Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Rh(III)-Catalyzed Atroposelective C-H Alkynylation of 1-Aryl

Isoquinolines with Hypervalent Iodine-Alkyne Reagents

Dong-Song Zheng,^{a,b} Fangnuo Zhao,^b Qing Gu,^{b,*} Shu-Li You ^{a,b,*}

^a Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China

^b New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China

E-mail: qinggu@sioc.ac.cn; slyou@sioc.ac.cn

Table of Contents

1. General InformationS	52
2. Complete Condition OptimizationS	53
3. General Procedure for Rh-Catalyzed Atroposelective C-H Alkynylation of 1-Aryl Isoquinoline	es
S	59
4. Synthetic Transformations	21
5. Mechanistic Studies	26
5.1 Deuterium labelling study with D ₂ OS2	26
5.2 Intermolecular kinetic isotope effect of 1-(naphthalen-1-yl)benzo[h]isoquinolineS2	27
5.3 Plausible Catalytic Cycle	28
6. Copies of NMR Spectra	29
7. Copies of HPLC Chromatograms	33

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to standard methods. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (400 MHz and 100 MHz, respectively) or an Agilent instrument (400, 600 MHz and 100, 151 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio-solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm). All air- and moisture-sensitive reactions were performed under an atmosphere of argon in flame-dried glassware.

2. Complete Condition Optimization

Table S1. Screening of CpRh complexes^{*a,b*}

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.1 mmol), **[Rh]** (5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (0.1 mmol) in ^{*t*}AmylOH (0.25 mL). ^{*b*} Isolated yield. The ee values were determined by HPLC analysis on a chiral stationary phase.

Table S2. Solvent effect^a

la la	+ 2a	(S)- Rh1 (2.5 mol%) AgSbF ₆ (20 mol%) Cu(OAc) ₂ (2 equiv) solvent, 80 °C, Ar 0.2 M, t	TIPS 3aa	(S)-Rh1
entry	solvent	t (h)	yield $(\%)^b$	ee (%) ^c
1	MeOH	3	91	65
2	DMF	12	60	72
3	DCE	12	77	37

4	HFIP	3	93	10
5	^t AmylOH	12	97	59
6	toluene	12	74	52
7	dioxane	3	91	53
8	MeCN	12	86	54
9	THF	3	98	50
10	DMA	12	86	72

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (0.1 mmol) in solvent (0.25 mL). ^{*b*} Isolated yield. ^{*c*} The ee values were determined by HPLC analysis on a chiral stationary phase.

Table S3. Screening of silver salts^a

entry	[Ag]	yield $(\%)^b$	ee (%) ^c
1	AgSbF ₆	86	72
2	AgBF ₄	21	75
3	AgNTf ₂	92	70
4	AgOTf	89	69
5	AgPF ₆	66	73
6	AgNO ₃	24	65
7	AgF	12	15
8	AgOAc	20	32
9	ⁱ PrCOOAg	11	25
10	Ag ₂ CO ₃	21	57

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), [Ag] (20 mol%), Cu(OAc)₂ (0.1 mmol) in DMA (0.25 mL). ^{*b*} Isolated yield. ^{*c*} The ee values were determined by HPLC analysis on a chiral stationary phase.

Table S4. Screening of copper salts or zinc salts^a

TIPS + 1a	(S)-Rh1 (2.5 mol%) AgSbF ₆ (20 mol%) [Cu] or [Zn] (2 equiv) DMA, 80 °C, Ar 0.2 M, 12 h	TIPS 3aa	(S)- Rh1
entry	[Cu] or [Zn]	yield $(\%)^b$	ee (%) ^c
1	Cu(OAc) ₂	86	72
2	Cu(OTf) ₂	95	67
3	Cu(BF ₄) ₂ ·6H ₂ O	14	61
4	$Cu(NO_2)_2 \cdot 3H_2O$	30	67
5	CuBr ₂	16	33
6	CuCl ₂	27	36
7	Zn(OTf) ₂	93	65

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), AgSbF₆ (20 mol%), [Cu] or [Zn] (0.1 mmol) in DMA (0.25 mL). ^{*b*} Isolated yield. ^{*c*} The ee values were determined by HPLC analysis on a chiral stationary phase.

 Table S5. Concentration effect^a

TIPS + 1a	(S)-Rh1 (2.5 mol%) AgSbF ₆ (20 mol%) Cu(OAc) ₂ (2 equiv) DMA, 80 °C, Ar c, 12 h	TIPS 3aa	(S)- Rh1
entry	c (M)	yield $(\%)^b$	ee (%) ^c
1	0.2	86	72
2	0.1	88	70
3	0.05	88	71

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (0.1 mmol) in DMA (x mL). ^{*b*} Isolated yield. ^{*c*} The ee values were determined by HPLC analysis on a chiral stationary phase.

Table S6. Screening of additives^a

Ta Na	+ (S)-Rh1 (2.5 AgSbF ₆ (20 Cu(OAc) ₂ (2 additive (1 DMA, 80 ° 0.2 M, 1	5 mol%) equiv) equiv) C, Ar 2 h 3aa	TIPS
entry	additive	yield $(\%)^b$	ee (%) ^c
1	-	86	72
2	NaOAc	10	11
3	NaOTf	92	69
4	PivOCs	79	58
5	NaBF ₄	70	72
6	PivOH	95	61
7	^{<i>i</i>} PrCOOH	71	63
8	4-CF ₃ PhCOOH	93	64

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (0.1 mmol) and additive (0.05 mmol) in DMA (0.25 mL). ^{*b*} Isolated yield. ^{*c*}The ee values were determined by HPLC analysis on a chiral stationary phase.

Table S7.	Temperature	effect ^a
-----------	-------------	---------------------

^a Reaction conditions: 1a (0.05 mmol), 2a (0.1 mmol), (S)-Rh1 (2.5 mol%), AgSbF₆ (20 mol%),

Cu(OAc)₂ (0.1 mmol) in DMA (0.25 mL). ^{*b*} Isolated yield. ^{*c*} The ee values were determined by HPLC analysis on a chiral stationary phase.

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (0.1 mmol) in DMA (0.25 mL). ^{*b*} Isolated yield. The ee values were determined by HPLC analysis on a chiral stationary phase. ^{*c*} at 80 °C. ^{*d*} NR = no reaction.

TIP TIP + 1a	S 1-0 CF ₃ 2c	(S)- Rh1 (2.5 mol%) AgSbF ₆ (20 mol%) Cu(OAc) ₂ (2 equiv) DMA, T, Ar 0.2 M, t	TIPS 3aa	OMe I OMe I (S)-Rh1
entry	T (°C)	t (h)	yield $(\%)^b$	ee (%) ^c
1	rt	24	88	84
2	15	24	70	87
3	10	24	68	88

4	0	24	68	89
5	-10	48	56	91

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2c** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (0.1 mmol) in DMA (0.25 mL). ^{*b*} Isolated yield. ^{*c*} The ee values were determined by HPLC analysis on a chiral stationary phase.

