Supporting Information

Synthesis of N-β-brominated alkenyl isothiocyanates via dehydrogenation of alkyl isothiocyanates

Bumpei Maeda,^[a] Ryohei Akiyoshi,^[a] Daisuke Tanaka,^[a] Kohei Sato,^[a] and Kei Murakami*^[a,b]

[a] Department of Chemistry, School of Science, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan.
 [b] JST PRESTO, 7 Gobancho, Chiyoda, Tokyo, 102-0076 Japan.

E-mail: kei.murakami@kwansei.ac.jp

Table of Contents

- 1. General Experimental Details
- 2. Experimental Procedures
- 3. Proposed Mechanism
- 4. Preparation of Substrates
- 5. Characterization Data
- 6. Photophysical Study
- 7. X-ray Crystallographic Analysis
- 8. Labelling of Phosphatidylethanolamine within Biomembranes by 21
- 9. Reference
- 10. ¹H and ¹³C NMR Spectra

1. General Experimental Details

Unless otherwise noted, all reactants or reagents including dry solvents were obtained from commercial suppliers and used as received. NBS and tetrachloromethane were purchased from Wako chemicals. AIBN was purchased from TCI. All work-up and purification procedures were carried out with reagent-grade solvents. Analytical thin-layer chromatography (TLC) was performed using Chem Scene HPTLC Silica Gel 60 GF254. Flash column chromatography was performed with Kanto Silica Gel 60 N (spherical, neutral) (40–50 µm). Silica-gel column chromatography was performed on an Isolera Spektra instrument equipped with a Biotage SNAP Ultra 10 g cartridge for 0.20 mmol scale reactions. Preparative recycling gel permeation chromatography (GPC) was performed with a JAI LC-9260 II NEXT instrument equipped with JAIGEL-2HR columns using chloroform as an eluent. High-resolution mass spectra were recorded on a Bruker Daltonic microTOF spectrometer (APCI) and JEOL JMS-T100LC spectrometer for electrospray ionization (ESI). Nuclear magnetic resonance (NMR) spectra were recorded on a JNM-ECX-500 (¹H 500 MHz, ¹³C 126 MHz) spectrometer. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to tetramethylsilane ($\delta 0.00$ ppm). Chemical shifts for ¹³C NMR are expressed in ppm relative to CDCl₃ (δ 77.16 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, q = quartet, m = multiplet), coupling constant (Hz), and integration.

2. Experimental Procedures

Procedure for the dehydrogenation with bromination of alkyl isothiocyanate

General procedure A: AIBN (6.6 mg, 0.040 mmol, 0.20 equiv.), NBS (75 mg, 0.42 mmol, 2.1 equiv.) and substrate (0.20 mmol, 1.0 equiv. if solid) were added to a dried reaction tube with a stirring bar. The tube was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle). Tetrachloromethane (4.0 mL) and substrate (0.20 mmol, 1.0 equiv. if liquid) were added to the tube and the mixture was stirred for 12 h at 90 °C. The crude mixture was quenched with saturated Na₂S₂O₃ *aq*. and extracted with CHCl₃ (3 mL × 3). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel provided the desired product.

3. Proposed Mechanism

A proposed mechanism of the dehydrogenative bromination is illustrated in Figure S 1. Firstly, the C–H bond at the α -position of isothiocyanate is abstracted by bromo radical, generated from bromine. Then, Wohl–Ziegler bromination gives the α -bromo isothiocyanate **A**. However, intermediate **A** is unstable, and the bromo group is eliminated, resulting the formation of vinyl isothiocyanate **B**. Vinyl isothiocyanate **B** is rapidly converted to the desired *N*- β -brominated alkenyl isothiocyanate **E** or **F** through the cation intermediates **C** or **D**. We consider that the stereoselectivity is determined by the steric effect between the bromo group and aryl group. Intermediate **C** is more favored because the bromo group locates far from the bulky aryl group. On the other hand, sterically congested intermediate **D** is disfavored. Therefore, *Z*-isomers were obtained selectively.

Figure S 1. Proposed mechanism of dehydrogenation with bromination.

4. Preparation of Substrates

Figure S 2. The list of substrates.

Procedure of isothiocyanates synthesis

General procedure B: Dichloromethane, benzylamine (1.0 equiv.), NEt₃ (3.0 equiv.) and CS₂ (3.0 equiv.) were added to a round bottom flask with a stirring bar and the mixture was stirred for 1 h. TsCl (1.0 equiv.) was then added to the mixture. The reaction mixture was stirred for 4 h. Then, CHCl₃ was added to the crude mixture, and the organic layer was washed with 1 M HCl aq. × 2 and NaHCO₃ aq. The organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel provided the corresponding isothiocyanates.

General procedure C: Aldehyde (1.0 equiv.) and a stirring bar were added to the 100 mL round bottom flask. Then, the flask was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle). THF was then added to the flask. The mixture was stirred at 0 °C, and MeMgBr (3 M in Et₂O, 1.5 equiv.) was added dropwise. The mixture was warmed up to rt and stirred for 2 h. NH₄Cl *aq*. was added to the flask and extracted with EtOAc \times 3. The organic layer was dried by Na₂SO₄ and concentrated *in vacuo*. If the desired benzyl alcohol was sufficiently pure, the second step was conducted without further purification. When, the product was not pure, the benzyl alcohol was purified by chromatography on silica gel provided the corresponding benzyl alcohol.

The resulting benzyl alcohol (1.0 equiv.), THF, phthalimide (1.1 equiv.), and PPh₃ (1.1 equiv.) were added to a 100 mL round bottom flask with a stirring bar. Then, DEAD (2.2 M in toluene, 1.2 equiv.) or diisopropyl azodicarboxylate (1.9 M in toluene, 1.2 equiv.) was added dropwise, and the mixture was stirred overnight. H₂O was added to the crude mixture and extracted with EtOAc \times 3. The organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc) provided the corresponding phthalimide compound.

General procedure D: Ketone (1.0 equiv.) and a stirring bar were added to the 100 mL round bottom flask. Then, EtOH was added to the flask and NaBH₄ (1.5 equiv.) was added slowly. The mixture was stirred for 1 h. H₂O was added to the flask and extracted with EtOAc \times 3. The organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. The desired benzyl alcohol was sufficiently pure, the second step was conducted without further purification.

The resulting benzyl alcohol (1.0 equiv.), THF, phthalimide (1.1 equiv.), and PPh₃ (1.1 equiv.) were added to a 100 mL round bottom flask with a stirring bar. Then, diisopropyl azodicarboxylate (1.9 M, in toluene, 1.2 equiv.) was added dropwise, and the mixture was stirred overnight. The organic layer was concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc) provided the corresponding phthalimide compound.

General procedure E: The resulting benzyl phthalimide compound (1.0 equiv.), MeOH, and $H_2NNH_2 \cdot H_2O$ (1.5 equiv.) were added to a test tube with a stirring bar and the mixture was stirred for 2 h at 75 °C. 1 M HCl *aq*. was added to the crude mixture and filtered. The filtrate was neutralized with 1 M NaOH *aq*. and the desired compound was extracted with EtOAc × 3. The organic layer was dried by Na₂SO₄ and concentrated *in vacuo*, then, the benzylamine compound was obtained without further purification. Next, according to Method A, benzyl isothiocyanates were synthesized from the obtained benzylamine.

(1-isothiocyanatoethyl)benzene (1a)^{S1}: The title compound was synthesized according to General procedure B from the starting amine (4.8 g, 40 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) provided **1a** (5.89 g, 36.1 mmol, 90%) as a colorless oil.

