Electricity-driven, oxidative C-H selenylative and tellurylative annulation of N-(2-alkynyl)anilines: Sustainable synthesis of 3-selanyl/tellanylquinolines

Ainala Naresh,[#] H. Sai Keerthana,[#] Nilanjana Mukherjee and Tanmay Chatterjee*

#Equal contribution

Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad-500078, Telangana, India

Email: tanmay@hyderabad.bits-pilani.ac.in

Table of Contents

1.	General Reagent Information
2.	General Analytical Information
3.	Table S1. Optimization of the Reaction Conditions
4.	Synthesis of N-(2-Alkynyl)anilines (1a-1s), and Diaryl diselenides (2a-2l) S4
5.	General Experimental Procedure for the Synthesis of 3-Selanylquinolines
(38	a-3qa and 3ab–3ak) and 3-Telanylquinolines (5aa – 5ja)
6.	<i>In-Situ</i> Detection of (2,2-Diphenylvinyl)(phenyl)selane by LC-MS
7.	Cyclic Voltammetry
8.	Calculation of Faradaic EfficiencyS13
9.	Characterization of all Synthesized Products

1. General Reagent Information

All reagents and solvents were purchased from Sigma-Aldrich, TCI, Finar and other local chemical companies. Flash column chromatography was performed using silica gel (100-200 mesh)

2. General Analytical Information

The starting materials such as N-(3-phenylprop-2-yn-1-yl) aniline and products such as 4-phenyl-3-(phenylselanyl)quinoline and 4-phenyl-3-(phenyltellanyl)quinoline were characterized by ¹H NMR, ¹³C NMR, ⁷⁷Se NMR (for unknown compounds only) and ¹⁹F NMR (for unknown compounds only) spectra whichwere recorded on a Bruker 400 MHz instrument (400 MHz for ¹H NMR, 101 MHz for ¹³C NMR,76 MHz for ⁷⁷Se NMR and 377 MHz for ¹⁹F NMR). Copies of ¹H, ¹³C, ⁷⁷Se and ¹⁹F NMR spectra can be found at the end of the Supporting Information. ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to residual chloroform (7.26 ppm) in the deuterated solvent. ¹³C NMR spectra are reported in ppm relative to deuterochloroform (77.00 ppm) and all were obtained with ¹H decoupling. Coupling constants were reported in Hz. Reactions were monitored by thin layer chromatography (TLC) and ¹H NMR of the crude reaction mixture using 1,3,5-trimethylbenzene(mesitylene) as the internal standard. Mass spectral data were obtained on LC-MS-8040 (Shimadzu). Mass spectral data of unknown compounds were obtained on a high-resolution mass spectrometer, HRMS (6546 Q-TOF LC/MS, Agilent). Melting points of unknown compounds were recorded on a KRUSS Optronic M3000 apparatus. Cyclic Voltammetry and all the chronopotentiometry (CCE) experiments were conducted on a AUTOLAB potentiostat/galvanostat.

3. Table S1. Optimization of the Reaction Conditions^a

^{*a*}Reactions were conducted in a 0.1 mmol scale in an undivided cell equipped with an anode (1 x 1 cm²), cathode (1 x 1.5 cm²), and an Ag/AgCl reference electrode under constant current electrolysis, Q = 54C, 0.0005596F (Faradaic efficiency = 49.32%); ^{*b*}Yield was determined by the ¹H NMR of the crude reaction mixture using 1,3,5-trimethylbenzene as the internal standard.

4. Synthesis of *N*-(2-Alkynyl)anilines (1a-1s), and Diaryl diselenides (2a-2l).

The starting materials (1 and 2), as shown below, were synthesized by following the literature protocols.¹⁻⁵

A. General Method for the Preparation of 1a to 1j and 1r:

The starting materials **1a** to **1j** and **1r** were synthesized using the reported protocol.¹

B. General Method for the Preparation of 1k and 11:

The starting materials 1k and 1l were synthesized using the reported protocol.^{3,4}

C. General Method for the Preparation of 1m to 1p and 1s:

The starting materials 1m to 10, 1q and 1s were synthesized using the reported protocol.¹

D. Method for the Preparation of 1q:

The starting material **1q** was synthesized using the reported protocol.¹

E. General Method for the Preparation of Diaryl diselenides 2b to 2i and 2l:

The starting materials **2b** to **2i** and **2l** were synthesized using the reported protocol.⁵ However, **2a**, **2j**, **2k** and **4a** were commercially available.

5. General Experimental Procedure for the Synthesis of 3-Selanylquinolines (3aa-3qa and 3ab–3ak) and 3-Telanylquinolines (5aa – 5ja)

Representative experimental procedure for the synthesis of 4-phenyl-3-(phenylselanyl)quinoline (3aa):

In an undivided electrochemical cell, *N*-(3-phenylprop-2-yn-1-yl)aniline (0.103 g, 0.5 mmol), 1,2-diphenyldiselenide (0.084 g, 0.275 mmol), lithium perchlorate (0.013 g, 0.0125 mmol) and acetonitrile (10 mL) were taken. The cell was equipped with Pt as working electrode (anode), graphite sheet as counter electrode (cathode) and Ag/AgNO₃ as reference electrode. The reaction mixture was subjected to a constant current of 0.005 A at room temperature in open air condition for 3 hours. The progress of the reaction was monitored using TLC. After the completion of the reaction, the reaction mixture was quenched using NaHCO₃ solution and extracted using ethyl acetate (2x15 mL). The organic layer was dried using anhydrous Na₂SO₄ and was concentrated under reduced pressure. The crude product was purified using silica gel column chromatography (hexane:ethyl acetate = 95:5) to obtain the pure product, 4-phenyl-3-(phenylselanyl)quinoline (**3aa**) as yellow solid in 88% yield (0.171g).