Table S10. Control experiments^a

	$Ha \qquad \qquad \begin{array}{c} \text{TIPS} \\ \text{TIPS} \\ \text{TIPS} \\ \text{CF}_3 \\ \text{CF}_3 \\ \text{CF}_3 \\ \text{CU(OAc)}_2 (2 \text{ equiv}) \\ \text{DMA, rt, Ar} \\ 0.2 \text{ M, t} \end{array}$	Jaa		OMe
entry	variation from the "standard conditions"	t (h)	yield $(\%)^b$	ee (%) ^c
1	-	24	88	84
2	without AgSbF ₆	24	trace	-
3	without Cu(OAc) ₂	24	82	87
4	without Cu(OAc)2	48	88	87
5^d	without Cu(OAc) ₂	48	52	90
6	without AgSbF ₆ and Cu(OAc) ₂	24	trace	-

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2c** (0.1 mmol), (*S*)-**Rh1** (2.5 mol%), AgSbF₆ (20 mol%), Cu(OAc)₂ (0.1 mmol) in DMA (0.25 mL). ^{*b*} Isolated yield. ^{*c*} The ee values were determined by HPLC analysis on a chiral stationary phase. ^{*d*} Under air.

3. General Procedure for Rh-Catalyzed Atroposelective C-H Alkynylation of 1-Aryl Isoquinolines

A sealed tube with a magnetic stir bar was charged with (*S*)-**Rh1** (7.2 mg, 0.0025 mmol), AgSbF₆ (13.8 mg, 0.04 mmol), **1** (0.2 mmol), **2** (0.4 mmol), and DMA (1 mL) under argon atmosphere. The resulting mixture was stirred at rt. After the reaction was complete (monitored by TLC), the mixture was cooled to room temperature and quenched with water (5 mL). The aqueous phase was extracted with CH_2Cl_2 (3×15 mL). Then the combined organic layer was washed with H_2O and brine. The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated. Then the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford the desired product **3**.

3aa, 85.5 mg, 88% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 5.2 Hz, 1H), 8.02-7.88 (m, 3H), 7.86-7.74 (m, 3H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.51-7.45 (m, 2H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.34-7.27 (m, 2H), 7.05 (t, *J* = 8.4 Hz, 1H), 0.64-0.54 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 144.7, 144.2, 138.3, 133.8, 133.4, 132.4, 131.7, 129.6, 128.9, 128.27, 128.25, 127.4, 127.2, 126.90, 126.86, 126.3, 126.1, 126.0, 125.7, 121.6, 120.0, 105.5, 95.1, 18.31, 18.29, 10.9. IR (ATR): v_{max} (cm⁻¹) = 3056, 2943, 2891, 2864, 2148, 1588, 1555, 1507, 1464, 1432, 1384, 1300, 1232, 1210, 1181, 1145, 1114, 1073, 1015, 996, 960, 933, 918, 883, 868, 853, 819, 748, 731, 677, 664, 634; HRMS (ESI): exact mass calculated for: C₃₄H₃₆NSi [M+H]⁺: 486.2612, found 486.2619. [Phenomenex Lux 5u Celluloxe-4 PC-4 column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (major) = 6.13 min, t_R (minor) = 7.64 min, *ee* = 87%. [α]²⁵ = +237.4 (c = 0.2, CHCl₃).

3ba, 79.2 mg, 79% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 5.2 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.80-7.74 (m, 2H), 7.59-7.48 (m, 3H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.36-7.28 (m, 2H), 7.11-7.04 (m, 1H), 2.81 (s, 3H), 0.63-0.55 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 144.1, 143.2, 138.3, 134.8, 133.4, 133.2, 132.3, 131.8, 129.9, 129.7, 128.9, 127.4, 127.0, 126.8, 126.8, 126.2, 126.1, 125.7, 124.5, 121.5, 119.6, 105.7, 94.6, 19.6, 18.33, 18.30, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2941, 2889, 2864, 2147, 1704, 1586, 1554, 1509, 1463, 1424, 1403, 1379, 1362, 1302, 1236, 1192, 1164, 1143, 1072, 1035, 1015, 994, 963, 917, 903, 881, 853, 836, 801, 757, 719, 691, 676, 661, 612; HRMS (ESI): exact mass calculated for: C₃₅H₃₈NSi [M+H]⁺: 500.2768, found 500.2761. [Chiralpak IC column, hexane/*i*-PrOH, 98/2 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (minor) = 12.01 min, t_R (major) = 16.80 min, *ee* = 82%. [α]₂₅²⁵ = +287.0 (c = 0.2, CHCl₃).

3ca, 81.6 mg, 79% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 5.2 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.79-7.73 (m, 2H), 7.60 (d, J = 8.8 Hz, 1H), 7.47 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.26-7.23 (m, 1H), 7.13-7.06 (m, 1H), 6.98 (s, 1H), 4.12 (s, 3H), 0.63-0.56 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 155.2, 144.2, 138.3, 133.4, 132.7, 132.3, 129.8, 128.9, 127.7, 127.4, 126.8, 126.44, 126.40, 126.36, 126.11, 126.09, 125.7, 122.2, 121.5, 119.8, 107.1, 105.9, 94.6, 55.9, 18.33, 18.31, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2924, 2863, 2145, 1613, 1590, 1556, 1509, 1462, 1423, 1409, 1385, 1363, 1347, 1301, 1248, 1230, 1211, 1183, 1145, 1132, 1112, 1015, 996, 964, 947, 933, 906, 883, 870, 852, 802, 754, 730, 700, 674, 642; HRMS (ESI): exact mass calculated for: C₃₅H₃₈NOSi [M+H]⁺: 516.2717, found 516.2709. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 8.67 min, t_R (major) = 12.26 min, *ee* = 94%. [α]₂₅²⁵ = +374.1 (c = 0.2, CHCl₃).

3da, 80.2 mg, 80% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 5.2 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.85-7.72 (m, 3H), 7.55 (t, J =7.2 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.43 (t, J = 7.2 Hz, 1H), 7.40-7.29 (m, 3H), 7.10 (t, J = 7.6 Hz, 1H), 0.66-0.51 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3 (d, J =251.5 Hz), 156.0, 144.2, 141.1 (d, J = 4.2 Hz), 138.3, 133.4, 133.1 (d, J = 5.4 Hz), 132.4, 129.5, 129.0, 128.2, 127.4, 127.3 (d, J = 1.8 Hz), 127.0, 126.4 (d, J = 2.9 Hz), 126.2, 125.9, 125.7, 124.5 (d, J = 16.6 Hz), 121.7, 120.9 (d, J = 5.1 Hz), 120.0 (d, J = 10.2Hz), 113.0 (d, J = 21.3 Hz), 104.5 (d, J = 2.9 Hz), 96.1, 18.28, 18.26, 10.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.02 (d, J = 10.9 Hz, 1F). IR (ATR): v_{max} (cm⁻¹) = 2944, 2890, 2865, 2156, 1625, 1601, 1586, 1557, 1509, 1463, 1417, 1383, 1363, 1301, 1272, 1247, 1172, 1146, 1126, 1066, 1039, 1017, 994, 965, 908, 882, 866, 853, 837, 798, 762, 732, 695, 674, 610; HRMS (ESI): exact mass calculated for: C₃₄H₃₅NFSi [M+H]⁺: 504.2517, found 504.2513. [Phenomenex Lux 5u Celluloxe-4 PC-4 column, hexane/*i*-PrOH, 98/2 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (major) = 6.68 min, t_R (minor) = 8.11 min, *ee* = 90%. [α]_D²⁵ = +278.8 (c = 0.2, CHCl₃).

