Supporting Information

Electrochemical ring-opening carboxylation of cyclic carbonate with carbon dioxide

Li Tao, He Wang, Xiao-Fei Liu, Wei-Min Ren, Xiao-Bing Lu and Wen-Zhen Zhang*

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials. Dalian University of Technology, Dalian, 116024, China

E-mail: zhangwz@dlut.edu.cn.

Contents

1. General information	3
2. General procedure for the preparation of substrates	4
3. General procedure for the electrocarboxylation reactions	10
4. Optimization of electrocarboxylation of cyclic carbonate	11
5. General procedure for the gram-scale reaction	12
6. Characterization of products	13
7. X-ray crystallographic data	26
8. Synthetic applications	30
9. Mechanistic studies	33
10. NMR spectra of substrates and all products	60
11. References	136

1. General information

Unless otherwise stated, all manipulations were performed using standard Schlenk techniques under a dry argon or carbon dioxide atmosphere. DMF and DCM were distilled with CaH₂. THF and toluene were distilled from sodium/benzophenone. All the solvents were stored over 4A molecular sieves before used. NMR spectra were recorded on 400 M, 600 M (¹H NMR, 400 MHz, 600 MHz; ¹³C NMR, 101 MHz, 151 MHz; ¹⁹F NMR, 376 MHz) spectrometer in CDCl₃, DMSO-*d*₆ or CD₃OD at ambient temperature and chemical shifts are expressed in parts per million (δ , ppm). Proton chemical shifts are referenced to 7.26 ppm (CDCl₃), 2.50 ppm (DMSO-*d*₆) or 3.30 ppm (CD₃OD) and carbon chemical shifts are referenced to 77.0 ppm (CDCl₃) or 39.5 ppm (DMSO-*d*₆) or 49.0 ppm (CD₃OD). High resolution mass spectra (HRMS) were recorded on a Q-TOF mass spectrometry equipped with Z-spray ionization source. Infrared spectra (IR) were measured using a Nicolet NEXUS FT-IR spectrophotometer. Carbon dioxide (99.999%), and other commercially available reagents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros, Adamas, Energy Chemical, or Innochem and used directly without further purification.

2. General procedure for the preparation of substrates

2.1 General method A for preparation of diol intermediate $^{[1]}$

Ar
$$(1) \operatorname{NalO}_4$$
, LiBr, AcOH, 95 °C, 18 h
 $(2) \operatorname{K}_2\operatorname{CO}_3$, MeOH, rt $(1) \operatorname{Ar}$

A mixture of olefin (7.5 mmol), NaIO₄ (30 mol %), and LiBr (20 mol %) was taken in a 100 mL round bottomed flask, and glacial acetic acid (10 mL) was added. The reaction mixture was heated at 95 °C (using an oil bath) for 18 h. The light-yellow colored reaction mixture turned purple after completion of the reaction. The reaction mixture was cooled and then extracted with EtOAc (30 mL × 3), and the combined organic phase was washed with saturated sodium thiosulfate solution, water, and aqueous NaHCO₃. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude product, which was subjected to basic hydrolysis without purification. The hydrolysis was carried out by stirring the reaction mixture with K_2CO_3 (1.5 equiv.) in methanol (20 mL) at 25 °C for 24 h. After completion of the reaction, methanol was removed under reduced pressure, and the reaction mixture was extracted with EtOAc (30 mL × 3). The combined organic phase was washed with water and brine. The organic layer was then dried over anhydrous Na₂SO₄ and concentrated under 7/3) to afford pure diol.

2.2 General method B for preparation of diol intermediate^[2]

$$Ar \xrightarrow{O} Me \xrightarrow{1) \text{SeO}_{2,1,4-\text{dioxane, H}_2O, 65 °C-105 °C}} OH Ar \xrightarrow{OH} OH$$

A 250 mL round bottom flask equipped with a magnetic stirring bar was charged with SeO₂ (2.8 g, 25 mmol), 1,4-dioxane (27 mL) and water (3 mL), and stirred at 65 °C until all SeO₂ was dissolved. Then the selected ketone (10 mmol) was added. The reaction mixture was then heated and stirred at 105 °C overnight. After reaction was completed, all the solvent was removed under vacuum, MeOH (30 mL) was then added to the reaction residue. Subsequently, NaBH₄ (0.9 g, 25 mmol) was added to the mixture slowly at 0 °C. The reaction mixture was stirred at room temperature for additional 3 h. The solvent was then removed under vacuo and exacted with EtOAc. The organic phase was collected and dried over Na₂SO₄. Then, the filtrate concentrated under reduced pressure to give the residue which was purified via chromatography over silica gel (petroleum ether/ethyl acetate 2/1) to yield the desired glycols.

2.3 General method for preparation of cyclic carbonate substrates ^[4]

To a solution of diphenyl carbonate (1.0 equiv.) and a vicinal diol (1.1 equiv.) in 2-Me-THF (5 mL) was added TBD (2.0 mol %). The resultant mixture was stirred in an oil bath at the indicated temperature. After completion of the reaction as determined by TLC, drop of acetic acid was added to the reaction mixture. The obtained mixture was directly purified by flash column chromatography on silica gel to afford the desired cyclic carbonate (PE: ethyl acetate was gradually changed from 9:1 to 4:1). When TLC showed that a cyclic carbonate is essentially copular with phenol, the following procedure was applied just prior to flash column chromatography to remove phenol. Upon completion of the reaction, the reaction mixture was diluted with ethyl acetate. The mixture was washed successively with 35% NaOH solution (10 mL \times 2), water (10 mL \times 2), and brine (10 mL), dried over anhydrous MgSO₄, filtered, and concentrated using a rotary evaporator to afford the crude mixture.

4-(4-Cyclohexylphenyl)-1,3-dioxolan-2-one (1d). White solid, 163 mg, 44% yield, m.p.: 104 – 106 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (s, 4H), 5.66 (t, *J* = 8.0 Hz, 1H), 4.79 (t, *J* = 8.4 Hz, 1H), 4.37 (t, *J* = 8.3 Hz, 1H), 2.55 (tt, *J* = 10.7, 3.0 Hz, 1H), 1.91 – 1.84 (m, 4H), 1.78 (d, *J* = 12.2 Hz, 1H), 1.43 (td, *J* = 9.6, 3.7 Hz, 4H), 1.33 – 1.23 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 155.0, 150.1, 133.1, 127.8, 126.2, 78.2, 71.2, 44.4, 34.4, 26.9, 26.1. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₅H₁₈NaO₃ 269.1153; Found 269.1152.
IR (neat cm⁻¹) v 2954, 1732, 2923, 1732, 1462, 805.

4-(4-(Benzyloxy) phenyl)-1,3-dioxolan-2-one (1f). White solid, 276 mg, 68% yield, m.p.: 124 – 126 °C. ¹H NMR (400 MHz, Chloroformd) δ 7.44 – 7.29 (m, 7H), 7.03 (d, *J* = 8.4 Hz, 2H), 5.62 (t, *J* = 8.1 Hz, 1H), 5.09 (s, 2H), 4.75 (t, *J* = 8.4 Hz, 1H), 4.35 (t, *J* = 8.4 Hz, 1H). ¹³C

NMR (151 MHz, Chloroform-*d*) δ 159.8, 154.8, 136.3, 128.6, 128.1, 127.7, 127.6, 127.4, 115.5, 78.0, 71.0, 70.1. HRMS (ESI, m/z): [M+Na]⁺ calcd for C₁₆H₁₄NaO₄ 293.0789; Found 293.0784. IR (neat cm⁻¹) ν 2958, 2922, 1735, 1511, 832.

4-(3,4-Dimethylphenyl)-1,3-dioxolan-2-one (1h). White solid, 230 mg, 68% yield, m.p.: 52 - 54 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, J = 7.7 Hz, 1H), 7.13 (s, 1H), 7.09 (d, J = 7.7 Hz, 1H), 5.61 (t, J = 8.0 Hz, 1H), 4.76 (t, J = 8.4 Hz, 1H), 4.34 (t, J = 8.2 Hz, 1H), 2.29 (d, J = 2.3 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 154.9, 138.5,

137.7, 133.0, 130.3, 127.1, 123.4, 78.1, 71.1, 19.7, 19.5. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₁H₁₂NaO₃ 215.0684; Found 215.0682. **IR** (neat cm⁻¹) v 2958, 2923, 1802, 1379, 822.

4-(4-Fluoro-2-methoxyphenyl)-1,3-dioxolan-2-one (1i). Colorless oil,
247 mg, 58% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (ddd, J = 8.5, 6.4, 0.8 Hz, 1H), 6.82 - 6.59 (m, 2H), 5.82 - 5.74 (t, J = 8 Hz, 1H),
4.81 (t, J = 8.5 Hz, 1H), 4.26 (dd, J = 8.4, 7.2 Hz, 1H), 3.85 (s, 3H). ¹³C

NMR (101 MHz, Chloroform-*d*) δ 165.4, 162.9, 157.6 (d, J = 10.2 Hz), 154.9, 120.5 (d, J = 3.0 Hz), 107.2 (d, J = 21.5 Hz), 99.4 (d, J = 26.4 Hz), 74.6, 70.3, 55.8, 30.8. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -109.09. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₀H₉FNaO₄ 235.0382; Found 235.0379. IR (neat cm⁻¹) v 2960, 1809, 1732, 1283, 830,770.

OMe

4-Mesityl-1,3-dioxolan-2-one (1j). White solid, 258 mg, 85% yield, m.p.: 105 – 107 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.89 (s, 2H), 6.12 (t, *J* = 9.3 Hz, 1H), 4.72 (t, *J* = 8.9 Hz, 1H), 4.36 (dd, *J* = 9.5, 8.6 Hz, 1H), 2.36 (s, 6H), 2.28 (s, 3H). ¹³C NMR (151 MHz, Chloroform*d*) δ 155.1, 139.3, 136.7, 130.7, 127.4, 75.3, 68.8, 20.8, 20.1. HRMS

(ESI-TOF) m/z: $[M+Na]^+$ Calcd for $C_{12}H_{14}NaO_3$ 229.0840; Found 229.0836. **IR** (neat cm⁻¹) v 2955, 2923, 1788, 1611, 1378, 853, 770.

4-(4-Methoxyphenyl)-5-methyl-1,3-dioxolan-2-one (1m). *Trans*, colorless oil, 124 mg, 59% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.15 (m, 2H), 7.04 – 6.74 (m, 2H), 5.07 (d, *J* = 8.1 Hz, 1H), 4.60 (t, *J* = 6.5 Hz, 1H), 3.82 (d, *J* = 1.7 Hz, 3H), 1.52 (dd, *J* = 6.3, 1.8

Hz, 3H). ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 160.6, 154.3, 127.8, 126.6, 114.5, 84.9, 80.6, 55.3, 18.0. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₁₂NaO₄ 231.0633; Found 231.0625. **IR** (neat cm⁻¹) *v* 2923, 1798, 1613, 1251, 832

Methyl 4-(2-oxo-1,3-dioxolan-4-yl) benzoate (1q). White solid, 357 mg, 62%, m.p.: 106 - 108 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 5.74 (t, J = 8.0 Hz, 1H), 4.85 (t, J = 8.5 Hz, 1H), 4.32 (t, J = 8.2 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 166.2, 154.4, 140.5, 131.4, 130.5,

125.5, 77.1, 70.9, 52.4. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₁₀NaO₅ 245.0425; Found 245.0422. **IR** (neat cm⁻¹) v 2953, 2923, 1723, 1377, 1163,812.