1-(1-isothiocyanatoethyl)-4-methylbenzene (**1b**) ^{S2}: The title compound was synthesized according to General procedure B from the starting amine (276 mg, 2.0 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded **1b** (284 mg, 1.60 mmol, 78%) as a colorless oil.

1-(1-isothiocyanatoethyl)-4-methoxybenzene (1c) ^{s2}: The title compound was synthesized according to General procedure B from the starting amine (631 mg, 4.17 mmol). Purified by flash

column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded **1c** (603 mg, 3.12 mmol, 75%) as a pale yellow oil.

4-(1-(1,3-dioxoisoindolin-2-yl)ethyl)benzonitrile: The title compound was synthesized according to General procedure C with DEAD from the starting aldehyde (393 mg, 3.0 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) afforded 4-(1-(1,3-dioxoisoindolin-2-yl)ethyl)benzonitrile (479 mg, 1.74 mmol, 57% (two step)) as a white solid. ¹H NMR (CDCl₃ 500 MHz) δ 1.93 (d, *J* = 7.5 Hz, 3H), 5.59 (q, *J* = 7.5 Hz, 1H), 7.59–7.64 (m, 4H), 7.73 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.82 (dd, *J* = 5.5, 3.0 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 17.3, 49.1, 111.7, 118.7, 123.5, 128.3, 131.8, 132.5, 134.3, 145.4, 168.0; HRMS (APCI, positive) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₃N₂O₂ 277.0972; Found 277.0973.

4-(1-isothiocyanatoethyl)benzonitrile (1d): The title compound was synthesized according to General procedure E from 4-(1-(1,3-dioxoisoindolin-2-yl)ethyl)benzonitrile (414 mg, 1.5 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded 1d (210 mg, 1.11 mmol, 76% (two step)) as a white solid.

¹H NMR (CDCl₃ 500 MHz) δ 1.70 (d, *J* = 7.0 Hz, 3H), 5.00 (q, *J* = 7.0 Hz, 1H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 24.7, 56.5, 111.9, 118.2, 126.2, 132.7, 134.2, 145.1; HRMS (APCI, positive) *m/z*: [M+H]⁺ Calcd for C₁₀H₉N₂S 189.0481; Found 189.0483.

2-(1-(4-(trifluoromethyl)phenyl)ethyl)isoindoline-1,3-dione: The title compound was synthesized according to General procedure C with diisopropyl azodicarboxylate from the starting aldehyde (875 mg, 5.0 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) afforded 2-(1-(4-(trifluoromethyl)phenyl)ethyl)isoindoline-1,3-dione (693 mg, 2.17 mmol, 43% (two step)) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 1.94 (d, *J* = 7.0 Hz, 3H), 5.61 (q, *J* = 7.0 Hz, 1H), 7.57–7.63 (m, 4H), 7.71 (dd, *J* = 5.0, 3.0 Hz, 2H), 7.82 (dd, *J* = 5.0, 3.0 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 17.5, 49.2, 123.5, 124.1 (q, *J* = 272 Hz), 125.6, 128.0, 130.0 (q, *J* = 32.5 Hz), 131.9, 134.3, 144.2, 168.2; HRMS (APCI, positive) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₃F₃NO₂ 320.0893; Found 320.0890.

1-(1-isothiocyanatoethyl)-4-(trifluoromethyl)benzene (**1e**): The title compound was synthesized according to General procedure E from 2-(1-(4-(trifluoromethyl)phenyl)ethyl)isoindoline-1,3-dione (480 mg, 1.5 mmol).. Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded **1e** (109 mg, 0.470 mmol, 31% (two step)) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 1.70 (d, *J* = 7.0 Hz, 3H), 5.00 (q, *J* = 7.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 25.1, 56.7, 124.0 (q, *J* = 273 Hz), 126.0, 126.1 (q, *J* = 3.5 Hz), 130.6 (q, *J* = 32.4 Hz), 134.0, 144.2; HRMS (APCI, positive) *m/z*: [M-NCS]⁺ Calcd for C₉H₈F₃ 173.0573; Found 173.0572.

2-(1-(4-fluorophenyl)ethyl)isoindoline-1,3-dione^{S3}: The title compound was synthesized according to General procedure D from the starting ketone (689 mg, 4.99 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) afforded 2-(1-(4-fluorophenyl)ethyl)isoindoline-1,3-dione (605 mg, 2.25 mmol, 45% (two step)) as a white solid.

1-fluoro-4-(1-isothiocyanatoethyl)benzene (**1f**)^{S2}: The title compound was synthesized according to General procedure E from 2-(1-(4-fluorophenyl)ethyl)isoindoline-1,3-dione (412 mg, 1.53 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded **1f** (106 mg, 0.584 mmol, 38% (two step)) as a pale yellow oil.

2,4-dichloro-1-(1-isothiocyanatoethyl)benzene (**1g**): The title compound was synthesized according to General procedure B from the starting amine (383 mg, 2.02 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded **1g** (158 mg, 0.682 mmol, 34%) as a colorless oil.

¹H NMR (CDCl₃ 500 MHz) δ 1.65 (d, *J* = 6.5 Hz, 3H), 5.33 (q, *J* = 6.5 Hz, 1H), 7.32 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.39 (d, *J* = 2.5 Hz, 1H), 7.46 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 23.6, 53.9, 127.8, 128.0, 129.7, 132.2, 134.0, 134.7, 136.4; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₉H₇Cl₂NS 230.9671; Found 230.9671.

1-bromo-4-(1-isothiocyanatoethyl)benzene $(1h)^{S2}$: The title compound was synthesized according to General procedure B from the starting amine (402 mg, 2.01 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded **1h** (276 mg, 1.14 mmol, 57%) as a colorless oil.

2-(1-(3-bromophenyl)ethyl)isoindoline-1,3-dione: The title compound was synthesized according to General procedure D from the starting ketone (928 mg, 5.02 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) afforded 2-(1-(3-bromophenyl)ethyl)isoindoline-1,3-dione (1.05 g, 3.19 mmol, 64% (two step)) as a colorless oil. ¹H NMR (CDCl₃ 500 MHz) δ 1.90 (d, *J* = 7.5 Hz, 3H), 5.52 (q, *J* = 7.5 Hz, 1H), 7.18–7.22 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.63–7.65 (m, 1H), 7.69–7.73 (m, 2H), 7.80–7.84 (m, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 17.6, 49.1, 122.7, 123.5, 126.2, 130.2, 130.8, 131.0, 132.0, 134.2, 142.6, 168.1; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₆H₁₂BrNO₂ 329.0046; Found 329.0048.

1-bromo-3-(1-isothiocyanatoethyl)benzene (1i)^{S4}: The title compound was synthesized according to General procedure E from 2-(1-(3-bromophenyl)ethyl)isoindoline-1,3-dione (661 mg, 2.00 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:20 to 80:20) afforded **1i** (424 mg, 1.75 mmol, 88% (two step)) as a pale yellow oil.

2-(1-(2-bromophenyl)ethyl)isoindoline-1,3-dione: The title compound was synthesized according to General procedure D from the starting ketone (997 mg, 5.01 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) afforded 2-(1-(3-bromophenyl)ethyl)isoindoline-1,3-dione (828 mg, 2.51 mmol, 50%) as a white solid. The product was contained byproduct. Although the product was contaminated with several byproducts, the product was directly used in the next step without further purification.

(¹H NMR and ¹³C NMR of this compound are attached in Figure S 34, Figure S 35.)