3ea, 88.2 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 5.2 Hz, 1H), 8.38 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.8 Hz, 1H), 7.84-7.73 (m, 4H), 7.64-7.56 (m, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.47-7.39 (m, 1H), 7.34 (d, J = 3.6 Hz, 2H), 7.15-7.06 (m, 1H), 0.62-0.54 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 144.2, 144.0, 138.3, 133.4, 132.8, 132.5, 132.0, 131.3, 129.40, 129.36, 129.0, 128.0, 127.5, 127.0, 126.9, 126.1, 125.9, 125.7, 124.8, 121.8, 120.3, 104.2, 96.3, 18.27, 18.25, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2942, 2890, 2864, 2153, 1609, 1584, 1555, 1501, 1463, 1423, 1385, 1361, 1323, 1300, 1266, 1239, 1218, 1073, 1016, 994, 967, 937, 908, 881, 852, 836, 801, 780, 759, 734, 697, 675, 650; HRMS (ESI): exact mass calculated for: C₃₄H₃₅NSiCl [M+H]⁺: 520.2222, found 520.2213. [Phenomenex Lux 5u Celluloxe-4 PC-4 column, hexane/*i*-PrOH, 98/2 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R

(major) = 7.18 min, t_R (minor) = 8.30 min, ee = 67%. $[\alpha]_D^{25} = +225.0$ (c = 0.2, CHCl₃).

3fa, 94.7 mg, 84% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, J = 5.2 Hz, 1H), 8.35 (d, J = 8.8 Hz, 1H), 8.01 (s, 1H), 7.95 (d, J = 8.8 Hz, 1H), 7.87-7.73 (m, 3H), 7.64-7.56 (m, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.38-7.28 (m, 2H), 7.11 (t, J = 8.4 Hz, 1H), 0.67-0.47 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 144.1, 138.3, 133.3, 133.0, 132.6, 132.5, 132.3, 129.3, 129.0, 128.2, 128.0, 127.5, 127.0, 126.8, 125.9, 125.8, 125.6, 122.7, 121.7, 120.6, 103.9, 96.4, 18.19, 18.17, 10.8. IR (ATR): v_{max} (cm⁻¹) = 2943, 2923, 2890, 2864, 2153, 1586, 1557, 1499, 1463, 1423, 1385, 1360, 1319, 1299, 1232, 1213, 1183, 1145, 1115, 1072, 1058, 1016, 996, 964, 924, 908, 880, 853, 757, 732, 698, 671, 647; HRMS (ESI): exact mass calculated for: C₃₄H₃₅NSiBr [M+H]⁺: 564.1717, found 564.1707. [Chiralpak IC column, hexane/*i*-PrOH, 98/2 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 7.50 min, t_R (major) = 9.18 min, ee = 83%. [α]²⁵ = +176.3 (c = 0.2, CHCl₃).

3ga, 91.4 mg, 81% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, J = 5.2 Hz, 1H), 8.01-7.93 (m, 2H), 7.87-7.78 (m, 3H), 7.71 (d, J = 8.4 Hz, 1H), 7.67-7.60 (m, 3H), 7.58-7.52 (m, 2H), 7.51-7.36 (m, 4H), 7.33-7.27 (m, 1H), 7.18-7.12 (m, 1H), 0.63-0.53 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 144.2, 140.7, 140.2, 138.3, 133.4, 132.4, 132.3, 132.1, 130.3, 129.6, 129.0, 128.5, 127.7, 127.5, 127.1, 127.0, 126.9, 126.7, 126.5, 126.2, 126.1, 125.7, 121.7, 119.6, 105.4, 95.1, 18.3, 18.3, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2942, 2891, 2864, 2152, 1687, 1587, 1555, 1509, 1493, 1463, 1446, 1423, 1405, 1384, 1366, 1346, 1302, 1267, 1237, 1194, 1144, 1100, 1073, 1016, 996, 969, 932, 917, 884, 853, 771, 757, 739, 690, 676, 646, 629; HRMS (ESI): exact mass calculated for: C₄₀H₄₀NSi [M+H]⁺: 562.2925, found 562.2930. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 5.80 min, t_R (major) = 7.51 min, *ee* = 43%. [α]₂₅²⁵ = +127.2 (c = 0.2, CHCl₃).

3ha, 93.2 mg, 91% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 5.2 Hz, 1H), 7.91 (d, *J* = 8.8 Hz, 1H), 7.82-7.70 (m, 3H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.49 (s, 1H), 7.42-7.36 (m, 1H), 7.30-7.25 (m, 2H), 7.11-7.01 (m, 2H), 3.56-3.40 (m, 4H), 0.64-0.55 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 156.5, 146.1, 145.9, 144.0, 140.5, 139.6, 138.2, 133.3, 132.2, 129.9, 129.8, 129.0, 128.8, 127.3, 126.8, 126.1, 126.1, 125.7, 123.1, 121.5, 121.4, 121.3, 120.6, 106.5, 94.2, 30.7, 30.2, 18.31, 18.29, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2941, 2890, 2864, 2147, 1722, 1700, 1687, 1610, 1586, 1555, 1509, 1463, 1418, 1384, 1365, 1301, 1269, 1236, 1182, 1143, 1101, 1072, 997, 909, 883, 869, 849, 803, 760, 733, 665; HRMS (ESI): exact mass calculated for: C₃₆H₃₈NSi [M+H]⁺: 512.2768, found 512.2773. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (minor) = 10.52 min, t_R (major) = 16.80 min, *ee* = 83%. [α]₂₅²⁵ = +247.1 (c = 0.2, CHCl₃).

3ia, 93.7 mg, 84% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 5.2 Hz, 1H), 8.13 (s, 1H), 8.02-7.96 (m, 1H), 7.96-7.86 (m, 3H), 7.84-7.73 (m, 3H), 7.60 (d, J = 8.8 Hz, 1H), 7.48-7.36 (m, 4H), 7.30 (d, J = 8.4 Hz, 1H), 7.05-6.98 (m, 1H), 0.70-0.48 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 144.5, 143.8, 140.1, 138.9, 138.1, 137.1, 137.0, 133.4, 132.9, 132.4, 129.6, 129.2, 128.9, 128.7, 128.2, 127.9, 127.3, 126.9, 126.3, 126.2, 125.64, 125.61, 124.3, 122.1, 121.9, 121.8, 121.6, 121.1, 105.9, 95.2, 18.34, 18.32, 10.9. IR (ATR): v_{max} (cm⁻¹) = 3054, 2942, 2890, 2864, 2146, 1611, 1585, 1554, 1509, 1451, 1408, 1368, 1299, 1237, 1189, 1148, 1110, 1074, 1016, 994, 970, 942, 908, 884, 869, 853, 837, 800, 778, 733, 680, 660, 629; HRMS (ESI): exact mass calculated for: C₄₀H₃₈NSi [M+H]⁺: 560.2768, found 560.2761. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 10.34 min, t_R (major) = 13.49 min, *ee* = 90%. [α]₂₅²⁵ = +284.3 (c = 0.2, CHCl₃).

