Electronic Supplementary Information (ESI)

Convergent Synthesis of Glycoalkaloids Solasonine and its Saponin

Derivative

Yue Yang, ^a Tong Li, ^a Huiran Hao, ^a Juzheng Sheng, ^{ab} Tianlu Li^{* ab} and Peng Peng^{* ab}

^aNational Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate

Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate Based Medicine, Shandong University, Qingdao, 266237 Shandong, China.

^bKey Laboratory of Chemical Biology, Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012 Shandong, China.

*Emails: litianlu@sdu.edu.cn; pengpeng@sdu.edu.cn

Table of Contents

1. General Procedures	S2
2. Optimization of Trisaccharide 13 Synthesis with Donor 6 and	d Acceptor 7
	S2
3. Glycosidation of Trichloroacetimidate 4 and Aglycon 5 with Differ	rent Catalysts
	S 4
4. Comparison of the NMR Spectroscopic Data	S 6
5. Total Synthesis of Solasonine 1 and Saponin 2	S9
6. References	S23
7. Copies of NMR Spectra	S24

1. General Procedures

Material and Methods: All reagents and solvents were dried prior to use according to standard methods. Commercial reagents were used without further purification, unless otherwise stated. NMR spectra were recorded on an AVANCE DRX Bruker-400 MHz, or AVANCE NEO Bruker-600 MHz spectrometer at 25°C and referenced using residual CHCl₃ for ¹H-NMR (δ 7.26 ppm), CDCl₃ for ¹³C-NMR (δ 77.0 ppm), and residual Pyridine for ¹H-NMR (δ 7.57 ppm), Pyridine-*d*₅ for ¹³C-NMR (δ 135.4 ppm). High-resolution mass spectrometry was performed on a Bruker Maxis-II QTOF. All reactions were performed in flame-dried modified Schlenk (Kjeldahl shape) flasks fitted with a glass stopper or rubber septa under a positive pressure of argon. Analytical TLC was performed on silica gel 60-F254 precoated on aluminum plates (E. Merck), with detection by fluorescence and/or by staining with acidic ceric ammonium molybdate. Column chromatography was performed employing Silica Gel (Qingdao Ocean) 100-200 mesh (for *O*-glycosyl trichloroacetimidates donor) or 200-300 mesh.

2. Optimization of Trisaccharide 13 Synthesis with Donor 6 and Acceptor 7. Table 1 Optimization Reaction Conditions for Trisaccharide 13 Synthesis^{*a*}.

^a Reaction condition: **6** (1.0 equiv.), **7** (0.8 equiv.), 0 °C, anhydrous DCM. ^b Isolation yield. ^c Inverse procedure. ^d 7% of **13***α* was also isolated. ^c 5% of **13***α* was also isolated.

Normal procedure:

To a solution of glycosyl donor **6** (1.0 equiv.), glycosyl acceptor **7** (0.8 equiv.) and 4 Å (or 5 Å) molecular sieves in anhydrous DCM at 0 °C under argon atmosphere was added catalyst (0.1 equivalents of TMSOTf or BF₃·OEt₂). The reaction was further stirred at this temperature for 40 min. After the TLC analysis showed the reaction was complete, the reaction was quenched by addition of triethylamine and diluted with 100 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The organic layer was washed with NaHCO₃ (aq.) and brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (petroleum ether/DCM/ethyl acetate = 6:6:1) on silica gel to afford trisaccharide **13** or orthoester **14**.

Inverse procedure:

To a solution of glycosyl acceptor 7 (0.8 equiv.) and 4 Å molecular sieves in anhydrous DCM (2.2 mL) at 0 °C under argon atmosphere was added catalyst (0.1 equivalents of TfOH or TMSOTf) as added to the solution. After being stirred for 15min at 0 °C, glycosyl donor **6** (1.0 equiv.) was added to the solution. The reaction was further stirred at this temperature for 40 min. After the TLC analysis showed the reaction was complete, the reaction was quenched by addition of triethylamine and diluted with 100 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The organic layer was washed with NaHCO₃ (aq.) and brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (petroleum ether/DCM/ethyl acetate = 6:6:1) on silica gel to afford trisaccharide **13** or orthoester **14**.

