Electronic Supplementary Information

meso-Substituent electronic effect of Fe porphyrins on electrocatalytic CO₂ reduction reaction

Hongyuan He, Zi-Yang Qiu, Zhiyuan Yin, Jiafan Kong, Jing-Shuang Dang*, Haitao Lei*, Wei Zhang, and Rui Cao*

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Correspondence E-mails: <u>dangjs@snnu.edu.cn</u>, <u>leiht2017@snnu.edu.cn</u>,

ruicao@snnu.edu.cn

General Methods and Materials.

Manipulations of air- and moisture-sensitive materials were performed under nitrogen gas using standard Schlenk line techniques. All reagents used in this work were purchased from commercial suppliers and were used without further purification unless otherwise noted. All solvents used in the experiments were reagent grades. Dry solvents, including acetonitrile, tetrahydrofuran, diethyl ether, dichloromethane, and chloroform were purified by passage through activated alumina. Dimethylformamide (DMF) was refluxed over CaH₂ and was distilled under reduced pressure. Fe porphyrins were synthesized according the reported procedures.¹⁻³ ¹H NMR spectra were recorded using a JEOL 400 MHz spectrometer. High-resolution mass spectrometry (HRMS) experiments were carried out by using a Brüker MAXIS. The samples were dissolved in methanol for mass spectrometer. The CO and H₂ gas generated during electrolysis was analyzed by Shimadzu gas chromatograph (GC-2014).

Electrochemical Measurements.

All electrochemical experiments were carried out using a CH Instruments (model CHI 660E Electrochemical Analyzer) at 20 °C. The solution was bubbled with argon or CO₂ for at least 30 min before analysis. Cyclic voltammograms (CVs) were acquired in 0.1 M Bu₄N(PF₆) dry DMF or acetonitrile with a three-compartment cell using a 0.07 cm² glassy carbon (GC) electrode as the working electrode, Ag/AgNO₃ as the reference electrode (BASi, 10 mM AgNO₃, 0.1 M Bu₄N(PF₆) in acetonitrile), and graphite rod as

the auxiliary electrode. The GC electrode was polished with α -Al₂O₃ (50 nm) and washed with distilled H₂O and absolute ethanol. Ferrocene was added at the end of the measurement as an external standard. All potentials reported in this work are referenced to ferrocene. Electrolysis was performed in a gas-tight electrochemical cell under CO₂ with stirring. The 7-mL DMF solution contains 0.1 M Bu₄N(PF₆), and the headspace is approximately 14 mL. A graphite rod was used as the counter electrode, an Ag/AgNO₃ was used as the reference electrode, and a glassy carbon slice (1.0 cm² area) was used as the working electrode. Before electrolysis, the cell was degassed by bubbling CO₂ gas for at least 30 min. The glassy carbon slice was polished with α -Al₂O₃ powders (50 nm) and rinsed with deionized water and absolute ethanol. After electrolysis, 400 µL of gas in the cell headspace was sampled by a gas-tight syringe and then analyzed by gas chromatograph (GC-2014) equipped with a thermal conductivity detector.

FE (%) =
$$(nNF/Q) \times 100\%$$

in which *n* is the mole of product, *N* is the number of electrons transferred for a specific product (2 for CO and H₂), *F* is the Faraday constant, and *Q* is the total charges of passed during electrolysis.

Details for the measurement of CO_2 binding constant (K_{CO_2}):

CVs were recorded in 0.1 M NBu₄(PF₆) in dry DMF, first under an atmosphere of argon and then upon saturation with CO₂. A fast scan rate (2 V/s) was necessary to achieve reversible Fe^{1/0} couples under CO₂. Proton sources (other than adventitious water) were omitted to prevent subsequent catalytic turnover. K_{CO_2} was calculated

based on the difference between the standard potentials under argon and CO₂, ΔE , using the equation below:

$$K_{\rm CO_2} = \frac{e^{(f^* \Delta E)} - 1}{[\rm CO_2]}$$

in which $f = F/RT = 38.94 V^{-1}$ and [CO₂] (for CO₂-saturated DMF) is 0.23 M.

Computational Details.