Reaction Setup

Electrodes Used

A. Gram Scale Synthesis of 4-Phenyl-3-(phenylselanyl)quinoline (3aa):

In an undivided cell, the starting material (1g, 4.82 mmol), 2a (0.752g, 2.41 mmol), LiClO₄ (0.128 g, 1.205 mmol) and acetonitrile (25 mL) were taken. The cell was equipped with Pt as working electrode, graphite sheet as counter electrode and Ag/Ag^+ as reference electrode. The reaction mixture was subjected to constant current of 0.06 A at room temperature in open air condition for 16 hours. The progress of the reaction was monitored using TLC. After the completion of the reaction, the reaction mixture was quenched using NaHCO₃ solution and was extracted using ethyl acetate (2x15 mL). The organic layer was dried using anhydrous Na₂SO₄ and was concentrated under reduced pressure. The crude product was purified using column chromatography (hexane:ethyl acetate = 95:5) to obtain the pure product.

B. Experimental Procedures for the Synthetic Diversification of 3aa

To the starting material **3aa** (0.100 g, 0.28 mmol) dissolved in ethanol (2 mL), oxone (0.103 g, 0.168 mmol) was added and the reaction mixture was heated at 60 °C for 12 hours and the reaction was monitored using TLC. After the completion of the reaction, the reaction mixture was filtered and concentrated under reduced pressure. The crude product was the purified using column chromatography (DCM:Methanol = 95:5) and the pure product was characterized using spectroscopic techniques.

To the starting material, **3aa** (0.200 g, 0.55 mmol) dissolved in DCM (4 mL), *m*-CPBA (0.190 g, 1.1 mmol) was added at 0 °C, and the reaction mixture was allowed to stir at room temperature overnight and the progress of the reaction was monitored using TLC. After the completion of the reaction, it was quenched using sodium bicarbonate solution and was extracted using DCM (2 x 15 mL). The organic layer was concentrated under reduced pressure, and the crude was purified using silica gel column chromatography (DCM:Methanol = 90:10).

The compound 7 (0.150 g, 0.38 mmol) was dissolved in toluene (5 mL), and to it, piperidine (0.259 g, 3.04 mmol) and CuI (7.24 mg, 0.038 mmol) were added. The mixture was stirred at 50 °C for 7 hours, then cooled down to room temperature, diluted with 10 mL DCM and washed with 10 mL H₂O. The aqueous layer was extracted twice with DCM (5 mL) and the combined organic phase was dried over anhydrous Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (DCM:Methanol = 90:10). Then to a stirred mixture of **8** (0.06 g, 0.25 mmol) in toluene (1.0 mL), PCl₃ (26.25 μ L, 0.3 mmol) was added dropwise. The reaction mixture was stirred for 30 min at room temperature. Saturated solution of NaHCO₃ (5 mL) was added and then stirred for additional 5 min. The aqueous layer was then washed with DCM (20 mL x 3). The combined organic layer were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give crude product, which was purified by column chromatography (hexane:ethyl acetate = 40:60).

6. In-Situ Detection of (2,2-Diphenylvinyl)(phenyl)selane by LC-MS

==== Shimadzu LabSolutions Data Report ==== <Spectrum> Line#:1 R.Time:----(Scan#:----) MassPeaks:6 RawMode:Averaged 0.438-0.887(151-305) BasePeak:335.1000(18910079) BG Mode:None Segment 1 - Event 1 100 8 90 Ph 2 Śe 80 Ph 70-10 60-MS calcd. for C₂₀H₁₆Se [M]⁺: 336; found: 336 50-40-30-20-10-335 340 m/z Line#:2 R.Time:-MassPeaks:37 --(Scan#:---) RawMode:Averaged 0.440-0.890(152-306) BasePeak:255.1000(644711) BG Mode:None Segment 1 - Event 2

Mass Spectrum of the Reaction Mixture of 1a and 2a in presence of DPE

7. Cyclic Voltammetry

Figure S2: Cyclic Voltammograms of 1a, 1b, 1d, 1e, 1f, 2a, 4a, (PhS)2 and 11

8. Calculation of Faradaic Efficiency

Faradaic Efficiency = Charge required for the formation of **3aa** / Total charge applied

Charge required for the generation of 3aa (0.1 mmol scale) = nFM

 $= 3 e^{-x} 96491 C mol^{-1} x 0.1 x 10^{-3} mol x 0.92 = 26.634 C$

(Considering the 3-electron oxidation for the conversion of starting material **1a** to product **3aa** in 92% yield)

Total charge applied = $It = 0.005 \text{ A} \times 10800 \text{ s} = 54 \text{ C}$

Faradaic Efficiency = (26.634 / 54) x 100% = 49.32%

9. Characterization of all Synthesized Products

4-Phenyl-3-(phenylselanyl)quinoline (3aa):

Yellow solid (0.153 g, 85% yield). Eluent: hexane: ethyl acetate (95:5). mp: 139-141 °C. ¹H NMR (400 MHz, CDCl₃ δ 8.71 (s, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.67 (ddd, J = 8.4, 6.7, 1.6 Hz, 1H), 7.56 – 7.48 (m, 5H), 7.47 (dd, J = 3.0, 0.9 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.35 – 7.27 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 147.6, 146.6, 138.6, 137.3, 135.0, 130.5, 129.5, 129.4, 128.9, 128.7, 128.6, 127.9, 127.1, 125.8.

6-Iodo-4-phenyl-3-(phenylselanyl)quinoline (3ba):

Yellow solid (0.202 g, 83%). Eluent: hexane: ethyl acetate (95:5). mp: 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.84 (s, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.55 (d, J = 6.2 Hz, 3H), 7.50 (d, J = 6.8 Hz, 2H), 7.35 – 7.27 (m, 5H). ¹³C NMR (101

MHz, CDCl₃) δ 152.2, 146.5, 145.6, 137.8, 136.4, 135.1, 134.5, 131.2, 129.8, 129.5, 129.6, 129.0, 128.9, 128.70, 128.6, 128.2, 93.3.

6-Bromo-4-phenyl-3-(phenylselanyl)quinoline (3ca):

Yellow solid (0.181 g, 80%). Eluent: hexane: ethyl acetate (95:5). mp: 121-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.92 (d, *J* = 8.9 Hz, 1H), 7.71 (dd, *J* = 8.9, 2.2 Hz, 1H), 7.61 (d, *J* = 2.1 Hz, 1H), 7.58 – 7.55 (m, 3H), 7.52 – 7.49 (m, 2H), 7.36 – 7.28 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 146.7, 145.3, 136.5, 135.1, 132.4, 131.3, 129.8, 129.2, 129.0, 128.95, 128.91, 128.6, 128.4, 127.9, 121.3.