1-bromo-2-(1-isothiocyanatoethyl)benzene $(1j)^{S4}$: The title compound was synthesized according to General procedure E from 2-(1-(3-bromophenyl)ethyl)isoindoline-1,3-dione (496 mg, 1.5 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded 1-bromo-2-(1-isothiocyanatoethyl)benzene (150 mg, 0.619 mmol, 41% (two step)) as a colorless oil.

1-(1-isothiocyanatoethyl)naphthalene $(1k)^{84}$: The title compound was synthesized according to General procedure B from the starting amine (856 mg, 5.00 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded 1-bromo-2-(1-isothiocyanatoethyl)benzene (905 mg, 4.24 mmol, 85%) as a colorless oil.

7-ethyl-2*H***-chromen-2-one**: Cu(OAc)₂ (2.18 g, 12 mmol, 1.0 equiv.), NaOAc (2.96 g, 36 mmol, 3.0 equiv.), 1,10-phenanthroline (432 mg, 2.4 mmol, 20 mol%), Pd(OAc)₂ (270 mg, 1.2 mmol, 10 mol%) and activated MS 4A (1.58 g) were added to a 300 mL two-neck round bottom flask with a stirring bar. The flask was filled with oxygen by employing the usual Schlenk technique (evacuate-refill cycle). Dichloroethane (100 mL), 3-ethylphenol (2.99 g, 24 mmol, 2.0 equiv.), and methyl acetate (1.04 g, 12 mmol, 1.0 equiv.) were added to the flask and the mixture was stirred for 24 h at 110 °C. The crude mixture was filtered by celite with EtOAc and the organic layer was concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 97:3 to 75:25) and GPC provided 7-ethyl-2*H*-chromen-2-one (363 mg, 2.09 mmol, 17%) as an orange solid.

¹H NMR (CDCl₃ 500 MHz) δ 1.28 (t, J = 7.5 Hz, 3H), 2.75 (q, J = 7.5 Hz, 2H), 6.36 (d, J = 9.5 Hz, 1H), 7.13 (dd, J = 7.5, 1.5 Hz, 1H), 7.17 (s, 1H), 7.39 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 9.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 15.3, 29.1, 115.6, 116.0, 116.8, 124.6, 127.8, 143.5, 149.5, 154.4, 161.3; HRMS (APCI, positive) m/z: [M+H]⁺ Calcd for C₁₁H₁₁O₂ 175.0754; Found 175.0752.

7-(1-thiocyanatoethyl)-2H-chromen-2-one: 7-Ethyl-2H-chromen-2-one (363 mg, 2.09 mmol, 1.0 equiv.) and Selectfluor (1.06 g, 3.00 mmol, 1.4 equiv.) were added to a 50 mL round bottom flask with a stirring bar. The flask was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle). Acetonitrile (10 mL) and TMSNCS (428 mg, 3.26 mmol, 1.6 equiv.) were added to the flask and the mixture was stirred under dark for 0.5 h followed by blue light irradiation and a cooling fan for 6 h. The reaction temperature was 25 °C at the beginning and gradually increased to 65 °C by irradiation of blue light. The crude mixture was passed through a short pad of silica gel and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 90:10 to 0:100) provided 7-(1-thiocyanatoethyl)-2H-chromen-2-one (419 mg, 1.81 mmol, 87%) as a pale yellow solid.

¹H NMR (CDCl₃ 500 MHz) δ 1.90 (d, J = 7.0 Hz, 3H), 4.65 (q, J = 7.0 Hz, 1H), 6.46 (d, J = 9.5 Hz, 1H), 7.32–7.36 (m, 2H), 7.54 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 9.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 21.6, 47.6, 111.0, 115.5, 117.5, 119.2, 123.3, 128.7, 142.8, 143.7, 154.2, 160.3; HRMS (APCI, positive) m/z: [M+H]⁺ Calcd for C₁₂H₁₀NO₂S 232.0427; Found 232.0427.

7-(1-isothiocyanatoethyl)-2*H*-chromen-2-one (11): 7-(1-Thiocyanatoethyl)-2*H*-chromen-2-one (347 mg, 1.50 mmol, 1.0 equiv.), MeNO₂ (15 mL) and ZnCl₂ (409 mg, 3.0 mmol, 2.0 equiv.) were added to a 50 mL round bottom flask with a stirring bar and the mixture was stirred for 3 h at 60 °C. H_2O (15 mL) was added to the crude mixture and extracted with CHCl₃. The organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) provided **11** (233 mg, 1.01 mmol, 67%) as a white solid.

¹H NMR (CDCl₃ 500 MHz) δ 1.72 (d, J = 7.0 Hz, 3H), 5.02 (q, J = 7.0 Hz, 1H), 6.45 (d, J = 9.5 Hz, 1H), 7.26–7.30 (m, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 9.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 25.1, 56.7, 114.2, 117.2, 118.7, 121.7, 128.7, 134.5, 142.9, 144.7, 154.4, 160.5; HRMS (APCI, positive) m/z: [M+H]⁺ Calcd for C₁₂H₁₀NO₂S 232.0427; Found 232.0428.

6-ethyl-2*H***-chromen-2-one^{S5}**: Cu(OAc)₂ (2.19 g, 12 mmol, 1.0 equiv.), NaOAc (2.96 g, 36 mmol, 3.0 equiv.), 1,10-phenanthroline (432 mg, 2.4 mmol, 20 mol%), Pd(OAc)₂ (270 mg, 1.2 mmol, 10 mol%), 4-ethylphenol (2.93 g, 24 mmol, 2.0 equiv.) and activated MS 4A (1.58 g) were added to a 300 mL two-neck round bottom flask with a stirring bar. The flask was filled with oxygen by employing the usual Schlenk technique (evacuate-refill cycle). Dichloroethane (100 mL) and methyl acetate (1.05 g, 12 mmol, 1.0 equiv.) were added to the flask and the mixture was stirred for 24 h at 110 °C. The crude mixture was filtered by celite with EtOAc and the organic layer was concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 97:3 to 75:25) and GPC provided 6-ethyl-2*H*-chromen-2-one (476 mg, 2.73 mmol, 22%) as a pale yellow solid.

6-(1-thiocyanatoethyl)-2H-chromen-2-one: 6-Ethyl-2*H*-chromen-2-one (686 mg, 3.94 mmol, 1.0 equiv.) and Selectfluor (2.13 g, 6.01 mmol, 1.5 equiv.) were added to a 50 mL round bottom flask with a stirring bar. The flask was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle). Acetonitrile (20 mL) and TMSNCS (775 mg, 5.91 mmol, 1.5 equiv.) were added to the flask and the mixture was stirred under dark for 0.5 h followed by blue light irradiation and a cooling fan for 6 h. The reaction temperature was 25 °C at the beginning and gradually increased to 65 °C by irradiation of blue light. The crude mixture was passed through a short pad of

silica gel and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 90:10 to 0:100) provided 6-(1-thiocyanatoethyl)-2*H*-chromen-2-one (661 mg, 2.86 mmol, 73%) as a pale yellow solid.

¹H NMR (CDCl₃ 500 MHz) δ 1.91 (d, *J* = 7.5 Hz, 3H), 4.64 (q, *J* = 7.5 Hz, 1H), 6.48 (d, *J* = 9.5 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 1H), 7.52 (d, *J* = 2.5 Hz, 1H), 7.57 (dd, *J* = 8.5, 2.5 Hz, 1H), 7.72 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 21.8, 47.4, 111.2, 117.5, 117.7, 119.0, 126.5, 130.6, 135.8, 143.0, 154.0, 160.2; HRMS (APCI, positive) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₀NO₂S 232.0427; Found 232.0427.

