Uranyl-Tc(VII)/Tc(V) hybrid clusters

^aMohammad Shohel and ^aMay Nyman*

^aDepartment of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA

*Corresponding author: may.nyman@oregonstate.edu

1. Synthetic procedure

Caution!! Radioactive materials were used for synthesis, which contained ^{99}Tc (β -emitter) and ^{238}U (α -emitter). The experiments in this study were conducted by trained personnel in a licensed research facility with special precautions taken towards the handling, monitoring, and disposal of radioactive materials.

Chemicals used in the synthesis, $UO_2(CH_3COO)_2 \cdot 2H_2O$ (SPI), 30% H_2O_2 (Macron Chemicals), and HReO₄ (Sigma-Aldrich) were used as received. The NH₄TcO₄ was obtained from Oakridge National Lab. Solutions utilized in this study were prepared by using deionized water (18.2 M $\Omega \cdot$ cm). HTcO₄ was prepared by our previously published method¹. In a typical synthesis, the as received NH₄TcO₄ was added to water and then reflux until boil. Then 30% H₂O₂ added dropwise in the boiling mixture to convert TcO₂ impurities into TcO₄⁻. The resulting clear 0.5M NH₄TcO₄ solution was cooled down and then passed through a DowerTM 50WX8-100 cation exchange resin.

1.1 Synthesis of $U_5Re_2 [(UO_2)_5(O)_2(OH)_2(H_2O)_6(ReO_4)_2(CH_3COO)_2]$ and $U_4Re_2 [(UO_2)_4(O)_2(H_2O)_2(ReO_4)_2(CH_3COO)_4Na_2(H_2O)_2]$

0.12 M uranyl acetate solution (400 μ L, 48 μ mol) was combined with 0.12 M perrhenic acid solution (200 μ L, 24 μ mol) in a 4 mL glass scintillation vial. The solution was evaporated at 30 °C inside a fume hood. After 7 days when the solution has evaporated down to less than 80% of its initial volume, blocky orange colored crystals of U₅Re₂ started to appear. After evaporating this solution for additional 3 days, thin light yellow plate-shaped crystals of U₄Re₂ can be observed at the bottom of vial sticking to the glass surface under the U₅Re₂ crystals. The percent yield of bulk crystalline material was 80% based on uranium. The yield of U₄Re₂ appears to be very low compared to U₅Re₂ because of less amount of Na⁺ in reaction solution but part of crystal structure and coming from impurities/leaching glass. The yield of U₄Re₂ can be increased by addition of 0.12 M sodium acetate (100 μ L, 12 μ mol) in the initial uranyl acetate and perrhenic acid solution.

1.2 Synthesis of $U_5Tc_2 [(UO_2)_5(O)_2(OH)_2(H_2O)_6(TcO_4)_2(CH_3COO)_2]$, $U_4Tc_2 [(UO_2)_4(O)_2(H_2O)_2(TcO_4)_2(CH_3COO)_4Na_2(H_2O)_2]$ and $U_4Tc [(UO_2)_4(TcO)(O)_4(CH_3COO)_4(H_2O)_4$. $H_3O.H_2O]$ 0.12 M uranyl acetate solution (200 μ L, 24 μ mol) was combined with 0.12 M pertechnetic acid solution (100 μ L, 12 μ mol) in a 4 mL glass scintillation vial. The solution was evaporated at 30 °C inside fume hood. After 7 days when the solution had evaporated down to less than 90% of its initial volume, blocky orange colored crystals of U₅Tc₂ started to appear along with dark yellow elongated plate crystals of U₄Tc. After evaporating this solution for additional 3 days, thin light yellow colored plate shaped crystals of U₄Tc₂ can be observed at the bottom of vial under U₅Tc₂ crystals. The yields of the crystalline material was not measured to avoid radioactive contamination. Similar to U₄Re₂, the yield of U₄Tc₂ appears to be very low compared to U₅Tc₂ and U₄Tc. The yield of U₄Re₂ can be improved by addition of 0.12 M sodium acetate (50 μ L, 6 μ mol) in the initial uranyl acetate and pertechnetic acid solution.