Density functional theory (DFT) calculations were conducted using the Gaussian 16 program.⁴ Geometrical optimizations were performed employing the BP86 functional in conjunction with Grimme's D3 dispersion correction,⁵⁻⁷ utilizing basis sets of 6-311G(d, p) (for C, N, H, F, O) and Lanl2dz (for Fe).^{8,9} Vibrational analyses were carried out at the same level of theory to validate local minima and assess Gibbs free energy at room temperature. The polarizable continuum model (PCM) approach was applied to account for the solvent environment,^{10,11} employing a dielectric constant of $\varepsilon = 37.2$ for the solution of DMF.

Fig. S1 ¹H NMR spectrum of the porphyrin ligand of **FeTPP** in CDCl₃. The solvent residue peak is labelled (*).

Fig. S2 ¹H NMR spectrum of the porphyrin ligand of $FeF_{10}TPP$ in CDCl₃. The solvent

residue peak is labelled (*).

Fig. S3 ¹H NMR spectrum of the porphyrin ligand of $FeF_{20}TPP$ in CDCl₃. The solvent residue peak is labelled (*).

Fig. S4 HRMS of FeTPP in methanol, showing a peak at 668.1646.

Fig. S5 HRMS of $FeF_{10}TPP$ in methanol, showing a peak at 848.0709.

Fig. S6 HRMS of FeF₂₀TPP in methanol, showing a peak at 1027.9770.

Fig. S7 (a) CVs of 0.5 mM **FeTPP** under argon with different scan rates in DMF. (b) Plot of the Fe^{II/I} reduction peak current of **FeTPP** versus the square root of scan rates. Conditions: 0.1 M Bu₄N(PF₆), GC working electrode, 20°C.

Fig. S8 (a) CVs of 0.5 mM FeF₁₀TPP under argon with different scan rates in DMF.
(b) Plot of the Fe^{II/I} reduction peak current of FeF₁₀TPP versus the square root of scan rates. Conditions: 0.1 M Bu₄N(PF₆), GC working electrode, 20°C.

Fig. S9 (a) CVs of 0.5 mM FeF₂₀TPP under argon with different scan rates in DMF.
(b) Plot of the Fe^{II/I} reduction peak current of FeF₂₀TPP versus the square root of scan rates. Conditions: 0.1 M Bu₄N(PF₆), GC working electrode, 20 °C.

Fig. S10 TOF plots of FeTPP and $FeF_{10}TPP$ for CO₂RR as determined using the foot-

of-the-wave analysis.

Fig. S11 CV of 0.5 mM FeTPP in acetonitrile. Conditions: 0.1 M Bu₄N(PF₆), 100 mV

s⁻¹ scan rate.

Fig. S12 (a) Electrolysis of 0.5 mM **FeTPP** at -2.10 V with 10 mM phenol under CO₂ in DMF. (b) UV-vis spectra of **FeTPP** before and after electrolysis in DMF.

Fig. S13 CV of the GC electrode after electrolysis measured in a CO₂-saturated DMF with phenol but without catalysts. Conditions: 0.1 M Bu₄N(PF₆), 100 mV s⁻¹ scan rate.

Fig. S14 Gas chromatography detection of evolved CO during the electrolysis with FeTPP, giving a Faradaic efficiency of 98% for the CO production.

Fig. S15 (a) Electrolysis of 0.5 mM $FeF_{10}TPP$ at -1.90 V with 10 mM phenol under CO₂ in DMF. (b) UV-vis spectra of $FeF_{10}TPP$ before and after electrolysis in DMF.

Fig. S16 Gas chromatography detection of evolved CO during the electrolysis with **FeF**₁₀**TPP**, giving a Faradaic efficiency of 94% for the CO production.

Fig. S17 Spin density map of [FeTPP]²⁻, [FeF₁₀TPP]²⁻, and [FeF₂₀TPP]²⁻.

	<i>E</i> _{1/2} (V <i>vs</i> ferrocene)								
complex	Fe ^{III/II}	Fe ^{II/I}	Fe ^{1/0}						
FeTPP	-0.59	-1.51	-2.13						
FeF ₁₀ TPP	-0.49	-1.38	-1.94						
FeF ₂₀ TPP	-0.42	-1.24	-1.81						

Table S1 Reduction potentials of FeTPP, FeF₁₀TPP, and FeF₂₀TPP in DMF.