6-(1-isothiocyanatoethyl)-2*H***-chromen-2-one (1m)**: 6-(1-Thiocyanatoethyl)-2*H*-chromen-2-one (231 mg, 1.00 mmol, 1.0 equiv.), MeNO₂ (10 mL) and ZnCl₂ (280 mg, 2.0 mmol, 2.0 equiv.) were added to a 50 mL round bottom flask with a stirring bar and the mixture was stirred for 20 h at rt. H₂O (15 mL) was added to the crude mixture and extracted with CHCl₃ × 3. The organic layer was dried with Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) provided **1m** (149 mg, 0.646 mmol, 65%) as a pale yellow solid. ¹H NMR (CDCl₃ 500 MHz) δ 1.73 (d, *J* = 7.0 Hz, 3H), 5.01 (q, *J* = 7.0 Hz, 1H), 6.48 (d, *J* = 10.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.47–7.49 (m, 2H), 7.73 (d, *J* = 10.0 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 25.1, 56.3, 117.4, 117.6, 119.0, 124.8, 129.1, 133.8, 136.7, 143.1, 153.7, 160.4; HRMS (APCI, positive) *m/z*:[M+H]⁺ Calcd for C₁₂H₁₀NO₂S 232.0427; Found 232.0426.

1n: The title compound was synthesized according to General procedure B from the starting amine (985 mg, 4.99 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) two times afforded 1n (305 mg, 1.28 mmol, 26%) as a colorless oil.

¹H NMR (CDCl₃ 500 MHz) δ 3.13–3.21 (m, 2H), 4.93–4.96 (m, 1H), 7.14 (d, *J* = 7.0 Hz, 2H), 7.24–7.39 (m, 8H); ¹³C NMR (CDCl₃ 126 MHz) δ 45.8, 63.4, 126.2, 127.4, 128.5, 128.7, 128.9, 129.6, 132.9, 136.3, 138.6; HRMS (APCI, positive) *m*/*z*: [M-NCS]⁺ Calcd for C₁₄H₁₃ 181.1012; Found 181.1014.

1-isothiocyanato-2,3-dihydro-1*H***-indene** (**10**)^{S2}: The title compound was synthesized according to General procedure B from the starting amine (670 mg, 5.03 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded 1-isothiocyanato-2,3-dihydro-1*H*-indene (697 mg, 3.98 mmol, 79%) as a brown oil.

1-isothiocyanato-1,2,3,4-tetrahydronaphthalene $(1p)^{S2}$: The title compound was synthesized according to General procedure B from the starting amine (740 mg, 5.03 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded 1-isothiocyanato-1,2,3,4-tetrahydronaphthalene (929 mg, 4.91 mmol, 98%) as a yellow oil.

 $1q^{s6}$: The title compound was synthesized according to General procedure B from the starting amine (357 mg, 1.99 mmol). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 70:30) afforded 1q (337 mg, 1.52 mmol, 76%) as a colorless oil.

5. Characterization Data

(Z)-(2-bromo-1-isothiocyanatovinyl)benzene (2a): The title compound was synthesized according to General procedure A from 1a (31.8 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/CHCl₃ = 100:0 to 80:20) afforded 2a (40.2 mg, 0.167 mmol, 86%) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 6.72 (s, 1H), 7.39–7.42 (m, 3H), 7.46–7.50 (m, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 104.6, 125.4, 129.1, 129.9, 133.6, 134.5, 138.5; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₉H₆BrNS 238.9399; Found 238.9399.

(Z)-1-(2-bromo-1-isothiocyanatovinyl)-4-methylbenzene (2b): The title compound was synthesized according to General procedure A from 1b (36.1 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/CHCl₃ = 100:0 to 80:20) afforded 2b (29.4 mg, 0.116 mmol, 57%) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 2.36 (s, 3H), 6.64 (s, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 21.4, 103.6, 125.4, 129.8, 130.9, 134.5, 138.4, 140.1; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₀H₈BrNS 252.9555; Found 252.9556.

(Z)-1-(2-bromo-1-isothiocyanatovinyl)-4-methoxybenzene (2c): The title compound was synthesized according to General procedure A from 1c (39.2 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/CHCl₃ = 100:0 to 80:20) afforded 2c (21.7 mg, 0.0803 mmol, 40%) as a colorless oil.

¹H NMR (CDCl₃ 500 MHz) δ 3.83 (s, 3H), 6.57 (s, 1H), 6.91 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) 55.6, 102.5, 114.4, 126.3, 126.9, 134.2, 138.3, 160.8; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₀H₈NOS 268.9504; Found 268.9505.

(Z)-4-(2-bromo-1-isothiocyanatovinyl)benzonitrile (2d): The title compound was synthesized according to General procedure A from 1d (37.5 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded 2d (33.8 mg, 0.128 mmol, 64%) as a pale yellow solid.

¹H NMR (CDCl₃ 500 MHz) δ 6.93 (s, 1H), 7.60 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 108.4, 113.4, 118.2, 126.0, 132.9, 133.3, 137.6, 140.0; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₀H₅BrN₂S 263.9351; Found 263.9351.

(Z)-1-(2-bromo-1-isothiocyanatovinyl)-4-(trifluoromethyl)benzene (2e): The title compound was synthesized according to General procedure A from 1e (47.0 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) and GPC afforded 2e (23.8 mg, 0.0772 mmol, 38%) as a colorless oil.

¹H NMR (CDCl₃ 500 MHz) δ 6.86 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 107.0, 123.8 (q, *J* = 273 Hz), 125.9, 126.2 (q, *J* = 3.7 Hz), 131.7 (q, *J* = 33.6 Hz), 133.6, 137.0, 139.7; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₀H₅BrF₃NS 306.9273; Found 306.9272.

(Z)-1-(2-bromo-1-isothiocyanatovinyl)-4-fluorobenzene (2f): The title compound was synthesized according to General procedure A from 1f (37.1 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 90:10) afforded 2f (38.4 mg, 0.149 mmol, 73%) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 6.66 (s, 1H), 7.07–7.12 (m, 2H), 7.44–7.49 (m, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 104.4, 116.2 (d, *J* = 21.7 Hz), 127.5 (d, *J* = 8.4 Hz), 129.9 (d, *J* = 3.7 Hz), 133.7, 139.0, 163.5 (d, *J* = 251 Hz); HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₉H₅BrFNS 256.9305; Found 256.9304.

(Z)-1-(2-bromo-1-isothiocyanatovinyl)-2,4-dichlorobenzene (2g): The title compound was synthesized according to General procedure A from 1g (46.9 mg, 0.20 mmol scale). The

stereoselectivity was determined by ¹H NMR in the crude mixture. Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 90:10) and GPC afforded **2g** (36.8 mg, 0.119 mmol, 59%) as a white solid and (*E*)-1-(2-bromo-1-isothiocyanatovinyl)-2,4-dichlorobenzene (**2g**') (4.7 mg, 0.0152 mmol, 8%) as a pale yellow oil.

2g: ¹H NMR (CDCl₃ 500 MHz) δ 6.42 (s, 1H), 7.28–7.29 (m, 2H), 7.46 (t, *J* = 1.5 Hz, 1 H); ¹³C NMR (CDCl₃ 126 MHz) δ 107.7, 127.7, 130.5, 131.3, 131.6, 132.0, 133.5, 136.6, 140.0; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₉H₄BrCl₂ 306.8619; Found 306.8619.