3. Glycosidation of Trichloroacetimidate 4 and Aglycon 5 with Different Catalysts

BzO- BzO- BzO	BZO OB BZO ACO ACO A 4 + 5	Z NH CCI ₃ BZ BZ D	zO O ZO AcO AcO	O OBZ O OAc 15		
entry	promoter (equiv	v) solvent	temp (°C)	Time	yield (%)	ratio of 15 (α : β)
1	TfOH (0.3)	DCM/MeCN=1/1	-50	45 min	81%	1/4.0
2	AuCl ₃ (0.1)	DCM	-60	10 min	80%	1/6.3
3	PtCl ₄ (0.1)	DCM	-60	12 h	91%	1/13.1
4	AuCl ₃ (0.1)	DCM/tBuCN=5/1	-50	10 min	84%	β

 Table 2. Glycosidation of Aglycon 5 as Acceptor and Trichloroacetimidate 4

For TfOH as catalyst:

To a solution of donor **4** (30 mg, 22.2 µmol) and 4 Å molecular sieves in solvent of DCM/MeCN = 1:1 (2.2 mL, 0.01M) was added acceptor **5** (11 mg, 26.1 µmol) at room temperature. After the reaction mixture cooling down to -50 °C, TfOH (1.1 µL, 6.66 µmol) was added into the reaction. After the TLC analysis showed the reaction was complete (45 min), the reaction was quenched by addition of triethylamine and diluted with 50 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 3:1) on silica gel to afford compound **15**αβ (29 mg, $\alpha/\beta=1/4.0$, 81%) as semisolid.

For AuCl₃ as catalyst:

To a solution of donor **4** (30 mg, 22.2 μ mol) and 4 Å molecular sieves in solvent of DCM (2.2 mL, 0.01M) was added acceptor **5** (11 mg, 26.1 μ mol) at room temperature. After the reaction mixture cooling down to -60 °C, AuCl₃ (0.7 mg, 2.22 μ mol) was added into the reaction. After the TLC analysis showed the reaction was complete (10

min), the reaction was quenched by addition of triethylamine and diluted with 50 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 3:1) on silica gel to afford compound **15** $\alpha\beta$ (28.7 mg, α/β =1/6.3, 80%) as semisolid.

For PtCl₄ as catalyst:

To a solution of donor **4** (50 mg, 36.2 µmol) and 4 Å molecular sieves in solvent of DCM (1.0 mL, 0.036 M) was added acceptor **5** (19 mg, 43.4 µmol) at room temperature. After the reaction mixture cooling down to $-60 \,^{\circ}$ C, PtCl₄ (1.2 mg, 3.62 µmol) was added into the reaction. After the TLC analysis showed the reaction was complete (12 h), the reaction was quenched by addition of triethylamine and diluted with 50 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 3:1) on silica gel to afford compound **15** α **β** (53.7 mg, α/β =1/13.1, 91%) as semisolid.

Catalysis of AuCl3-tBuCN system:

To a solution of donor **4** (50 mg, 36.2 µmol) and 4 Å molecular sieves in solvent of DCM/*t*BuCN (3.6 mL, v/v =5:1, 0.01M) was added acceptor **5** (19 mg, 43.4 µmol) at room temperature. After the reaction mixture cooling down to $-50 \,^{\circ}$ C, gold(III) chloride (1.1 mg, 3.62µmol) was added into the reaction. After the TLC analysis showed the reaction was complete (10 min), the reaction was quenched by addition of triethylamine and diluted with 50 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 3:1) on silica gel to afford compound **15**β (49.6 mg, 84%) as semisolid.

4. NMR Data for Synthetic Solasonine 1 or Saponin 2 and Natural Product

Table S3: Comparison of the ¹H NMR spectroscopic data (400 MHz, Pyridine- d_5) of

Position	Synthetic 1	Authentic 1	Position	Synthetic 1	Authentic 1
Gal			1	1.74, 1.01	1.72, 0.98
1′	4.89 (d, 7.8)	4.93	2	1.82, 2.08	1.85, 2.10
2'	3.94	3.97	3	3.93	3.97
3'	4.31	4.34	4	2.73, 2.79	2.74, 2.83
4′	4.87	4.90	6	5.28 (d, 5)	5.37
5'	3.99	4.12	7	1.51, 1.86	1.54, 1.90
6'	4.20, 4.31	4.24, 4.34	8	1.50	1.54
Rha			9	0.86	0.90
1″	6.25 (d, 1.4)	6.23	11	1.41, 1.40	1.45, 1.45
2''	4.90	4.90	12	1.07, 1.66	1.10, 1.70
3″	4.56(dd, 9.3, 3.4)	4.60	14	1.06	1.10
4″	4.31	4.34	15	1.50, 2.05	1.54, 2.10
5''	4.90	4.90	16	4.52	4.51
6''	1.66 (d, 6.1)	1.69	17	1.79	1.83
Glu			18	0.85	0.88
1‴	5.15 (d, 7.7)	5.15	19	1.01	1.06
2‴	4.66 (9.6, 7.8)	4.67	20	1.97	2.01
3‴	4.22	4.24	21	1.15	1.17
4‴	4.11	4.09	23	1.66	1.70
5‴	3.96	3.97	24	1.62	1.65
6′′′	4.33, 4.44	4.34, 4.49	25	1.44	1.48
			26	2.79	2.83
			27	0.77 (d, 4.5)	0.81