6-Fluoro-4-phenyl-3-(phenylselanyl)quinoline (3da):

Yellow solid (0.147 g, 78%). Eluent: hexane: ethyl acetate (95:5). mp: 77-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.05 (dd, J = 9.2, 5.5 Hz, 1H), 7.62 – 7.47 (m, 5H), 7.41 (ddd, J = 9.1, 8.0, 2.8 Hz, 1H), 7.36 – 7.27 (m, 5H), 7.08 (dd, J = 10.1, 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9 (d, J = 248.3 Hz), 151.1, 147.2 (d, J = 5.5 Hz), 143.8, 136.7, 135.0, 132.0 (d, J = 9.3 Hz), 129.8, 129.2, 128.9, 128.8, 128.6, 128.2, 119.1 (d, J = 25.9 Hz), 109.3 (d, J = 23.3 Hz).

Methyl 4-phenyl-3-(phenylselanyl)quinoline-6-carboxylate (3ea):

Off white solid (0.173 g, 80%). Eluent: hexane: ethyl acetate (95:5). mp:136-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.24 (s, 1H), 8.22 (d, *J* = 1.9 Hz, 1H), 8.09 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.59 – 7.54 (m, 3H), 7.51 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.37 – 7.27 (m, 5H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 152.7, 147.9, 147.4, 135.4, 134.0, 128.8, 128.7, 128.2, 128.0, 127.8, 127.7, 127.6, 127.4, 127.3, 126.1, 51.3. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 376.7 (s). HRMS (ESI) m/z calcd. for [M+H]⁺:420.0503; Found: 420.0506.

6-Methyl-4-phenyl-3-(phenylselanyl)quinoline (3fa):

Yellow solid (0.112 g, 60%). Eluent: hexane: ethyl acetate (95:5). mp: 115-119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 6.9 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.47 (dd, *J* = 8.3, 0.7 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.24 (s, 2H), 7.22 (d, *J* = 1.9 Hz, 2H), 7.08 – 7.01 (m, 2H), 3.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.5, 147.9, 145.5, 137.5, 137.2, 134.4, 131.4, 129.7, 129.6, 129.4, 129.3, 128.6, 128.5, 128.1, 127.9, 126.6, 124.8, 21.8.

8-Methoxy-4-phenyl-3-(phenylselanyl)quinoline (3ga):

Yellow solid (0.103 g, 53%). Eluent: hexane: ethyl acetate (95:5). mp: 151-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.42 (d, *J* = 6.2 Hz, 3H), 7.38 (d, *J* = 6.5 Hz, 2H), 7.20 (ddd, *J* = 16.1, 9.0, 4.5 Hz, 6H), 6.93 (dd, *J* = 12.3, 8.2 Hz, 2H), 3.98 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.5, 150.9, 148.1, 138.7, 137.5, 134.6, 129.6, 129.3, 129.0, 128.6, 128.5, 128.2, 127.7, 127.2, 117.7, 107.2, 56.1. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 371.2. HRMS (ESI) m/z calcd. for C₂₂H₁₈NOSe⁺ [M+H]⁺:392.0554; Found: 392.0557.

4,8-Diphenyl-3-(phenylselanyl)quinoline (3ha):

Yellow solid (0.139 g, 64%). Eluent: hexane: ethyl acetate (95:5). mp: 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.65 (ddd, J = 8.0, 4.3, 1.9 Hz, 3H), 7.60 – 7.54 (m, 3H), 7.52 (td, J = 4.2, 1.9 Hz, 1H), 7.50 (d, J = 1.7 Hz, 1H), 7.49 – 7.47 (m, 2H), 7.47 – 7.44 (m, 2H), 7.39 (ddd, J = 7.4, 4.1, 1.4 Hz, 3H), 7.32 – 7.27 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 147.6, 144.4, 141.1, 139.6, 137.6, 135.3, 130.6, 129.8, 129.7, 129.4, 128.7, 128.6, 128.4, 128.3, 128.0, 127.4, 127.1, 126.7, 125.6. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 374.5. HRMS (ESI) m/z calcd. for [M+H]⁺:438.0761; Found: 438.0768.

5-Fluoro-4-phenyl-3-(phenylselanyl)quinoline (3ia):

Yellow solid (0.093 g, 50%). Eluent: hexane: ethyl acetate (95:5). mp: 75-77 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 7.70 (dd, J = 9.8, 2.5 Hz, 1H), 7.53 (dd, J = 5.1, 1.8 Hz, 3H), 7.51 – 7.44 (m, 3H), 7.35 – 7.27 (m, 5H), 7.23 – 7.18 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 161.5, 153.6, 148.6, 147.9 (d, J = 12.5 Hz), 137.0, 134.5, 129.7, 129.4, 129.2, 128.8, 128.7, 128.4, 128.3, 126.0, 125.1, 115.2 (dd, J = 432.3, 22.7 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -110.4. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 370.0. HRMS (ESI) m/z calcd. for C₂₁H₁₅FNSe⁺: [M+H]⁺:380.0354; Found: 380.0357

7-Fluoro-4-phenyl-3-(phenylselanyl)quinoline (3ia'):

Yellow solid (0.054 g, 29%). Eluent: hexane: ethyl acetate (95:5). mp: 78-80 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 8.2, 5.5 Hz, 1H), 7.55 (d, J = 6.7 Hz, 2H), 7.52 – 7.48 (m, 3H), 7.38 – 7.30 (m, 6H), 7.09 (dd, J = 11.8, 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.1, 156.5, 151.8, 148.1, 143.9, 139.7, 135.5, 129.9, 128.8, 128.5, 128.4, 128.3, 128.05, 128.02, 125.9 (d, J = 3.7 Hz), 118.2 (d, J = 9.2 Hz), 112.4 (d, J = 21.7 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -107.8. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 379.2. HRMS (ESI) m/z calcd. for C₂₁H₁₅FNSe⁺: [M+H]⁺:380.0354; Found: 380.0357

7-(*tert*-Butyl)-4-phenyl-3-(phenylselanyl)quinoline (3ja):

Yellow solid (0.135 g, 65%). Eluent: hexane: ethyl acetate (95:5). mp: 87-89 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (s, 1H), 8.04 (d, *J* = 1.5 Hz, 1H), 7.55 – 7.48 (m, 4H), 7.45 (s, 1H), 7.41 (dd, *J* = 9.3, 3.1 Hz, 2H), 7.31 – 7.22 (m, 5H), 1.41 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 152.6, 148.9, 147.1, 137.4, 133.8, 130.2, 129.5, 129.3, 128.5, 127.9, 126.0, 125.7, 125.4, 124.8, 35.0, 31.1. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 365.2. HRMS (ESI) m/z calcd. for C₂₅H₂₄NSe⁺: [M+H]⁺:418.1074; Found: 418.1078.