(Z)-1-bromo-4-(2-bromo-1-isothiocyanatovinyl)benzene (2h): The title compound was synthesized according to General procedure A from 1h (51.1 mg, 0.21 mmol scale). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 90:10) afforded 2h (53.3 mg, 0.167 mmol, 79%) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 6.74 (s, 1H), 7.34 (d, *J* = 9.0 Hz, 2H), 7.52 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 105.3, 124.1, 126.9, 132.3, 132.6, 133.7, 139.2; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₉H₅Br₂NS 316.8504; Found 316.8504.

(Z)-1-bromo-3-(2-bromo-1-isothiocyanatovinyl)benzene (2i): The title compound was synthesized according to General procedure A from 1i (48.6 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded 2i (42.2 mg, 0.132 mmol, 66%) as a colorless oil.

¹H NMR (CDCl₃ 500 MHz) δ 6.77 (s, 1H), 7.26–7.29 (m, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.62 (s, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 106.2, 123.2, 124.1, 128.5, 130.6, 132.8, 133.3, 135.5, 139.4; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₉H₅Br₂NS 316.8504; Found 316.8503.

(Z)-1-bromo-2-(2-bromo-1-isothiocyanatovinyl)benzene (2j): The title compound was synthesized according to General procedure A from 1j (48.4 mg, 0.20 mmol scale). The

stereoselectivity was determined by ¹H NMR in the crude mixture. Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 90:10) and GPC afforded 2j (24.6 mg, 0.0771 mmol, 40%) as a colorless oil.

¹H NMR (CDCl₃ 500 MHz) δ 6.38 (s, 1H), 7.26–7.30 (m, 1H), 7.32–7.37 (m, 2H), 7.64 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 107.0, 122.1, 127.9, 130.9, 131.3, 133.8, 133.9, 135.6, 139.8; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₉H₅Br₂NS 316.8504; Found 316.8504.

(*Z*)-1-(2-bromo-1-isothiocyanatovinyl)naphthalene (2k): The title compound was synthesized according to General procedure A from 1k (47.0 mg, 0.22 mmol scale). The stereoselectivity was determined by ¹H NMR in crude mixture. Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 95:5) afforded the target product as the *E/Z* mixture (54.9 mg, 0.189 mmol, 86%). Furthermore, GPC afforded 2k (30.6 mg, 0.106 mmol, 48%) as a white solid and (*E*)-1-(2-bromo-1-isothiocyanatovinyl)naphthalene (2k') (3.0 mg, 0.0103 mmol, 5%) as a pale yellow oil. 2k: ¹H NMR (CDCl₃ 500 MHz) δ 6.41 (s, 1H), 7.42–7.48 (m, 2H), 7.52–7.62 (m, 2H), 7.87–7.92 (m, 2H), 8.02 (d, *J* = 8.5 Hz, 1 H); ¹³C NMR (CDCl₃ 126 MHz) δ 106.0, 124.6, 125.2, 126.7, 127.3, 127.5, 128.8, 130.4, 130.6, 132.3, 133.8, 134.1, 139.8; HRMS (APCI, positive) *m/z*: [M + H]⁺ Calcd for C₁₃H₉BrNS 289.9634; Found 289.9634.

(Z)-7-(2-bromo-1-isothiocyanatovinyl)-2*H*-chromen-2-one (2l): The title compound was synthesized according to General procedure A from 1l (46.8 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 90:10) and GPC afforded 2l (40.7 mg, 0.132 mmol, 65%) as a white solid.

¹H NMR (CDCl₃ 500 MHz) δ 6.48 (d, J = 9.5 Hz, 1H), 6.92 (s, 1H), 7.41 (dd, J = 8.0, 1.5 Hz, 1H), 7.45 (d, J = 1.5 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 9.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 107.6, 113.8, 117.9, 119.7, 121.3, 128.6, 133.4, 136.8, 139.8, 142.6, 154.3, 160.2; HRMS (APCI, positive) m/z: [M + H]⁺ Calcd for C₁₃H₉BrNS 307.9375; Found 307.9376.

(Z)-6-(2-bromo-1-isothiocyanatovinyl)-2*H*-chromen-2-one (2m): The title compound was synthesized according to General procedure A from 1m (46.4 mg, 0.20 mmol scale). Purified by

flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 90:10) and GPC afforded **2m** (34.0 mg, 0.110 mmol, 55%) as a pale yellow solid.

¹H NMR (CDCl₃ 500 MHz) δ 6.50 (d, J = 9.5 Hz, 1H), 6.80 (s, 1H), 7.36 (d, J = 8.5 Hz, 1H), 7.61– 7.65 (m, 2H), 7.74 (d, J = 9.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 105.7, 117.9, 118.0, 119.2, 124.9, 128.6, 130.2, 133.1, 139.6, 142.9, 154.6, 160.0; HRMS (APCI, positive) m/z: [M + H]⁺ Calcd for C₁₃H₉BrNS 307.9375; Found 307.9376.

(*E*)-(1-bromo-2-isothiocyanatoethene-1,2-diyl)dibenzene (2n): The title compound was synthesized according to General procedure A from 1n (45.8 mg, 0.19 mmol scale). The stereoselectivity was determined by ¹H NMR in crude mixture. Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 95:5) afforded the target products as *E/Z* mixture (50.6 mg, 0.160 mmol, 84%). Furthermore, GPC afforded 2n (26.7 mg, 0.0844 mmol, 44%) as a white solid and (*Z*)-(1-bromo-2-isothiocyanatoethene-1,2-diyl)dibenzene (2n') (6.8 mg, 0.0218 mmol, 11%) as a white solid. The stereoselectivity was determined by the yield of each compound. 2n: ¹H NMR (CDCl₃ 500 MHz) δ 7.15–7.26 (m, 10H); ¹³C NMR (CDCl₃ 126 MHz) δ 121.3, 128.4, 128.6, 128.9, 129.1, 129.2, 129.9, 130.3, 134.6, 137.1, 137.5; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₅H₁₀BrNS 314.9712; Found 314.9712.

(Z)-(1-bromo-2-isothiocyanatoethene-1,2-diyl)dibenzene (2n'):

¹H NMR (CDCl₃ 500 MHz) δ 7.36–7.50 (m, 6H), 7.58–7.64 (m, 4H); ¹³C NMR (CDCl₃ 126 MHz) δ 122.6, 128.2, 128.4, 128.6, 128.7, 129.3, 129.6, 130.3, 136.6, 137.1, 137.9; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₅H₁₀BrNS 314.9712; Found 314.9712.

2-bromo-3-isothiocyanato-1*H***-indene (20)**: AIBN (6.6 mg, 0.040 mmol, 0.20 equiv.) and NBS (72.4 mg, 0.407 mmol) were added to a dried reaction tube with a stirring bar. The tube was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle). Tetrachloromethane (4.0 mL) and **10** (106 mg, 0.60 mmol, 3.0 equiv.) were added to the tube and the mixture was stirred for 12 h at 90 °C. The crude mixture was quenched by saturated Na₂S₂O₃ *aq*. and extracted with

CHCl₃ (3 mL × 3). The organic layer was dried by Na_2SO_4 and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) and GPC provided **20** (23.6 mg, 0.0936 mmol, 46%) as a pale yellow solid.

¹H NMR (CDCl₃ 500 MHz) δ 3.64 (s, 2H), 7.25–7.29 (m, 1H), 7.32–7.38 (m, 2H), 7.42 (d, *J* = 7.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 42.5, 117.8, 118.3, 123.9, 126.6, 127.4, 130.9, 139.4, 140.3, 141.0; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₀H₆BrNS 250.9399; Found 250.9400.