_

complex	TOF _{max} (s ⁻¹)	<i>K</i> _{CO2} (M ⁻¹)	FEco(%)		
FeTPP	124	2.07	98		
FeF ₁₀ TPP	FeF₁₀TPP 8.38		94		
FeF ₂₀ TPP	_	0.26	3		

Table S2 Summary of the electrochemical properties of FeTPP, $FeF_{10}TPP$, and $FeF_{20}TPP$ in DMF.

Table S3 The electronic energies of the singlet and triplet spin states (E_s and E_T) and the singlet-triplet splitting energies ($\Delta E_{S-T} = E_S - E_T$) at the Fe⁰ state of FeTPP, FeF₁₀TPP, and FeF₂₀TPP.

Catalysts (at Fe ⁰ state)	<i>E</i> s (a.u.)	E_{T} (a.u.)	$\Delta E_{\text{S-T}}$ (kcal mol ⁻¹)		
FeTPP	-2036.4535	-2036.4599	4.0		
FeF ₁₀ TPP	-3029.1611	-3029.1672	3.8		
FeF ₂₀ TPP	-4021.8656	-4021.8731	4.7		

Table S4 The free energy change of CO₂-binding at the Fe⁰ state ($\Delta G * co_2$) of FeTPP,

FeF10TPP, and FeF20TPP.

Catalysts	FeTPP	FeF ₁₀ TPP	FeF ₂₀ TPP		
ΔG_{*CO_2} (kcal mol ⁻¹)	-5.6	-4.3	-2.0		

Cartesian coordinates of calculated structures

[FeTPP]²⁻

Ν	1.809	0.867	-0.097	С	7.372	-2.561	0.168	С	-3.043	-0.226	-0.252
Ν	-0.860	1.793	0.016	Н	8.406	-2.913	0.218	С	1.643	4.682	-0.042
С	-1.643	-4.682	-0.042	С	5.143	-2.685	-0.798	С	-2.637	-5.084	0.877
С	-2.229	2.075	0.161	С	1.610	6.975	-0.910	Н	-3.037	-4.344	1.576
С	-3.440	-2.424	-0.638	С	-3.105	-6.404	0.909	С	1.139	3.281	-0.064
Н	-3.903	-3.383	-0.861	С	2.638	5.084	0.878	Fe	0.000	0.000	-0.042
С	1.145	5.653	-0.940	Н	3.037	4.344	1.576	С	-6.935	1.518	1.003
Н	0.385	5.355	-1.667	С	6.935	-1.518	1.003	С	-4.680	1.644	0.042
С	-2.592	-7.358	0.014	Н	7.628	-1.061	1.715	С	-7.372	2.561	0.168
С	-1.145	-5.652	-0.940	Ν	0.860	-1.793	0.016	Н	-8.406	2.913	0.218
Н	-0.385	-5.354	-1.667	Ν	-1.809	-0.867	-0.097	С	-5.612	1.068	0.938
С	-1.139	-3.281	-0.064	С	3.105	6.403	0.909	С	-6.466	3.141	-0.732
С	-1.610	-6.975	-0.911	С	2.592	7.357	0.014	Н	-6.795	3.946	-1.396
С	-0.215	3.042	0.142	С	-1.180	4.065	0.484	С	-5.143	2.685	-0.798
С	3.043	0.226	-0.252	Н	-0.937	5.106	0.690	Н	-4.447	3.132	-1.513
С	1.180	-4.065	0.483	С	2.080	2.232	-0.285	Н	1.209	7.707	-1.617
Н	0.937	-5.106	0.689	С	-3.274	1.166	-0.016	Н	2.958	8.388	0.038
С	-2.080	-2.232	-0.285	С	4.045	1.164	-0.618	Н	3.867	6.692	1.639
С	-4.045	-1.164	-0.618	Н	5.085	0.923	-0.829	Н	-5.277	0.260	1.594
Н	-5.085	-0.923	-0.829	С	3.440	2.424	-0.638	Н	-7.628	1.061	1.715
С	6.467	-3.141	-0.732	Н	3.903	3.383	-0.861	Н	-3.867	-6.692	1.639
С	4.680	-1.644	0.042	С	2.412	-3.472	0.499	Н	-2.957	-8.388	0.037
С	-2.412	3.472	0.499	Н	3.370	-3.937	0.724	Н	-1.209	-7.706	-1.619
Н	-3.370	3.937	0.725	С	5.612	-1.068	0.938	Н	4.447	-3.132	-1.513
С	3.274	-1.167	-0.016	Н	5.277	-0.260	1.594	Н	6.795	-3.946	-1.396
С	2.229	-2.075	0.161	С	0.215	-3.042	0.142				