2. Single Crystal X-ray diffraction (SCXRD)

Single Crystal X-ray diffraction experiments were conducted using a Rigaku Oxford Synergy system equipped with PhotonJet Cu source (λ =1.54178 Å) and hyPix-6000HE photon counting detector The data was collected at 150K/223K and then processed with CrysAlisPro Version 171.40_64.53 (Rigaku Oxford Diffraction, 2018)². Analytical absorption and empirical absorption (spherical harmonic, image scaling, detector scaling) corrections were applied after integrating all frames³. All structures were solved by Intrinsic Phasing method from SHELXT⁴ program, developed by successive difference Fourier syntheses, and refined by full-matrix least square on all F2 data using SHELX⁵ via OLEX2 interface⁶. The crystals of U₄Re₂ and U₄Tc₂ exhibited non-merohedral twinning. OLEX2 was used to find the twin law and write hkl5 file for the structural refinement. The selected crystallographic information for the isolated structures are in Table S1. The crystallographic information files of the refined structures can be requested with their deposition number 2332264-2332268 in the Cambridge crystallographic data center website https://www.ccdc.cam.ac.uk/structures/.

	U ₅ Re ₂	U ₄ Re ₂	U ₅ Tc ₂	U ₄ Tc ₂
Empirical formula	$C_4H_{18}O_{32}Re_2U_5$	$C_8H_{12}Na2O_{30}Re2U_4$	$C_4H_6O_{32}Tc_2U_5$	$C_8H_{12}Na_2O_{30}Tc_2U_4$
Moiety formula	(UO ₂) ₅ (O) ₂ (OH) ₂ (H ₂ O) ₆ (ReO ₄) ₂ (CH ₃ COO) ₂	$(UO_2)_4(O)_2(H_2O)_2(ReO_4)_2(CH_3COO)_4Na_2(H_2O)_2$	(UO ₂) ₅ (O) ₂ (OH) ₂ (H ₂ O) ₆ (TcO ₄) ₂ (CH ₃ COO) ₂	$(UO_2)_4(O)_2(H_2O)_2(TcO_4)_2(CH_3COO)_4Na_2(H_2O)_2$
Formula weight	2142.75	963.34	1952.24	1782.28
Temperature/ K	149.98(10)	223.00(10)	172.97(10)	223.00(10)
Crystal system	triclinic	monoclinic	triclinic	monoclinic
Space group	P-1	C2/m	P-1	C2/m
a/Å	7.7354(3)	15.2417(5)	7.7451(3)	15.2356(8)
b/Å	8.4717(3)	8.1267(2)	8.4501(2)	8.1216(3)
c/Å	12.7820(4)	15.0583(5)	12.7565(5)	15.0053(7)
α/°	94.029(3)	90	93.982(3)	90
β/°	99.086(3)	113.798(4)	99.211(3)	114.061(6)

Table S1. Selected crystallographic information for the isolated structures.