> 4-(3-Fluorophenyl)-1,3-dioxolan-2-one (1r). White solid, 284 mg, 78% yield, m.p.: 68 – 70 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.43 (td, J = 8.0, 5.7 Hz, 1H), 7.17 – 7.06 (m, 3H), 5.67 (t, J = 7.9 Hz, 1H), 4.82 (t, J = 8.4 Hz, 1H), 4.32 (t, J = 8.2 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-

d) δ 163.0 (d, J = 248.4 Hz), 154.4, 138.3 (d, J = 7.1 Hz), 131.0 (d, J = 7.9 Hz), 122.5 – 119.2 (m), 116.6 (d, J = 21.5 Hz), 112.8 (d, J = 22.9 Hz), 70.9. **HRMS** (ESI, m/z): [M+Na]⁺ calcd for C₉H₇FNaO₃ 205.0271; Found 205.0271. **IR** (neat cm⁻¹) v 2954, 2923, 1738, 1070, 783.

MeOOC

4-(2,5-Difluorophenyl)-1,3-dioxolan-2-one (1s). Colorless oil, 298 mg, 75% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.21 – 7.17 (m, 1H), 7.14 - 7.09 (m, 2H), 5.87 (t, J = 7.9 Hz, 1H), 4.89 (td, J = 8.6, 1.1 Hz, 1H),4.34 (ddd, J = 8.5, 7.4, 0.9 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*)

δ 158.7 (d, J = 245.5 Hz), 155.5 (dd, J = 243.0, 3.0 Hz), 154.1, 125.2 (dd, J = 15.3, 7.6 Hz), 117.3 (ddd, J = 39.2, 23.9, 8.7 Hz), 113.7 (d, J = 4.2 Hz), 113.5 (d, J = 4.2 Hz), 72.4 (d, J = 2.9Hz), 70.0 (d, J = 3.2 Hz). ¹⁹F NMR (565 MHz, Chloroform-d) δ -116.57 (d, J = 17.9 Hz), -124.09 (d, J = 17.4 Hz). **HRMS** (ESI, m/z): $[M+Na]^+$ calcd for C₉H₆F₂NaO₃ 223.0182; Found 223.0178. **IR** (neat cm⁻¹) v 2953, 2922, 1745, 1377, 680.

4-(Benzo[b]thiophen-2-yl)-1,3-dioxolan-2-one (1v). White solid, 313mg, 71% yield, m.p.: 143 - 145 °C. ¹H NMR (400 MHz, Chloroformd) δ 7.87 – 7.84 (m, 2H), 7.43 – 7.40 (m, 3H), 5.99 (ddd, J = 8.1, 7.4, 0.8Hz, 1H), 4.84 (dd, J = 8.8, 8.0 Hz, 1H), 4.57 (dd, J = 8.8, 7.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 154.0, 139.9, 138.7, 138.1, 125.6,

125.0, 124.3, 122.7, 74.5, 70.5. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₁H₈NaO₃S 243.0091; Found 243.0090. IR (neat cm⁻¹) v 2955, 1784, 1458, 1069, 748.

4-(Benzofuran-2-yl)-1,3-dioxolan-2-one (1w). White solid, 354 mg, 87% yield, m.p.: 129 - 131 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (ddd, J = 7.8, 1.4, 0.7 Hz, 1H), 7.52 (dq, J = 8.3, 0.9 Hz, 1H), 7.38 (ddd, J = 8.4, 7.3, 1.4 Hz, 1H), 7.29 (td, J = 7.6, 1.0 Hz, 1H), 6.94 (s, 1H), 5.81 (t, J = 7.7 Hz, 1H), 4.78 (d, J = 1.3 Hz, 1H), 4.76 (d, J = 0.7 Hz, 1H). ¹³C

NMR (151 MHz, Chloroform-*d*) δ 155.4, 154.1, 149.4, 127.0, 125.9, 123.5, 121.8, 111.7, 108.1, 71.3, 67.4. **HRMS** (ESI, m/z): [M+Na]⁺ Calcd for C₁₁H₈NaO₄ 227.0320; Found 227.0321. **IR** (neat cm⁻¹) *v* 2955, 2923, 2360, 1804, 1732, 752.

0 4-(4 0 255 8.3 (t, .

4-(4-Methoxynaphthalen-1-yl)-1,3-dioxolan-2-one (1x). White solid, 255 mg, 52%, m.p.: 90 – 92 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.39 – 8.36 (m, 1H), 7.64 – 7.55 (m, 4H), 6.84 (d, *J* = 8.1 Hz, 1H), 6.33 (t, *J* = 7.4 Hz, 1H), 4.99 (t, *J* = 8.3 Hz, 1H), 4.42 (dd, *J* = 8.5, 7.5 Hz,

1H), 4.03 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.5, 154.9, 130.4, 127.6, 125.9, 125.6, 123.4, 123.1, 121.3, 102.9, 75.8, 70.6, 55.6, 30.8. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₄H₁₂NaO₄ 267.0633; Found 267.0625. **IR** (neat cm⁻¹) *v* 2955, 2932, 1804, 1734, 764.

Me O O Me O O Me **4-(2,5-Dimethylphenyl)-1,3-dioxolan-2-one (1ab).** Colorless oil, 273 mg, 71% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (s, 1H), 7.10 (s, 2H), 5.87 (t, *J* = 8.0 Hz, 1H), 4.81 (t, *J* = 8.3 Hz, 1H), 4.26 (t, *J* = 8.1 Hz, 1H), 2.35 (s, 3H), 2.26 (s, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 154.9, 136.5, 133.8, 131.2, 130.9, 129.8, 125.2, 75.5, 70.4, 21.0, 18.4. HRMS (ESI-TOF)

m/*z*: [M+Na]⁺ Calcd for C₁₁H₁₂NaO₃ 215.0684; Found 215.0681. **IR** (neat cm⁻¹) *v* 2954, 1804, 1731, 1461, 1378, 880.

4-(3-(Benzyloxy) phenyl)-1,3-dioxolan-2-one (1ad). White solid, 214 mg, 40% yield, m.p.: 76 – 78 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.33 (m, 6H), 7.02 – 6.92 (m, 3H), 5.64 (t, *J* = 8.0 Hz, 1H), 5.08 (s, 2H), 4.78 (t, *J* = 8.4 Hz, 1H), 4.31 (dd, *J* = 8.6, 7.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3, 154.7, 137.4, 136.3, 130.4, 128.6, 128.1, 127.4, 118.0,

115.9, 112.2, 77.6, 71.0, 70.1. **HRMS** (ESI-TOF) m/z: $[M+Na]^+$ Calcd for C₁₆H₁₄NaO₄ 293.0789; Found 293.0781.**IR** (neat cm⁻¹) v 2954, 1801, 1733, 1601, 1291,876.

4-(3,5-Dimethylphenyl)-1,3-dioxolan-2-one (1ae). White solid, 264 mg, 69% yield, m.p.: 58 – 60 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 (s, 1H), 6.96 (s, 2H), 5.59 (t, J = 8.0 Hz, 1H), 4.76 (t, J = 8.4 Hz, 1H), 4.33 (dd, J = 8.6, 7.8 Hz, 1H), 2.34 (s, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 155.0, 139.0, 135.7, 131.3, 123.5, 78.1, 71.2, 21.2.

HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₁H₁₂NaO₃ 215.0684; Found 215.0679. **IR** (neat cm⁻¹) v 2958, 2922, 1745, 1377, 770.

p-Tolyl

4-(4'-Methyl-[1,1'-biphenyl]-4-yl)-1,3-dioxolan-2-one (1ag). White solid, 137 mg, 54% yield, m.p.: $166 - 168 \,^{\circ}$ C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 - 7.64 (m, 2H), 7.50 - 7.41 (m, 4H), 7.27 (d, $J = 8.5 \,$ Hz, 2H), 5.72 (t, $J = 8.0 \,$ Hz, 1H), 4.82 (t, $J = 8.4 \,$

Hz, 1H), 4.39 (dd, J = 8.6, 7.9 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.77, 142.72, 137.79, 137.10, 134.22, 129.64, 127.69, 126.94, 126.37, 77.89, 71.10, 21.10. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₆H₁₄NaO₃ 277.0840; Found 277.0833. **IR** (neat cm⁻¹) *v* 2953, 2922, 2360, 1790,1167, 808.

4-(Anthracen-9-yl)-1,3-dioxolan-2-one (1ai). Yellow solid, 212 mg, 52% yield, m.p.: 144 – 146 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (s, 1H), 8.16 (d, *J* = 9.0 Hz, 2H), 8.06 (d, *J* = 7.9 Hz, 2H), 7.61 – 7.50 (m, 4H), 7.20 (t, *J* = 9.6 Hz, 1H), 4.95 (t, *J* = 8.9 Hz, 1H), 4.84 (dd, *J* = 10.2, 8.7 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.1, 131.3, 131.1, 130.2,

129.9, 127.5, 125.1, 122.7, 122.2, 74.9, 69.7. **HRMS** (ESI, m/z): $[M+Na]^+$ calcd for $C_{17}H_{12}NaO_3$ 287.0684; Found 287.0683. **IR** (neat cm⁻¹) v 2925, 1805, 1168, 1377, 730.

3. General procedure for the electrocarboxylation reactions

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **1** (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode, and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. The reaction mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3×20 mL). The combined organic phase was dried by anhydrous MgSO₄ and evaporated in vacuum. The residue was methylated at 0 °C with TMSCHN₂ (2 M in hexane, 0.6 mL) in 2 mL of ether/methanol (1:1 v/v) solvent. Finally, the corresponding methylation product was purified by column chromatography (10:1-3:1 v/v petroleum ether/ethyl acetate).

Figure S1. Photos for the electrocaboxylation. Pt ($10 \text{ mm} \times 10 \text{ mm} \times 0.3 \text{ mm}$), Mg ($20 \text{ mm} \times 10 \text{ mm} \times 0.5 \text{ mm}$). Electrochemical cell: 50 mL.