the synthetic and authentic Solasonine 1^1 .

Table S4: Comparison	of the ¹³ C NMR s	pectroscopic data ((150 MHz, P	yridine-d5) of

Position	Synthetic 1	Authentic 1	Position	Synthetic 1	Authentic 1
Gal			1	37.4	37.6
1′	100.3	100.4	2	30.0	30.2
2'	76.4	76.6	3	78.4	78.6
3'	84.7	84.8	4	38.7	38.8
4′	70.4	70.5	5	140.8	140.9
5'	75.0	75.2	6	121.7	121.8
6'	62.5	62.6	7	32.5	32.7
Rha			8	31.6	32.4
1″	102.2	102.3	9	50.2	50.3
2''	72.5	72.7	10	37.1	37.2
3''	72.8	72.9	11	21.0	21.2
4''	74.1	74.2	12	39.9	40.1
5''	69.4	69.5	13	40.6	40.7
6''	18.5	18.7	14	56.5	56.7
Glu			15	31.6	31.6
1‴	105.8	105.9	16	79.2	79.9
2‴	74.9	75.0	17	63.3	63.5
3‴	78.3	78.4	18	16.4	16.6
4‴	71.5	71.6	19	19.3	19.4
5‴	77.4	77.5	20	41.6	41.6
6′′′′	62.5	62.6	21	15.6	15.7
			22	98.3	98.4
			23	34.4	34.7
			24	31.2	31.1
			25	31.6	31.7
			26	47.7	48.1
			27	19.5	19.8

the synthetic and authentic Solasonine 1^{2} .

Position	Synthetic 2	Authentic 2	Position	Synthetic 2	Authentic 2
Gal			1	37.3	37.4
1′	100.2	100.4	2	29.8	29.9
2'	76.3	76.5	3	78.2	78.3
3'	84.7	84.8	4	38.6	38.7
4′	70.2	70.8	5	140.7	140.8
5'	75.1	74.9	6	121.6	121.7
6'	62.3	62.5	7	32.1	32.2
Rha			8	31.5	31.6
1″	101.9	102.2	9	50.1	50.2
2″	72.4	72.5	10	37.0	37.1
3″	72.7	72.8	11	20.9	21.0
4''	73.8	74.1	12	39.7	39.8
5''	69.2	69.4	13	40.3	40.8
6''	18.4	18.6	14	56.5	56.6
Glu			15	32.1	32.3
1‴	105.7	105.9	16	81.0	81.8
2′′′	74.8	75.0	17	62.7	62.9
3′′′	78.2	78.3	18	16.2	16.3
4′′′	71.6	71.6	19	19.2	19.4
5'''	78.2	78.5	20	41.8	41.9
6'''	62.7	62.6	21	14.9	15.0
			22	109.1	109.2
			23	30.0	30.1
			24	29.8	29.9
			25	30.4	30.6
			26	66.7	66.8
			27	17.2	17.3

Table S5: Comparison of the ¹³C NMR spectroscopic data (100 MHz, Pyridine- d_5) of the synthetic and authentic Saponin 2³.

5. Total Synthesis of Solasonine 1 and Saponin 2.

4-Methoxylphenyl4,6-O-benzylidene-3-O-tert-butyldimethylsilyl-β-D-galactopyranoside (10)

To a solution of **9** (2 g, 5.3 mmol) in DMF (18 mL) was added 2,6-lutidine (1.9 mL, 15.9 mmol) at room temperature under Ar atmosphere. After being stirred for 20min at -50 °C, TBSOTf (2.4 mL, 10.6 mmol) was added to the solution. After the TLC analysis showed the reaction was complete (25 min), the reaction was quenched with sat. NaHCO₃ (aq.). and diluted with 200 mL of DCM. The organic layer was washed with NaHCO₃ (aq.) and brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 6:1) on silica gel to afford compound **10** (2.3 g, 88%) as white solid. Proton NMR was consistent with literature data⁴.