γ/°	109.920(3)	90	109.708(3)	90
Volume/Å ³	770.66(5)	1706.60(10)	768.96(5)	1695.39(15)
Ζ	1	2	1	2
$\rho_{calc}g/cm^3$	4.613	3.749	4.216	3.491
µ/mm ⁻¹	34.100	67.259	81.160	60.650
F(000)	908.0	1648.0	832.0	1552.0
Crystal size/mm ³	0.08 imes 0.08 imes 0.08	0.04 imes 0.04 imes 0.01	0.04 imes 0.04 imes 0.02	0.05 imes 0.02 imes 0.01
Radiation	Mo Kα (λ = 0.71073)	Cu Ka (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)	Cu K α (λ = 1.54184)
20 range for data collection/°	5.722 to 52.742	6.416 to 136.472	7.082 to 136.34	6.45 to 136.502
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -15 \le 1 \le 15$	$-18 \le h \le 16, 0 \le k \le 9, 0$ $\le 1 \le 18$	$-9 \le h \le 9, -10 \le k \le 10, -14 \le 1 \le 15$	$\begin{array}{l} -18 \leq h \leq 16, 0 \leq k \leq 9, 0 \leq \\ l \leq 18 \end{array}$
Reflections collected	9602	1669	10031	1678
Independent reflections	$3149 [R_{int} = 0.0361, R_{sigma} = 0.0357]$	1669 [$R_{int} = ?, R_{sigma} = 0.0403$]	2797 [$R_{int} = 0.0361$, $R_{sigma} = 0.0274$]	1678 [R _{int} = ?, R _{sigma} = 0.0426]
Data/restraints /parameters	3149/2/208	1669/0/110	2797/0/198	1678/0/111
Goodness-of- fit on F ²	1.040	1.049	1.109	1.123
Final R indexes [I>=2σ (I)]	$R_1 = 0.0197, wR_2 = 0.0443$	$R_1 = 0.0698, wR_2 = 0.1901$	$R_1 = 0.0260, wR_2 = 0.0663$	$R_1 = 0.0678, wR_2 = 0.1884$
Final R indexes [all data]	$R_1 = 0.0241, wR_2 = 0.0455$	$R_1 = 0.0727, wR_2 = 0.1941$	$R_1 = 0.0287, wR_2 = 0.0681$	$R_1 = 0.0715, wR_2 = 0.1926$
Largest diff. peak/hole / e Å ⁻³	2.31/-1.42	6.71/-8.17	2.05/-1.92	9.15/-5.44

	U4Tc
Empirical formula	C ₈ H ₂₀ O _{25.75} TcU ₄
Moiety formula	(UO ₂) ₄ (TcO)(O) ₄ (CH ₃ COO) ₄ (H ₂ O) ₄ . H ₃ O.H ₂ O
Formula weight	1578.36
Temperature/K	222.99(10)
Crystal system	orthorhombic
Space group	Pbcn
a/Å	14.3710(3)
b/Å	13.8231(3)
c/Å	14.8033(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2940.70(11)
Ζ	4

$\rho_{calc}g/cm^3$	3.565
µ/mm ⁻¹	65.775
F(000)	2740.0
Crystal size/mm ³	0.08 imes 0.02 imes 0.01
Radiation	$Cu K\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.876 to 136.5
Index ranges	$-17 \le h \le 17, -15 \le k \le 16, -16 \le l \le 17$
Reflections collected	36295
Independent reflections	$2695 [R_{int} = 0.0847, R_{sigma} = 0.0276]$
Data/restraints/parameters	2695/0/182
Goodness-of-fit on F ²	1.066
Final R indexes [I>=2σ (I)]	$R_1 = 0.0383, wR_2 = 0.0992$
Final R indexes [all data]	$R_1 = 0.0408, wR_2 = 0.1013$
Largest diff. peak/hole / e Å ⁻³	1.39/-2.57

Figure S1. Polyhedral representation of the extended crystal lattice of U_5Re_2 and U_5Tc_2 , viewed from different crystallographic directions.

Figure S2. Polyhedra representation of extended crystal structure of U_4Re_2 and U_4Tc_2 from different crystallographic direction.

Figure S3. Polyhedra representation of extended crystal structure of U_5Tc from different crystallographic direction.