Entry	Anode	Cathode	Electrolyte	Т	Solvent	Current	t	Yield ^[b]
1	Pt	Mg	Bu ₄ NBF ₄	rt	DMF	10 mA	4 h	89(78 ^[c])
2	Pt	Zn	Bu ₄ NBF ₄	rt	DMF	10 mA	4 h	64
3	Pt	Ni	Bu ₄ NBF ₄	rt	DMF	10 mA	4 h	76
4	Ni	Mg	Bu ₄ NBF ₄	rt	DMF	10 mA	4 h	37
5	Cu	Mg	Bu ₄ NBF ₄	rt	DMF	10 mA	4 h	50
6	С	Mg	Bu ₄ NBF ₄	rt	DMF	10 mA	4 h	61
7	Pt	Mg	Bu ₄ NPF ₆	rt	DMF	10 mA	4 h	60
8	Pt	Mg	Bu ₄ NI	rt	DMF	10 mA	4 h	70
9	Pt	Mg	Bu ₄ NClO ₄	rt	DMF	10 mA	4 h	67
10	Pt	Mg	Et ₄ NI	rt	DMF	10 mA	4 h	71
11	Pt	Mg	Bu ₄ NBF ₄	rt	DMSO	10 mA	4 h	87
12	Pt	Mg	Bu ₄ NBF ₄	rt	THF	10 mA	4 h	52
13	Pt	Mg	Bu ₄ NBF ₄	rt	CH ₃ CN	10 mA	4 h	49
14	Pt	Mg	Bu ₄ NBF ₄	rt	NMP	10 mA	4 h	51
15	Pt	Mg	Bu ₄ NBF ₄	rt	DMF	5 mA	4 h	37
16	Pt	Mg	Bu ₄ NBF ₄	rt	DMF	7.5 mA	4 h	58
17	Pt	Mg	Bu ₄ NBF ₄	rt	DMF	12.5 mA	4 h	87
18	Pt	Mg	Bu ₄ NBF ₄	rt	DMF	15 mA	4 h	63
19	Pt	Mg	Bu ₄ NBF ₄	rt	DMF	20 mA	2 h	72
20	Pt	Mg	Bu ₄ NBF ₄	rt	DMF	5 mA	8 h	69
21	Pt	Mg	Bu ₄ NBF ₄	0 °C	DMF	10 mA	4 h	62
22	Pt	Mg	Bu ₄ NBF ₄	40 °C	DMF	10 mA	4 h	76

4. Optimization of electrocarboxylation of cyclic carbonate

Table S1. Optimization of electrocarboxylation of cyclic carbonate.^[a]

[a] Reaction condition: 1 (0.3 mmol), TBABF₄ (0.3 mmol), CO₂ (1 atm), DMF (5 mL), constant current i = 10 mA, undivided cell, rt. [b] Determined by NMR spectroscopy using mesitylene as the internal standard. [c] Isolated yield

5. General procedure for the gram-scale reaction

A 500 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **1a** (30 mmol), TBABF₄ (15 mmol) and DMF (400 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 200 mA for 24 h at room temperature. Then the reaction mixture was carefully quenched with HCl (1M, 300 mL) at 0 °C and extracted three times with ethyl acetate (3×300 mL). The combined organic layers were washed with brine (2×300 mL) and dried over Na₂SO₄. The solvents were removed under reduced pressure and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate/AcOH 1/1/0.005) to give desired product.

Figure S2. Photos for the gram-scale reaction. Pt 30 mm \times 30 mm \times 0.1 mm), Mg (50 mm \times 60 mm \times 0.5 mm). Electrochemical cell: 400 mL.

6. Characterization of products

Dimethyl 2-phenylsuccinate (2a). White solid, 52 mg, 78% yield, **Dimethyl 2-phenylsuccinate (2a).** White solid, 52 mg, 78% yield, m.p.: 60 – 62 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.26 (m, 5H), 4.09 (dd, J = 10.1, 5.2 Hz, 1H), 3.67 (d, J = 2.0 Hz, 6H), 3.21 (dd, J = 17.0, 10.1 Hz, 1H), 2.67 (dd, J = 17.0, 5.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform *d*) δ 173.4, 171.9, 137.6, 128.8, 127.7, 127.6, 52.3, 51.8, 47.0, 37.6. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₅O₄ 223.0970; Found 223.0963. IR (neat cm⁻¹) *v* 3031, 2953, 1735, 1436, 699

NMR (101 MHz, Chloroform-*d*) δ 173.5, 172.0, 137.3, 134.6, 129.5, 127.5, 52.2, 51.7, 46.6, 37.6, 20.9. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₃H₁₆NaO₄ 259.0946; Found 259.0947. **IR** (neat cm⁻¹) *v* 2953, 2341, 1733, 1371, 817

Dimethyl 2-(4-(tert-butyl) phenyl) succinate (2c). White solid, 60 mg, 72% yield, m.p.: 94 – 96 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 3.99 (dd, J = 10.4, 4.9 Hz, 1H), 3.59 (s, 6H), 3.12 (dd, J =

17.0, 10.4 Hz, 1H), 2.59 (d, J = 5.0 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (101 MHz, Chloroformd) δ 173.5, 172.0, 150.4, 134.5, 127.2, 125.7, 52.1, 51.7, 46.5, 37.5, 34.4, 31.2. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₆H₂₂NaO₄ 301.1415; Found 301.1414. IR (neat cm⁻¹)., 2953, 1738, 1513, 1436, 849

Dimethyl 2-(4-cyclohexylphenyl) succinate (2d). White solid, 56 mg, 62%. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.20 – 7.14 (m, 4H), 4.06 (dd, *J* = 10.4, 4.9 Hz, 1H), 3.67 (s, 6H), 3.20 (dd, *J* = 17.0, 10.4 Hz, 1H), 2.64 (dd, *J* = 17.0, 4.9 Hz, 1H), 2.49 – 2.44

(m, 1H), 1.86 - 1.80 (m, 4H), 1.74 (ddt, J = 12.0, 2.9, 1.4 Hz, 1H), 1.44 - 1.32 (m, 4H), 1.26 - 1.22 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 172.0, 147.4, 134.8, 127.4, 127.2, 52.2, 51.7, 46.6, 44.0, 37.6, 34.3, 26.7, 26.0. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₂₄NaO₄ 327.1572; Found 327.1568. IR (neat cm⁻¹) ν 2953, 2924, 1738, 1342, 824, 724.

Dimethyl 2-(4-methoxyphenyl) succinate (2e). White solid, 40 mg, 53 % yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.19 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 4.03 (dd, *J* = 9.9, 5.4 Hz, 1H), 3.78 (s, 3H), 3.66 (d, *J* = 1.7 Hz, 6H), 3.26 – 3.10

(m, 1H), 2.64 (dd, J = 16.9, 5.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 171.9, 159.0, 129.6, 128.7, 114.2, 55.2, 52.2, 51.8, 46.2, 37.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₃H₁₆NaO₅ 275.0895; Found 275.0900. IR (neat cm⁻¹) v 2953, 2923, 1731, 1256, 830.

Dimethyl 2-(4-(benzyloxy) phenyl) succinate (2f). White solid, 40 mg, 41% yield, m.p.: 158 - 160 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.43 – 7.31 (m, 5H), 7.20 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 5.04 (s, 2H), 4.04 (dd, J = 10.0, 5.4 Hz,

1H), 3.67 (d, J = 1.9 Hz, 6H), 3.18 (dd, J = 16.9, 10.0 Hz, 1H), 2.65 (dd, J = 16.9, 5.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 171.9, 158.2, 136.8, 129.9, 128.7, 128.5, 127.9, 127.4, 115.1, 70.0, 52.2, 51.8, 46.2, 37.6. HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for C₁₉H₂₁O₅ 329.1389; Found 329.1380. IR (neat cm⁻¹) *v* 2955, 2923, 1737, 1246, 848.

Dimethyl 2-(4-fluorophenyl) succinate (2g). White solid, 38 mg, 53% yield, m.p.: 64 - 66 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.20 - 7.16 (m, 2H), 6.96 - 6.92 (m, 2H), 4.00 (dd, J = 9.7, 5.6 Hz, 1H), 3.60 (d, J = 4.6 Hz, 6H), 3.10 (dd, J = 16.9, 9.7 Hz, 1H),

2.59 (dd, J = 16.9, 5.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.2, 171.7, 162.2 (d, J = 246.5 Hz), 133.3 (d, J = 3.5 Hz), 129.3 (d, J = 8.1 Hz), 115.7 (d, J = 21.5 Hz), 52.3, 51.8, 46.2, 37.5. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -114.61. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₂H₁₃FNaO₄ 263.0695; Found 263.0686. IR (neat cm⁻¹) v 2955, 2923, 1735, 1377, 822.

Dimethyl 2-(3,4-dimethylphenyl) succinate (2h). White solid, 50 mg, 67% yield, m.p.: 46 – 48 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.10 – 6.99 (m, 3H), 4.03 (dd, J = 10.2, 5.2 Hz, 1H), 3.68 (d, J = 1.1 Hz, 6H), 3.20 (dd, J = 17.0, 10.2 Hz, 1H),

2.64 (dd, J = 17.0, 5.1 Hz, 1H), 2.24 (d, J = 5.5 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 172.0, 137.0, 135.9, 135.0, 130.0, 128.8, 124.9, 52.2, 51.7, 46.5, 37.6, 19.7, 19.3. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₄H₁₈NaO₄ 273.1102; Found 273.1097. IR (neat cm⁻¹) v 2952, 1738, 1384, 1202, 848,737.

Dimethyl 2-(4-fluoro-2-methoxyphenyl) succinate (2i). White solid, 30 mg, 37% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.13 – 7.09 (m, 1H), 6.63 – 6.59 (m, 2H), 4.36 (dd, J = 9.3, 5.5 Hz, 1H), 3.80 (s, 3H), 3.66 (d, J = 0.7 Hz, 6H), 3.11 (dd, J = 16.8, 9.3

Hz, 1H), 2.57 (dd, J = 16.8, 5.6 Hz, 1H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 173.5, 172.2, 163.0 (d, J = 245.8 Hz), 157.7 (d, J = 10.0 Hz), 129.7 (d, J = 9.9 Hz), 122.3 (d, J = 3.1 Hz), 107.0 (d, J = 21.3 Hz), 99.3 (d, J = 25.7 Hz), 55.6, 52.2, 51.7, 41.2, 36.3. ¹⁹F **NMR** (565 MHz, Chloroform-*d*) δ -116.60. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₃H₁₅FNaO₅ 293.0801; Found 293.0797. **IR** (neat cm⁻¹) *v* 2954, 2924, 1736, 1230, 837,759.

Dimethyl 2-mesitylsuccinate (2j). White solid, 40 mg, 51% yield, m.p.: 57 – 59 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.85 (s, 2H), 4.64 (dd, J = 9.5, 4.5 Hz, 1H), 3.69 (d, J = 14.1 Hz, 6H), 3.31 (dd, J = 16.7, 9.5 Hz, 1H), 2.42 (dd, J = 16.7, 4.5 Hz,

1H), 2.25 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 172.5, 136.7, 136.3, 132.6, 129.8, 52.3, 51.8, 41.6, 35.1, 20.7. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₅H₂₀NaO₄ 287.1259; Found 287.1257. IR (neat cm⁻¹) *v* 2952, 2923, 1736, 1378, 1198, 825,731.

Dimethyl 2-methyl-3-phenylsuccinate (2k). White solid, 33 mg, 47% Ph \downarrow COOMe \downarrow yield, *trans/cis* = 3:1. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.23 (m, 5H), 3.81 (d, *J* = 10.8 Hz, 1H), 3.67 (s, 3H), 3.42 (s, 3H), 3.25 (dq, *J* = 10.9, 6.9 Hz, 1H), 1.29 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) mixture of isomers: δ 176.1, 174.5, 173.6, 172.6, 136.6, 136.2, 128.8, 128.5, 128.3, 128.2, 127.7, 127.6, 54.6, 54.0, 52.1, 51.9, 51.5, 43.6, 42.2, 16.3, 15.3. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₃H₁₆NaO₄ 259.0946; Found 259.0940. **IR** (neat cm⁻¹) *v* 2953, 2924, 1732, 1377, 699.

Dimethyl 2-(4-methoxyphenyl)-3-methylsuccinate (2m). White solid, 17 mg, 22% yield, *trans/cis* = 5:1. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (d, *J* = 8.7 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 3.77 (s, 3H), 3.73 (d, *J* = 6.7 Hz, 1H), 3.67 (s,

3H), 3.44 (s, 3H), 3.21 (dq, J = 11.0, 6.9 Hz, 1H), 1.27 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) mixture of isomers: δ 174.6, 172.9, 129.4, 129.3, 128.7, 114.2, 113.9, 55.1, 53.9, 52.0, 51.5, 43.8, 42.3, 30.8, 16.3. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₉O₅ 267.1232; Found 267.1229. IR (neat cm⁻¹) *v* 2952, 2923, 1731, 1251, 829.