[FeF₁₀TPP]²⁻

Ν	1.408	1.415	0.066	С	0.000	7.803	0.000	Ι	Η	-5.128	-1.183	-1.800
N	1.408	-1.415	-0.066	С	-0.728	5.699	0.945	(С	3.464	0.000	0.000
С	-4.959	0.000	0.000	С	7.083	-0.665	1.014	Η	Fe	0.000	0.000	0.000
С	1.229	-2.792	-0.175	С	-7.083	-0.665	-1.014	(С	-0.748	-7.095	-0.948
С	-3.457	-2.469	0.451	С	5.681	0.665	-1.011	(С	0.000	-4.944	0.000
Н	-4.526	-2.592	0.613	Н	5.128	1.183	-1.800	(С	0.000	-7.803	0.000
С	5.681	-0.665	1.011	С	0.748	7.095	-0.948	(С	-0.727	-5.699	-0.945
Н	5.128	-1.183	1.800	Ν	-1.408	1.415	-0.066	(С	0.748	-7.095	0.948
С	-7.788	0.000	0.000	Ν	-1.408	-1.415	0.066	(С	0.727	-5.699	0.945
С	-5.681	0.665	1.011	С	7.083	0.665	-1.014	ł	Η	7.625	-1.182	1.810
Н	-5.128	1.183	1.800	С	7.788	0.000	0.000	Ι	H	8.882	0.000	0.000
С	-3.464	0.000	0.000	С	3.457	-2.469	-0.451	Ι	H	7.625	1.182	-1.811
С	-7.083	0.665	1.014	Н	4.526	-2.592	-0.613	Ι	H	-7.625	-1.182	-1.810
С	2.805	-1.222	-0.183	С	2.805	1.222	0.183	Ι	H	-8.882	0.000	0.000
С	1.229	2.792	0.175	С	0.000	-3.467	0.000	ł	Η	-7.625	1.182	1.811
С	-3.457	2.469	-0.451	С	2.482	3.444	0.454	Η	F	0.000	9.156	0.000
Н	-4.526	2.592	-0.613	Н	2.608	4.512	0.628	I	F	-1.454	7.775	1.883
С	-2.805	-1.222	0.183	С	3.457	2.469	0.451	Η	F	1.454	7.775	-1.883
С	-2.482	-3.444	0.454	Н	4.526	2.592	0.613	Η	F	1.430	5.068	-1.919
Н	-2.608	-4.512	0.628	С	-2.482	3.444	-0.454	I	F	-1.430	5.068	1.919
С	-0.748	7.095	0.948	Н	-2.608	4.512	-0.628	Η	F	1.429	-5.068	1.919
С	0.000	4.944	0.000	С	0.728	5.699	-0.945	I	F	1.454	-7.775	1.884
С	2.482	-3.444	-0.454	С	-2.805	1.222	-0.183	I	F	0.000	-9.156	0.000
Н	2.608	-4.512	-0.628	С	-1.229	-2.792	0.175	I	F	-1.454	-7.775	-1.884
С	0.000	3.467	0.000	С	4.959	0.000	0.000	I	F	-1.429	-5.068	-1.919
С	-1.229	2.792	-0.175	С	-5.681	-0.665	-1.011					