4-Methoxylphenyl 2-*O*-(2,3,4-tri-*O*-acetyl-α-L-rhamnopyranosyl)-4,6-*O*benzylidene-3-*O*-*tert*-butyldimethylsilyl-β-D-galactopyranoside (11)

To a solution of glycosyl donor **8** (3.8 g, 8.8 mmol), glycosyl acceptor **10** (3.9 g, 8.0 mmol) and 4 Å molecular sieves in anhydrous DCM (80 mL) at 0 °C under argon atmosphere was added TMSOTf (163 μ L, 0.9 mmol). The reaction was further stirred at this temperature for 10 min. After the TLC analysis showed the reaction was complete, the reaction was quenched by addition of triethylamine and diluted with 150 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The organic

layer was washed with NaHCO₃ (aq.) and brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (DCM/MeOH = 20:1) on silica gel to afford compound **11** (5.7 g, 95%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 7.5, 2.2 Hz, 2H, Ar*H*), 7.39 – 7.33 (m, 3H, Ar*H*), 7.02 – 6.98 (m, 2H, Ar*H*), 6.84 – 6.80 (m, 2H, Ar*H*), 5.50 (s, 1H, PhC*H*), 5.39 (dd, J = 3.4, 1.7 Hz, 1H, 2a-H), 5.27 (d, J = 1.6 Hz, 1H, 1b-H), 5.21 (dd, J = 10.1, 3.5 Hz, 1H, 3a-H), 5.05 (t, J = 10.1 Hz, 1H, 4a-H), 4.90 (d, J = 7.9 Hz, 1H, 1a-H), 4.46 – 4.38 (m, 1H, 5a-H), 4.34 (dd, J = 12.3, 1.4 Hz, 1H, 6b-H), 4.24 (dd, J = 9.4, 7.9 Hz, 1H, 2b-H), 4.07 (td, J = 5.3, 4.7, 1.8 Hz, 2H, 6b-H, 4b-H), 3.96 (dd, J = 9.4, 3.6 Hz, 1H, 3b-H), 3.78 (s, 3H, OC*H*₃), 3.50 (s, 1H, 5b-H), 2.11 (s, 3H, COC*H*₃), 2.00 (s, 3H, COC*H*₃), 1.96 (s, 3H, COC*H*₃), 1.20 (d, J = 6.3 Hz, 3H, 6a-C*H*₃), 0.86 (s, 9H, *tert-Butyl*), 0.11 (d, J = 7.2 Hz, 6H, Si*Me*). ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 174.8, 174.6, 160.1, 156.0, 142.5, 133.6, 132.8, 130.9, 123.3, 119.3, 105.5, 105.2, 103.1, 103.0, 81.1, 79.9, 79.0, 75.7, 74.4, 74.1, 73.9, 71.3, 71.2, 60.4, 30.4, 25.8, 25.84, 25.62, 22.8, 22.0, 0.7. HRMS (ESI) Calcd for C₃₈H₅₂NaO₁₄Si⁺ [M+Na]⁺: 783.3019, found: 783.3049.

4-Methoxylphenyl2-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-β-D-galactopyranoside (12)

To a solution of **11** (11 g, 14.5mmol) in TBAF (72.5 mL of 1 M solution in THF, 72.5mmol) was stirred at rt for 1 h, After the TLC analysis showed the reaction was complete. The solution was diluted with ethyl acetate and washed with NH₄Cl (aq.) and brine, dried over Na₂SO₄, filtered, and concentrated. The resulting residue was dissolved in 200 mL 80% AcOH, the mixture was stirred for 1 h at 90 °C. After the TLC analysis showed the reaction was complete, and then cooled, and concentrated. The residue was purified by column chromatography (EtOAc/CH₃OH = 10:1) on silica gel to afford compound **12** (7.2 g, 89%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ

7.01 – 6.95 (m, 2H, Ar*H*), 6.87 – 6.80 (m, 2H, Ar*H*), 5.37 (dd, J = 3.4, 1.8 Hz, 1H, 2a-H), 5.32 (d, J = 1.8 Hz, 1H, 1a-H), 5.22 (dd, J = 10.2, 3.4 Hz, 1H, 3a-H), 5.08 (t, J = 10.0 Hz, 1H, 4a-H), 4.87 (d, J = 7.7 Hz, 1H, 1b-H), 4.27 (dt, J = 9.8, 6.2 Hz, 1H, 5a-H), 4.04 – 3.80 (m, 4H, 2b-H, 3b-H, 6b-H), 3.78 (s, 3H, OC*H*₃), 3.60 (t, J = 5.3 Hz, 1H, 5b-H), 3.52 – 3.42 (m, 2H, 4b-H), 2.66 (s, 1H), 2.14 (s, 3H, COC*H*₃), 2.02 (s, 3H, COC*H*₃), 1.98 (s, 3H, COC*H*₃), 1.21 (d, J = 6.2 Hz, 3H, 6a-C*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.5, 170.0, 155.2, 151.0, 117.7, 114.6, 100.3, 98.0, 76.1, 74.3, 70.9, 69.7, 69.5, 69.3, 66.5, 61.3, 55.6, 20.8, 20.73, 20.70, 17.3. HRMS (ESI) Calcd for C₂₅H₃₄NaO₁₄⁺ [M+Na]⁺: 581.1841, found: 581.1893.

4-Methoxylphenyl 2-*O*-(2,3,4-tri-*O*-acetyl-α-L-rhamnopyranosyl)-4,6-di-*O*benzoyl-β-D-galactopyranoside (7)

To a solution of **12** (7.1 g, 12.7 mmol) and 4 Å molecular sieves in 255 mL mixture of DCM/DMF = 3:1 was added benzoyl cyanide (3.7 g, 27.9 mmol) at room temperature under argon atmosphere. After cooling down the reaction mixture to -78 °C, DMAP (379 mg, 3.1 mmol) was added. The reaction was further stirred for 5 h at this temperature. After the TLC analysis showed the reaction was complete, the reaction was quenched by addition of NH₄Cl (s) and MeOH. Then the mixture was filtered through a pad of Celite and the Celite was further washed with DCM for 3 times. Then the organic layer was concentrated. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 1:3) on silica gel to afford compound **7** (7.8 g, 80 %) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.08 (m, 2H, Ar*H*), 8.05 – 8.00 (m, 2H, Ar*H*), 7.59 – 7.53 (m, 2H, Ar*H*), 7.43 (td, *J* = 7.7, 1.4 Hz, 4H, Ar*H*), 7.06 – 7.01 (m, 2H, Ar*H*), 6.75 – 6.69 (m, 2H, Ar*H*), 5.66 – 5.63 (m, 1H, 4b-H), 5.39 (dd, *J* = 3.5, 1.8 Hz, 1H, 2a-H), 5.32 (d, *J* = 1.8 Hz, 1H, 1a-H), 5.24 (dd, *J* = 10.1, 3.4 Hz, 1H, 3a-H), 5.10 (t, *J* = 10.0 Hz, 1H, 4a-H), 4.99 (d, *J* = 6.8 Hz, 1H, 1b-H), 4.54 –

4.44 (m, 2H, 6b-H), 4.40 (dt, J = 9.9, 6.2 Hz, 1H, 5a-H), 4.22 – 4.11 (m, 3H, 2b-H, 3b-H, 5b-H), 3.74 (s, 3H, OCH₃), 2.06 (s, 3H, COCH₃), 2.03 (s, 3H, COCH₃), 1.96 (s, 3H, COCH₃), 1.29 (d, J = 6.2 Hz, 3H, 6a-CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.2, 170.0, 166.8, 166.0, 155.4, 151.1, 130.1, 129.8, 128.5, 128.4, 118.1, 114.6, 100.5, 98.3, 75.9, 73.6, 71.5, 71.0, 70.9, 69.6, 69.4, 66.6, 62.7, 55.6, 20.84, 20.82, 20.75, 17.4. HRMS (ESI) Calcd for C₃₉H₄₂NaO₁₆⁺ [M+Na]⁺: 789.2366, found: 789.2395.