3ja, 98.3 mg, 88% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, J = 4.8 Hz, 1H), 8.48 (s, 1H), 8.18 (d, J = 7.6 Hz, 1H), 8.14-8.05 (m, 3H), 8.00-7.90 (m, 2H), 7.87-7.75 (m, 4H), 7.54 (d, J = 9.2 Hz, 1H), 7.36-7.26 (m, 2H), 6.90-6.78 (m, 1H), 0.69-0.57 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 144.2, 141.3, 138.3, 133.4, 132.4, 131.6, 131.3, 131.0, 129.7, 129.4, 129.2, 128.9, 128.7, 128.4, 127.4, 127.2, 126.8, 126.6, 126.3, 126.0, 125.72, 125.69, 125.6, 125.2, 124.7, 121.7, 120.4, 105.6, 94.7, 18.4, 18.3, 11.0. IR (ATR): v_{max} (cm⁻¹) = 3046, 2941, 2890, 2863, 2149, 1585, 1555, 1509, 1463, 1415, 1389, 1364, 1303, 1286, 1236, 1181, 1142, 1102, 1072, 1061, 1016, 993, 933, 882, 856, 839, 831, 813, 748, 686, 659, 639; HRMS (ESI): exact mass calculated for: C₄₀H₃₈NSi [M+H]⁺: 560.2768, found 560.2764. [Chiralpak IC column, hexane/*i*-PrOH, 80/20 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (major) = 7.29 min, t_R (minor) = 14.74 min, *ee* = 61%. [α]²⁵₂ = -54.3 (c = 0.2, CHCl₃).

3ka, 89.9 mg, 86% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 5.6 Hz, 1H), 7.95 (d, *J* = 8.8 Hz, 1H), 7.86 (d, *J* = 5.2 Hz, 1H), 7.84-7.74 (m, 3H), 7.74-7.64 (m, 2H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 8.4 Hz, 1H), 7.17-7.06 (m, 1H), 6.87 (t, *J* = 7.6 Hz, 1H), 6.41 (d, *J* = 7.6 Hz, 1H), 0.63-0.55 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 156.5, 155.3, 144.3, 138.4, 133.4, 132.6, 132.5, 129.7, 129.0, 127.5, 127.1, 125.9, 125.6, 125.3, 123.4, 123.0, 122.9, 122.2, 122.1, 117.3, 111.63, 111.59, 104.6, 93.1, 18.29, 18.27, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2943, 2890, 2864, 2163, 2149, 1588, 1556, 1510, 1471, 1449, 1424, 1384, 1318, 1293, 1262, 1233, 1208, 1182, 1146, 1114, 1066, 1015, 996, 963, 933, 907, 885, 853, 838, 815, 783, 746, 732, 700, 678, 631; HRMS (ESI): exact mass calculated for: C₃₆H₃₆NOSi [M+H]⁺: 526.2561, found 526.2551. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (major) = 6.93 min, t_R (minor) = 10.85 min, *ee* = 90%. [α]²⁵ = +193.3 (c = 0.2, CHCl₃).

31a, 103.4 mg, 93% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 5.2 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.75 (s, 1H), 7.74 (d, J = 4.4 Hz, 1H), 7.48-7.42 (m, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.29-7.25 (m, 1H), 7.22 (d, J = 8.0 Hz, 1H), 7.02 (dd, J = 7.6, 1.6 Hz, 1H), 6.89-6.83 (m, 1H), 6.80-6.74 (m, 1H), 6.04 (dd, J = 8.4, 1.6 Hz, 1H), 0.65-0.56 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 151.8, 149.6, 144.0, 138.0, 136.3, 133.3, 132.0, 129.7, 129.3, 128.9, 127.7, 127.5, 127.0, 126.5, 125.64, 125.63, 124.6, 122.9, 122.4, 121.6, 120.0, 118.0, 104.0, 95.3, 18.3, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2942, 2890, 2863, 2154, 1585, 1555, 1509, 1463, 1447, 1427, 1404, 1377, 1309, 1278, 1267, 1237, 1217, 1125, 1073, 1030, 1005, 952, 908, 883, 869, 852, 815, 784, 749, 732, 673, 642; HRMS (ESI): exact mass calculated for: C₃₆H₃₆NOSiS [M+H]⁺: 558.2281, found 558.2282. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (major) = 7.25 min, t_R (minor) = 9.68 min, *ee* = 79%. [α]²⁴ = -93.4 (c = 0.2, CHCl₃).

3ma, 100.8 mg, 81% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.69 (d, J = 8.0 Hz, 1H), 8.60 (d, J = 7.6 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 8.36 (s, 1H), 8.20 (d, J = 7.2 Hz, 1H), 8.17-8.09 (m, 2H), 8.08-8.03 (m, 1H), 8.03-7.94 (m, 3H), 7.78-7.70 (m, 1H), 7.70-7.63 (m, 1H), 7.51 (dd, J = 8.8, 1.2 Hz, 1H), 7.36-7.27 (m, 1H), 6.77-6.68 (m, 1H), 3.11 (s, 3H), 0.69-0.56 (m, 18H), 0.50-0.37 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 148.6, 141.6, 137.8, 132.9, 131.7, 131.3, 131.0, 130.9, 129.9, 129.6, 129.5, 129.3, 128.9, 128.8, 128.7, 128.3, 127.9, 127.40, 127.39, 127.35, 127.2, 126.9, 126.6, 126.2, 125.74, 125.67, 125.6, 125.3, 124.8, 123.7, 123.0, 120.8, 106.0, 94.4, 23.4, 18.34, 18.29, 11.0. IR (ATR): v_{max} (cm⁻¹) = 2942, 2888, 2864, 2151, 1685, 1596, 1577, 1548, 1528, 1462, 1442, 1418, 1383, 1363, 1292, 1262, 1239, 1178, 1142, 1101, 1073,

1013, 995, 904, 883, 831, 813, 788, 760, 727, 687, 636; HRMS (ESI): exact mass calculated for: $C_{45}H_{42}NSi \ [M+H]^+$: 624.3081, found 624.3076. [Chiralpak IC column, hexane/*i*-PrOH, 80/20 v/v, flow rate 1 mL/min, $\lambda = 254 \text{ nm}$, 25 °C). $t_R \ (major) = 7.52 \text{ min}$, $t_R \ (minor) = 11.75 \text{ min}$, ee = 65%. $[\alpha]_D^{24} = -46.4 \ (c = 0.2, CHCl_3)$.