[FeF₂₀TPP]²⁻

Ν	-1.284	1.536	-0.036	С	-7.119	0.025	-1.049	С	-0.155	-7.096	1.111
Ν	-1.542	-1.277	0.044	С	7.017	-1.257	1.027	С	-0.451	-4.925	0.005
С	4.932	-0.451	-0.002	С	-5.627	1.116	1.025	С	-0.709	-7.750	0.006
С	-1.485	-2.681	0.123	С	0.155	7.096	1.111	С	-0.038	-5.702	1.098
С	3.223	-2.806	-0.290	Ν	1.542	1.277	0.044	С	-1.136	-7.007	-1.099
Н	4.281	-3.038	-0.409	Ν	1.284	-1.536	-0.036	С	-0.998	-5.616	-1.088
С	-5.726	-0.082	-1.036	С	-7.017	1.257	1.027	F	0.832	9.094	0.007
С	7.770	-0.704	-0.014	С	-7.770	0.704	-0.014	F	1.664	7.642	-2.169
С	5.726	0.082	-1.036	С	-3.680	-2.173	0.300	F	-0.251	7.814	2.182
С	3.456	-0.317	0.003	Н	-4.761	-2.208	0.418	F	-0.486	5.105	2.194
С	7.119	-0.025	-1.049	С	-2.680	1.488	-0.108	F	1.406	4.935	-2.184
С	-2.906	-0.976	0.117	С	-0.315	-3.442	0.004	F	-1.406	-4.935	-2.184
С	-0.973	2.906	-0.114	С	-2.162	3.687	-0.289	F	-1.664	-7.642	-2.169
С	3.680	2.173	0.300	Н	-2.191	4.769	-0.401	F	-0.832	-9.094	0.007
Н	4.761	2.208	0.418	С	-3.223	2.806	-0.290	F	0.251	-7.814	2.182
С	2.680	-1.488	-0.108	Н	-4.281	3.038	-0.409	F	0.486	-5.105	2.194
С	2.162	-3.687	-0.289	С	2.796	3.232	0.298	F	-4.946	1.637	2.075
Н	2.191	-4.769	-0.401	Н	3.021	4.291	0.411	F	-7.646	1.898	2.040
С	1.136	7.007	-1.099	С	0.038	5.702	1.098	F	-9.116	0.824	-0.020
С	0.451	4.925	0.005	С	2.906	0.976	0.117	F	-7.843	-0.496	-2.067
С	-2.796	-3.232	0.298	С	0.973	-2.906	-0.114	F	-5.139	-0.717	-2.080
Н	-3.021	-4.291	0.411	С	-4.932	0.451	-0.002	F	4.946	-1.637	2.075
С	0.315	3.442	0.004	С	5.627	-1.116	1.025	F	7.646	-1.898	2.040
С	1.485	2.681	0.123	С	-3.456	0.317	0.003	F	9.116	-0.824	-0.020
С	0.709	7.750	0.006	Fe	0.000	0.000	0.004	F	7.843	0.496	-2.067
С	0.998	5.616	-1.088					F	5.139	0.717	-2.080

CO₂-[FeTPP]²⁻

Ν	1.762	0.854	-0.115	Н	8.370	-2.880	0.078	(С	-2.618	-5.084	0.911
Ν	-0.846	1.779	0.141	С	5.104	-2.576	-0.898	I	Η	-3.000	-4.366	1.642
С	-1.642	-4.657	-0.014	С	1.628	6.917	-0.967	(С	1.142	3.255	-0.005
С	-2.209	2.059	0.271	С	-3.091	-6.402	0.903	Η	Fe	0.001	0.002	0.139
С	-3.435	-2.406	-0.611	С	2.621	5.088	0.905	(С	-6.897	1.580	1.013
Н	-3.896	-3.368	-0.827	Н	3.004	4.371	1.636	(С	-4.652	1.623	0.042
С	1.156	5.598	-0.954	С	6.901	-1.576	1.000	(С	-7.333	2.533	0.080
Н	0.401	5.277	-1.677	Н	7.597	-1.184	1.747	Ι	Η	-8.368	2.884	0.095
С	-2.598	-7.323	-0.034	Ν	0.848	-1.774	0.140	(С	-5.570	1.130	0.993
С	-1.156	-5.594	-0.950	Ν	-1.760	-0.850	-0.113	(С	-6.431	3.032	-0.872
Н	-0.403	-5.273	-1.675	С	3.094	6.407	0.895	ł	Η	-6.763	3.770	-1.606
С	-1.141	-3.250	-0.003	С	2.600	7.327	-0.041	(С	-5.104	2.580	-0.889
С	-1.629	-6.913	-0.961	С	-1.178	4.052	0.575	ł	Η	-4.402	2.967	-1.632
С	-0.216	3.024	0.254	Н	-0.938	5.098	0.751	Ι	Η	1.240	7.625	-1.704
С	3.000	0.220	-0.248	С	2.048	2.216	-0.263	Ι	Η	2.968	8.356	-0.050
С	1.180	-4.047	0.573	С	-3.239	1.139	0.026	Ι	Η	3.848	6.719	1.624
Н	0.941	-5.094	0.750	С	4.026	1.173	-0.607	Ι	Η	-5.228	0.389	1.720
С	-2.046	-2.211	-0.260	Н	5.064	0.923	-0.816	Ι	Η	-7.591	1.188	1.762
С	-4.026	-1.168	-0.600	С	3.436	2.410	-0.617	Ι	Η	-3.844	-6.713	1.633
Н	-5.064	-0.919	-0.807	Н	3.896	3.372	-0.834	Ι	Η	-2.967	-8.352	-0.042
С	6.430	-3.028	-0.884	С	2.416	-3.449	0.582	I	Η	-1.242	-7.621	-1.699
С	4.653	-1.619	0.034	Н	3.383	-3.913	0.765	I	Η	4.399	-2.963	-1.639
С	-2.414	3.454	0.585	С	5.574	-1.126	0.982	Ι	Η	6.761	-3.767	-1.619
Н	-3.380	3.917	0.770	Н	5.234	-0.385	1.710	(С	0.002	0.002	2.169
С	3.240	-1.135	0.021	С	0.218	-3.020	0.254	(С	-1.137	-0.086	2.671
С	2.211	-2.055	0.268	С	-2.999	-0.215	-0.244	(С	1.142	0.091	2.669
С	7.334	-2.529	0.066	С	1.644	4.661	-0.018					

