Hz, 1H), 7.23 - 7.18 (m, 2H), 7.15 - 7.00 (m, 1H), 6.49 (s, 1H), 4.54 (t, J = 10.5 Hz, 1H), 4.00 (dd, J = 10.4, 6.3 Hz, 1H), 3.19 - 3.03 (m, 1H), 2.69 (d, J = 15.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 135.96, 133.80, 133.70, 131.11, 128.86, 128.74, 127.68, 127.10, 127.04, 126.00, 85.81, 58.17, 27.69.

Spectral data is in agreement with the literature.^[22]

2-chloro-6-((phenylthio)methyl)benzo[*d*]thiazole (**3**y):

According to the general procedure A, 2-chloro-6-methylbenzo[*d*]thiazole (459 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (51 mg, 35 % yield).

¹H NMR (400 MHz, CDCl₃ δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.63 (s, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.29 - 7.17 (m, 5H), 4.18 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 153.22, 150.13, 136.26, 135.80, 130.44, 128.95, 127.77, 126.84, 122.72, 120.97, 39.24.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₀ClNNaS₂ 313.9835, found 313.9837.

((3a*R*,5*S*,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5*H*-*bis*([1,3]dioxolo)[4,5-b:4',5' -d]pyran-5-yl)methyl 4-(1-(phenylthio)ethyl)benzoate (**3z**):

According to the general procedure A, ((3aR,5S,5aS,8aS,8bR)-2,2,7,7-tetramethyl tetrahydro-5*H*-*bis*([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl 4-ethylbenzoate (981 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (10 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (68 mg, 27 % yield).

¹H NMR (600 MHz, CDCl₃), mixture of diastereoisomers (d.r. = 1: 1): δ 8.10 - 7.85 (m, 2H, H-3, H-4), 7.40 - 7.28 (m, 2H, H-1, H-2), 7.28 - 7.17 (m, 5H, H-5), 5.65 - 5.50 m, 1H, H-13), 4.70 - 4.60 (m, 1H, H-11), 4.58 - 4.47 (m, 1H, H-12), 4.47 - 4.39 (m, 1H, H-8b), 4.39 - 4.32 (m, 2H, H-10, H-6), 4.32 - 4.27 (m, 1H, H-9), 4.25 - 4.10 (m, 1H, H-8a), 1.63 (d, *J* = 6.7 Hz, 3H, H-7), 1.53 - 1.46 (m, 6H, H-14, H-15), 1.39 - 1.31 (m, 6H, H-16, H-17).

¹³C NMR (150 MHz, CDCl₃), mixture of diastereoisomers (d.r. = 1: 1): δ 166.17, 132.80, 129.85, 128.76, 127.46, 127.26, 109.68 (108.79), 96.31, 71.12, 70.71 (70.51), 66.12, 63.82, 47.88, 26.01 (25.96), 24.97 (24.48), 21.99.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₇H₃₂NaO₇S 523.1761, found 523.1770.

methyl (4-(1-(phenylthio)ethyl)benzoyl)-*L*-leucinate (**3aa**):

According to the general procedure A, methyl (4-ethylbenzoyl)-*L*-leucinate (693 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (20 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (102 mg, 53 % yield).

¹H NMR (400 MHz, CDCl₃), mixture of diastereoisomers (d.r. = 1: 1): δ 7.68 (d, J = 7.5 Hz, 2H, H-1 and 2), 7.30 (d, J = 7.7 Hz, 2H, H-3 and 4), 7.27 - 7.14 (m, 5H, H-7),

6.60 (d, *J* = 7.3 Hz, 1H, H-14), 4.90 - 4.75 (m, 1H, H-8), 4.33 (q, *J* = 6.7 Hz, 1H, H-5), 3.74 (s, 3H, H-13), 1.60 (d, *J* = 6.7 Hz, 3H, H-6), 1.35 - 1.17 (m, 2H, H-9), 1.15 - 1.04 (m, 1H, H-10), 0.99 - 0.91 (m, 6H, H-11, H-12).

¹³C NMR (100 MHz, CDCl₃), mixture of diastereoisomers (d.r. = 1: 1): δ 173.69, 166.67, 147.37, 132.55, 132.51, 128.72, 127.38, 127.16, 52.33, 51.02, 47.62, 41.75, 24.91, 22.79, 22.02 (21.98).