4-Methoxylphenyl2-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-3-O-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-4,6-di-O-benzoyl-β-D-

To a solution of glycosyl donor 6 (384 mg, 519 µmol), glycosyl acceptor 7 (766 mg, 415 µmol) and 5 Å molecular sieves in anhydrous DCM (2.6 mL) at 0 °C under argon atmosphere was added TMSOTf (9.4 µL, 51.9 µmol). The reaction was further stirred at this temperature for 40 min. After the TLC analysis showed the reaction was complete, the reaction was guenched by addition of triethylamine and diluted with 100 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The organic layer was washed with NaHCO₃ (aq.) and brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (petroleum ether/DCM/ethyl acetate = 6:6:1) on silica gel to afford compound 13β (500 mg, 93%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 14.9, 8.0 Hz, 6H, ArH), 7.92 (d, *J* = 7.8 Hz, 2H, Ar*H*), 7.75 (d, *J* = 7.8 Hz, 2H Ar*H*), 7.67 – 7.18 (m, 18H Ar*H*), 6.99 – 6.91 (m, 2H ArH), 6.70 – 6.61 (m, 2H ArH), 6.01 (t, J = 9.6 Hz, 1H, 3c-H), 5.75 -5.63 (m, 2H, 4b-H, 4c-H), 5.41 (dd, J = 9.9, 7.8 Hz, 1H, 2c-H), 5.38 -5.35 (m, 1H, 2a-H), 5.31 (dd, J = 10.2, 3.5 Hz, 1H, 3a-H), 5.27 (d, J = 7.9 Hz, 1H, 1c-H), 5.24 (d, J = 1.8 Hz, 1H, 1a-H), 5.11 (t, J = 10.0 Hz, 1H, 4a-H), 4.75 (d, J = 7.3 Hz, 1H, 1b-H), 4.65 (dd, J = 12.2, 4.9 Hz, 1H, 6c-H), 4.56 (dd, J = 12.2, 3.2 Hz, 1H, 6c-H), 4.45 (qd,

J = 11.6, 6.2 Hz, 2H, 6b-H), 4.34 – 4.16 (m, 5H, 3b-H, 2b-H, 5c-H, 5b-H, 5a-H), 3.98 (dd, J = 8.0, 4.7 Hz, 1H), 3.71 (s, 3H, OCH₃), 2.14 (s, 3H, COCH₃), 2.09 (s, 3H, COCH₃), 2.05 (s, 2H, COCH₃), 1.13 (d, J = 6.2 Hz, 3H, 6a-CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.1, 170.0, 166.0, 165.9, 165.7, 165.5, 165.1, 164.7, 155.4, 151.0, 118.1, 114.4, 100.6, 99.4, 97.8, 75.5, 72.54, 72.51, 71.8, 70.9, 70.0, 69.9, 69.8, 69.0, 67.0, 62.9, 62.7, 55.6, 20.9, 17.3. HRMS (ESI) Calcd for C₇₃H₆₈NaO₂₅⁺ [M+Na]⁺: 1367.3942, found: 1367.3985.

4-Methoxylphenyl 2-*O*-(2,3,4-tri-*O*-acetyl-α-L-rhamnopyranosyl)-3-*O*-(2,3,4,6-tetra-*O*-benzoyl-α-D-glucopyranosyl)-4,6-di-*O*-benzoyl-β-Dgalactopyranoside (13α)

¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.11 (m, 2H, Ar*H*), 8.09 – 8.04 (m, 2H, Ar*H*), 8.05 – 7.98 (m, 2H, Ar*H*), 7.78 – 7.72 (m, 2H, Ar*H*), 7.70 – 7.63 (m, 2H, Ar*H*), 7.63 – 7.52 (m, 3H, Ar*H*), 7.47 (t, *J* = 7.6 Hz, 4H, Ar*H*), 7.41 – 7.24 (m, 8H, Ar*H*), 7.21 (t, *J* = 7.6 Hz, 2H, Ar*H*), 7.05 (td, *J* = 7.7, 4.3 Hz, 4H, Ar*H*), 7.01 – 6.93 (m, 2H, Ar*H*), 6.75 – 6.67 (m, 2H, Ar*H*), 5.90 (t, *J* = 10.0 Hz, 1H, 3c-H), 5.83 (d, *J* = 2.8 Hz, 1H, 4b-H), 5.76 (d, *J* = 4.3 Hz, 1H, 1c-H), 5.66 – 5.57 (m, 2H, 2c-H, 4c-H), 5.52 (d, *J* = 1.7 Hz, 1H, 1a-H), 5.38 - 5.41 (m, 2H, 2a-H, 3a-H), 5.21 (t, *J* = 10.0 Hz, 1H, 4a-H), 4.70 – 4.57 (m, 3H, 6a-H, 5a-H), 4.55 (d, *J* = 7.7 Hz, 1H, 1b-H), 4.50 – 4.25 (m, 4H, 2b-H, 5b-H, 6b-H), 4.16 (dd, *J* = 9.8, 2.9 Hz, 1H, 3b-H), 3.76 (m, 4H, OC*H*₃), 2.22 (s, 3H, COC*H*₃), 2.05 (s, 3H, COC*H*₃), 1.88 (s, 3H, COC*H*₃), 1.29 (d, *J* = 6.3 Hz, 3H, 6a-C*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.00, 169.96, 169.8, 165.8, 165.25, 165.23, 165.0, 155.5, 150.9, 133.3, 133.1, 132.9, 132.8, 130.4, 129.94, 129.88, 129.83, 129.79, 129.7, 129.5, 129.1, 128.8, 128.51, 128.48, 128.4, 128.2, 128.1, 128.0, 118.4, 114.5, 100.7, 98.7, 91.5, 75.1, 73.0, 71.6, 71.2, 71.0, 70.2, 69.43, 69.38, 69.3, 69.0, 66.9, 64.7, 62.8, 62.4, 55.6, 20.9,