3na, 74.4 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 5.6 Hz, 1H), 7.91 (t, *J* = 9.2 Hz, 3H), 7.74 (d, *J* = 5.6 Hz, 1H), 7.71-7.62 (m, 2H), 7.54-7.44 (m, 2H), 7.43-7.36 (m, 1H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 0.82-0.62 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 142.6, 140.3, 136.6, 133.2, 132.5, 130.3, 128.9, 128.52, 128.50, 128.1, 127.5, 127.4, 127.0, 126.9, 126.7, 126.3, 121.4, 120.4, 105.8, 95.6, 18.41, 18.40, 11.0. IR (ATR): v_{max} (cm⁻¹) = 3054, 2942, 2891, 2865, 2143, 1622, 1585, 1556, 1500, 1464, 1382, 1369, 1317, 1240, 1222, 1208, 1145, 1074, 1016, 995, 970, 935, 919, 882, 867, 827, 798, 749, 690, 676, 658, 634; HRMS (ESI): exact mass calculated for: C₃₀H₃₄NSi [M+H]⁺: 436.2455, found 436.2455. [Chiralpak IC column, hexane/*i*-PrOH, 98/2 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (major) = 9.06 min, t_R (minor) = 16.60 min, *ee* = 34%. [α]²⁴ = -90.7 (c = 0.2, CHCl₃).

30a, 76.7 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 5.2 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.72 (d, J = 4.4 Hz, 1H), 7.70 (s, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.54-7.47 (m, 2H), 7.39-7.34 (d, J = 4.4 Hz, 2H), 7.29-7.25 (m, 1H), 1.99 (s, 3H), 0.61-0.52 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 146.0, 143.9, 138.2, 136.0, 133.32, 132.26, 131.1, 131.0, 130.0, 129.0, 128.1, 127.7, 127.5, 126.9, 125.7, 125.6, 125.1, 122.6, 121.4, 105.2, 93.6, 20.0, 18.3, 18.2, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2942, 2891, 2864, 2150, 1611, 1588, 1556, 1510, 1461, 1421, 1380, 1235, 1211, 1182, 1145, 1113, 1070, 1016, 996, 963, 934, 909, 882, 852, 801, 786, 749, 731, 700, 676, 639; HRMS (ESI): exact mass calculated for: C₃₁H₃₆NSi [M+H]⁺: 450.2612, found 450.2605. [Phenomenex Lux 5u Celluloxe-4 PC-4 column,

hexane/*i*-PrOH, 98/2 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 8.64 min, t_R (major) = 11.30 min, *ee* = 82%. $[\alpha]_{D}^{24}$ = +191.2 (c = 0.2, CHCl₃).

3pa, 82.9 mg, 89% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 4.8 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.86 (dd, J = 8.0, 1.6 Hz, 1H), 7.73 (d, J = 3.2 Hz, 1H), 7.71 (s, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.56-7.49 (m, 1H), 7.35-7.28 (m, 1H), 7.22 (dd, J = 8.8, 2.4 Hz, 1H), 7.11 (dd, J = 9.6, 2.8 Hz, 1H), 1.98 (s, 3H), 0.58-0.51 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9 (d, J = 245.2 Hz), 156.7, 144.2, 142.6 (d, J = 3.4 Hz), 138.6 (d, J = 8.3 Hz), 138.3, 133.4, 132.3, 129.8, 129.1, 127.6, 127.0, 125.7, 125.31, 125.26, 124.3 (d, J = 10.1 Hz), 121.5, 118.2 (d, J = 21.0 Hz), 117.5 (d, J = 22.5 Hz), 104.0 (d, J = 3.3 Hz), 95.1, 20.2 (d, J = 1.8 Hz), 18.23, 18.20, 10.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.67 (t, J = 9.4 Hz). IR (ATR): v_{max} (cm⁻¹) = 2943, 2891, 2865, 2155, 1702, 1588, 1556, 1510, 1465, 1410, 1380, 1315, 1237, 1166, 1129, 1102, 1074, 1037, 1016, 989, 970, 919, 882, 854, 802, 750, 695, 675; HRMS (ESI): exact mass calculated for: C₃₁H₃₅NFSi [M+H]⁺: 468.2517, found 468.2516. [Phenomenex Lux 5u Celluloxe-4 PC-2 column, hexane/*i*-PrOH, 99/1 v/v, flow rate 0.5 mL/min, λ = 254 nm, 25 °C). t_R (minor) = 13.18 min, t_R (major) = 17.39 min, *ee* = 89%. [α]²⁴ = +241.9 (c = 0.2, CHCl₃).

3qa, 82.6 mg, 89% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 5.2 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.83 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.74-7.67 (m, 3H), 7.55-7.45 (m, 2H), 7.45-7.40 (m, 2H), 7.28-7.23 (m, 1H), 2.31 (q, *J* = 7.6 Hz, 2H), 0.95 (t, *J* = 7.2 Hz, 3H), 0.59-0.50 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 145.9, 143.9, 141.6, 138.1, 133.3, 132.1, 131.1, 129.9, 129.4, 129.0, 128.2, 127.3, 126.8, 126.0, 125.8, 125.3, 122.6, 121.4, 105.3, 93.6, 26.5, 18.3, 18.2, 14.4, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2960, 2941, 2891, 2864, 2146, 1609, 1585, 1555, 1510, 1461, 1412, 1380, 1310, 1236, 1103, 1074, 1015, 994, 916, 882, 852, 802, 746, 675, 640; HRMS (ESI): exact mass calculated for: C₃₂H₃₈NSi [M+H]⁺: 464.2768, found 464.2772. [Phenomenex Lux 5u

Celluloxe-4 PC-4 column, hexane/*i*-PrOH, 98/2 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 6.14 min, t_R (major) = 7.84 min, *ee* = 79%. [α]_D²⁴ = +208.7 (c = 0.2, CHCl₃).

3ra, 58.9 mg, 63% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 5.2 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.86-7.77 (m, 2H), 7.73-7.66 (m, 2H), 7.53-7.40 (m, 2H), 7.32-7.27 (m, 2H), 7.10 (d, J = 8.4 Hz, 1H), 3.65 (s, 3H), 0.59-0.50 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 155.2, 143.9, 138.3, 133.3, 132.2, 130.1, 129.5, 129.0, 127.3, 126.8, 125.9, 125.7, 125.7, 123.9, 121.5, 112.4, 104.5, 94.3, 56.2, 18.28, 18.25, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2941, 2891, 2864, 2149, 1588, 1571, 1510, 1463, 1437, 1413, 1381, 1296, 1266, 1240, 1169, 1078, 1015, 994, 931, 916, 882, 852, 794, 748, 674, 658, 638; HRMS (ESI): exact mass calculated for: C₃₁H₃₆NOSi [M+H]⁺: 466.2561, found 466.2558. [Chiralpak IC column, hexane/*i*-PrOH, 90/10 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 6.12 min, t_R (major) = 11.01 min, *ee* = 71%. [α]²⁴ = +131.2 (c = 0.2, CHCl₃).