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₇NNaO₃S 408.1604, found 408.1607.

4-(1-(phenylthio)ethyl)phenyl 2-(4-isobutylphenyl)propanoate (3ab):

According to the general procedure A, 4-ethylphenyl 2-(4-isobutylphenyl)propanoate (776 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (86 mg, 41 % yield).

¹H NMR (600 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 2.7: 1): δ 7.28 (d, J = 7.4 Hz, 2H, H-3, H-4), 7.26 - 7.21 (m, 4H, H-1, H-2, H-5, H-6), 7.19 (d, J = 6.4 Hz, 2H, H-7, H-8), 7.15 - 7.10 (m, 3H, H-11), 6.89 (d, J = 7.4 Hz, 1.54H, H-11), 6.84 (d, J = 7.4 Hz, 0.57H, H-11), 4.30 (q, J = 6.5 Hz, 0.74H, H-9), 3.96 (q, J = 6.5 Hz, 0.28H, H-9), 3.91 (q, J = 6.8 Hz, 1H, H-12), 2.61 (d, J = 6.6 Hz, 0.62H, H-14), 2.46 (d, J = 6.6 Hz, 1.63H, H-14), 2.21 - 2.15 (m, 0.29H, H-15), 1.88 - 1.84 (m, 0.83H, H-15), 1.61 - 1.56 (m, 6H, H-10, H-13), 0.90 (d, J = 5.8 Hz, 6H, H-16, H-17).

¹³C NMR (150 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 2.7: 1): δ 173.12, 149.72 (148.68), 140.75 (141.64), 137.18 (138.44), 132.57 (131.85), 129.46, 128.67 (128.59), 128.11, 127.16 (127.19), 121.19 (121.00), 47.39, 45.21, 45.00, 30.14 (28.22), 22.36 (22.28), 18.48, 15.56.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₇H₃₀NaO₂S 441.1859, found 441.1867.

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-4-(1-(phenylthio)ethyl)benzamide (**3ac**):

According to the general procedure A, *N*-(1-(2,6-dimethylphenoxy)propan-2-yl) -4-ethylbenzamide (779 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used.

After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % methanol/dichloromethane) to provide the title compound as a colourless oil (78 mg, 37 % yield).

¹H NMR (600 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 1: 1): δ 7.75 - 7.65 (m, 2H, H-1, H-2), 7.35 -7.25 (m, 2H, H-3, H-4), 7.23 - 7.05 (m, 5H, H-7), 7.10 - 6.85 (m, 2H, H-14, H-16), 6.78 - 6.62 (m, 1H, H-15), 4.55 (br, 1H, H-8), 4.40 - 4.27 (m, 0.49H, H-5), 4.26 - 4.13 (m, 0.48H, H-5), 4.12 - 4.03 (m, 0.49H, H-9), 4.03 - 3.97 (m, 0.47H, H-9), 3.95 - 3.85 (m, 1H, H-10), 3.85 - 3.75 (m, 1H, H-10), 2.65 (s, 1H, H-12, H-13), 2.25 (s, 5H, H-12, H-13), 1.62 (s, 1.5H, H-6), 1.54 - 1.42 (m, 3H, H-6, H-11), 1.22 (s, 1.5H, H-11).

¹³C NMR (150 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 1: 1): δ 166.77 (166.40), 154.74 (154.65), 147.87 (146.97), 136.58, 134.31, 132.63, 130.80 (130.61), 129.54, 128.92, 128.74 (128.66), 127.88, 127.39, 126.93, 126.18, 124.27 (124.05), 75.18 (73.79), 47.61, 45.76 (45.60), 33.61 (28.62), 21.96 (17.73), 16.20 (15.18). HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₆H₂₉NNaO₂S 442.1811, found 442.1820.

methyl 2-(4-(-2-methyl-1-(phenylthio)propyl)phenyl)propanoate (3ad):

According to the general procedure A, methyl 2-(4-isobutylphenyl)propanoate (551 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (48 mg, 29 % yield).