Methyl 3-hydroxy-2-(4-(trifluoromethyl) phenyl) propanoate (3n). White solid, 41 mg, 55% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 8.7 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 4.13 (t, J = 9.6 Hz, 1H), 3.91 (dd, J = 8.0, 5.1 Hz, 1H), 3.88 – 3.84

(m, 1H), 3.72 (s, 3H), 2.51 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.9, 139.5, 130.0 (d, *J* = 32.6 Hz), 128.6, 125.7 (q, *J* = 3.8 Hz), 125.2, 122.5, 64.2, 53.5, 52.4. ¹⁹F NMR (565 MHz, Chloroform-*d*) δ -62.67. HRMS (ESI-TOF) *m*/*z*: [M-H]⁻ Calcd for C₁₁H₁₀F₃O₃ 247.0582; Found 247.0589. IR (neat cm⁻¹) *v* 3357, 2957, 1735, 1327, 841.

Methyl 3-hydroxy-2-(4-nitrophenyl) propanoate (30). White solid, 25 mg, 37% yield, m.p.: 110 – 112 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, *J* = 8.7 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 4.15 – 4.11 (m, 1H), 3.98 – 3.91 (m, 2H), 3.74 (s, 3H), 2.36 (t, *J* =

6.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.3, 147.5, 142.9, 129.2, 123.9, 64.0, 53.4, 52.5. HRMS (ESI-TOF) *m*/*z*: [M-H]⁻ Calcd for C₁₀H₁₀NO₅ 224.0559; Found 224.0564. IR (neat cm⁻¹) *v* 3416, 2954, 2924, 1727, 1515, 1345, 851.

Methyl 2-(4-cyanophenyl)-3-hydroxypropanoate (3p). White solid, 27 mg, 49% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 4.09 (d, J = 9.9 Hz, 1H), 3.88 (q, J = 10.9, 8.0 Hz, 2H), 3.72 (s, 3H), 2.49 (s, 1H). ¹³C NMR (101

MHz, Chloroform-*d*) δ 172.4, 140.9, 132.5, 129.1, 118.4, 111.6, 63.9, 53.6, 52.5. **HRMS** (ESI-TOF) *m/z*: [M-H]⁻ Calcd for C₁₁H₁₀NO₃ 204.0660; Found 204.0670. **IR** (neat cm⁻¹) *v* 3436, 2954, 2924, 2230, 1733, 837.

COOMe
OHMethyl4-(3-hydroxy-1-methoxy-1-oxopropan-2-yl)
benzoate (3q). White solid, 51 mg, 72% yield. ¹H NMR (400
MHz, Chloroform-d) δ 7.99 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 7.9
Hz, 2H), 4.12 (dd, J = 10.8, 8.3 Hz, 1H), 3.91 – 3.88 (m, 4H), 3.83 (dd, J = 10.8, 5.2 Hz, 1H),
3.70 (s, 3H), 2.60 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.8, 166.6, 140.7, 130.0,
129.5, 128.2, 64.2, 53.8, 52.2, 52.0. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₂H₁₄NaO₅

261.0738; Found 261.0737. **IR** (neat cm⁻¹) v 3446, 2954, 1724, 1166, 824.

COOMe Methyl 2-(3-fluorophenyl)-3-hydroxypropanoate (3r). White solid, OH 45 mg, 76% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.30 (tdd, J =

7.2, 6.0, 1.3 Hz, 1H), 7.06 – 6.96 (m, 3H), 4.14 – 4.08 (m, 1H), 3.86 – 3.80 (m, 2H), 3.72 (s, 3H), 2.44 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.0, 162.8 (d, *J* = 246.7 Hz), 137.8 (d, *J* = 7.4 Hz), 130.3 (d, *J* = 8.5 Hz), 123.9 (d, *J* = 2.9 Hz), 115.2 (d, *J* = 22.1 Hz), 114.7 (d, *J* = 21.2 Hz), 64.3, 53.4, 52.3. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 112.28. HRMS (ESI, m/z): [M+Na]⁺ calcd for C₁₀H₁₁FNaO₃ 221.0589; Found 221.0583. IR (neat cm⁻¹) v 3418, 2954, 2931, 1737, 1249, 691.

Methyl 2-(2,5-difluorophenyl)-3-hydroxypropanoate (3s). White
solid, 37 mg, 57% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.03 –
6.93 (m, 3H), 4.12 – 4.05 (m, 2H), 3.86 – 3.83 (m, 1H), 3.73 (s, 3H),
2.67 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.7, 157.5 (dd, J

= 451.8, 2.3 Hz),) 157.5 (dd, J = 33.7, 2.5 Hz), 124.7 (d, J = 7.9 Hz), 124.5 (d, J = 8.1 Hz), 116.88 – 115.6 (m), 63.2, 52.5, 46.6. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -118.09 (d, J = 17.9 Hz), -123.71 (d, J = 16.7 Hz). HRMS (ESI-TOF) m/z: [M+Na] ⁺ Calcd for C₁₀H₁₀F₂NaO₃ 239.0495; Found 239.0493. IR (neat cm⁻¹) v 3435, 2955, 2925, 1736, 1377, 875, 816.

COOME Methyl 3-hydroxy-2-(naphthalen-2-yl) propanoate (3t). White oH solid, 38 mg, 53% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 - 7.81 (m, 3H), 7.74 (d, J = 1.7 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.39 (dd, J = 8.5, 1.9 Hz, 1H), 4.25 (dd, J = 11.1, 8.7 Hz, 1H), 4.03 (dd, J = 8.6, 5.3 Hz, 1H), 3.91 (dd, J = 11.1, 5.3 Hz, 1H), 3.73 (s, 3H), 2.44 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 133.3, 132.9, 132.7, 128.6, 127.7, 127.6, 127.1, 126.3, 126.1, 125.8, 64.5, 53.9, 52.2. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₄H₁₄NaO₃ 253.0840; Found 253.0839. IR (neat cm⁻¹) v 3445, 2951, 1733, 1599, 749. $\begin{array}{c|c} \textbf{Methyl 3-hydroxy-2-(naphthalen-1-yl) propanoate (3u).} White solid, \\ \textbf{45 mg, 65\% yield. ^{1}H NMR (400 MHz, Chloroform-$ *d* $) <math>\delta$ 8.11 (d, *J* = 8.4 Hz, 1H), 7.85 (dd, *J* = 30.0, 7.8 Hz, 2H), 7.59 - 7.50 (m, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 7.1 Hz, 1H), 4.69 (dd, *J* = 9.1, 4.6 Hz, 1H), 4.32 (t, *J* = 10.3 Hz, 1H), 3.92 - 3.88 (m, 1H), 3.72 (s, 3H), 2.64 (s, 1H). ^{13}C NMR (101 MHz, Chloroform-*d*) δ 174.3, 134.0, 131.7, 131.3, 129.0, 128.3, 126.6, 125.8, 125.4, 125.3, 122.8, 64.1, 52.2, 49.6. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₄H₁₄NaO₃ 253.0840; Found 253.0835. IR (neat cm⁻¹) *v* 3456, 2958, 2924, 1732, 735.

Methyl 3-hydroxy-2-(4-methoxynaphthalen-1-yl) propanoate (3v). White solid, 33 mg, 42%, m.p.: 106 - 108 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (d, J = 8.3 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.58 - 7.49 (m, 2H), 7.29 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0

Hz, 1H), 4.58 (dd, J = 9.2, 4.7 Hz, 1H), 4.28 (dd, J = 11.3, 9.2 Hz, 1H), 3.99 (s, 3H), 3.87 (dd, J = 11.3, 4.7 Hz, 1H), 3.71 (s, 3H), 2.63 (s, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.6, 155.2, 132.2, 127.1, 126.0, 125.5, 125.1, 123.6, 122.8, 122.5, 103.2, 64.1, 55.4, 52.2, 49.1. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₅H₁₆NaO₄ 283.0946; Found 283.0943. **IR** (neat cm⁻¹) ν 3440, 2958, 2924, 1732, 1250, 754.

Methyl 2-(benzofuran-2-yl)-3-hydroxypropanoate (3w). White solid, 35 mg, 53% yield, m.p.: 49 - 51 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 (d, J = 7.7 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.29 - 7.20 (m, 2H), 6.67 (s, 1H), 4.25 (dd, J = 12.1, 6.9 Hz, 1H), 4.10 (td,

J = 11.4, 5.1 Hz, 2H), 3.78 (s, 3H), 2.44 (s, 1H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 171.0, 154.7, 151.9, 128.1, 124.2, 122.9, 120.8, 111.1, 104.9, 62.2, 52.6, 47.9. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₂H₁₂NaO₄ 243.0633; Found 243.0632 IR (neat cm⁻¹) *v* 3448, 2954, 2923, 1740, 1250, 751.

Methyl 2-(benzo[b]thiophen-2-yl)-3-hydroxypropanoate (3x). Red oil, 40 mg, 57% yield, m.p.: 142 – 144 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 (ddd, *J* = 7.4, 1.8, 0.8 Hz, 1H), 7.73 (dd, *J* = 6.8, 1.8 Hz, 1H), 7.33 (pd, *J* = 7.1, 1.5 Hz, 2H), 7.23 (s, 1H), 4.20 – 4.19

(m, 2H), 4.03 - 4.00 (m, 1H), 3.77 (s, 3H), 2.49 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.1, 139.5, 139.3, 137.8, 124.4, 124.3, 123.3, 123.0, 122.1, 64.3, 52.5, 49.5. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₂NaO₃S 259.0397; Found 259.0404. IR (neat cm⁻¹) *v* 3448,

Me

COOH H NMR (400 MHz, DMSO- d_6) δ 7.34 – 7.24 (m, 5H), 3.65 (t, J = 7.5 Hz, 1H), 3.36 – 3.26 (m, 3H), 2.13 (dd, J = 13.6, 6.9 Hz, 1H), 1.75 (dd, J = 13.4,

6.7 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 175.2, 140.2, 128.9, 128.3, 127.3, 58.9, 47.7, 36.5. HRMS (ESI, m/z): [M-H]⁻ calcd for target C₁₀H₁₁O₃ 179.0714; Found 179.0713. IR (neat cm⁻¹) *v* 3350, 2954, 2921, 1764, 694.

MeCOOMeDimethyl 2-(o-tolyl) succinate (2z). Colorless oil, 35 mg, 50% yield. $^{\circ}$ COOMe $^{\circ}$ H NMR (400 MHz, Chloroform-d) δ 7.18 – 7.17 (m, 4H), 4.37 (dd, J= 10.0, 5.1 Hz, 1H), 3.67 (d, J = 4.5 Hz, 6H), 3.19 (dd, J = 17.0, 10.0)

Hz, 1H), 2.60 (dd, J = 17.0, 5.0 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 172.2, 136.2, 136.1, 130.8, 127.5, 126.7, 126.5, 52.3, 51.9, 42.7, 37.0, 19.7. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₃H₁₆NaO₄ 259.0946; Found 259.0944. IR (neat cm⁻¹) v 2954, 2924, 1742, 1376, 735.

 COOMe
 Methyl 3-hydroxy-2-(o-tolyl) propanoate (3z). Colorless oil, 20 mg, 34%

 OH
 yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.20 - 7.15 (m, 4H), 4.15

 4.10 (m, 2H), 3.76 - 3.67 (m, 4H), 2.43 - 2.40 (m, 4H). ¹³C NMR (101

MHz, Chloroform-*d*) δ 174.2, 136.3, 133.9, 130.8, 127.6, 127.0, 126.4, 63.8, 52.1, 49.7, 19.6. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₁₄NaO₃ 217.0840; Found 217.0839. **IR** (neat cm⁻¹) *v* 3447, 2953, 2925, 1735, 1377, 736.