CO_2 -[FeF₁₀TPP]²⁻

Ν	1.389	1.394	0.160	С	-0.628	5.663	1.005	Fe	-0.002	0.002	0.160
Ν	1.386	-1.378	-0.097	С	7.049	-0.739	1.014	С	-0.597	-7.038	-1.074
С	-4.938	0.005	0.029	С	-7.070	-0.695	-0.943	С	0.010	-4.914	-0.010
С	1.207	-2.755	-0.235	С	5.666	0.712	-0.940	С	0.028	-7.748	-0.044
С	-3.432	-2.472	0.529	Н	5.122	1.275	-1.703	С	-0.594	-5.641	-1.047
Н	-4.502	-2.598	0.679	С	0.594	7.042	-1.079	С	0.644	-7.055	1.004
С	5.648	-0.726	1.008	Ν	-1.389	1.383	-0.099	С	0.624	-5.657	1.009
Н	5.087	-1.279	1.766	Ν	-1.392	-1.389	0.160	Н	7.583	-1.304	1.783
С	-7.767	0.031	0.034	С	7.068	0.699	-0.938	Н	8.857	-0.037	0.043
С	-5.652	0.731	1.004	С	7.764	-0.027	0.040	Н	7.617	1.253	-1.704
Н	-5.092	1.285	1.762	С	3.423	-2.443	-0.540	Н	-7.619	-1.250	-1.709
С	-3.444	-0.003	0.028	Н	4.489	-2.557	-0.726	Н	-8.860	0.042	0.037
С	-7.053	0.745	1.009	С	2.773	1.218	0.262	Н	-7.588	1.310	1.776
С	2.767	-1.195	-0.217	С	0.003	-3.424	0.008	F	-0.040	9.101	-0.067
С	1.206	2.777	0.255	С	2.456	3.444	0.522	F	-1.247	7.749	1.995
С	-3.426	2.448	-0.544	Н	2.574	4.517	0.666	F	1.184	7.712	-2.093
Н	-4.491	2.562	-0.731	С	3.429	2.477	0.530	F	1.192	4.991	-2.071
С	-2.777	-1.213	0.261	Н	4.498	2.603	0.681	F	-1.223	5.028	2.041
С	-2.459	-3.439	0.522	С	-2.457	3.417	-0.554	F	1.218	-5.022	2.045
Н	-2.578	-4.512	0.667	Н	-2.572	4.482	-0.749	F	1.242	-7.743	2.001
С	-0.648	7.061	0.998	С	0.592	5.645	-1.050	F	0.037	-9.096	-0.060
С	-0.013	4.919	-0.013	С	-2.770	1.200	-0.220	F	-1.186	-7.709	-2.088
С	2.454	-3.412	-0.550	С	-1.210	-2.772	0.256	F	-1.194	-4.988	-2.069
Н	2.569	-4.477	-0.745	С	4.935	0.000	0.032	С	-0.002	0.003	2.209
С	-0.006	3.429	0.006	С	-5.669	-0.708	-0.944	0	-0.971	0.611	2.702
С	-1.210	2.760	-0.237	Н	-5.124	-1.271	-1.706	0	0.966	-0.605	2.703
С	-0.031	7.753	-0.049	С	3.441	0.008	0.030				