3sa, 96.7 mg, 92% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 5.2 Hz, 1H), 7.89 (dd, *J* = 8.4, 2.0 Hz, 2H), 7.84 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.71 (d, *J* = 3.6 Hz, 1H), 7.69 (s, 1H), 7.53-7.45 (m, 1H), 7.36-7.30 (m, 1H), 6.99 (s, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 3.53 (s, 3H), 0.61-0.52 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 153.5, 150.9, 143.8, 138.1, 135.0, 133.4, 132.0, 130.0, 129.0, 127.2, 126.8, 125.8, 125.68, 125.65, 121.4, 117.9, 112.1, 104.4, 93.4, 61.2, 60.9, 56.4, 18.23, 18.22, 10.9. IR (ATR): v_{max} (cm⁻¹) = 2941, 2892, 2865, 2149, 1587, 1556, 1486, 1459, 1416, 1403, 1374, 1337, 1309, 1262, 1236, 1196, 1134, 1105, 1065, 1047, 1027, 990, 948, 922, 883, 863, 845, 814, 749, 718, 674, 657, 626; HRMS (ESI): exact mass calculated for: C₃₃H₄₀NO₃Si [M+H]⁺: 526.2772, found 526.2771. [Chiralpak AD-H column, hexane/*i*-PrOH, 90/10 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (minor) = 3.87 min, t_R (major) = 5.36

min, ee = 61%. $[\alpha]_{D}^{24} = +118.5$ (c = 0.2, CHCl₃).

3ta, 76.7 mg, 80% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 5.6 Hz, 1H), 8.23 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.89-7.82 (m, 2H), 7.76-7.69 (m, 3H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.56-7.48 (m, 1H), 7.33-7.26 (m, 1H), 0.59-0.48 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 148.5, 143.7, 141.7, 138.1, 138.0, 133.5, 132.3, 129.4, 129.3, 128.8, 127.4, 127.1, 125.7, 125.6, 125.3, 125.1, 125.0, 121.9, 102.3, 97.7, 18.21, 18.18, 10.8. IR (ATR): v_{max} (cm⁻¹) = 2943, 2891, 2864, 2155, 1607, 1587, 1532, 1463, 1383, 1360, 1313, 1278, 1241, 1185, 1101, 1065, 1016, 995, 911, 883, 868, 852, 837, 821, 792, 750, 672, 638; HRMS (ESI): exact mass calculated for: C₃₀H₃₃N₂O₂Si [M+H]⁺: 481.2306, found 481.2302. [Chiralcel OD-H column, hexane/*i*-PrOH, 90/10 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (minor) = 3.20 min, t_R (major) = 4.96 min, *ee* = 95%. [α]_D²⁴ = +591.8 (c = 0.2, CHCl₃).

3ua, 84.7 mg, 90% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 5.2 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.85 (dd, J = 7.6, 1.2 Hz, 1H), 7.75-7.68 (m, 3H), 7.61-7.56 (m, 2H), 7.54-7.49 (m, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.34-7.29 (m, 1H), 0.60-0.55 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 145.3, 144.1, 138.2, 133.3, 133.2, 132.2, 131.8, 130.3, 129.6, 129.2, 129.1, 127.6, 127.0, 125.7, 125.3, 125.1, 124.8, 121.9, 103.7, 95.8, 18.23, 18.20, 10.8. IR (ATR): v_{max} (cm⁻¹) = 2942, 2891, 2864, 2164, 1610, 1586, 1555, 1511, 1463, 1443, 1410, 1380, 1310, 1265, 1239, 1181, 1144, 1105, 1072, 1015, 994, 896, 869, 852, 790, 749, 735, 715, 674, 637; HRMS (ESI): exact mass calculated for: C₃₀H₃₃NSiCl [M+H]⁺: 470.2065, found 470.2061. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 7.47 min, t_R (major) = 15.39 min, *ee* = 78%. [α]_D²⁴ = +188.9 (c = 0.2, CHCl₃).

3ae, 21.3 mg, 24% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 5.2 Hz, 1H), 7.94 (t, J = 8.4 Hz, 3H), 7.85-7.75 (m, 3H), 7.66 (d, J = 8.4 Hz, 1H), 7.53-7.39 (m, 3H), 7.37-7.27 (m, 2H), 7.09-7.02 (m, 1H), 0.39 (s, 9H), -0.36 (s, 3H), -0.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 145.0, 144.2, 138.2, 133.9, 133.3, 132.4, 131.6, 129.6, 129.2, 128.9, 128.32, 128.28, 127.4, 127.3, 127.0, 126.9, 126.3, 126.2, 126.1, 125.7, 121.5, 119.8, 104.3, 97.0, 25.7, 16.1, -5.02, -5.06. IR (ATR): v_{max} (cm⁻¹) = 2953, 2926, 2887, 2854, 2149, 1586, 1555, 1506, 1466, 1430, 1393, 1362, 1335, 1301, 1249, 1222, 1007, 992, 956, 916, 868, 852, 824, 776, 747, 690, 677, 660, 647, 630; HRMS (ESI): exact mass calculated for: C₃₁H₃₀NSi [M+H]⁺: 444.2142, found 444.2141. [Chiralpak IC column, hexane/*i*-PrOH, 95/5 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (major) = 8.65 min, t_R (minor) = 12.19 min, *ee* = 76%. [α]_D²⁴ = +280.8 (c = 0.2, CHCl₃).

4. Synthetic Transformations

A sealed tube with a magnetic stir bar was charged with **3aa** (485.3 mg, 1 mmol), TBAF (2 mL, 2 mmol, 1M) and THF (5 mL) under argon atmosphere. The resulting mixture was stirred at room temperature. After the reaction was complete (monitored by TLC), the mixture was quenched with water (5 mL). The aqueous phase was extracted with CH_2Cl_2 (3×15 mL). After the combined organic layer was washed with H_2O and brine, it was dried over anhydrous Na₂SO₄, filtered and concentrated. Then the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford terminal alkyne **4**.

4, 318.2 mg, 97% yield, white solid, m.p. = 167.6-169.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 5.2 Hz, 1H), 8.00-7.88 (m, 3H), 7.87-7.76 (m, 3H), 7.71 (d, J = 8.4 Hz, 1H), 7.50-7.37 (m, 3H), 7.29-7.21 (m, 2H), 7.08-6.98 (m, 1H), 2.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 145.3, 144.3, 138.0, 133.9, 133.2, 132.4, 131.4, 129.5, 129.4, 129.0, 128.5, 128.3, 127.4, 127.3, 127.2, 127.0, 126.1, 126.0, 125.8, 121.6, 118.7, 82.4, 81.1. IR (ATR): v_{max} (cm⁻¹) = 3292, 3054, 1608, 1585, 1555, 1506, 1428, 1395, 1363, 1333, 1301, 1238, 1197, 1144, 1102, 1026, 993, 908, 869, 854, 820, 748, 730, 693, 647, 622; HRMS (ESI): exact mass calculated for: C₂₅H₁₆N [M+H]⁺: 330.1277, found 330.1285. [Chiralpak IC column, hexane/*i*-PrOH, 80/20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (major) = 10.21 min, t_R (minor) = 20.16 min, *ee* = 87%. [α]²⁴ = +116.3 (c = 0.2, CHCl₃).