Hz, 1H), 2.59 (dd, J = 16.8, 5.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) 173.7, 172.4, 156.6, 128.9, 128.7, 126.6, 120.7, 110.8, 55.4, 52.1, 51.7, 41.7, 36.4. HRMS (ESI, m/z): $[M+Na]^+$ calcd for C₁₃H₁₆NaO₅ 275.0895; Found 275.0887. IR (neat cm⁻¹) *v* 2954, 2922, 1736, 1039, 760.

Methyl 3-hydroxy-2-(2-methoxyphenyl) propanoate (3aa). Colorless oil, 20 mg, 31% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 7.24 (m, 1H), 6.86 – 6.80 (m, 3H), 4.16 – 4.08 (m, 1H), 3.85 – 3.79 (m, 5H), 3.71 (s, 3H), 2.29 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.4, 159.8,

136.9, 129.8, 120.4, 113.9, 113.0, 64.5, 55.2, 53.8, 52.2. **HRMS** (ESI, m/z): [M+Na]⁺ calcd for C₁₁H₁₄NaO₄ 233.0789; Found 233.0783. **IR** (neat cm⁻¹) v 3389, 2952, 2923, 1735, 755.

Hz, 6H), 3.19 (dd, J = 17.0, 10.0 Hz, 1H), 2.60 (dd, J = 17.0, 5.0 Hz, 1H), 2.42 (s, 3H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 173.86, 172.23, 136.25, 136.12, 130.85, 127.52, 126.71, 126.57, 52.35, 51.92, 42.77, 37.06, 19.72. **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₇O₅ 253.1076; Found 253.1076. **IR** (neat cm⁻¹) *v* 2955, 2924, 1735, 1261, 780.

3.89 – 3.79 (m, 5H), 3.71 (s, 3H), 2.29 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.4, 159.8, 136.9, 129.8, 120.4, 113 .9, 113.0, 64.5, 55.2, 53.8, 52.2. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₁H₁₄NaO₄ 233.0789; Found 233.0779. IR (neat cm⁻¹) *v* 3447, 2953, 2925, 1735, 1244, 693.

COOMe COOMe COOMe COOMe Dimethyl 2-(3-(benzyloxy) phenyl) succinate (2ac). White solid, 28 mg, 29% yield, m.p.: 210 - 212 °C. ¹H NMR (400 MHz, Chloroformd) δ 7.44 - 7.33 (m, 5H), 7.25 - 7.22 (m, 1H), 6.91 - 6.86 (m, 3H), 5.05 (s, 2H), 4.06 (dd, J = 10.2, 5.1 Hz, 1H), 3.67 (d, J = 1.7 Hz, 6H),

3.19 (dd, J = 17.0, 10.3 Hz, 1H), 2.66 (dd, J = 17.0, 5.1 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.2, 171.9, 159.0, 139.1, 136.7, 129.9, 128.5, 128.0, 127.5, 120.3, 114.3, 113.9, 69.9, 52.3, 51.8, 47.0, 37.5. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₉H₂₀NaO₅ 351.1208; Found 351.1202. IR (neat cm⁻¹) *v* 2953, 2923, 1737, 1162, 782.

COOMe Methyl 2-(3-(benzyloxy) phenyl)-3-hydroxypropanoate (3ac). White solid, 22 mg, 26% yield, m.p.: 263 – 265 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.33 (m, 5H), 7.26 (d, J = 15.6 Hz, 1H), 6.92 – 6.85 (m, 3H), 5.05 (s, 2H), 4.15 – 4.09 (m, 1H), 3.84 – 3.80 (m, 2H), 3.70 (s, 3H), 2.26 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.4, 159.0, 137.0, 136.7, 129.9, 128.5,

128.0, 127.5, 120.7, 114.8, 113.9, 70.0, 64.5, 53.8, 52.2. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₁₈NaO₄ 309.1102; Found 309.1098. **IR** (neat cm⁻¹) *v* 3382, 2954, 2923, 1732, 1260, 790.

COOMe Dimethyl 2-(2,5-dimethylphenyl) succinate (2ad). Colorless oil, 44 mg, 59% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.07 (d, *J* = 7.6 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 2H), 4.33 (dd, *J* = 10.2, 4.9 Hz, 1H), 3.68 (d, *J* = 7.0 Hz, 6H), 3.19 (dd, *J* = 17.0, 10.1 Hz, 1H), 2.58 (dd, *J* = 17.1,

4.9 Hz, 1H), 2.37 (s, 3H), 2.28 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 172.1, 135.9, 132.8, 130.6, 128.2, 127.3, 52.2, 51.8, 42.6, 37.0, 20.9, 19.1. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₄H₁₈NaO₄ 273.1102; Found 273.1097. IR (neat cm⁻¹) *v* 2953, 2922, 1737, 1377, 810

Me COOMe OH Me

Me

Me

Methyl 2-(2,5-dimethylphenyl)-3-hydroxypropanoat (3ad). White solid, 18 mg, 29% yield, m.p.: 49 – 51 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.09 (d, J = 7.7 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.95 (s, 1H), 4.16 – 4.07 (m, 2H), 3.71 – 3.68 (m, 4H), 2.41 (s, 1H), 2.35 (s, 3H), 2.29 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 135.9, 133.7, 133.1, 130.7, 128.4,

127.7, 63.9, 52.1, 49.7, 20.9, 19.1. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₂H₁₆NaO₃ 231.0997; Found 231.0994. **IR** (neat cm⁻¹) v 3436, 2954, 2924, 1732,1377, 811.

Dimethyl 2-(3,5-dimethylphenyl) succinate (2ae). Colorless oil, 39 mg, 52% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.91 (s, 1H), 6.88 (s, 2H), 4.01 (dd, J = 10.4, 5.0 Hz, 1H), 3.68 (s, 6H), 3.19 (dd, J = 17.0, 10.4 Hz, 1H), 2.63 (dd, J = 17.0, 5.0 Hz, 1H),

2.29 (s, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.5, 172.0, 138.4, 137.4, 129.3, 125.3, 52.2, 51.7, 46.8, 37.6, 21.1. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₄H₁₈NaO₄ 273.1102; Found 273.1098. **IR** (neat cm⁻¹) *v* 2954, 2923, 1740, 1376, 690

Methyl2-(3,5-dimethylphenyl)-3-hydroxypropanoate(3ae).Colorless oil, 15 mg, 24% yield. ¹H NMR (400 MHz, Chloroform-d) δ 6.93 (s, 1H), 6.86 (s, 2H), 4.15 – 4.05 (m, 1H), 3.78 (q, J = 5.4 Hz,2H), 3.71 (s, 3H), 2.30 (s, 6H), 2.23 (s, 1H). ¹³C NMR (101 MHz,

Chloroform-*d*) δ 173.7, 138.5, 135.3, 129.5, 125.8, 64.6, 53.8, 52.1, 21.2. **HRMS** (ESI, m/z): [M-H]⁻ Calcd for C₁₂H₁₅O₃ 207.1021; Found 207.1027. **IR** (neat cm⁻¹) v 3443, 2954, 2923, 1738, 691

Dimethyl 2-([1,1'-biphenyl]-4-yl) succinate (2af). White solid, 13 mg, 11% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (td, J = 5.4, 1.5 Hz, 4H), 7.43 (t, J = 7.6 Hz, 2H), 7.35 (d, J = 7.8 Hz, 3H), 4.15 (dd, J = 10.0, 5.4 Hz, 1H), 3.70 (d, J = 6.4 Hz, 6H),

3.28 – 3.21 (m, 1H), 2.74 (d, J = 5.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.4, 171.9, 140.6, 140.5, 136.6, 128.7, 128.1, 127.6, 127.4, 127.0, 52.4, 51.9, 46.7, 37.5. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₈NaO₄ 321.1102; Found 321.1097. IR (neat cm⁻¹) *v* 2953, 1735, 1505, 1170, 811.

Methyl 2-([1,1'-biphenyl]-4-yl)-3-hydroxypropanoate (3af). White solid, 54 mg, 66% yield, m.p.: 79 – 81 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 8.0 Hz, 4H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 – 7.34 (m, 3H), 4.18 (dd, J = 10.3, 7.8 Hz, 1H), 3.93 – 3.86 (m, 2H),

3.74 (s, 3H), 2.51 (s, 1H). ¹³C **NMR** (101 MHz, Chloroform-*d*) δ 173.5, 140.7, 140.4, 134.5, 128.7, 128.5, 127.5, 127.3, 127.0, 64.5, 53.5, 52.2. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₆H₁₆NaO₃ 279.0997; Found 279.0994. **IR** (neat cm⁻¹) *v* 3345, 2952, 1732, 1582, 1377, 833.

Dimethyl 2-(4'-methyl-[1,1'-biphenyl]-4-yl)succinate (2ag). White solid, 7 mg, 8% yield, m.p.: 115 - 117 °C. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.54 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 7.9 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 7.8 Hz, 2H),

4.14 (dd, J = 10.0, 5.3 Hz, 1H), 3.70 (d, J = 5.5 Hz, 6H), 3.24 (dd, J = 17.0, 10.0 Hz, 1H), 2.71 (dd, J = 17.0, 5.3 Hz, 1H), 2.39 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.4, 171.9, 140.5, 137.6, 137.2, 136.3, 129.5, 128.0, 127.3, 126.8, 52.3, 51.8, 46.7, 37.6, 21.0. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₀NaO₄ 335.1259; Found 335.1253. **IR** (neat cm⁻¹) *v* 3292, 1732, 1461, 1377, 811.

Methyl 3-hydroxy-2-(4'-methyl-[1,1'-biphenyl]-4-yl) propanoate (3ag). White solid, 58 mg, 72% yield, m.p.: 105 - 107 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 7.9 Hz, 2H), 7.50 (d, J =7.8 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.28 (d, J = 7.7 Hz, 2H), 4.2

(t, J = 8 Hz, 1H), 3.94 – 3.87 (m, 2H), 3.77 (s, 3H), 2.47 (s, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 140.6, 137.5, 137.1, 134.2, 129.4, 128.5, 127.3, 126.8, 64.5, 53.5, 52.2, 21.0. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₇H₁₈NaO₃ 293.1153; Found 293.1144. IR (neat cm⁻¹) ν 3400, 2955, 2924, 1732, 1381, 850.

Dimethyl 2-(6-methoxynaphthalen-2-yl) succinate (2ah). White solid, 12 mg, 13% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, J = 9.0 Hz, 2H), 7.66 (d, J = 1.8 Hz, 1H), 7.36 (dd, J = 8.5, 1.9 Hz, 1H), 7.15 (dd,

J = 8.9, 2.6 Hz, 1H), 7.11 (d, J = 2.5 Hz, 1H), 4.22 (dd, J = 9.9, 5.4 Hz, 1H), 3.91 (s, 3H), 3.68 (d, J = 2.7 Hz, 6H), 3.29 (dd, J = 16.9, 9.9 Hz, 1H), 2.75 (dd, J = 16.9, 5.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 172.0, 157.8, 133.9, 132.7, 129.3, 128.8, 127.4, 126.5, 126.0, 119.2, 105.5, 55.3, 52.3, 51.8, 47.0, 37.6. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₇H₁₈NaO₅ 325.1051; Found 325.1048. **IR** (neat cm⁻¹) *v* 2954, 1732, 1382, 1250, 748.