U ₅ Re ₂		U ₄ Re ₂ ¹		U ₅ Tc ₂		U ₄ Tc ₂		U ₄ Te	
Site	BVS	Site	BVS	Site	BVS	Site	BVS	Site	BVS
U1	6.01	U1	6.19	U1	6.09	U001	6.04	U1	6.13
U2	5.98	U2	6.08	U2	6.03	U002	6.09	U2	6.12
U3	6.04	09	2.07	U3	6.02	Tc003	6.52	Tc3	5.35
Re4	6.86	07	2.05	Tc4	6.78	O00B	2.06	04	1.76
017	2.12	06	1.74	07	1.96	O00C	2.60	09	1.99
015	0.53	O18	2.27	O9	0.44	O00D	2.04	O16	2.03
O18	1.69	011	2.14	013	0.44	O00E	2.02	06	1.93
07	2.18	013	1.78	O10	0.52	O00F	2.15	O10	1.95
O10	1.74	08	2.24	016	2.32	O00H	1.75	014	0.38
05	1.96	O10	2.52	08	1.00	O00I	0.38	07	1.78
09	1.72	019	1.93	018	1.62	O00J	2.21	05	1.84
011	1.02	05	0.38	017	2.09	O00K	0.42	08	1.73
016	0.44	O21	0.40	014	2.21	01	1.34	015	2.09
013	1.78	Na20	1.38	011	1.72	013	1.81	012	0.41
014	1.79			012	1.78	Na4	1.39	011	2.26
012	0.45			05	1.81			013	1.94
O20	1.77			06	1.84				
06	1.71			015	1.73				
08	2.20			O20	1.78				
019	1.73			019	1.73				

Table S2. Bond valence sum (BVS) values of selected fully occupied metal center and oxygen sites from isolated structures.

¹BVS for Re was not calculated due to extensive disorder. However, based on charge-balance and the tetrahedra geometry and bond distances, we are certain it is Re(VII).

Bond	Bond length (Å)			
	This study	Abrams <i>et al.</i> 1991 ⁷	Rochon <i>et al.</i> 1992 ⁸	Davison <i>et al.</i> 1987 ⁹
Tc=O _{ax}	1.656	1.646	1.635	1.648
Tc-O _{eq}	1.896 ± 0.009	$1.955 {\pm} 0.008$	1.965 ± 0.010	1.957 ± 0.002

Table S3. Average metal to oxygen bond length comparison for $[Tc(V)O_5]$ umbrella core.

*ax= axial, eq= equatorial

3. Small Angle X-ray scattering (SAXS)

Small angle X-ray scattering data was collected on an Anton Paar SAXSess instrument using Cu-K α radiation (1.54 Å) equipped with line collimation. A 2-D image plate was used for data collection in the q = 0.018-2.5 Å⁻¹ range. The lower q resolution is limited by the beam attenuator. The SAXS samples for redissolved crystals were made using HPLC grade acetonitrile. About 5 mg of crystals were added in 0.5 mL acetonitrile/water and sonicated. Then undissolved crystals were filtered out using a 0.45 µm membrane filter. The filtered solution was filled in a 1.5 mm glass capillaries (Hampton Research) to collect SAXS data. In case of Tc-99 containing solution, the sample was filled in 1.5 mm Kapton polyamide tubing (Cole-Palmer). Scattering data of neat solvent in glass/Kapton tube was also collected for background subtraction. Scattering was measured for 30 min for each experiment. SAXSQUANT software was used for data collection and post processing (normalization, primary beam removal, background subtraction, desmearing, and smoothing to remove the extra noise created by the desmearing routine). Data was analyzed by using IRENA macros with IgorPro 6.3 (Wavemetrics) software¹⁰. Simulated scattering pattern of Zr/Hf clusters were generated using SolX utilizing structural files (.xyz) containing the selected portion of the structure without solvent or coordinated ligands¹¹.

Figure S4. SAXS scattering curve of mother liquor for different reaction solution and redissolved bulk crystals in water.

4. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra was collected by using a PerkinElmer Spectrum Two Spectrometer system equipped with a $LiTaO_3$ MIR detector. The scanning range for experiment was from 4000 to 400 cm⁻¹ at a resolution of 4 cm⁻¹.