2-Methyl-4-phenyl-3-(phenylselanyl)quinoline (3ka):

Yellow solid (0.135 g, 72%). Eluent: hexane: ethyl acetate (95:5). mp: 130-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.71 (ddd, *J* = 8.4, 5.2, 3.1 Hz, 1H), 7.46 – 7.38 (m, 5H), 7.21 – 7.17 (m, 2H), 7.14 – 7.11 (m, 3H), 7.07 – 7.03 (m, 2H), 2.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 154.9, 147.5, 139.0, 133.0, 130.1, 129.7, 129.3, 129.1, 128.7, 128.1, 128.0, 127.2, 127.0, 126.3, 126.2, 124.5, 27.3. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 348.6. HRMS (ESI) m/z calcd. for C₂₂H₁₈NSe⁺: [M+H]⁺:376.0599; Found: 376.0607.

2,4-Diphenyl-3-(phenylselanyl)quinoline (3la):

Golden yellow solid (0.132 g, 61%). Eluent: hexane: ethyl acetate (95:5). mp: 132-134 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.2 Hz, 1H), 7.57 – 7.50 (m, 1H), 7.35 – 7.20 (m, 7H), 7.17 – 7.02 (m, 5H), 6.90 – 6.51 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 154.6, 147.3, 142.1, 138.8, 133.1, 131.8, 130.0, 129.6, 129.5, 129.1, 128.6, 128.1, 128.0, 127.6, 127.4, 126.9, 126.8, 126.4, 125.2.

3-(Phenylselanyl)-4-(4-(trifluoromethyl)phenyl)quinoline (3ma):

Orange liquid (0.182 g, 85%). Eluent: hexane: ethyl acetate (95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.62 (dd, J = 8.8, 1.9 Hz, 1H), 7.47 (dd, J = 8.2, 1.3 Hz, 2H), 7.40 (dd, J = 8.2, 1.4 Hz, 2H), 7.32 (dt, J = 5.2, 1.8 Hz, 1H), 7.30 – 7.28 (m, 1H), 7.23 (ddd, J = 4.2, 3.7, 2.1 Hz, 2H), 7.10 (d, J = 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 150.7, 147.4, 137.1, 135.9, 133.1, 132.8, 129.8, 129.6, 129.2, 128.7, 128.5, 128.0, 127.4, 126.4, 126.1 (d, J = 3.5 Hz), 124.7. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.57. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 397.1.

4-(4-Methoxyphenyl)-3-(phenylselanyl)quinoline (3na):

Orange solid (0.132 g, 68%). (Eluent: hexane: ethyl acetate (95:5). mp: 92-94°C ¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 6.9 Hz, 2H), 7.65 – 7.56 (m,

1H), 7.47 (dd, J = 8.3, 0.7 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.24 (s, 2H), 7.22 (d, J = 1.9 Hz, 2H), 7.04 (d, J = 8.6 Hz, 2H), 3.87 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 152.2, 146.0, 145.7, 140.3, 135.1, 134.5, 133.3, 131.8, 130.1, 129.7, 129.6, 129.0, 128.6, 128.5, 128.4, 128.1, 127.0, 126.0, 125.6 (d, J = 3.4 Hz), 124.0 (q, J = 270 Hz).

 $13C \text{ NMR} (101 \text{ MHz}, \text{CDC13}) \\ \delta 152.2, 146.0, 145.7, 140.3, 135.1, 134.5, 133.3, 131.8, 130.1, 129.7, \\ 129.6, 129.0, 128.6, 128.5, 128.4, 128.1, 127.0, 126.0, 125.6 (d, J = 3.4 \text{ Hz}), 124.0 (q, J = 270 \text{ Hz}). \\ \end{cases}$

4-(Naphthalen-1-yl)-3-(phenylselanyl)quinoline (3oa):

Yellow solid (0.157 g, 77%). Eluent: hexane: ethyl acetate (95:5). mp: 80-82°C. ¹H NMR (400 MHz, CDCl₃) (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.01 (dd, J = 19.4, 8.3 Hz, 2H), 7.70 – 7.59 (m, 2H), 7.56 – 7.49 (m, 1H), 7.45 (dd, J = 8.0, 1.4 Hz, 2H), 7.40 (dd, J = 7.0, 1.0 Hz, 1H), 7.36 – 7.26 (m, 4H), 7.25 – 7.20 (m, 3H).¹³C NMR (101 MHz, CDCl₃) δ 152.4, 146.8, 146.6, 134.9, 134.8, 133.6, 131.3, 129.6, 129.5, 129.3, 129.2, 129.1, 128.6, 128.3, 127.5, 127.3, 126.7, 126.3, 126.2, 125.4.

4-Methyl-3-(phenylselanyl)quinoline (3pa):

Yellow liquid (0.083 g, 56%). Eluent: hexane: ethyl acetate (98:2). ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.06 (t, J = 8.1 Hz, 2H), 7.71 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.38 (m, J = 2.4 Hz, 2H), 7.25 (m, J = 5.1 Hz, 3H), 2.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 147.2, 146.9, 132.0, 130.8, 130.1, 129.6, 129.4, 128.4, 127.3, 127.0, 125.7, 124.2, 18.5.