¹H NMR (600 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 3: 1): δ 7.24 - 7.20 (m, 2H, H-6), 7.20 - 7.17 (m, 3H, H-6), 7.16 - 7.14 (m, 2H, H-3, H-4), 7.13 - 7.08 (m, 2H, H-1, H-2), 3.97 - 3.93 (m, 1H, H-5), 3.74 - 3.69 (m, 1H, H-10), 3.67 (s, 0.76H, H-12), 3.65 (s, 2.39H, H-12), 2.12 - 2.02 (m, 0.81H, H-7), 2.02 - 1.97 (m, 0.27H, H-7), 1.49 (d, *J* = 7.1 Hz, 0.81H, H-11), 1.46 (d, *J* = 7.1 Hz, 2.65H, H-11), 1.21 (d, *J* = 6.6 Hz, 0.84H, H-8, H-9), 1.10 (d, *J* = 6.6 Hz, 2.5H, H-8, H-9), 1.02 (d, *J* = 6.6 Hz, 0.8H, H-8, H-9), 0.91 (d, *J* = 6.6 Hz, 2.47H, H-8, H-9).

¹³C NMR (150 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 3: 1): δ 175.06 (175.03), 140.32, 138.87 (138.85), 135.87, 131.54, 129.47, 128.79 (128.73), 128.67 (128.52), 127.30 (127.02), 126.44, 61.01, 51.96, 44.97, 33.91, 20.96 (20.51), 18.50. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₄NaO₂S 351.1389, found 351.1396.

methyl 2,2-dimethyl-5-(5-methyl-2-((phenylthio)methyl)phenoxy)pentanoate (3ae)

and

methyl 2,2-dimethyl-5-(2-methyl-5-((phenylthio)methyl)phenoxy)pentanoate (3ae'):

According to the general procedure A, methyl 5-(2,5-dimethylphenoxy)-2,2 -dimethylpentanoate (661 mg, 2.5 mmol, 5.0 equiv.), thiophenol (55 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compounds as a colourless oil (50 mg, 27 % yield).

¹H NMR (600 MHz, CDCl₃) mixture of **3ae** and **3ae**' (1.2: 1): δ 7.45 (d, *J* = 8.1 Hz, 0.43H, H-6'), 7.32 (d, *J* = 8.1 Hz, 0.56H, H-6), 7.31 - 7.29 (m, 1H, H-6, H-6'), 7.26 - 7.21 (m, 2H, H-6, H-6'), 7.20 - 7.12 (m, 1H, H-6, H-6'), 7.08 (d, *J* = 7.6 Hz, 0.58H, H-1), 7.02 (d, *J* = 7.6 Hz, 0.45H, H-2'), 6.76 (d, *J* = 7.5 Hz, 0.42H, H-1'), 6.71 (s, 0.43H, H-3'), 6.65 (d, *J* = 7.5 Hz, 0.56H, H-2), 6.63 (s, 0.57H, H-3), 4.12 (s, 1.12H, H-5), 4.07 (s, 0.85H, H-5'), 3.94 - 3.91 (m, 1.08H, H-7), 3.87 - 3.84 (m, 0.84H, H-7'), 3.65 (s, 1.33H, H-12'), 3.64 (s, 1.66H, H-12), 2.30 (s, 1.82H, H-4), 2.18 (s, 1.39H, H-4'), 1.73 - 1.71 (m, 2.16H, H-8, H-9), 1.71 - 1.69 (m, 1.75H, H-8', H-9'), 1.21 (s, 2.64H, H-10', H-11'), 1.19 (s, 3.3H, H-10, H-11).

¹³C NMR (150 MHz, CDCl₃) mixture of **3ae** and **3ae**' (1.2: 1): δ 178.20, 157.00 (156.42), 138.40 (137.31), 135.91, 132.58, 130.39 (129.90), 129.63 (129.56), 128.75 (128.61), 127.64, 126.15 (125.85), 122.80, 120.91 (120.45), 112.29 (111.25), 68.04 (67.81), 51.66, 42.01, 39.03 (37.03), 33.01, 25.13, 21.51, 15.86.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₂H₂₈NaO₃S 395.1651, found 395.1662.

methyl 4-(1-(*p*-tolylthio)ethyl)benzoate (4b):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 4-methylbenzenethiol (62 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction

mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (102 mg, 71 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-*di-p*-tolyldisulfane (123 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (112 mg, 39 % yield).

¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 3.1 Hz, 2H), 7.30 (d, J = 3.4 Hz, 2H), 7.13 (d, J = 1.8 Hz, 2H), 7.01 (d, J = 7.2 Hz, 2H), 4.27 (q, J = 7.6 Hz,1H), 3.89 (s, 3H), 2.28 (s, 3H), 1.61 (d, J = 6.6 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 166.85, 148.79, 137.73, 133.48, 130.37, 129.60, 129.49, 128.73, 127.27, 51.99, 48.17, 21.74, 21.06.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₈NaO₂S 309.0920, found 309.0931.

methyl 4-(1-((4-bromophenyl)thio)ethyl)benzoate (4c):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 4-bromobenzenethiol (95 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (104 mg, 59 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-*bis*(4-bromophenyl)disulfane (188 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (123 mg, 35 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.4 Hz, 2H), 7.36 - 7.24 (m, 4H), 7.08 (d, J = 6.6 Hz, 2H), 4.31 (q, J = 6.4Hz, 1H), 3.90 (s, 3H), 1.63 (d, J = 5.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.79, 148.21, 134.37, 133.31, 131.84, 129.77, 129.02, 127.26, 121.80, 52.12, 47.95, 21.86.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₅BrNaO₂S 372.9868, found 372.9877.

methyl 4-(1-((4-chlorophenyl)thio)ethyl)benzoate (4d):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 4-chlorobenzenethiol (72 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (94 mg, 61 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-*bis*(4-chlorophenyl)disulfane (144 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (109 mg, 36 % yield).

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.23 - 7.11 (m, 4H), 4.30 (q, *J* = 7.1 Hz, 1H), 3.90 (s, 3H), 1.63 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 167.78, 149.27, 135.29, 133.66, 130.75, 130.06, 129.91, 128.26, 53.07, 49.14, 22.82.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₅ClNaO₂S 329.0373, found 329.0378.

methyl 4-(1-((4-fluorophenyl)thio)ethyl)benzoate (4e):

According to the general procedure A, methyl 4-ethylbenzoate (411mg, 2.5 mmol, 5.0 equiv.), 4-fluorobenzenethiol (64 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (54 mg, 37 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-*bis*(4-fluorophenyl)disulfane (127 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the

reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (67 mg, 23 % yield).

¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.7 Hz, 2H), 7.26 (d, *J* = 7.9 Hz, 2H), 7.22 - 7.15 (m, 2H), 6.89 (t, *J* = 8.2 Hz, 2H), 4.24 (q, *J* = 6.4 Hz, 1H), 3.90 (s, 3H), 1.62 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 166.81, 163.48 (161.83), 148.40, 135.98, 135.93, 129.65, 128.92, 127.28, 115.90 (115.75), 52.05, 48.65, 21.52.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₅FNaO₂S 313.0669, found 313.0672.

methyl 4-(1-((4-methoxyphenyl)thio)ethyl)benzoate (4f):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 4-methoxybenzenethiol (70 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (101 mg, 67 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-*bis*(4-methoxyphenyl)disulfane (139 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (88 mg, 29 % yield).

¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 4.18 (q, J = 7.0 Hz, 1H), 3.89 (s, 3H), 3.75 (s, 3H), 1.60 (d, J = 7.1 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 166.82, 159.68, 148.76, 136.13, 129.49, 128.61, 127.27, 124.13, 114.16, 55.14, 51.95, 48.76, 21.29.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₈NaO₃S 325.0869, found 325.0876.

methyl 4-(1-((4-(*tert*-butyl)phenyl)thio)ethyl)benzoate (**4g**):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol,

5.0 equiv.), 4-(*tert*-butyl)benzenethiol (83 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (76 mg, 46 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-*bis*(4-(*tert*-butyl)phenyl)disulfane (165 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (87 mg, 27 % yield).

¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 4.30 (q, *J* = 6.7 Hz, 1H), 3.90 (s, 3H), 1.62 (d, *J* = 6.7 Hz, 3H), 1.27 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 166.92, 150.84, 148.88, 132.81, 130.72, 129.68, 128.80, 127.30, 125.80, 52.04, 48.01, 34.51, 31.20, 22.01.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₀H₂₄NaO₂S 351.1389, found 351.1395.

methyl 4-(1-((2-fluorophenyl)thio)ethyl)benzoate (4h):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 2-fluorobenzenethiol (64 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (48 mg, 33 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-bis(2-fluorophenyl)disulfane (127 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (51 mg, 18 % yield).