Methyl 3-hydroxy-2-(6-methoxynaphthalen-2-yl) propanoate (3ah). White solid, 30 mg, 38% yield, m.p.: 97 – 99 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (dd, J = 8.7, 4.7 Hz, 2H), 7.66 (s, 1H), 7.35 (dd, J = 8.5, 1.9 Hz, 1H), 7.16

(dd, J = 8.9, 2.6 Hz, 1H), 7.11 (d, J = 2.5 Hz, 1H), 4.22 (dd, J = 11.0, 8.6 Hz, 1H), 3.99 (dd, J = 8.6, 5.3 Hz, 1H), 3.91 – 3.87 (m, 4H), 3.72 (s, 3H), 2.45 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.7, 157.8, 133.9, 130.5, 129.2, 128.8, 127.4, 126.9, 126.3, 119.2, 105.5, 64.5, 55.2, 53.8, 52.1. HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₅H₁₆NaO₄ 283.0946; Found 283.0943. IR (neat cm⁻¹) *v* 3450, 2953, 1732, 1382, 1120, 748.

Dimethyl 2-(anthracen-9-yl) succinate (2ai). White solid, 11 mg, 11% yield, m.p.: 101 - 103 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.44 (d, J = 6.7 Hz, 1H), 7.40 – 7.26 (m, 5H), 6.28 (t, J = 7.6 Hz, 1H), 4.96 (s, 1H), 3.76 (s, 3H), 3.67 (dd, J = 17.2, 6.9 Hz, 1H), 3.59 – 3.52 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.1, 171.5, 138.5, 137.4, 134.5, 134.3, 132.0, 128.4, 127.9, 127.8, 127.5, 127.4, 127.1, 127.0, 124.4, 119.9, 52.9, 52.4, 52.0, 35.3. HRMS (ESI-TOF)

m/z: [M+Na]⁺ Calcd for C₂₀H₁₈NaO₄ 345.1102; Found 345.1107. **IR** (neat cm⁻¹) v 2953, 2923, 1737, 1600, 730.

Methyl 2-(anthracen-9-yl)-3-hydroxypropanoate (3ai). White solid, 44 mg, 52% yield, m.p.: 71 - 73 °C. ¹H NMR (400 MHz, Chloroformd) δ 7.60 (d, J = 7.6 Hz, 1H), 7.43 – 7.26 (m, 7H), 6.28 (dd, J = 8.2, 5.2Hz, 1H), 4.98 (s, 1H), 4.67 (dd, J = 13.4, 8.2 Hz, 1H), 4.56 (dd, J = 13.4, 5.2 Hz, 1H), 3.55 (s, 3H), 2.22 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.7, 138.2,

136.4, 134.3, 134.0, 132.0, 128.2, 128.1, 128.0, 127.9, 127.6, 127.5, 127.1, 127.1, 60.6, 52.6, 52.4. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₁₆NaO₃ 303.0997; Found 303.0992. IR $(neat cm^{-1}) v 3457, 2955, 2927, 1735, 1599, 776.$

Dimethyl 2-(9H-fluoren-2-yl) succinate (2aj). White solid, 12 mg, 13% yield, m.p.: 106 – 108 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (dd, J = 11.1, 7.6 Hz, 2H), 7.53 (d, J =7.5 Hz, 1H), 7.47 (s, 1H), 7.37 (t, J = 7.3 Hz, 1H), 7.30 (t, J

= 6.7 Hz, 2H), 4.17 (dd, J = 10.0, 5.3 Hz, 1H), 3.88 (s, 2H), 3.69 (d, J = 6.3 Hz, 6H), 3.26 (dd, J = 17.0, 10.0 Hz, 1H), 2.73 (dd, J = 17.0, 5.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.6, 172.0, 143.9, 143.2, 141.3, 141.1, 136.1, 126.8, 126.7, 126.4, 125.0, 124.3, 120.1, 119.9, 52.3, 51.8, 47.2, 37.8, 36.8. **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₁₈NaO₄ 333.1102; Found 333.1096. **IR** (neat cm⁻¹) v 2955, 2923, 1925, 1195, 870.

Methyl 2-(9H-fluoren-2-yl)-3-hydroxypropanoate (3aj). White solid, 47 mg, 58% yield, m.p.: 112 – 114 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (t, J = 8.5 Hz, 2H), 7.56 (d, J = 7.5 Hz, 1H), 7.49 (s, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.32

(dd, J = 15.5, 7.8 Hz, 2H), 4.22 (t, J = 10 Hz 1H), 4.00 - 3.93 (m, 1H), 3.91 - 3.88 (m, 3H),3.76 (s, 3H), 2.51 (s, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 173.7, 143.8, 143.2, 141.3, 141.0, 133.9, 126.81, 126.80, 126.7, 124.9, 124.7, 120.1, 119.8, 64.6, 53.9, 52.1, 36.7. HRMS (ESI-TOF) m/z: $[M+Na]^+$ Calcd for $C_{17}H_{16}NaO_3$ 291.0997; Found: 291.0994. IR (neat cm⁻¹) v 3661, 2953, 1736, 1166, 878.

Dimethyl 2-(thiophen-2-yl) succinate (2ak). Red oil, 8 mg, 12% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.21 (s, 1H), 6.96 – 6.94 (m, 2H), 4.38 (dd, J = 10.0, 5.3 Hz, 1H), 3.72 (s, 3H), 3.69 (s, 3H), 3.23 (dd, J

= 17.0, 10.0 Hz, 1H), 2.79 (dd, J = 16.9, 5.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.44, 171.49, 139.48, 126.91, 125.60, 124.94, 52.61, 51.97, 42.22, 38.09. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₀H₁₂NaO₄S 251.0354; Found 251.0345. IR (neat cm⁻¹) v 2953, 2920, 1738, 1728, 703.

Methyl 3-hydroxy-2-(thiophen-2-yl) propanoate (3ak). Red oil, 21 mg, OH 38% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.24 (m, 1H), 6.99 – 6.98 (m, 2H), 4.13 (d, J = 2.2 Hz, 2H), 3.96 – 3.90 (m, 1H), 3.75 (s, 3H), 2.32 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.58, 136.91, 126.90, 126.22, 125.20, 64.73, 52.50, 48.78. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₈H₁₀NaO₃S 209.0248; Found 209.0241. IR (neat cm⁻¹) v 3434, 2952, 2923, 1728, 850.

7. X-ray crystallographic data

Single crystals of **2a**, *trans*-**2l**, **3v**, **2ah** was obtained by recrystallization from CDCl₃ at room temperature. The intensities were collected on a Bruker SMART APEX CCD diffractometer equipped with a graphite monochromated Mo–K α ($\lambda = 0.71073$ Å) radiation source; the data were acquired using the SMART and SAINT programs. The structures were solved by direct methods and refined on F^2 by full matrix least-squares methods using the SHELXTL version 5.1 software.

Figure S3. ORTEP plot of **2a**. Thermal ellipsoids are shown at 30% probability level.

Table S2. Cryst	al parameter of 2a
Formula	$C_{12}H_{14}O_2$
Formula weight	255.3170
Crystal system	Monoclinic
Wavelength	0.71073
a (Å)	5.8827(3)
b (Å)	24.9167(9)
c (Å)	8.1339(3)
α (°)	90
β (°)	110.149(1)
γ (°)	90
Volume (Å ³)	1119.28(8)
Ζ	4
<i>T</i> (K)	120K
$D \text{ calcd } (\text{g cm}^{-3})$	1.319
$\mu (\mathrm{mm}^{-1})$	0.099
F (000)	472.0
No. of rflns. collected	1951
No. of indep. rflns. /Rint	8018/ 0.0176
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	1951
Data / restraints / parameters	1951/ 0 /145
$R_{I} / wR2 [I_{0} > 2\sigma(I_{0})]$	0.0409 (1785)
$R_1 / wR2$ (all data)	0.1014 (1951)
GOF (on F^2)	1.043
CCDC No.	2234688

Figure S4. ORTEP plot of *trans-21*. Thermal ellipsoids are shown at 30% probability level. Table S3. Crystal parameter of *trans*-21

Table 55. Crystar	
Formula	$C_{18}H_{18}O_4$
Formula weight	298.1205
Crystal system	Monoclinic
Wavelength	0.71073
a (Å)	5.8450(12)
b (Å)	17.181(3)
c (Å)	7.9441(15)
α (°)	90
β (°)	107.273(5)
γ (°)	90
Volume (Å ³)	761.8(3)
Ζ	2
<i>T</i> (K)	292K
$D \text{ calcd } (\text{g cm}^{-3})$	1.301
$\mu (\mathrm{mm}^{-1})$	0.091
F (000)	316.0
No. of rflns. collected	1343
No. of indep. rflns. /Rint	5821/0.1244
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	1343
Data / restraints / parameters	1343/ 0 /101
$R_{I} / wR2 [I_{0} > 2\sigma(I_{0})]$	0.2097 (795)
$R_I / wR2$ (all data)	0.2355 (1343)
GOF (on F^2)	1.099
CCDC No.	2234689

_

Figure S5. ORTEP plot of **3v**. Thermal ellipsoids are shown at 30% probability level. **Table S4.** Crystal parameter of **3v**

Table 54. Crysu	
Formula	$C_{15}H_{16}O_4$
Formula weight	260.2890
Crystal system	Monoclinic
Wavelength	1.54178
a (Å)	10.8280(12)
b (Å)	7.9485(9)
c (Å)	15.2171(18)
α (°)	90
β (°)	95.439(6)
γ (°)	90
Volume (Å ³)	1303.8(3)
Ζ	4
<i>T</i> (K)	297 K
$D \text{ calcd } (\text{g cm}^{-3})$	1.326
$\mu (\mathrm{mm}^{-1})$	0.790
F (000)	552.0
No. of rflns. collected	2632
No. of indep. rflns. /Rint	10313/ 0.0444
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	2632
Data / restraints / parameters	2632/ 0 /175
$R_1 / wR2 [I_0 > 2\sigma(I_0)]$	0.0475(2194)
$R_1 / wR2$ (all data)	0.1431(2632)
GOF (on F^2)	1.068
CCDC No.	2245962

Figure S6. ORTEP plot of 2ah. Thermal ellipsoids are shown at 30% probability level. Table S5. Crystal parameter of 2ah

Formula	$C_{17}H_{18}O_5$
Formula weight	302.1154
Crystal system	Monoclinic
Wavelength	0.71073
a (Å)	5.8137(4)
b (Å) 8	8.5017(5)
c (Å)	16.6639(10)
α (°)	99.886(3)
β (°)	92.872(3)
γ (°)	108.302(3)
Volume (Å ³)	761.8(3)
Z	2
<i>T</i> (K)	297K
$D \text{ calcd } (\text{g cm}^{-3})$	1.311
$\mu (\mathrm{mm}^{-1}) $	0.799
F(000)	320.0
No. of rflns. collected	3034
No. of indep. rflns. / <i>R</i> int	7734/0.0264
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	3034
Data / restraints / parameters	3034/ 0 /202
$R_1 / wR2 \left[I_0 > 2\sigma(I_0) \right] \tag{6}$	0.0523(2583)
$R_1 / wR2$ (all data)	0.1730(3034)
GOF (on F^2)	1.092
CCDC No.	2245959

8. Synthetic applications

Diacid product **2a**' can be efficiently converted to succinic anhydride **4a** with a 69% yield.⁴ The reduction of **2a**' with LiAlH₄ gave product **5a**, which can be further converted into Phensuximide, an antispasmodic succinimide.⁵ Additionally, oxidative cyclization of **2a**' produced phenylmaleic anhydride 6a with an outstanding 99% yield.⁶ **2a**' can also be efficiently transformed via an intramolecular Friedel–Crafts reaction to produce compound **7a**, which is a crucial intermediate to prepare novel analgesics.⁷

Figure S7. Synthetic applications of diacid products

A 50 mL round-bottomed flask contained a stirring bar was charged with phenyl succinic acid **2a** (500 mg, 2.5 mmol). Freshly distilled acetyl chloride (5 mL) was added, the flask was fitted with a condenser and the reaction mixture was heated at reflux temperature (oil bath) under an argon atmosphere for 16 h. The solvents were removed under reduced pressure and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate 7/1/) to give desired product **4a**.