3-((2-Chlorophenyl)selanyl)-4-phenylquinoline (3ab):

Yellow solid (0.108 g, 55%). Eluent: hexane: ethyl acetate (95:5). mp: 78-82°C ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.13 (d, J = 8.3 Hz, 1H), 7.72 (ddd, J = 8.4, 6.7, 1.5 Hz, 1H), 7.53 (dd, J = 8.5, 1.0 Hz, 1H), 7.50 (ddd, J = 4.5, 3.5, 1.7 Hz, 3H), 7.48 – 7.44 (m, 1H), 7.36 (dd, J = 7.9, 1.4 Hz, 1H), 7.30 (ddd, J = 5.5, 2.9, 1.5 Hz, 2H), 7.21 – 7.15 (m, 2H), 7.08 (ddd, J = 8.0, 7.2, 1.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 151.1, 147.4, 137.1, 135.7, 133.5, 131.7, 129.8, 129.7, 129.6, 129.1, 128.6, 128.5, 128.1, 127.5, 127.2, 126.4, 124.4. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 358.5. HRMS (ESI) m/z calcd. for C₂₁H₁₅ClNSe⁺ [M+H]⁺:396.0058; Found: 396.0062.

3-((2-Fluorophenyl)selanyl)-4-phenylquinoline (3ac):

Yellow solid (0.128 g, 68%). Eluent: hexane: ethyl acetate (95:5). mp: 71-73 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.72 – 7.65 (m, 1H), 7.56 – 7.50 (m, 3H), 7.49 (s, 1H), 7.47 – 7.40 (m, 1H), 7.40 – 7.28 (m, 4H), 7.06 (dt, J = 10.5, 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 160.7, 152.5, 149.2, 147.0, 137.1, 136.0, 130.6 (d, J = 7.7 Hz), 129.5, 129.3, 128.7, 128.6, 128.0, 127.2, 126.1, 125.1 (d, J = 3.2 Hz), 124.9, 116.6 (d, J = 22.0 Hz), 116.0 (d, J = 23.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -102.0. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 292.1. HRMS (ESI) m/z calcd. for C₂₁H₁₅FNSe⁺ [M+H]⁺:380.0354; Found: 380.0355.

3-((4-Bromophenyl)selanyl)-4-phenylquinoline (3ad):

Yellow solid (0.153 g, 70%). Eluent: hexane: ethyl acetate (95:5). mp: 74-77 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 7.92 (d, *J* = 8.9 Hz, 1H), 7.71 (dd, *J* = 8.9, 2.2 Hz, 1H), 7.61 (d, *J* =

2.1 Hz, 1H), 7.58 – 7.55 (m, 3H), 7.52 – 7.49 (m, 2H), 7.36 – 7.28 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 146.7, 145.3, 136.5, 135.1, 132.4, 131.3, 129.8, 129.2, 129.0, 128.95, 128.91, 128.6, 128.4, 127.9, 121.3.

4-Phenyl-3-((4-(trifluoromethyl)phenyl)selanyl)quinoline (3ae):

Yellow solid (0.128 g, 60%). Eluent: hexane: ethyl acetate (95:5). mp:75-77 °C ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.72 (ddd, J = 8.4, 6.7, 1.6 Hz, 1H), 7.54 – 7.48 (m, 5H), 7.47 – 7.42 (m, 5H), 7.28 – 7.27 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.6, 150.7, 147.4, 137.1, 136.0, 132.8, 129.8, 129.8, 129.6, 129.2, 128.7, 128.5, 128.0, 127.4, 126.4, 126.1 (d, J = 3.5 Hz), 125.3, 124.0 (q, J = 270 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.73.

4-Phenyl-3-(p-tolylselanyl)quinoline (3af):

Yellow solid (0.159 g, 85%). Eluent: hexane: ethyl acetate (95:5). mp: 101-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.06 (d, J = 8.3 Hz, 1H), 7.65 (ddd, J = 8.3, 6.7, 1.5 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.48 (dt, J = 7.9, 1.9 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.35 (dd, J = 7.6, 1.8 Hz, 1H), 7.11 (d, J = 7.8 Hz, 1H), 2.35 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8, 147.6, 146.6, 138.6, 137.3, 135.2, 130.5, 129.5, 129.4, 128.9, 128.6, 127.9, 127.3, 127.1, 125.8, 125.2.

3-((4-Methoxyphenyl)selanyl)-4-phenylquinoline (3ag):

Yellow solid (0.177 g, 91%). Eluent: hexane: ethyl acetate (95:5). mp: 74-78 °C ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.63 (ddd, *J* = 8.3, 6.7, 1.5 Hz, 1H), 7.58 –

7.52 (m, 3H), 7.51 – 7.46 (m, 3H), 7.42 – 7.38 (m, 1H), 7.37 – 7.34 (m, 2H), 6.88 – 6.83 (m, 2H), 3.80 (s, 3H). ¹³**C NMR (101 MHz, CDCl**₃) δ 160.3, 151.1, 146.81, 146.5, 137.5, 137.2, 129.5, 129.4, 128.7, 128.6, 127.9, 127.8, 127.1, 125.7, 118.5, 115.5, 55.4.

3-([1,1'-Biphenyl]-2-ylselanyl)-4-phenylquinoline (3ah):

Yellow solid (0.177 g, 81%). Eluent: hexane: ethyl acetate (95:5). mp: 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.67 (t, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 5.7 Hz, 4H), 7.42 (d, *J* = 6.6 Hz, 1H), 7.37 (dd, *J* = 13.8, 6.0 Hz, 1H), 7.32 (d, *J* = 6.4 Hz, 5H), 7.25 – 7.22 (m, 2H), 7.20 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.16 (dd, *J* = 4.6, 3.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 148.6, 146.0, 145.1, 144.4, 141.6, 136.7, 134.6, 134.0, 133.1, 131.0, 130.8, 130.6, 130.5, 130.4, 130.3, 130.1, 129.21, 129.18, 129.0, 128.4, 128.2, 127.9, 127.9, 127.6, 127.51, 127.45. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 373.1. HRMS (ESI) m/z calcd. for C₂₇H₂₀NSe⁺ [M+H]⁺:438.0761; Found: 438.0760.

3-(Naphthalen-1-ylselanyl)-4-phenylquinoline (3ai):

Brown liquid (0.156 g, 76%). Eluent: hexane: ethyl acetate (95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.20 (d, *J* = 7.9 Hz, 1H), 8.00 (d, *J* = 8.3 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 7.3 Hz, 2H), 7.66 – 7.61 (m, 1H), 7.58 (ddd, *J* = 5.6, 5.1, 1.6 Hz, 2H), 7.50 (d, *J* = 7.3 Hz, 2H), 7.47 (d, *J* = 1.7 Hz, 1H), 7.45 (d, *J* = 1.8 Hz, 1H), 7.44 – 7.41 (m, 2H), 7.39 (dd, *J* = 5.6, 4.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 147.4, 146.6, 137.2, 135.6, 134.5, 134.3, 130.2, 129.5, 129.4, 128.8, 128.7, 127.9, 127.8, 127.3, 127.1, 126.9, 126.5, 126.1, 125.7.