The FTIR spectra of the crystalline materials from the reaction between uranium acetate and perrhenic acid shows a characteristic band for an -OH stretching in between $3600-3100 \text{ cm}^{-1}$, from both H₂O and hydroxyl groups (**Figure S5**). Vibrational frequency corresponds to different group present in CH₃COO- can be found in between $1520-1420 \text{ cm}^{-1}$ and assigned in **Table S4**. A wide peak in between 990-780 cm⁻¹ corresponds to UO_2 and ReO_4 stretching. Similar to previous studies, the stretching bands corresponding to these separate group metal-oxo moieties overlap¹².

Figure S5. FT-IR spectra of crystalline materials isolated from reaction between uranium acetate and perrhenic acid.

Group	Wavenumber (cm ⁻¹)	Assignment	
	3600-3100	antisymmetric and symmetric OH stretching ¹³	
H ₂ O	1624	H ₂ O bending ¹³	
	1521	COO antisymmetric stretching ¹³	
	1486	CH ₃ bending ¹³	
CH ₃ COO	1411	COO symmetric stretching ¹³	
	667	COO bending/wagging ¹³	
	497	CH bending/ COO rocking ¹³	
$\text{ReO}_4^-/\text{UO}_2^{2+}$	990-780	UO ₂ asymmetric stretch ¹⁴ / ReO ₄ stretching ¹⁵	

Table S4. Analysis of functional groups and their vibration from FTIR spectra.

5. Raman Spectroscopy

The Raman spectra of air-dried crystalline materials were collected using a Thermo Scientific DXR spectrometer with a 760 nm laser source, between wavelengths of 600 and 1200 cm⁻¹.

The Raman spectra (**Figure S6**) were found to be useful in distinguishing the groups. The Raman active v_1 and v_3 stretching of ReO₄ can be observed in 998 cm⁻¹, 946 cm⁻¹ and 856 cm⁻¹.¹⁵⁻¹⁶ In case of crystalline materials from reaction between uranium acetate and pertechnic acid, this stretching shift into lower wavenumber for TcO₄⁻ at position 978 cm⁻¹, 908 cm⁻¹ and 830 cm⁻¹.¹⁷ The Raman active v_1 stretching of uranyl group can be also observed at 828 cm⁻¹ for perthenate compounds and 820 cm⁻¹ for pertechnetate compounds.^{14, 16} The vibrational mode at 908 cm⁻¹ can also be assigned to Tc^VO, based on prior vibrational spectroscopy data of pentavalent technetium.¹⁸

Figure S6. Raman spectra of crystalline materials isolated from reaction between uranium acetate, perrhenic acid and pertechnic acid.

6. Powder X-ray Diffraction (PXRD)

The PXRD experiments were done by using a Rigaku Miniflex diffractometer with Cu Ka ($\lambda = 1.54056$ Å) from 5 to 50° 2 θ at a rate of 2° min⁻¹. The air-dried samples were crushed into powder prior to analysis. A silicon zero diffraction plate was used to collect diffraction data.

PXRD patterns of crystalline materials isolated from reaction between uranium acetate and perrhenic acid show peaks corresponds to U_5Re_2 and U_4Re_2 (Figure S7). However, preferred crystallographic orientation, similar peak positions for the different phases, as well as loss of crystallinity due to lattice dehydration renders peak assignment difficult.

Figure S7. PXRD pattern of crystalline materials isolated from reaction between uranium acetate and perrhenic acid.

7. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS)

SEM analysis was done using a FEI Quanta 600F SEM system equipped with energy dispersive spectroscopy (EDS) capability through 10 mm² Si(Li) detector (EDAX inc). The crystalline materials were fixed on a carbon conductive before the analysis. The analyses were performed under high vacuum using accelerating voltage 10-20 kV for SEM and 30 kV for EDS analysis.

Scanning electron microscopy (SEM) analysis on crystalline materials reveal irregular shaped crystals (Figure S8 and S9). The energy dispersive spectroscopy (EDS) agreed well with elucidated compositions from SCXRD by showing peaks corresponding to U, Tc/Re, and Na, C and O in the crystalline materials (Figure S8 and S9). The results of EDS semi-quantitative elemental analysis are summarized in Table S5 and Table S6.