3-Phenyldihydrofuran-2,5-dione (4a).⁴ White solid, 310 mg, 69% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 – 7.25 (m, 3H), 7.26 (d, *J* = 7.9 Hz, 2H), 4.34 (dd, *J* = 10.3, 6.5 Hz, 1H), 3.45 (ddd, *J* = 18.9, 10.3, 1.2 Hz, 1H), 3.10 (ddd, *J* = 19.0, 6.6, 1.3 Hz, 1H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 171.6, 169.5, 134.5, 129.4, 128.5, 127.2, 46.4, 36.5.

The **2a** (1.35 mmol) was dissolved in THF (5 mL) under argon and the reaction mixture was cooled to 0 °C. LiAlH₄ (4 mmol dissolved in 2 mL THF) was added dropwise with stirring. The mixture is heated to reflux for 4 h (oil bath) and cooled to 0 °C afterwards. The mixture was carefully quenched with water and extracted three times with ethyl acetate (3×20 mL). The combined extracts were washed with brine, and dried over anhydrous Na₂SO₄. The solvents were removed under reduced pressure and the crude residue was washed with cold Et₂O to give the pure desired product.

2-Phenylbutane-1,4-diol (5a).⁸ White solid, 134 mg, 60% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (t, J = 7.5 Hz, 2H), 7.20 (d, J = 7.1 Hz, 1H), 7.16 (d, J = 7.7 Hz, 2H), 3.71 – 3.43 (m, 6H), 2.88 (p, J = 6.7 Hz, 1H), 1.99 (td, J = 14.0, 6.1 Hz, 1H), 1.81 (ddd, J = 13.9, 8.9, 4.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.3, 128.5, 127.7, 126.6, 67.2, 60.6, 45.6, 35.6.

To a mechanically stirred slurry of selenium dioxide (400 mg, 3.6 mmol) in freshly distilled acetic anhydride (5 mL) was added phenyl succinic acid (450 mg, 2.4mol), and this mixture was heated at reflux (oil bath) for 3 h, during which time it turned from yellow to black. While still hot, the mixture was filtered through a celite pad to remove precipitated selenium salts. Subsequent solvent evaporation afforded crude product. Recrystallization from EA-PE afforded **6a** as pale-yellow crystals.

Phenylmaleic anhydride (6a).⁹ Pale-yellow crystals, 403 mg, 99% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 7.6 Hz, 2H), 7.53 (dt, J = 15.1, 7.4 Hz, 3H), 7.00 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.5, 163.6, 146.8, 132.7, 129.3, 128.9, 126.8, 124.4.

An oven-dried 50 mL three-neck bottle containing a condenser and a Teflon-coated stir bar was charged with 2-phenylsuccinic acid 2a (0.49 g, 2.5 mmol). The reaction flask was then sealed with rubber septum, charged with nitrogen gas. After adding 10 mL of dichloromethane (DCM) and thionyl chloride (0.3 mL, 4 mmol) sequentially, the temperature was raised to 75 °C (oil bath). Once the 2-phenylsuccinic acid **2a** was totally dissolved, the solvent was removed in vacuo using a Dean-Stark trap. Charged the reaction vessel with 10 mL of 1,2-dichloroethane (DCE) followed by adding 0.7 g (5 mmol) AlCl₃ partitively. Stirred the reaction mixture at room temperature for 13 h and raised the temperature to 60 °C for 4.5 h. The reaction was quenched with 6 M HCl (5 mL) and water (10 mL), extracted with AcOEt, then concentrated in vacuo. The residue was purified by silica gel flash chromatography (PE/AcOEt = 2:1) to give the pure desired product **7a**.

3-Oxo-2,3-dihydro-1H-indene-1-carboxylic acid (7a).¹⁰ White solid, 441 mg, 99%.¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.73 (d, *J* = 4.7 Hz, 2H), 7.67 (d, *J* = 7.6 Hz, 1H), 7.51 (ddd, *J* = 7.9, 5.5, 2.2 Hz, 1H), 4.32 (t, *J* = 5.6 Hz, 1H), 2.87 (d, *J* = 4.9 Hz, 2H).¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 173.7, 172.5, 152.5, 136.3, 135.5, 129.0, 127.1, 123.5, 43.9, 21.4.

9. Mechanistic studies

9.1 Detection of products ratio over reaction time.

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **1ae** (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode, and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. Take samples every half hour, carefully quenched with HCl (1M, 1 mL) and extracted with ethyl acetate. The solvents were removed under reduced pressure and the crude residue was detected by ¹H NMR.

Figure S8. ¹H NMR spectrum of different times for reaction of 1ae.

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO_2 flow for at least 3 times. **1ae** (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5

mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode, and the cell was closed under CO_2 atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h under different temperature. After the reaction finished, the reaction was carefully quenched with HCl (1M, 1 mL) and extracted with ethyl acetate. The solvents were removed under reduced pressure and the crude residue was detected by ¹H NMR.

Figure S9. ¹H NMR spectrum of different temperature for reaction of 1ae.

9.2 Cyclic voltammetry studies

Cyclic voltammograms were recorded with a CHI760E potentiostat at room temperature (20 °C) in DMF. TBABF₄ was used as the supporting electrolyte, and a Glass Carbon electrode (d = 3 mm) was used as the working electrode. The auxiliary electrode was a Pt sheet (10 mm \times 10mm \times 0.3 mm). All potentials are referenced against the Ag/AgCl redox couple. The scan rate is 100 mV s⁻¹. The solution was purged with Ar flow for 5 minutes before the measurement. Polishing of Glass Carbon electrode can be accomplished by putting a few drops of water/1.0-micron alumina slurry onto a polishing pad. The electrode is polished using a figure 8 motion to avoid grooving the electrode. Once the electrode has been polished, it should be rinsed with water, then sonicated in acetone, ethanol or distilled water for few mins to remove any residual particulate matter if present.

Figure S10. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **1a** (0.3 mmol). (maintaining IUPAC convention)

Figure S11. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **1b** (0.3 mmol). (maintaining IUPAC convention)

Figure S12. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **1e** (0.3 mmol). (maintaining IUPAC convention)

Figure S13. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **1g** (0.3 mmol). (maintaining IUPAC convention)

Figure S14. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **10** (0.3 mmol). (maintaining IUPAC convention)

Figure S15. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **1q** (0.3 mmol). (maintaining IUPAC convention)

Figure S17. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **1ae** (0.3 mmol). (maintaining IUPAC convention)

Figure S18. Cyclic voltammograms recorded on a Glass Carbon electrode (d = 3 mm). TBABF₄ (0.3 mmol), DMF (5 mL), **1af** (0.3 mmol). (maintaining IUPAC convention)

9.3 ¹³CO₂ isotope labeling experiment

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under Ar flow for at least 3 times. Cyclic carbonate (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode, and the cell was closed under Ar atmosphere. Then, the cell was evacuated and back-filled under ¹³CO₂. The reaction mixture was electrolyzed under a constant current of 10 mA for 6 h. The reaction mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3 × 20 mL). The combined organic layers were washed with brine (2 × 50 mL) and dried over Na₂SO₄. The solvents were removed under reduced pressure and the residue was methylated at 0°C with TMSCHN₂ (2 M in hexane, 0.6 mL) in 2 mL of ether/methanol (1:1 v/v) solvent. The crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate 7/1 to 3/1) to give desired product.

The calculation for incorporation rates of ¹³C by mass spectrometry

The theoreti	cal value	for the u	nlabelle	d produ	ct $2a$ and ¹	¹³ C labele	d produ	ct 2a"
	m/z	Abund	Abund	Abund	m/z	Abund	Abund	Abund

	m/z	(% largest)	(% sum)	(% first)		m/z	(% largest)	(% sum)	(% first)
•	245.0784	100	86.9	100	•	246.0818	100	87.84	100
	246.0818	13.29	11.55	13.29		247.0852	12.21	10.73	12.21
	247.0839	1.64	1.42	1.64		248.0872	1.5	1.32	1.5
	248.0866	0.14	0.12	0.14		249.0899	0.12	0.11	0.12
	249.089	0.01	0.01	0.01		250.0922	0.01	0.01	0.01
	250.0915	0	0	0		251.0947	0	0	0
					•				

	m/z	Abund (% largest)	Abund (% sum)	Abund (% first)
•	247.0851	100	88.79	100
	248.0885	11.13	9.88	11.13
	249.0904	1.38	1.23	1.38
	250.0932	0.11	0.1	0.11
	251.0955	0.01	0.01	0.01
	252.0979	0	0	0

The measured spectrum for 2a"

The theoretical value for the unlabelled product $\mathbf{3q}$ and 13 C labeled product $\mathbf{3q}$ "

	m/z	Abund (% largest)	Abund (% sum)	Abund (% first)		m/z	Abund (% largest)	Abund (% sum)	Abund (% first)
•	261.0733	100	86.69	100	•	262.0767	100	87.62	100
	262.0767	13.33	11.56	13.33		263.0801	12.25	10.73	12.25
	263.0787	1.85	1.6	1.85		264.082	1.71	1.5	1.71
	264.0815	0.17	0.14	0.17		265.0848	0.15	0.13	0.15
	265.0837	0.01	0.01	0.01		266.087	0.01	0.01	0.01
	266.0862	0	0	0		267.0895	0	0	0
*					*				

The measured spectrum for **3q**"

We use **3q**" as an example to calculate the ¹³C labeling ratio. The method is as follows: According to the table, it is observed that the monoisotopic peak (A) of the unlabelled product has an *m*/*z* of 261.0733, while the A+1 peak has an *m*/*z* of 262.0767. The ratio of the monoisotopic peak to its A+1 peak is 100/13.33, indicating when the monoisotopic peak has an abundance of 100, the contribution of its A+1 peak is 13.33. In our measured spectrum, the relative height of the unlabelled monoisotopic peak A is observed to be 14.85. Therefore, the contribution of its A+1 peak is calculated as 14.85 * 13.33 / 100 = 1.975. Consequently, the contribution of the ¹³C-labelled compound to the A+1 peak is 100 - 1.975 = 98.025. Thus, the ¹³C incorporation ratio is estimated to be approximately 98.025 / (98.025 + 14.85) = 87%. To verify the accuracy of our calculation method, we applied the same method to deduce the experimental spectrum data. According to the table, when the relative abundance of the monoisotopic peak A of the ¹³C-labeled product is 100, its contribution to the A+1 peak is 12.54. In the measured spectrum, the relative abundance of the monoisotopic peak labeled with ¹³C is 98.025. Therefore, the contribution of its A+1 peak is calculated as 98.025 * 12.54 / 100 = 12.29. This calculated value is close to the measured value, indicating the feasibility of this method. Applying the same method, for the **2a''** peak, the proportion of singly labeled isotopes is approximately 35%, while the proportion of doubly labeled isotopes is approximately 58%.