3-(Methylselanyl)-4-phenylquinoline (3aj):

Yellow solid (0.137 g, 92%). Eluent: hexane: ethyl acetate (95:5). mp: 125-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.65 (ddd, *J* = 8.4, 6.5, 1.8 Hz, 1H), 7.58 – 7.49 (m, 3H), 7.45 (ddd, *J* = 8.5, 1.8, 0.6 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.34 – 7.30 (m, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 146.9, 145.5, 136.2, 128.4, 128.3, 127.7, 127.6, 127.5, 126.6, 126.0, 124.7, 124.6, 6.3.

3-(Benzylselanyl)-4-phenylquinoline (3ak):

Yellow solid (0.159 g, 85%). Eluent: hexane: ethyl acetate (95:5). mp: 102-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (s, 1H), 8.13 (d, J = 8.5 Hz, 1H), 7.68 (ddd, J = 8.4, 6.4, 1.8 Hz, 1H), 7.50 – 7.46 (m, 3H), 7.45 – 7.39 (m, 2H), 7.22 – 7.10 (m, 7H), 4.06 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 153.0, 150.3, 147.0, 137.6, 137.4, 129.5, 129.4, 129.2, 128.9, 128.5, 128.4, 127.4, 127.1, 127.0, 126.2, 124.9, 31.9. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 318.1. HRMS (ESI) m/z calcd. for C₂₂H₁₈NSe⁺ [M+H]⁺:376.0604; Found: 376.0609.

4-Phenyl-3-(phenyltellanyl)quinoline (5aa):

Orange solid (0.184 g, 90%). Eluent: hexane: ethyl acetate (95:5). mp: 142-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 7.1 Hz, 2H), 7.54 (dd, J = 11.0, 3.9 Hz, 1H), 7.47 – 7.40 (m, 3H), 7.36 (d, J = 7.8 Hz, 1H), 7.29 (dd, J = 11.9, 7.2 Hz, 2H), 7.25 – 7.21 (m, 2H), 7.21 – 7.15 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 151.1, 147.0, 140.5,

139.8, 129.9, 129.4, 129.1, 129.0, 128.9, 128.8, 128.1, 126.9, 125.8, 114.6, 113.3. **HRMS (ESI)** m/z calcd. for C₂₁H₁₆NTe⁺ [M+H]⁺:412.0345; Found: 412.0350.

6-Iodo-4-phenyl-3-(phenyltellanyl)quinoline (5ba):

Yellow solid (0.246 g, 92%). Eluent: hexane: ethyl acetate (95:5). mp: 142-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.89 – 7.84 (m, 3H), 7.79 (d, J = 1.7 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.60 – 7.55 (m, 3H), 7.41 (t, J = 7.5 Hz, 1H), 7.30 (dt, J = 9.6, 5.9 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 154.1, 149.5, 145.9, 140.8, 139.0, 137.8, 134.4, 131.1, 130.1, 129.6, 129.3, 129.2, 128.7, 116.2, 113.0, 92.9. HRMS (ESI) m/z calcd. for C₂₁H₁₅INTe⁺ [M+H]⁺:537.9311; Found: 537.9314.

6-Bromo-4-phenyl-3-(phenyltellanyl)quinoline (5ca):

Yellow solid (0.207 g, 85%). Eluent: hexane: ethyl acetate (95:5). mp: 106-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.90 (d, *J* = 8.9 Hz, 1H), 7.86 (d, *J* = 7.0 Hz, 2H), 7.69 (dd, *J* = 8.9, 2.1 Hz, 1H), 7.58 (dd, *J* = 6.7, 4.0 Hz, 4H), 7.45 – 7.38 (m, 1H), 7.31 (dt, *J* = 14.6, 6.0 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 152.87, 148.65, 144.53, 139.74, 137.99, 131.41, 130.14, 129.00, 128.22, 128.18, 128.09, 127.63, 126.72, 119.95, 115.35, 111.95. HRMS (ESI) m/z calcd. for C₂₁H₁₅BrNTe⁺ [M+H]⁺:489.9450; Found: 489.9444.

6-Methyl-4-phenyl-3-(phenyltellanyl)quinoline (5fa):

Yellow solid (0.150 g, 71%). Eluent: hexane: ethyl acetate (95:5). mp: 106-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.95 (d, *J* = 8.5 Hz, 1H), 7.83 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.56 (dd, *J* = 5.1, 1.9 Hz, 3H), 7.48 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.35 – 7.31 (m, 2H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.19 (s, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.1, 150.5, 145.7, 140.5, 140.0, 136.9, 131.3, 129.9, 129.2, 129.0, 128.9, 128.85, 128.78, 128.1, 124.6, 114.6, 113.4, 21.8. HRMS (ESI) m/z calcd. for C₂₂H₁₈NTe⁺ [M+H]⁺:426.0501; Found: 426.0507.

4,8-Diphenyl-3-(phenyltellanyl)quinoline (5ha):

Yellow solid (0.175 g, 72%). Eluent: hexane: ethyl acetate (95:5). mp: 152-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.65 (d, *J* = 6.8 Hz, 3H), 7.58 (d, *J* = 6.1 Hz, 3H), 7.48 (d, *J* = 11.2 Hz, 4H), 7.39 (d, *J* = 5.5 Hz, 4H), 7.28 (s, 1H), 7.23 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 150.7, 144.8, 141.1, 140.2, 139.7, 130.6, 130.0, 129.9, 129.1, 128.91, 128.87, 128.6, 128.0, 127.4, 126.6, 125.5, 115.0, 113.0. HRMS (ESI) m/z calcd. for C₂₂H₁₈NOTe⁺ [M+H]⁺: 488.0658; Found:488.0667.