CO_2 -[FeF₂₀TPP]²⁻

Ν	-1.260	1.516	-0.068	С	6.895	-1.110	1.435	С	-0.039	-5.740	0.892
Ν	-1.508	-1.279	0.071	С	-5.506	0.961	1.338	С	-1.098	-6.940	-1.385
С	4.894	-0.444	0.186	С	0.160	7.133	0.837	С	-0.962	-5.551	-1.306
С	-1.462	-2.676	0.069	Ν	1.511	1.280	0.071	F	0.816	9.074	-0.372
С	3.230	-2.769	-0.285	Ν	1.263	-1.515	-0.069	F	1.611	7.523	-2.491
Н	4.295	-2.981	-0.362	С	-6.892	1.110	1.437	F	-0.228	7.900	1.878
С	-5.733	0.078	-0.872	С	-7.703	0.729	0.363	F	-0.468	5.191	2.017
С	7.706	-0.729	0.361	С	-3.653	-2.187	0.318	F	1.359	4.814	-2.370
С	5.735	-0.077	-0.874	Н	-4.734	-2.220	0.441	F	-1.357	-4.814	-2.369
С	3.413	-0.300	0.101	С	-2.654	1.459	-0.083	F	-1.609	-7.523	-2.490
С	7.126	-0.208	-0.800	С	-0.301	-3.433	-0.103	F	-0.813	-9.074	-0.371
С	-2.867	-0.983	0.188	С	-2.182	3.651	-0.365	F	0.231	-7.900	1.879
С	-0.974	2.878	-0.201	Н	-2.221	4.728	-0.517	F	0.472	-5.190	2.017
С	3.655	2.187	0.317	С	-3.228	2.770	-0.284	F	-4.751	1.332	2.396
Н	4.736	2.220	0.439	Н	-4.292	2.982	-0.360	F	-7.456	1.609	2.558
С	2.656	-1.459	-0.084	С	2.783	3.241	0.235	F	-9.042	0.865	0.447
С	2.184	-3.650	-0.366	Н	3.007	4.305	0.282	F	-7.908	-0.153	-1.836
Н	2.223	-4.728	-0.518	С	0.042	5.740	0.891	F	-5.203	-0.420	-2.013
С	1.100	6.940	-1.386	С	2.869	0.984	0.187	F	4.754	-1.332	2.395
С	0.435	4.916	-0.173	С	0.976	-2.877	-0.201	F	7.459	-1.609	2.556
С	-2.780	-3.240	0.236	С	-4.892	0.444	0.188	F	9.044	-0.865	0.444
Н	-3.004	-4.304	0.283	С	5.508	-0.961	1.336	F	7.910	0.153	-1.838
С	0.303	3.434	-0.103	С	-3.410	0.300	0.102	F	5.205	0.420	-2.015
С	1.465	2.677	0.069	Fe	0.001	0.000	0.120	С	0.001	0.000	2.172
С	0.693	7.733	-0.308	С	-0.157	-7.132	0.838	0	1.102	-0.320	2.654
С	0.964	5.551	-1.307	С	-0.433	-4.916	-0.173	0	-1.099	0.320	2.655
С	-7.123	0.209	-0.798	С	-0.691	-7.733	-0.307				

Supporting References:

- Y. Han, H. Fang, H. Jing, H. Sun, H. Lei, W. Lai and R. Cao, *Angew. Chem. Int. Ed.*, 2016, 55, 5457-5462.
- N. Wang, H. Lei, Z. Zhang, J. Li, W. Zhang and R. Cao, *Chem. Sci.*, 2019, 10, 2308-2314.
- I. Azcarate, C. Costentin, M. Robert and J.-M. Savéant, J. Phys. Chem. C, 2016, 120, 28951-28960.
- 4 R.A.1. Gaussian 16, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 5 A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.

- 6 J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822-8824.
- 7 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, **132**, 154104.
- 8 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650-654.
- 9 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
- 10 S. Miertuš, E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, **55**, 117-129.
- 11 S. Miertuš and J. Tomasi, *Chem. Phys.*, 1982, **65**, 239-245.