Figure S8. SEM image and EDS pattern of crystalline materials isolated from reaction between uranium acetate and perrhenic acid.

Table S5. EDS analysis result of crystalline materials isolated from reaction between uranium
acetate and perrhenic acid.

Elements	Weight (%)	Atom (%)
С	4.77	22.9
0	15.4	55.6
Re	28.4	8.84
U	51.5	12.5

Figure S9. SEM image and EDS pattern of crystalline materials isolated from reaction between uranium acetate and pertechnic acid.

Table S6. EDS analysis result of crystalline materials isolated from reaction between uranium acetate and pertechnic acid.

Elements	Weight (%)	Atom (%)	
С	6.83	22.5	
0	25.7	63.5	
Тс	11.7	4.74	
U	55.7	9.26	

References

- 1. M. Shohel, J. Bustos, G. D. Stroscio, A. Sarkar and M. Nyman, *Inorganic Chemistry*, 2023, **62**, 10450-10460.
- 2. B. A. X.-r. S. M. SAINT Plus Version 8.34a, WI2013.
- 3. S. G. M. Sheldrick, Bruker-Siemens area Detector. Absorb. other Correct. Version 2008/12008.
- 4. G. Sheldrick, *Acta Crystallographica Section A*, 2015, **71**, 3-8.
- 5. G. Sheldrick, Acta Crystallographica Section A, 2008, 64, 112-122.
- 6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography*, 2009, **42**, 339-341.
- 7. M. J. Abrams, S. K. Larsen and J. Zubieta, *Inorganic Chemistry*, 1991, **30**, 2031-2035.
- 8. F. D. Rochon, R. Melanson and P.-C. Kong, Acta Crystallographica Section C, 1992, 48, 785-788.
- 9. A. Davison, B. V. DePamphilis, A. G. Jones, K. J. Franklin and C. J. L. Lock, *Inorganica Chimica Acta*, 1987, **128**, 161-167.
- 10. J. Ilavsky and P. R. Jemian, *Journal of Applied Crystallography*, 2009, **42**, 347-353.
- 11. X. Zuo, G. Cui, K. M. Merz, L. Zhang, F. D. Lewis and D. M. Tiede, *Proceedings of the National Academy of Sciences*, 2006, **103**, 3534-3539.
- 12. O. V. Karimova and P. C. Burns, *Inorganic Chemistry*, 2007, 46, 10108-10113.
- 13. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry, John Wiley & Sons, 2009.
- 14. G. Lu, A. J. Haes and T. Z. Forbes, *Coordination Chemistry Reviews*, 2018, **374**, 314-344.
- 15. M. C. Chakravorti, *Coordination Chemistry Reviews*, 1990, **106**, 205-225.
- 16. M. J. Sarsfield, A. D. Sutton, I. May, G. H. John, C. Sharrad and M. Helliwell, *Chemical Communications*, 2004, DOI: 10.1039/B404424J, 2320-2321.
- 17. aM. J. Sarsfield, A. D. Sutton, F. R. Livens, I. May and R. J. Taylor, *Acta Crystallographica Section C*, 2003, **59**, i45-i46; bR. H. Busey and O. L. Keller, Jr., *The Journal of Chemical Physics*, 2004, **41**, 215-225.
- a) L. C. Francesconi, G. Graczyk, S. Wehrli, S. N. Shaikh, D. Mcclinton, S. Liu, J. Zubieta and H. F. Kung, *Inorganic Chemistry*, 1993, **32**, 3114-3124; b) D. McGregor, B. P. Burton-Pye, R. C. Howell, I. M. Mbomekalle, W. W. Lukens, F. Bian, E. Mausolf, F. Poineau, K. R. Czerwinski and L. C. Francesconi, *Inorganic Chemistry*, 2011, **50**, 1670-1681; c) M. V. Mikelsons and T. C. Pinkerton, *Appl Radiat Isotopes*, 1987, **38**, 569-570.