5-Fluoro-4-phenyl-3-(phenyltellanyl)quinoline (5ia):

Yellow solid (0.124 g, 58%). Eluent: hexane: ethyl acetate (95:5). mp:64-66 °C ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 7.83 (d, *J* = 7.7 Hz, 2H), 7.67 (d, *J* = 9.8 Hz, 1H), 7.55 (s, 3H), 7.50 – 7.36 (m, 2H), 7.35 – 7.27 (m, 4H), 7.18 (t, *J* = 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 161.5, 155.2, 151.2, 148.1 (d, *J* = 12.5 Hz), 140.5, 139.6, 125.3, 117.2 (d, *J* = 25.0 Hz), 113.2, 113.0 (d, *J* = 20.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -110.3. HRMS (ESI) m/z calcd. for C₂₂H₁₈NOTe⁺ [M+H]⁺:430.0251; Found: 430.0254.

7-Fluoro-4-phenyl-3-(phenyltellanyl)quinoline (5ia'):

Yellow solid (0.070 g, 33%). Eluent: hexane: ethyl acetate (95:5). mp: 68-74 °C ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.92 – 7.84 (m, 3H), 7.59 – 7.54 (m, 1H), 7.54 – 7.50 (m, 3H), 7.43 (ddd, J = 8.6, 2.3, 1.2 Hz, 1H), 7.32 (dd, J = 12.2, 4.6 Hz, 4H), 7.08 (ddd, J = 11.8, 7.8, 0.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5 (d, J = 258.6 Hz), 153.6, 148.5, 146.8, 142.5, 141.1, 130.1, 129.3, 128.7, 128.6, 128.5 (d, J = 9.4 Hz), 125.8 (d, J = 4.0 Hz), 118.5 (d, J = 9.5 Hz), 118.1, 113.1, 112.1 (d, J = 21.7 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -108.1. HRMS (ESI) m/z calcd. for C₂₂H₁₈NOTe⁺ [M+H]⁺:430.0251; Found: 430.0247.

6-Methoxy-4-phenyl-3-(phenyltellanyl)quinoline (5ra):

Yellow solid (0.138 g, 63%). Eluent: hexane: ethyl acetate (70:30). mp: 81-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.94 (d, *J* = 9.2 Hz, 1H), 7.83 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.59 – 7.51 (m, 3H), 7.41 – 7.36 (m, 1H), 7.35 – 7.32 (m, 2H), 7.31 – 7.25 (m, 3H), 6.69 (d, *J* = 2.8 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.0, 151.5, 149.7, 143.2, 140.5, 140.1, 130.9, 129.9, 129.1, 128.9, 128.9, 128.7, 121.3, 115.1, 113.4, 103.8, 55.4. HRMS (ESI) m/z calcd. for C₂₂H₁₈NOTe⁺ [M+H]⁺:442.0451; Found: 442.0456.

2-Methyl-4-phenyl-3-(phenyltellanyl)quinoline (5ka):

Yellow solid (0.120 g, 57%). Eluent: hexane: ethyl acetate (95:5). mp: 144-148 °C. ¹H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.4 Hz, 1H), 7.72 – 7.65 (m, 1H), 7.46 (d, J = 6.2 Hz, 3H), 7.41 – 7.31 (m, 4H), 7.23 – 7.14 (m, 3H), 7.10 (t, J = 7.4 Hz, 2H), 2.97 (s, 3H). ¹³C NMR (101 MHz, CDCl3)

δ 163.0, 157.4, 147.7, 142.2, 136.1, 130.0, 129.5, 129.1, 128.5, 128.3, 128.1, 127.4, 126.2, 126.1, 116.8, 115.5, 29.7. **HRMS (ESI)** m/z calcd. for C₂₂H₁₈NOTe⁺ [M+H]⁺: 426.0501; Found: 426.0506.

4-(4-Methoxyphenyl)-3-(phenyltellanyl)quinoline (5na):

Yellow solid. (0.172 g, 78%). Eluent: hexane: ethyl acetate (95:5). mp: 74-77 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.89 – 7.83 (m, 2H), 7.63 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.51 (dd, J = 8.5, 0.9 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.31 – 7.26 (m, 4H), 7.10 – 7.06 (m, 2H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 153.8, 150.8, 147.1, 140.6, 132.0, 130.1, 130.0, 129.4, 129.0, 128.5, 126.9, 125.8, 115.3, 114.4, 113.5, 55.4. HRMS (ESI) m/z calcd. for C₂₂H₁₈NOTe⁺ [M+H]⁺:442.0451; Found: 442.0455.

4-(3-Bromophenyl)-3-(phenyltellanyl)quinoline (5sa):

Brown liquid (0.205 g, 84%). Eluent: hexane: ethyl acetate (95:5). ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.81 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.70 – 7.62 (m, 2H), 7.46 – 7.43 (m, 2H), 7.42 (d, *J* = 2.3 Hz, 2H), 7.40 (d, *J* = 3.3 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 149.7, 147.1, 141.7, 140.5, 140.4, 131.93, 131.87, 130.5, 130.0, 129.6, 129.3, 129.1, 127.6, 127.2, 125.5, 123.0, 114.4, 113.2. HRMS (ESI) m/z calcd. for C₂₂H₁₈NOTe⁺ [M+H]⁺:489.9450 ; Found: 489.9443.

4-Phenyl-3-(phenylseleninyl)quinoline (6):

Yellow solid. (0.073 g, 70%). Eluent: DCM: methanol (95:5). mp: 71-73 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 8.20 (d, J = 6.8 Hz, 1H), 7.77 (t, J = 6.5 Hz, 1H), 7.68 – 7.43 (m, 7H), 7.33 (s, 4H), 6.97 (d, J = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 148.9, 146.3, 133.7, 131.5, 131.2, 130.3, 130.0, 129.8, 129.6, 129.5, 128.8, 127.8, 126.8, 126.3. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 649.68. HRMS (ESI) m/z calcd. for C₂₁H₁₆NOSe⁺ [M+H]⁺: 394.0346; Found: 394.0352.