A sealed tube with a magnetic stir bar was charged with 4 (65.8 mg, 0.2 mmol), CuI

(0.4 mg, 1 mol%), Pd(PPh₃)₂Cl₂ (2.8 mg, 2 mol%), THF (2 mL), PhI (81.6 mg, 0.4 mmol) and Et₃N (81.0 mg, 0.8 mmol) under argon atmosphere. The resulting mixture was stirred at 60 °C. After the reaction was complete (monitored by TLC), the mixture was cooled to room temperature and quenched with water (5 mL). The aqueous phase was extracted with CH_2Cl_2 (3×15 mL). After the combined organic layer was washed with H₂O and brine, it was dried over anhydrous Na₂SO₄, filtered and concentrated. Then the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford the desired product **5**.

5, 77.8 mg, 96% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, *J* = 5.2 Hz, 1H), 8.04-7.91 (m, 3H), 7.88-7.77 (m, 3H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.51-7.43 (m, 2H), 7.42-7.36 (m, 1H), 7.35-7.28 (m, 1H), 7.12-6.96 (m, 4H), 6.71-6.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 144.4, 144.2, 138.0, 133.8, 133.2, 132.4, 131.6, 131.3, 129.6, 128.9, 128.8, 128.5, 128.3, 127.9, 127.4, 126.97, 126.96, 126.24, 126.19, 126.1, 125.7, 123.0, 121.4, 119.9, 93.6, 88.7. [Chiralpak IC column, hexane/*i*-PrOH, 80/20 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (major) = 8.01 min, t_R (minor) = 10.97 min, *ee* = 87%. [α]_D²⁴ = +467.8 (c = 0.2, CHCl₃).

A sealed tube with a magnetic stir bar was charged with IPrCuCl (4.9 mg, 5 mol%), 'BuONa (2.8 mg, 2 mol%) and THF (0.5 mL) under argon atmosphere. The resulting reaction mixture was stirred for 1 hour at room temperature, and then the solvent was removed under vacuum and anhydrous toluene (2 mL) was added and the solution was transferred via cannula to a dried sealed tube containing **4** (65.8 mg, 0.2 mmol). PMHS (53.4 mg, 0.24 mmol) and 'BuOH (17.8 mg, 0.24 mmol) were added and the reaction mixture was stirred overnight at rt under argon atmosphere. After the reaction was complete (monitored by TLC), the mixture was quenched with water (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3×15 mL). After the combined organic layer was washed with H₂O and brine, it was dried over anhydrous Na₂SO₄, filtered and

concentrated. Then the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1) to afford the alkene product **6**.

6, 49.0 mg, 74% yield, white solid, m.p. = 149.7-151.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (d, J = 5.2 Hz, 1H), 8.04-7.95 (m, 2H), 7.94-7.87 (m, 2H), 7.86-7.78 (m, 3H), 7.50 (d, J = 8.8 Hz, 1H), 7.43-7.36 (m, 2H), 7.20-7.14 (m, 1H), 7.09-6.99 (m, 2H), 6.26 (dd, J = 17.2, 10.8 Hz, 1H), 5.72 (d, J = 17.2 Hz, 1H), 5.00 (d, J = 10.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 144.4, 139.3, 138.0, 134.4, 133.8, 133.3, 132.63, 132.60, 132.0, 129.4, 129.0, 128.8, 128.1, 127.6, 127.0, 126.9, 126.31, 126.25, 126.2, 126.1, 125.8, 123.3, 121.5, 115.9. IR (ATR): v_{max} (cm⁻¹) = 3047, 2972, 2926, 2855, 2161, 1586, 1555, 1509, 1466, 1420, 1391, 1364, 1300, 1267, 1237, 1202, 1101, 1056, 1028, 992, 909, 870, 851, 832, 819, 798, 753, 719, 666, 629; HRMS (ESI): exact mass calculated for: C₂₅H₁₈N [M+H]⁺: 332.1434, found 332.1436. [Chiralpak IC column, hexane/*i*-PrOH, 80/20 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (major) = 7.93 min, t_R (minor) = 14.20 min, *ee* = 86%. [α]²⁴_P = +95.8 (c = 0.2, CHCl₃).

A sealed tube with a magnetic stir bar was charged with 4 (65.8 mg, 0.2 mmol), BnN₃ (40 mg, 0.3mmol), 'BuOH (6 mL) and water (0.48 mL), a solution of CuSO₄·5H₂O (0.1 M in water, 5 mg, 0.02 mmol) and (L)-sodium ascorbate (0.1 M in water, 7.9 mg, 0.04 mmol) were then sequentially added under argon atmosphere. The resulting mixture was stirred at 40 °C. After the reaction was complete (monitored by TLC), the mixture was cooled to room temperature and quenched with water (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3×15 mL). After the combined organic layer was washed with H₂O and brine, it was dried over anhydrous Na₂SO₄, filtered and concentrated. Then the residue was purified by silica gel column chromatography (DCM/EtOAc = 2/1) to afford triazole 7.

7, 79.2 mg, 86% yield, yellow solid, m.p. = 174.3-176.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, J = 5.2 Hz, 1H), 8.49 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.95 (d, J= 8.0 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.76-7.67 (m, 2H), 7.64 (d, J = 8.8 Hz, 1H), 7.47-7.37 (m, 2H), 7.36-7.26 (m, 2H), 7.23-7.12 (m, 4H), 7.01-6.92 (m, 1H), 6.76-6.67 (m, 2H), 5.70 (s, 1H), 5.06 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 146.1, 144.1, 138.1, 137.9, 134.0, 133.8, 133.0, 132.7, 131.8, 129.0, 128.91, 128.87, 128.8, 128.4, 128.2, 127.9, 127.8, 127.2, 126.9, 126.6, 126.5, 126.4, 126.01, 125.96, 125.8, 125.4, 121.9, 121.7, 53.6. IR (ATR): v_{max} (cm⁻¹) = 2956, 2927, 2855, 1585, 1555, 1505, 1474, 1457, 1423, 1396, 1354, 1309, 1255, 1234, 1223, 1202, 1144, 1088, 1051, 1027, 993, 949, 921, 868, 846, 804, 752, 727, 698, 669, 638; HRMS (ESI): exact mass calculated for: C₃₂H₂₃N₄ [M+H]⁺: 463.1917, found 463.1921. [Chiralpak AD-H column, hexane/*i*-PrOH, 60/40 v/v, flow rate 1 mL/min, λ = 254 nm, 25 °C). t_R (minor) = 6.16 min, t_R (major) = 7.47 min, *ee* = 86%. [α]²⁴ = +95.8 (c = 0.2, CHCl₃).

A sealed tube with a magnetic stir bar was charged with 4 (65.8 mg, 0.2 mmol), *m*-CPBA (92 mg, 0.4 mmol) and THF (2 mL) under argon atmosphere. The resulting mixture was stirred at rt. After the reaction was complete (monitored by TLC), the mixture was quenched with water (5 mL). The aqueous phase was extracted with CH_2Cl_2 (3×15 mL). After the combined organic layer was washed with H_2O and brine, it was dried over anhydrous Na₂SO₄, filtered and concentrated. Then the residue was purified by silica gel column chromatography (DCM/MeOH = 30/1) to afford N-oxide **8**.