3-bromo-4-isothiocyanato-1,2-dihydronaphthalene (**2p**): AIBN (6.5 mg, 0.040 mmol, 0.20 equiv.) and NBS (71.9 mg, 0.404 mmol) were added to a dried reaction tube with a stirring bar. The tube was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle). Tetrachloromethane (4.0 mL) and **1p** (113 mg, 0.60 mmol, 3.0 equiv.) were added to the tube and the mixture was stirred for 12 h at 90 °C. The crude mixture was quenched by saturated Na₂S₂O₃ *aq.* and extracted with CHCl₃ (3 mL × 3). The organic layer was dried by Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) and GPC provided **2p** (8.4 mg, 0.0316 mmol, 16%) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 2.87–2.97 (m, 4H), 7.13 (d, *J* = 6.0 Hz, 1H), 7.24–7.30 (m, 2H), 7.41 (d, *J* = 7.5 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 28.6, 33.8, 122.1, 122.9, 127.3, 127.8, 128.9, 130.3, 133.9 (Two sp² signals were not observed because of overlapping); HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₁H₈BrNS 264.9555; Found 264.9554.

2q: The title compound was synthesized according to General procedure A from **1q** (44.9 mg, 0.20 mmol scale). Purified by flash column chromatography on silica gel (hexane/EtOAc = 100:0 to 80:20) afforded **2q** (37.2 mg, 0.125 mmol, 61%) as a white solid.

¹H NMR (CDCl₃ 500 MHz) δ 1.64–1.69 (m, 3H), 1.72–1.76 (m, 9H), 2.07 (brs, 3H), 6.03 (s, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 28.2, 36.4, 40.1, 41.0, 101.9, 136.7, 144.0; HRMS (APCI, positive) *m/z*: [M]⁺ Calcd for C₁₃H₁₆BrNS 297.0181; Found 297.0182.

4-(4-phenylthiazol-2-yl)morpholine (3)⁸⁷: Alkenyl isothiocyanate **2a** (51.5 mg, 0.21 mmol, 1.0 equiv.) and MeCN (1.0 mL) were added to a dried reaction tube with a stirring bar. Then, morpholine (17.4 mg, 0.20 mmol, 1.0 equiv.) and DIPEA (53.1 mg, 0.41 mmol, 2.0 equiv.) in MeCN (1.0 mL) were added to the tube slowly and the mixture was stirred for 10 min at rt. The crude mixture was quenched by H₂O and extracted with EtOAc (3 mL × 3). The organic layer was dried by Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 95:5 to 50:50) afforded **3** (15.7 mg, 0.0637 mmol, 32%) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 3.54 (t, *J* = 5.0 Hz, 4H), 3.85 (t, *J* = 5.0 Hz, 4H) 6.80 (s, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.36–7.39 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 48.7, 66.4, 101.8, 126.2, 127.8, 128.7, 135.1, 152.0, 171.3; HRMS (ESI, positive) *m*/*z*: [M+H]⁺ Calcd for C₁₃H₁₅N₂OS 247.0905; Found 247.0903.

NCS

(*Z*)-(1-isothiocyanatoethene-1,2-diyl)dibenzene (4): To a dried reaction tube with a stirring bar was added Pd(dba)₂ (5.3 mg, 0.0092 mmol, 5.0 mol%), PPh₃ (5.6 mg, 0.021 mmol, 10 mol%), NaHCO₃ (50.6 mg, 0.60 mmol, 3.0 equiv.), and phenylboronic acid (36.4 mg, 0.30 mmol, 1.5 equiv.). The tube was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle). Toluene (1.0 mL), EtOH (0.20 mL), and H₂O (0.30 mL) and **2a** (48.9 mg, 0.20 mmol, 1.0 equiv.) were added to the tube and the mixture was stirred for 7 h at 80 °C. The crude mixture was quenched by H₂O and extracted with EtOAc (3 mL × 3). The organic layer was dried by Na₂SO₄ and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/CHCl₃ = 100:0 to 90:10) provided **4** (32.6 mg, 0.137 mmol, 67%) as a pale yellow oil.

¹H NMR (CDCl₃ 500 MHz) δ 6.75 (s, 1H), 7.31–7.46 (m, 6H), 7.60–7.62 (m, 2H), 7.70 (d, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃ 126 MHz) δ 124.4, 125.5, 126.9, 128.86, 128.88, 128.92, 129.0, 129.2, 134.4, 135.5, 136.3; HRMS (APCI, positive) m/z: [M + H]⁺ Calcd for C₁₅H₁₂NS 238.0685; Found 238.0684.

(Z)-(1-isothiocyanatobut-1-en-3-yne-1,4-diyl)dibenzene (5): To a dried reaction tube with a stirring bar was added Pd(PPh₃)₄ (11.0 mg, 0.0095 mmol, 5.0 mol%), PPh₃ (10.7 mg, 0.041 mmol, 20 mol%), K_2CO_3 (57.8 mg, 0.42 mmol, 2.0 equiv.), and CuI (3.7 mg, 0.019 mmol, 10 mol%). The tube was filled with nitrogen by employing the usual Schlenk technique (evacuate-refill cycle).

Dioxane (1.0 mL), **2a** (48.5 mg, 0.20 mmol, 1.0 equiv.), and phenylacetylene (41.7 mg, 0.408 mmol, 2.0 equiv.) were added to the tube and the mixture was stirred for 16 h at 60 °C. The crude mixture was passed through a short pad of silica gel and concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/CHCl₃ = 100:0 to 80:20) afforded **5** (15.9 mg, 0.0608 mmol, 30%) as a pale yellow solid.

¹H NMR (CDCl₃ 500 MHz) δ 6.42 (s, 1H), 7.35–7.42 (m, 6H), 7.57–7.62 (m, 4H); ¹³C NMR (CDCl₃ 126 MHz) δ 86.1, 101.9, 106.9, 122.9, 125.2, 128.6, 129.0, 129.1, 130.0, 131.7, 133.2, 137.4, 139.6; HRMS (APCI, positive) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₂NS 262.0685; Found 262.0685.

7-(2-(pentylamino)thiazol-4-yl)-2*H*-chromen-2-one (6): Alkenyl isothiocyanate 2m (61.9 mg, 0.20 mmol, 1.0 equiv.) and CH_2Cl_2 (1.0 mL) were added to a dried reaction tube with a stirring bar. Then, DIPEA (52.8 mg, 0.41 mmol, 2.0 equiv.) and pentane-1-amine (21.7 mg, 0.25 mmol, 1.2 equiv.) were added to the tube slowly and the mixture was stirred for 1 h at rt. The crude mixture was concentrated *in vacuo*. Purification by chromatography on silica gel (hexane/EtOAc = 85:15 to 50:50) and (CHCl₃/EtOAc = 95:5 to 80:20) afforded 6 (19.5 mg, 0.0620 mmol, 31%) as a pale yellow solid.

¹H NMR (CDCl₃ 500 MHz) δ 0.92 (t, *J* = 7.5 Hz, 3H), 1.32–1.43 (m, 4H), 1.64–1.71 (m, 2H), 3.28–3.33 (m, 2H), 5.34 (t, *J* = 4.5 Hz, 1H), 6.39 (d, *J* = 9.0 Hz, 1H), 6.86 (s, 1H), 7.46 (d, *J* = 8.5 Hz, 1H), 7.68–7.73 (m, 2H), 7.78 (d, *J* = 1.0 Hz, 1H); ¹³C NMR (CDCl₃ 126 MHz) δ 14.1, 22.5, 29.1, 29.2, 46.2, 103.6, 114.1, 116.1, 118.1, 122.2, 128.0, 138.7, 143.3, 149.8, 154.6, 161.2, 169.8. HRMS (APCI, positive) *m/z*: [M + H]⁺ Calcd for C₁₇H₁₉N₂O₂S 315.1162; Found 315.1161.