4-Phenyl-3-(phenylseleninyl)quinoline 1-oxide (7):

Yellow solid. (0.152 g, 70%). Eluent: DCM: methanol (90:10). mp: 124-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.14 (s, 1H), 8.82 (d, J = 8.8 Hz, 1H), 7.84 – 7.79 (m, 1H), 7.69 (td, J = 7.5, 1.0 Hz, 1H), 7.64 (dt, J = 7.4, 1.3 Hz, 1H), 7.61 – 7.56 (m, 3H), 7.50 (td, J = 7.7, 1.3 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.36 – 7.31 (m, 2H), 7.25 (s, 1H), 7.23 (d, J = 1.4 Hz, 1H), 6.97 (d, J = 7.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 141.3, 137.5, 135.4, 133.0, 131.8, 131.6, 131.2, 130.9, 130.0, 129.9, 129.73, 129.69, 129.0, 128.9, 127.1, 126.4, 120.2. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 845.5. HRMS (ESI) m/z calcd. for C₂₁H₁₆NO₂Se⁺ [M+H]⁺:378.0397; Found: 378.0401.

4-Phenyl-3-(phenylseleninyl)-2-(piperidin-1-yl)quinoline 1-oxide (8):

Brown solid (0.120 g, 67%). Eluent: DCM: methanol (90:10). mp: 84-87 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 8.3 Hz, 1H), 7.82 – 7.74 (m, 1H), 7.51 – 7.44 (m, 3H), 7.42 – 7.33 (m, 7H), 7.15 (t, *J* = 7.5 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 1H), 3.48 (dd, *J* = 40.5, 5.6 Hz, 4H), 1.65 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 143.4, 142.8, 131.7, 131.5, 131.4, 130.5, 129.9, 129.3, 129.1, 128.6, 128.4, 127.6, 127.6, 127.4, 126.4, 119.3, 5., 25.2, 23.6.

4-Phenyl-3-(phenylselanyl)-2-(piperidin-1-yl)quinoline (9):

Golden yellow solid (0.060 g, 54%). Eluent: hexane: ethyl acetate (40:60). mp: 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 8.4, 0.6 Hz, 1H), 7.59 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1H), 7.42 – 7.34 (m, 3H), 7.29 (dd, *J* = 8.3, 1.0 Hz, 1H), 7.21 (ddd, *J* = 8.3, 6.8, 1.2 Hz, 1H), 7.15 – 7.11 (m, 2H), 7.10 – 7.01 (m, 3H), 7.01 – 6.96 (m, 2H), 3.39 (s, 4H), 1.54 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 156.1, 147.1, 139.3, 133.7, 130.4, 129.7, 129.6, 128.6, 127.9, 127.7, 127.6, 126.7, 126.0, 125.7, 124.0, 120.5, 51.8, 25.6, 24.5. ⁷⁷Se NMR (76 MHz, CDCl₃) δ 363.1.

(2,2-diphenylvinyl)(phenyl)selane (10):

White solid. ¹**H NMR (400 MHz, CDCl**₃) δ 7.61 – 7.56 (m, 2H), 7.43 (dd, J = 7.0, 1.2 Hz, 2H), 7.38 (dt, J = 5.4, 2.2 Hz, 1H), 7.36 – 7.30 (m, 6H), 7.29 – 7.26 (m, 2H), 7.24 – 7.19 (m, 4H), 7.13 (s, 1H).

(Z)-N,3-diphenylprop-2-yn-1-imine (11):

Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.57 – 7.55 (m, 2H), 7.38 – 7.30 (m, 6H), 7.25 – 7.21 (m, 1H), 7.19 – 7.15 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.0, 143.7, 132.5, 129.9, 129.3, 128.6, 128.5, 127.3, 120.9, 94.9, 87.6.

10. References

- 1. X. Zhang, M.A. Campo, T. Yao, R.C. Larock, Synthesis of Substituted Quinolines by Electrophilic Cyclization of N-(2-Alkynyl)anilines. *Org. Lett.*, 2005, **7**, 763–766.
- C. Zhu, M. Nurko, C. S. Day, J. C. Lukesh. Arylselenyl Radical-Mediated Cyclization of N-(2-Alkynyl)anilines: Access to 3-Selenylquinolines. *J. Org. Chem.*, 2022, 87, 8390–8395.
- 3. G. Wang, T. Chen, K. Jia, W. Ma, C. Tung, L. Liu, Catalytic Asymmetric Oxidation of Amines to Hydroxylamines. *J. Am. Chem. Soc.*, 2023, **145**, 22276-22283.
- A. Sharifi, M. Mirzaei, M. R. N. Jamal, A facile solvent-free one-pot three-component Mannich reaction of aldehydes, amines and terminal alkynes catalysed by CuCl₂. J. Chem. Res., 2007, 129-132
- D. Singh, A.M. Deobald, L.R.S. Camargo, G. Tabarelli, O.E.D. Rodrigues, A.L. Braga, An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se⁰ or Te⁰/Base. *Org. Lett.*, 2010, 15, 3288-3291.
- A. N. V. Satyanarayana, N. Mukherjee, T. Chatterjee, 100% atom-economical and highly regio- and stereoselective iodosulfenylation of alkynes: a reagentless and sustainable approach to access (E)-β-iodoalkenyl sulfides and (Z)-tamoxifen. *Green Chem.*, 2023, 25, 779.
- C. Zhu, M. Yi, D. Wei, X. Chen, T. Wu, X. Cui, Copper-Catalyzed Direct Amination of Quinoline N-Oxides via C–H Bond Activation under Mild Conditions. *Org. Lett.*, 2014, 16, 1840–1843.
- H. Hwang, J. Kim, J. Jeong, S. Chang, Regioselective Introduction of Heteroatoms at the C-8 Position of Quinoline N-Oxides: Remote C–H Activation Using N-Oxide as a Stepping Stone. J. Am. Chem. Soc., 2014, 136, 10770–10776.

- H. Sahoo, A. Mandal, J. Selvakumar, M. Baidya, Remote C–H Selenylation of 8-Amidoquinolines via Copper-Catalyzed Radical Cross-Coupling. *Eur. J. Org. Chem.*, 2016, 2016, 4321-4327.
- 10. H. Tian, X. Yu, Q. Li, J. Wang, Q. Xu.General, Green, and Scalable Synthesis of Imines from Alcohols and Amines by a Mild and Efficient Copper-Catalyzed Aerobic Oxidative Reaction in Open Air at Room Temperature. *Adv. Synth. Catal.*, 2012, **354**, 2671-2677.