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.23 - 7.11 (m, 2H), 7.01 (t, *J* = 8.7 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 4.46 (q, *J* = 6.9 Hz, 1H), 3.89 (s, 3H), 1.64 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.86, 163.41 (161.78), 148.24, 135.66, 130.08 (130.03), 129.70, 129.00, 127.25, 124.31 (124.29), 121.15 (121.03), 115.79 (115.64), 52.07, 46.83, 21.73.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₆H₁₅FNaO₂S 313.0669, found 313.0677.

methyl 4-(1-(phenylselanyl)ethyl)benzoate (4i):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), benzeneselenol (79 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (61 mg, 38 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), diphenyl diselenide (156 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (67 mg, 21 % yield).

¹H NMR (400 MHz,CDCl₃) δ 7.90 (d, *J* = 7.9 Hz, 2H), 7.38 (d, *J* = 7.2 Hz, 2H), 7.31 - 7.15 (m, 5H), 4.45 (q, *J* = 6.7 Hz, 1H), 3.90 (s, 3H), 1.76 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 166.87, 149.08, 135.75, 129.58, 128.86, 128.12, 127.16, 52.03, 41.91, 21.64.

HRMS (ESI) m/z: $[M+Na]^+$ Calcd. for $C_{16}H_{16}NaO_2Se$ 343.0208, found 343.0213.

methyl 4-(1-(*tert*-butylthio)ethyl)benzoate (4j):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 4-(*tert*-butyl)benzenethiol (45 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (73 mg, 58 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), 1,2-*di-tert*-butyldisulfane (89 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (4 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (64 mg, 26 % yield).

¹H NMR (400 MHz, CDCl₃) δ 8.07 - 7.94 (m, 2H), 7.51 - 7.35 (m, 2H), 4.03 (q, J = 6.5 Hz, 1H), 3.91 (s, 3H), 1.67 (d, J = 6.1 Hz, 3H), 1.29 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 166.83, 147.8, 129.98, 129.70, 129.18, 127.66, 126.53 52.07, 50.87, 48.00, 30.05, 21.05.

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₄H₂₀NaO₂S 275.1076, found 275.1079.

methyl 4-(1-(((*R*)-2-((*tert*-butoxycarbonyl)amino)-3-methoxy-3-oxopropyl)thio)ethyl) benzoate (**4k**):

According to the general procedure A, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv), methyl (*tert*-butoxycarbonyl)-*L*-cysteinate (118 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % methanol/dichloromethane) to provide the title compound as a colourless oil (113 mg, 57 % yield).

According to the general procedure B, methyl 4-ethylbenzoate (411 mg, 2.5 mmol, 5.0 equiv.), dimethyl 3,3'-disulfanediyl(2R,2'R)-*bis*(2-((*tert*-butoxycarbonyl)amino) propanoate) (234 mg, 0.5 mmol, 1.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (2 % methanol/dichloromethane) to provide the title compound as a colourless oil (155 mg, 39 % yield).

¹H NMR (400 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 2: 1): δ 8.04 - 7.95 (m, 2H, H-1, H-2), 7.45 - 7.37 (m, 2H, H-3, H-4), 5.42 - 5.32 (m, 0.37H, H-9), 5.30 - 5.18 (m, 0.74H, H-9), 4.56 (br, 0.38H, H-10), 4.47 (br, 0.79H, H-10), 4.16 - 4.06 (m, 0.7H, H-5), 4.06 - 3.98 (m, 0.42H, H-5), 3.97 - 3.88 (m, 3H, H-7), 3.77 - 3.74 (m, 0.97H, H-12), 3.74 - 3.66 (m, 1.95H, H-12), 3.03 - 2.90 (m, 0.68H, H-8), 2.76 - 2.65 (m, 1.35H, H-8), 1.67 (d, *J* = 6.6 Hz, 1.05H, H-6), 1.55 (d, *J* = 6.6 Hz, 1.97H, H-6), 1.47 (s, 3H, H-11), 1.44 (s, 6H, H-11).