6. Photophysical Study

Figure S 3. UV-Vis absorption spectra of 2l (red line) and 6 (blue line).

Figure S 4. Fluorescence spectra of 2l (red line) and 6 (blue line).

7. X-ray Crystallographic Analysis

Single crystal X-ray diffraction (SCXRD)

SCXRD data was collected using a Rigaku XtaLAB Synergy-S diffractometer equipped with a HyPix6000HE hybrid photon counting detector using Cu K α radiation ($\lambda = 1.54184$ Å). The diffraction profiles were integrated using the CrysAlisPro software. Crystal structures were solved via direct methods using the SHELXT program and refined with SHELXL.^{S8,S9} All non-H atoms were refined using anisotropic thermal parameters. All calculations were performed using the Olex2 crystallographic software package.^{S10}

	2k
CCDC	2343587
formula	$C_{13}H_8BrNS$
fw	290.17
<i>T</i> (K)	150
λ (A)	1.54184
cryst syst	Monoclinic
space group	$P2_{1}/c$
<i>a</i> (Å)	11.7154(2)
<i>b</i> (Å)	14.3463(3)
<i>c</i> (Å)	7.0036(1)
α (deg)	90
β (deg)	102.820(2)
γ (deg)	90
$V(Å^3)$	1147.77(4)
Ζ	4
D_{calc} (g / cm ³)	1.679
$\mu (\mathrm{mm}^{-1})$	6.314
F(000)	576.0
cryst size (mm)	$0.50 \times 0.05 \times 0.05$
GOF on F^2	1.114
$R1, WR_2 [I > 2\sigma(I)]$	0.0363, 0.0985
$R1$, w R_2 [all data]	0.0380, 0.0999

Table S1. Crystallographic data and refinement details for 2k.

ORTEP drawing

Figure S 5. ORTEP drawing of 2k.

	2n
CCDC	2343588
formula	$C_{15}H_{10}BrNS$
fw	316.21
<i>T</i> (K)	150
λ (A)	1.54184
cryst syst	Orthorhombic
space group	Pbca
<i>a</i> (Å)	7.4897(2)
<i>b</i> (Å)	18.6819(4)
<i>c</i> (Å)	19.2474(4)
α (deg)	90
β (deg)	90
γ (deg)	90
$V(Å^3)$	2693.13(11)
Ζ	8
$D_{ m calc} ({ m g} / { m cm}^3)$	1.560
$\mu (\mathrm{mm}^{-1})$	5.435
F(000)	1264.0
cryst size (mm)	$0.3\times0.3\times0.01$
GOF on F^2	0.977
$R1, WR_2[I > 2\sigma(I)]$	0.0365, 0.0392
$R1$, w R_2 [all data]	0.1118, 0.1163

Table S2. Crystallographic data and refinement details for 2n.

ORTEP drawing

Figure S 6. ORTEP drawing of 2n.

8. Labelling of Phosphatidylethanolamine within Biomembranes by 21

General

Unless otherwise noted, all commercial reagents were used as received. Phospholipids used for membrane studies were purchased from Avanti Polar Lipids, Inc. D-Glucose used for membrane studies was purchased from FUJIFILM Wako Pure Chemical Co. CHCl₃ and CH₃OH used for membrane studies were purchased from Kanto Chemical Co. Phase-contrast and fluorescence microscopy observations were performed on an Olympus model IX73 inverted microscope, using a U-FUW mirror unit (excitation filter: $\lambda = 340-390$ nm, emission filter: $\lambda = 420$ nm) for fluorescence imaging. A coverslip was placed over the specimen through a 0.1 mm thick silicon-based spacer on a microscope slide. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was performed in the reflector mode on a JEOL model JMS-S3000 spectrometer using α -cyano-4-hydroxycinnamic (Tokyo Chemical Industry Co.) as a matrix.

Methods

Preparation of giant unilamellar vesicles for phase-contrast and fluorescence microscopy

To a CH₃Cl dispersion (20 μ L) of 1,2-dihexadecanoyl-*sn*-glycero-3-phosphoethanolamine (DPPE, 10 nmol) and **2l** (10 nmol) were added *N*,*N*-diisopropylethylamine (1.0 μ L, 5.7 μ mol) and the mixture was incubated for 40 min at room temperature. The organic solvent was removed by the N₂ gas flow, and the resulting film was redispersed in CH₃OH (10 μ L). Then, 1.0 μ L of the dispersion was mixed with a CH₃Cl dispersion (19 μ L) of 1,2-dioleoyl-*sn*-glycero-3-phosphocholine (DOPC, 38 nmol) and a CH₃OH solution (10 μ L) of D-glucose (40 nmol). The mixture was slowly evaporated to dryness under the N₂ gas flow at room temperature, and the resulting film was further dried under vacuum for 2 h. A lipid thin film developed on the interior surface of the test tube was hydrated with distilled water (5.0 μ L) for 10 min at 55 °C. Then, distilled water (195 μ L) was added to the test tube and the mixture was further incubated for 15 h at 37 °C to obtain a dispersion of giant unilamellar vesicles (GUVs) ([DOPC] = 190 μ M, [DPPE] = 10 μ M, [**2l**] = 10 μ M, [D-glucose] = 200 μ M).

Figure S 7. High-resolution MALDI-TOF mass spectrum of fluorophore-conjugated PE (7) using α cyano-4-hydroxycinnamic as a matrix.

9. Reference

- S1 J. Yu, J.-H. Lin, and J.-C. Xiao, Angew. Chem., Int. Ed., 2017, 22, 16669–16673.
- S2 S. Zhang, Y. Li, T. Wang, M. Li, L. Wen and W. Guo, Org. Lett., 2022, 24, 1742–1746.
- S3 H. Yang, Y. Zhou, Z. Zhang, J. Wen and X. Zhang Org. Lett., 2022, 24, 1842–1847.
- S4 B. Maeda, Y. Aihara, A. Sato, T. Kinoshita and K. Murakami, Org. Lett., 2022, 24, 7366–7371.
- S5 X. Yu, D. Scheller, O. Rademacher and T. Wolff, J. Org. Chem., 2003, 68, 7386–7399.
- S6 V. Burmistrov, R. Saxena, D. Pitushkin, G. M. Butov, F.-L. Chung and M. Aggawal, J. Med. Chem., 2021, 64, 6621–6633.
- S7 Y. Liu, T. Zhang and J.-P. Wan, J. Org. Chem., 2022, 87, 8248–8255.
- S8 G. M. Sheldrick, *Acta Cryst.*, 2008, A64, 112–122.
- S9 G. M. Sheldrick, *Acta Cryst.*, 2015, C71, 3–8.
- S10 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.

10. ¹H and ¹³C NMR Spectra

Figure S 8. ¹H NMR (500 MHz, CDCl₃) spectrum of 1a.

Figure S 9. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1a.

Figure S 10. ¹H NMR (500 MHz, CDCl₃) spectrum of 1b.

Figure S 11. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1b.

Figure S 12. ¹H NMR (500 MHz, CDCl₃) spectrum of 1c.

Figure S 13. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1c.

Figure S 14. ¹H NMR (500 MHz, CDCl₃) spectrum of 4-(1-(1,3-dioxoisoindolin-2yl)ethyl)benzonitrile.

Figure S 15. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4-(1-(1,3-dioxoisoindolin-2yl)ethyl)benzonitrile.