9.4 Stereochemical study

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. (*R*)-1a (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. Then the mixture was carefully quenched with HCl (1 M, 10 mL) and extracted three times with ethyl acetate (3 × 20 mL). The combined extracts were washed with brine (2 × 50 mL) and dried over Na₂SO₄. The solvents were removed under reduced pressure and the crude residue was dissolved in THF (1 mL) and methanol (1 mL) under Ar. TMSCHN₂ (0.6 mL, 2 M in Hexane) was added dropwise at 0 °C for 0.5 h. The mixture was quenched with water, extracted with ethyl acetated and dried over Na₂SO₄. The solvents were removed under reduced pressure and the crude residue was purified by prepared TLC. CHIRALPAK OD-H, 25 °C, 'PrOH-hexanes 10.0/90.0, 0.5 mL/min, 220 nm. t_R = 38.6 min, t_S = 46.8 min.Chiral HPLC: CHIRALPAK OD-H, 25 °C, 'PrOH-hexanes 5.0/95.0, 0.25 mL/min, 220 nm. t_R = 38.6 min, t_S = 52.1 min.

Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.684	BB	1.6166	9.56472e4	867.31287	99.7739
2	46.871	BB	1.0908	216.77664	2.51446	0.2261

Figure S19. HPLC of (*R*)-1a

Area	a Percent Report

Sorted by	:	Signal	
Multiplier		:	1.0000
Dilution		:	1.0000
Used multiplier	& dilution	factor	

Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	38.617	MM	2.1612	3. 60265e5	2778. 25269	48.0222
2	52.123	MM	4.8539	3.89939e5	$1338.\ 91602$	51.9778

Figure S20. HPLC of racemic 2a	
--------------------------------	--

9.5 Formation of CO₂ radical anion.

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **1a** (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Ni(foam) cathode and Mg anode. The reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. After concentrating in vacuo carefully, 2 mL D₂O was added to make the mixture dissolved sufficiently, the HCOO⁻ was detected by NMR. Therefore, the CO₂ radical anion might be generated through CO₂ reduction on cathode

¹H NMR spectrum (400 MHz, Deuterium Oxide) of HCOO⁻

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ppm

9.6 Control experiments

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under Ar flow for at least 3 times. Cyclic carbonate (0.3 mmol), TBABF₄ (0.3 mmol), and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode and closed under Ar atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. The mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3×20 mL). The combined extracts were washed with brine (2×50 mL) and dried over Na₂SO₄. The residue was methylated at 0 °C with TMSCHN₂ (2 M in hexane, 0.6 mL) in 2 mL of ether/methanol (1:1 v/v) solvent. Finally, the corresponding methylation product was purified by column chromatography (10:1-3:1 v/v petroleum ether/ethyl acetate). (For the reaction under Ar atmosphere, **4e**, white solid, 10 mg, 25% yield. **5e**, white solid, 6 mg, 12% yield. **4q**, white solid, 10 mg, 21% yield, **6q**, white solid, 10 mg, 18% yield, **6q**', white solid, 18 mg, 16% yield.)

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under Ar flow for at least 3 times. **4e** (0.3 mmol), TBABF₄ (0.3 mmol), and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode and closed under Ar atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. The mixture was quenched with water (10 mL) and extracted three times with ethyl acetate (3×20 mL). The combined extracts were washed with brine (2×50 mL) and dried over Na₂SO₄. The solvents were removed under reduced pressure and the crude residue was purified by flash column chromatography (10:1 v/v petroleum ether/ethyl acetate) to get desired product **5e**.

2-(4-Methoxyphenyl) propanal (5e). White solid, 3.9 mg, 8% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.65 (d, J = 1.4 Hz, 1H), 7.13 (d, J = 8.6 Hz, 1H), 6.92 (d, J = 8.6 Hz, 1H), 3.81 (s, 2H), 3.58 (dd, J = 7.1, 1.4 Hz, 0H), 1.42 (d, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 201.0, 159.1, 129.6, 129.3, 114.5, 55.3, 52.1, 14.6. HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₀H₁₂NaO₂ 187.0735; Found 187.0734.

¹H NMR spectrum (400 MHz, Chloroform-d) of 4e

¹³C{¹H} NMR spectrum (126 MHz, Chloroform-*d*) of 5e

¹H NMR spectrum (400 MHz, Chloroform-d) of 6q

¹H NMR spectrum (400 MHz, Chloroform-*d*) of 6q'

9.7 Radical trap experiment

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **1a** (0.3 mmol), TBABF₄ (0.3 mmol), TEMPO (0.6 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Ni cathode and Mg anode and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. Then the mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3 × 20 mL). The combined extracts were washed with brine (2 × 50 mL) and dried over Na₂SO₄. The residue was methylated at 0 °C with TMSCHN₂ (2 M in hexane, 0.6 mL) in 2 mL of ether/methanol (1:1 v/v) solvent. Finally, the corresponding methylation product was purified by column chromatography (10:1-3:1 v/v petroleum ether/ethyl acetate).

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **1t** (0.3 mmol), TBABF₄ (0.3 mmol), TEMPO (0.6 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Ni cathode and Mg anode and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. Then the mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3 × 20 mL). The combined extracts were washed with brine (2 × 50 mL) and dried over Na₂SO₄. The solvents were removed under reduced pressure and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate/AcOH 10/1/0-3/1/0-3/2/0.005) to achieve the product **3t'**, white solid, 20 mg, 31% yield. The corresponding TEMPO-adduct **7t** was trace and detected by HRMS.

9.8 Deuteration experiment

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ for at least 3 times. **1e** (0.3 mmol), TBABF₄ (0.3 mmol), D₂O (3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. Only 17% **1e** was converted.

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ for at least 3 times. **1t** (0.3 mmol), TBABF₄ (0.3 mmol), D₂O (3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. Then the mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3 × 20 mL). The combined extracts were washed with brine (2 × 50 mL) and dried over Na₂SO₄. The solvents were removed under reduced pressure and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate/AcOH 2/1/0-3/2/0.005) to give product **3t'** as white solid (40 mg, 60% yield) and **6t'** as white solid (5mg, 10% yield, 85% D).

¹H NMR spectrum (600 MHz, Chloroform-*d*) of 6t'

9.9 Control electrocarboxylation reaction of styrene substates with CO₂.

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **4c** (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode, and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. The reaction mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3×20 mL). The combined organic phase was dried by anhydrous MgSO₄ and evaporated in vacuum. The residue was methylated at 0°C with TMSCHN₂ (2M, 0.6 mL) in 2 mL of ether/methanol (1:1 v/v) solvent. Finally, the corresponding methylation product **2c** (52 mg, 60% yield) was purified by column chromatography (10:1 v/v petroleum ether/ethyl acetate).

A 50 mL oven-dried electrochemical cell containing a stir bar was evacuated and backfilled under CO₂ flow for at least 3 times. **4q** (0.3 mmol), TBABF₄ (0.3 mmol) and DMF (5 mL) were added to the cell and the cell was installed with a Pt cathode and Mg anode, and the cell was closed under CO₂ atmosphere. Then, the reaction mixture was electrolyzed under a constant current of 10 mA for 4 h. The reaction mixture was carefully quenched with HCl (1M, 10 mL) and extracted three times with ethyl acetate (3 × 20 mL). The combined organic phase was dried by anhydrous NaSO₄. The solvents were removed under reduced pressure and the crude residue was purified by flash column chromatography (petroleum ether/ethyl acetate/AcOH 1/1/0.005) to give desired product **2q'**, white solid, 70 mg, 93% yield.

10. NMR spectra of substrates and all products

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 1d

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1f

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1h

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1j

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1q

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1s

¹⁹F NMR spectrum (376 MHz, Chloroform-d) of 1s

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 1v

¹H NMR spectrum (400 MHz, Chloroform-d) of 1w

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1w

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 1x

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1ab

¹H NMR spectrum (400 MHz, Chloroform-d) of 1ad

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 1ad

¹³C{¹H} NMR spectrum (151 MHz, Chloroform-d) of 1ae

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 1ag

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 1ai

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2a

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2b

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2c

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2d

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2e

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2f

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2g

¹⁹F NMR spectrum (376 MHz, Chloroform-d) of 2g

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2h

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2i

¹⁹F NMR spectrum (376 MHz, Chloroform-d) of 2i

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2j

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2k

¹H NMR spectrum (400 MHz, Chloroform-*d*) of *cis*-21

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of *cis*-21

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2m

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3n

¹⁹F NMR spectrum (376 MHz, Chloroform-d) of 3n

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 30

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3p

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3q

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3r

¹⁹F NMR spectrum (376 MHz, Chloroform-d) of 3r

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3s

¹⁹F NMR spectrum (376 MHz, Chloroform-d) of 3s

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3t

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3u

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3v

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3w

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3x

¹³C{¹H} NMR spectrum (101 MHz, DMSO-*d*₆) of 3y

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2z

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3z

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3aa

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2ab

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3ab

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2ac

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3ac

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2ad

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3ad

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2ae

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3ae

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2af

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3af

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2ag

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3ag

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2ah

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3ah

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2ai

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 3ai

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 2aj

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3aj

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2ak

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3ak

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 2a"

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-*d*) of 3q'

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 4a

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 5a

¹³C{¹H} NMR spectrum (101 MHz, Chloroform-d) of 6a

¹³C{¹H} NMR spectrum (101 MHz, DMSO-*d*₆) of 7a

11. References

1. L. Emmanuvel, T. M. A. Shaikh and A. Sudalai, Org. Lett., 2005, 7, 5071-5074.

2. L. Shen, Z.-N. Chen, Q. Zheng, J. Wu, X. Xu and T. Tu, *ACS Catal.*, 2021, **11**, 12833–12839.

3. E. R. Baral, J. H. Lee and J. G. Kim, J. Org. Chem., 2018, 83, 11768-11776.

4. F. Manoni, C. Cornaggia, J. Murray, S. Tallon and S. J. Connon, *Chem. Commun.*, 2012, **48**, 6502–6504.

(a) H. Gotoh, R. Masui, H. Ogino, M. Shoji and Y. Hayashi, *Angew. Chem. Int. Ed.*, 2006,
45, 6853-6856. (b) J. Zhang, M. Senthilkumar, S. C. Ghosh and S. H. Hong, *Angew. Chem. Int. Ed.*, 2010, 49, 6391–6395.

6. (a) L. A. Paquette, J. M. Gardlik, K. J. McCullough, R. Samodral, G. DeLucca and R. J. Ouellette, *J. Am. Chem. Soc.*, 1983, **105**, 7649–7655. (b) O. Muraoka, G. Tanabe, E. Yamamoto, M. Ono, T. Minematsu and T. Kimura, *J. Chem. Soc. Perkin Trans. 1*, 1995, **11**, 1437–1443.

Z. J. Gan, Y. H. Wang, Y. G. Xu, T. Guo, J. Wang, Q. Song, X. J. Xu, S. Y. Hu, Y. J. Wang,
D. C. Wang, D. Z. Sun, D. Zhang, T. Xi, H. D. Li, H. B. Zhang, T. J. Hang, H. G. Lu and J. G.
Liu, Org. Biomol. Chem., 2015, 13, 5656–5673.

8. X. Jia, C. Huang, X. Zhang and Z. Lian, Org. Chem. Front., 2021, 8, 5310–5315.

9. D. Crich and Y. Zou, J. Org. Chem., 2005, 70, 3309-3311

10. T. Ju, Y.-Q. Zhou, K.-G. Cao, Q. Fu, J.-H. Ye, G.-Q. Sun, X.-F. Liu, L. Chen, L.-L. Liao and D.-G. Yu, *Nat. Catal.*, 2021, **4**, 304–311.