¹³C NMR (100 MHz, CDCl₃) mixture of diastereoisomers (d.r. = 2: 1): δ 171.47 (171.25), 166.72, 154.97, 148.63, 147.35 (147.06), 129.94 (129.78), 127.70 (127.68), 127.37 (127.31), 80.17, 52.97 (52.12), 49.76 (49.56), 44.12 (43.96), 33.55, 28.27, 22.29 (20.16).

HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₉H₂₇NNaO₆S 420.1451, found 420.1462.

methyl 4-(3,3-dicyano-2-phenylpropyl)benzoate (3l'):

According to the modified general procedure A, methyl 4-methylbenzoate (375 mg, 2.5 mmol, 5.0 equiv.), 1,2-diphenyldisulfane (109 mg, 0.5 mmol, 1.0 equiv.), benzalmalononitrile (154 mg, 1.0 mmol, 2.0 equiv.), FeCl₃ (8.1 mg, 0.05 mmol, 10 mol%), KCl (7.5 mg, 0.1 mmol, 20 mol%), PIDA (16.1 mg, 0.05 mmol, 10 mol%). and 5.0 mL anhydrous CH₃CN were used. After 16 hours, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified by flash chromatography (10 % ethyl acetate/petroleum ether) to provide the title compound as a colourless oil (183 mg, 60% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 7.3 Hz, 2H), 7.37 (d, *J* = 7.5 Hz, 3H), 7.33 (d, *J* = 6.5 Hz, 2H), 7.20 (d, *J* = 7.4 Hz, 2H), 3.94 (d, *J* = 4.4 Hz, 1H), 3.88 (s, 3H), 3.51 (d, *J* = 6.8 Hz, 1H), 3.37 (dd, *J* = 13.6, 7.4 Hz, 1H), 3.28 (dd, *J* = 13.1, 8.5 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 166.49 141.75, 135.79, 130.04, 129.19, 129.13, 129.02, 128.92, 127.81, 111.80, 111.43, 52.03, 47.74, 38.33, 28.84. HRMS (ESI) m/z: $[M+H]^+$ Calcd. for C₁₉H₁₇N₂O₂ 305.1285, found 305.1293.
4. References

[1] Wei K., Yang T., Chen Q., Liang S., Yu W. Iron-catalysed 1,2-aryl migration of tertiary azides. *Chem. Commun.*, **2020**, *56*, 11685-11688.

[2] Vieira T. O., Green M. J., Alper H. Highly regioselective anti-markovnikov palladium-borate-catalyzed methoxycarbonylation reactions: unprecedented results for aryl olefins. *Org. Lett.*, **2006**, *8*, 6143-6145.

[3] Andersen S. M., Heuckendorff M., Jensen H. H. 3-(Dimethylamino)-1-propylamine: a cheap and versatile reagent for removal of byproducts in carbohydrate chemistry. *Org. Lett.*, **2015**, *17*, 944-947.

[4] Das S., Li Y., Lu L. Q., Junge K., Beller M. A General and Selective Rhodium-Catalyzed Reduction of Amides, N-Acyl Amino Esters, and Dipeptides Using Phenylsilane. *Chem. Eur. J.*, **2016**, *22*, 7050-7053.

[5] Chen Y., Yang B., Li Q.-Y., Lin Y.-M., Gong L. Selectfluor®-enabled photochemical selective C(sp³)-H(sulfonyl)amidation. *Chem. Commun.*, **2023**, *59*, 118-121.

[6] Pieber B., Shalom M., Antonietti M., Seeberger P. H., Gilmore K. Continuous Heterogeneous Photocatalysis in Serial Micro-Batch Reactors. *Angew. Chem. Int. Ed.*, **2018**, *57*, 9976-9979.

[7] Lerchen A., Knecht T., Koy M., Ernst J. B., Bergander K., Daniliuc C. G., Glorius F. Non-Directed Cross-Dehydrogenative (Hetero)arylation of Allylic C(sp³)-H bonds enabled by C-H Activation. *Angew. Chem. Int. Ed.*, **2018**, *57*, 15248-15252.

[8] Zhu Q., Costentin C., Stubbe J., Nocera D. G. Disulfide radical anion as a super-reductant in biology and photoredox chemistry. *Chem. Sci.*, **2023**, *14*, 6876-6881.

[9] Guindon Y., Frenette R., Fortin R., Rokach J. Direct synthesis of thio ethers from thiols and alcohols. *J. Org. Chem.*, **1983**, *48*, 1357-1359.