Figure S 16. ¹H NMR (500 MHz, CDCl₃) spectrum of 1d.

Figure S 17. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1d.

Figure S 18. ¹H NMR (500 MHz, CDCl₃) spectrum of 2-(1-(4-(trifluoromethyl)phenyl)ethyl)isoindoline-1,3-dione.

Figure S 19. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2-(1-(4-(trifluoromethyl)phenyl)ethyl)isoindoline-1,3-dione.

Figure S 20. ¹H NMR (500 MHz, CDCl₃) spectrum of 1e.

Figure S 21. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1e.

Figure S 22. ¹H NMR (500 MHz, CDCl₃) spectrum of 2-(1-(4-fluorophenyl)ethyl)isoindoline-1,3dione.

Figure S 23. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2-(1-(4-fluorophenyl)ethyl)isoindoline-1,3dione.

Figure S 24. ¹H NMR (500 MHz, CDCl₃) spectrum of 1f.

Figure S 25.¹³C NMR (126 MHz, CDCl₃) spectrum of 1f.

Figure S 26. ¹H NMR (500 MHz, CDCl₃) spectrum of 1g.

Figure S 27. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1g.

Figure S 28. ¹H NMR (500 MHz, CDCl₃) spectrum of 1h.

Figure S 29. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1h.

Figure S 30. ¹H NMR (500 MHz, CDCl₃) spectrum of 2-(1-(3-bromophenyl)ethyl)isoindoline-1,3dione.

Figure S 31. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2-(1-(3-bromophenyl)ethyl)isoindoline-1,3dione.

Figure S 32. ¹H NMR (500 MHz, CDCl₃) spectrum of 1i.

Figure S 33. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1i.

Figure S 34. ¹H NMR (500 MHz, CDCl₃) spectrum of 2-(1-(2-bromophenyl)ethyl)isoindoline-1,3dione.

Figure S 35. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2-(1-(2-bromophenyl)ethyl)isoindoline-1,3dione.

Figure S 36. ¹H NMR (500 MHz, CDCl₃) spectrum of 1j.

Figure S 37. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1j.

Figure S 38. ¹H NMR (500 MHz, CDCl₃) spectrum of 1k.

Figure S 39. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1k.

Figure S 40. ¹H NMR (500 MHz, CDCl₃) spectrum of 7-ethyl-2*H*-chromen-2-one.

Figure S 41. ¹³C NMR (126 MHz, CDCl₃) spectrum of 7-ethyl-2*H*-chromen-2-one.

Figure S 42. ¹H NMR (500 MHz, CDCl₃) spectrum of 7-(1-thiocyanatoethyl)-2*H*-chromen-2-one.

Figure S 43. ¹³C NMR (126 MHz, CDCl₃) spectrum of 7-(1-thiocyanatoethyl)-2*H*-chromen-2-one.

Figure S 44. ¹H NMR (500 MHz, CDCl₃) spectrum of 11.

Figure S 45. ¹³C NMR (126 MHz, CDCl₃) spectrum of 11.

Figure S 46. ¹H NMR (500 MHz, CDCl₃) spectrum of 6-ethyl-2*H*-chromen-2-one.

Figure S 47. ¹³C NMR (126 MHz, CDCl₃) spectrum of 6-ethyl-2*H*-chromen-2-one.

Figure S 48. ¹H NMR (500 MHz, CDCl₃) spectrum of 6-(1-thiocyanatoethyl)-2*H*-chromen-2-one.

Figure S 49. ¹³C NMR (126 MHz, CDCl₃) spectrum of 6-(1-thiocyanatoethyl)-2*H*-chromen-2-one.

Figure S 50. ¹H NMR (500 MHz, CDCl₃) spectrum of 1m.

Figure S 51. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1m.

Figure S 52. ¹H NMR (500 MHz, CDCl₃) spectrum of 1n.

Figure S 53. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1n.

Figure S 54. ¹H NMR (500 MHz, CDCl₃) spectrum of 10.

Figure S 55. ¹³C NMR (126 MHz, CDCl₃) spectrum of 10.

Figure S 56. ¹H NMR (500 MHz, CDCl₃) spectrum of 1p.

Figure S 57. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1p.

Figure S 58. ¹H NMR (500 MHz, CDCl₃) spectrum of 1q.

Figure S 59. ¹³C NMR (126 MHz, CDCl₃) spectrum of 1q.

Figure S 60. ¹H NMR (500 MHz, CDCl₃) spectrum of 2a.

Figure S 61. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2a.

Figure S 62. ¹H NMR (500 MHz, CDCl₃) spectrum of 2b.

Figure S 63. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2b.

Figure S 64. ¹H NMR (500 MHz, CDCl₃) spectrum of 2c.

Figure S 65. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2c.

Figure S 66. ¹H NMR (500 MHz, CDCl₃) spectrum of 2d.

Figure S 67. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2d.

Figure S 68. ¹H NMR (500 MHz, CDCl₃) spectrum of 2e.

Figure S 69. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2e.

Figure S 70. ¹H NMR (500 MHz, CDCl₃) spectrum of 2f.

Figure S 71. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2f.

Figure S 72. ¹H NMR (500 MHz, CDCl₃) spectrum of 2g.

Figure S 73. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2g.

Figure S 74. ¹H NMR (500 MHz, CDCl₃) spectrum of 2h.

Figure S 75. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2h.

Figure S 76. ¹H NMR (500 MHz, CDCl₃) spectrum of 2i.

Figure S 77. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2i.

Figure S 78. ¹H NMR (500 MHz, CDCl₃) spectrum of 2j.

Figure S 79. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2j.

Figure S 80. ¹H NMR (500 MHz, CDCl₃) spectrum of 2k.

Figure S 81. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2k.

Figure S 82. ¹H NMR (500 MHz, CDCl₃) spectrum of 2l.

Figure S 83. ¹³C NMR (126 MHz, CDCl₃) spectrum of 21.

Figure S 84. ¹H NMR (500 MHz, CDCl₃) spectrum of 2m.

Figure S 85. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2m.

Figure S 86. ¹H NMR (500 MHz, CDCl₃) spectrum of 2n.

Figure S 87. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2n.

Figure S 88. ¹H NMR (500 MHz, CDCl₃) spectrum of 2n'.

Figure S 89. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2n'.

Figure S 90. ¹H NMR (500 MHz, CDCl₃) spectrum of 20.

Figure S 91. ¹³C NMR (126 MHz, CDCl₃) spectrum of 20.

Figure S 92. ¹H NMR (500 MHz, CDCl₃) spectrum of 2p.

Figure S 93. ¹³C NMR (126 MHz, CDCl₃) spectrum of **2p**.

Figure S 94. ¹H NMR (500 MHz, CDCl₃) spectrum of 2q.

Figure S 95. ¹³C NMR (126 MHz, CDCl₃) spectrum of 2q.

Figure S 96. ¹H NMR (500 MHz, CDCl₃) spectrum of 3.

Figure S 97. ¹³C NMR (126 MHz, CDCl₃) spectrum of 3.

Figure S 98. ¹H NMR (500 MHz, CDCl₃) spectrum of 4.

Figure S 99. ¹³C NMR (126 MHz, CDCl₃) spectrum of 4.

Figure S 100. ¹H NMR (500 MHz, CDCl₃) spectrum of 5.

Figure S 101. ¹³C NMR (126 MHz, CDCl₃) spectrum of 5.

Figure S 102. ¹H NMR (500 MHz, CDCl₃) spectrum of 6.

Figure S 103. ¹³C NMR (126 MHz, CDCl₃) spectrum of 6.