8, 64.2 mg, 93% yield, white solid, m.p. = 99.2-101.3 °C. ¹H NMR (400 MHz, CDCl₃)

δ 8.56 (d, J = 6.8 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.87-7.78 (m, 3H), 7.75 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.53-7.47 (m, 1H), 7.44-7.38 (m, 1H), 7.36-7.28 (m, 2H), 7.11 (d, J = 8.4 Hz, 1H), 6.96 (m, 1H), 2.71 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 137.6, 137.3, 134.0, 133.8, 130.9, 130.7, 129.8, 129.6, 129.5, 129.2, 128.8, 128.2, 128.0, 127.82, 127.76, 127.6, 127.4, 126.0, 125.0, 124.57, 124.55, 119.9, 81.5, 81.2. IR (ATR): v_{max} (cm⁻¹) = 3294, 3060, 2923, 1701, 1573, 1502, 1432, 1394, 1289, 1249, 1210, 1178, 1147, 1121, 1086, 1074, 916, 868, 842, 822, 804, 749, 731, 710, 674, 647, 625; HRMS (ESI): exact mass calculated for: C₂₅H₁₆NO [M+H]⁺: 346.1226, found 346.1220. [Chiralpak AD-H column, hexane/*i*-PrOH, 60/40 v/v, flow rate 1 mL/min, $\lambda = 254$ nm, 25 °C). t_R (minor) = 5.90 min, t_R (major) = 6.94 min, *ee* = 86%. [α]_D²⁴ = +69.4 (c = 0.2, CHCl₃).

5. Mechanistic Studies

5.1 Deuterium labelling study with D₂O

A sealed tube with a magnetic stir bar was charged with (*S*)-**Rh1** (1.8 mg, 2.5 mol%), AgSbF₆ (3.4 mg, 20 mol%), **1a** (15.3 mg, 0.05 mmol), D₂O (20 mg, 1.0 mmol) and DMA (0.25 mL) under argon atmosphere. The resulting mixture was stirred at rt for 48 h. Afterwards, the mixture was cooled to room temperature and diluted with DCM (10 mL), filtered through a thin pad of silica gel. The filter cake was washed with DCM and the combined filtrate was concentrated. The residue was then purified by short column chromatography on silica gel (petroleum ether/EtOAc, 10/1, v/v) to give the recovered **1a**. H/D exchange was not observed by ¹H NMR analysis.

5.2 Intermolecular kinetic isotope effect of 1-(naphthalen-1yl)benzo[h]isoquinoline

A sealed tube with a magnetic stir bar was charged with (*S*)-**Rh1** (1.8 mg, 0.0025 mmol), AgSbF₆ (3.4 mg, 0.01 mmol), **1a** (15.3 mg, 0.05 mmol) or **1a**-D₁ (15.6 mg, 0.05 mmol), **2c** (55 mg, 0.1 mmol) and DMA (0.25 mL) under argon atmosphere. The resulting mixture was stirred at 0 °C for specific time. The reaction mixture was transferred to a short pad of silica gel and washed with ethyl acetate. The solvent was evaporated, and analyzed by ¹H NMR using dibromomethane as an internal standard (the yields of **3aa** were shown in **Table S11** and **Table S12**). The initial reaction rate was obtained by plotting the five points to obtain KIE value ($k_{\rm H}/k_{\rm D}$) to be 4.05 (shown in **Figure S1** and **Figure S2**).

Table S11. Yield of 3aa at specific time

Time (min)	0	30	60	90	120
Yield (%)	0	5.1	9.9	15.3	19.8

Figure S1. Initial rate of the reaction of 2a with 2c

Table S12. Yield of 3aa at specific time

Time (min)	0	120	300	420	600
Yield (%)	0	4.0	12.9	17.8	23.8

Figure S2. Initial rate of the reaction of 1a-D₁ with 2c

5.3 Plausible Catalytic Cycle

Figure S3 Plausible Catalytic Cycle

6. Copies of NMR Spectra

¹H NMR (400 MHz, CDCl₃) of 3aa

¹³C NMR (100 MHz, CDCl₃) of **3aa**

¹H NMR (400 MHz, CDCl₃) of **3ba**

S31

¹³C NMR (100 MHz, CDCl₃) of **3ba**

¹H NMR (400 MHz, CDCl₃) of **3ca**

S33

¹³C NMR (100 MHz, CDCl₃) of **3ca**

S34

¹H NMR (400 MHz, CDCl₃) of **3da**

¹⁹F NMR (376 MHz, CDCl₃) of **3da**

¹H NMR (400 MHz, CDCl₃) of **3ea**

¹³C NMR (100 MHz, CDCl₃) of **3ea**

¹H NMR (400 MHz, CDCl₃) of **3fa**

¹H NMR (400 MHz, CDCl₃) of **3ga**

¹³C NMR (100 MHz, CDCl₃) of **3ga**

¹H NMR (400 MHz, CDCl₃) of **3ha**

¹³C NMR (100 MHz, CDCl₃) of **3ha**

¹H NMR (400 MHz, CDCl₃) of **3ia**

¹³C NMR (100 MHz, CDCl₃) of **3ia**

¹H NMR (400 MHz, CDCl₃) of **3ja**

¹³C NMR (100 MHz, CDCl₃) of **3ja**

¹H NMR (400 MHz, CDCl₃) of 3ka

¹³C NMR (100 MHz, CDCl₃) of 3ka

¹H NMR (400 MHz, CDCl₃) of **3la**

¹³C NMR (100 MHz, CDCl₃) of **3la**

¹H NMR (400 MHz, CDCl₃) of **3ma**

¹³C NMR (100 MHz, CDCl₃) of **3ma**

¹H NMR (400 MHz, CDCl₃) of **3na**

¹³C NMR (100 MHz, CDCl₃) of **3na**

¹H NMR (400 MHz, CDCl₃) of **30a**

¹³C NMR (100 MHz, CDCl₃) of **30a**

¹H NMR (400 MHz, CDCl₃) of **3pa**

¹³C NMR (100 MHz, CDCl₃) of **3pa**

¹⁹F NMR (376 MHz, CDCl₃) of **3pa**

¹H NMR (400 MHz, CDCl₃) of 3qa

¹³C NMR (100 MHz, CDCl₃) of **3qa**

¹H NMR (400 MHz, CDCl₃) of 3ra

¹³C NMR (100 MHz, CDCl₃) of **3ra**

¹H NMR (400 MHz, CDCl₃) of **3ta**

¹³C NMR (100 MHz, CDCl₃) of **3ta**

¹H NMR (400 MHz, CDCl₃) of **3ua**

¹³C NMR (100 MHz, CDCl₃) of **3ua**

¹H NMR (400 MHz, CDCl₃) of 4

^{13}C NMR (100 MHz, CDCl₃) of 4

¹H NMR (400 MHz, CDCl₃) of **5**

¹H NMR (400 MHz, CDCl₃) of **6**

¹³C NMR (100 MHz, CDCl₃) of **6**

¹H NMR (400 MHz, CDCl₃) of 7

¹H NMR (400 MHz, CDCl₃) of **8**

7. Copies of HPLC Chromatograms