[10] Kanishchev O. S., Dolbier W. R. Jr. Ni/Ir-Catalyzed Photoredox Decarboxylative Coupling of S-Substituted Thiolactic Acids with Heteroaryl Bromides: Short Synthesis of Sulfoxaflor and Its SF₅ Analog. *Chem. Eur. J.*, **2017**, *23*, 7677-7681.

[11] Kuciński K., Hreczycho G. Highly Efficient and Chemoselective Tertiary and Secondary Benzylation of Thiols Catalyzed by Indium(III) Triflate. *Eur. J. Org. Chem.*, **2017**, *2017*, 5572-5581.

[12] Xing W.-L., Liu D.-G., Fu M.-C. Transition-metal-free decarboxylative thiolation of stable aliphatic carboxylates. *RSC Adv.*, **2021**, *11*, 4593-4597.

[13] Townsend K., Huestis M. P., Tellis J. C. Photoredox/Nickel Dual Catalytic Cross-Coupling of Potassium Thiomethyltrifluoroborates with Aryl and Heteroaryl Bromides. *J. Org. Chem.*, **2021**, *86*, 6937-6942.

[14] Cui F.-H., Chen J., Su S.-X., Xu Y.-L., Wang H.-S., Pan Y.-M. Regioselective Synthesis of Selenide Ethers through a Decarboxylative Coupling Reaction. *Adv. Synth. Catal.*, **2017**, *359*, 3950-3961

[15] Pan X., Curran D. P. Neutral sulfur nucleophiles: synthesis of thioethers and thioesters by substitution reactions of N-heterocyclic carbene boryl sulfides and thioamides. *Org. Lett.*, **2014**, *16*, 2728-2731.

[16] Kronenberger T., Ferreira G. M., de Souza A. D. F., da Silva Santos S., Poso A.,

Ribeiro J. A., Tavares M. T., Pavan F. R., Trossini G. H. G., Dias M. V. B., Parise-Filho R. Design, synthesis and biological activity of novel substituted 3-benzoic acid derivatives as MtDHFR inhibitors. *Bioorg. Med. Chem.*, **2020**, *28*, 115600.

[17] Joshi A., Iqbal Z., Kandwal P., De S. R. Pd(II)-Catalyzed Non-Directed Benzylic C(sp³)-H Activation: Cascade C(sp³)-S Bond Cleavage to Access Benzaldehydes from Benzylphenyl Sulfides and Sulfoxides. *Asian J. Org. Chem.*, **2022**, *11*, e202200400.

[18] Nishimoto Y, Okita A, Yasuda M, Baba A. Synthesis of a wide range of thioethers by indium triiodide catalyzed direct coupling between alkyl acetates and thiosilanes. *Org. Lett.*, **2012**, *14*, 1846-1849.

[19] Hu B., Hu H., Sun L., Tang R. Iodine-Mediated Thioetherification of Alcohols with Disulfides or NaSH under Microwave Irradiation. *Chin. J. Chem.*, **2012**, *30*, 2556-2562.

[20] Yadav L. D. S., Garima, Kapoor R. One-Pot Reductive Sulfenylation and Thiocyanation of Carbonyl Compounds in Ionic Liquid Media. *Synthetic Commun.*, **2010**, *41*, 100-112,

[21] Girijavallabhan V., Alvarez C., Njoroge F. G. Regioselective cobalt-catalyzed addition of sulfides to unactivated alkenes. *J. Org. Chem.*, **2011**, *76*, 6442-6446.

[22] Uchikura T., Hara Y., Tsubono K., Akiyama T. Visible-Light-Driven C-S Bond Formation Based on Electron Donor-Acceptor Excitation and Hydrogen Atom Transfer Combined System. *ACS Org. Inorg. Au*, **2021**, *1*, 23-28.

5. Spectral Data for Products

¹³C NMR (100 MHz, CDCl₃) of **10**

¹³C NMR (100 MHz, CDCl₃) of 1ae

 ^{13}C NMR (100 MHz, CDCl₃) of 3d

¹³C NMR (100 MHz, CDCl₃) of **3p**

¹³C NMR (150 MHz, CDCl₃) of 3ac

¹³C NMR (150 MHz, CDCl₃) of 4h