20.7, 17.4. HRMS (ESI) Calcd for C₇₃H₆₈NaO₂₅⁺ [M+Na]⁺: 1367.3942, found: 1367.3934.

Orthoester 14

¹H NMR (400 MHz, CDCl₃) δ 8.01 (ddd, *J* = 8.6, 4.8, 1.3 Hz, 4H, Ar*H*), 7.95 (td, *J* = 7.5, 7.0, 1.4 Hz, 4H, Ar*H*), 7.84 – 7.80 (m, 2H, Ar*H*), 7.69 – 7.36 (m, 10H, Ar*H*), 7.34 – 7.23 (m, 5H, Ar*H*), 6.94 – 6.88 (m, 2H, Ar*H*), 6.59 – 6.53 (m, 2H, Ar*H*), 5.86 (d, *J* = 4.9 Hz, 1H, 1c-H), 5.79 (d, *J* = 3.2 Hz, 1H, 4b-H), 5.54 (dd, *J* = 3.3, 1.4 Hz, 1H, 3c-H), 5.38 (t, *J* = 2.2 Hz, 1H, 3a-H), 5.33 – 5.28 (m, 2H, 1a-H, 2a-H), 5.15 – 5.07 (m, 2H, 4c-H, 4a-H), 4.82 (d, *J* = 7.8 Hz, 1H, 1b-H), 4.60 (dd, *J* = 11.8, 3.6 Hz, 1H, 6c-H), 4.53 – 4.45 (m, 2H, 2c-H, 5a-H), 4.42 – 4.21 (m, 4H, 2b-H, 6b-H, 5c-H), 4.08 (dd, *J* = 9.0, 3.6 Hz, 1H, 6c-H), 3.90 (dd, *J* = 9.6, 3.2 Hz, 1H, 3b-H), 3.81 (t, *J* = 3.0 Hz, 1H, 5b-H), 3.67 (s, 3H, OC*H*₃), 2.15 (s, 3H, COC*H*₃), 2.02 (s, 3H, COC*H*₃), 1.94 (s, 3H, COC*H*₃), 1.28 (d, *J* = 6.5 Hz, 3H, 6a-C*H*₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.9, 166.1, 166.0, 165.9, 165.0, 164.3, 155.3, 150.9, 134.6, 133.6, 133.5, 133.4, 133.2, 133.0, 130.3, 130.0, 129.9, 129.85, 129.78, 129.74, 129.71, 129.02, 128.99, 128.9, 128.7, 128.5, 128.4, 128.4, 128.2, 126.1, 122.4, 118.1, 114.4, 100.4, 98.1, 97.6, 75.4, 72.8, 72.3, 72.0, 71.1, 70.5, 69.4, 69.3, 68.7, 68.1, 66.6, 64.0, 63.3, 55.5, 20.9, 20.8, 20.7, 17.4. HRMS (ESI) Calcd for C_{73H68}NaO₂₅⁺ [M+Na]⁺: 1367.3942, found: 1367.3937.

4-Methoxylphenyl

2-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-3-O-

trimethylsilyl-4,6-di-O-benzoyl-β-D-galactopyranoside (18)

¹H NMR (600 MHz, CDCl₃) δ 8.13 – 8.09 (m, 2H, Ar*H*), 8.05 – 8.01 (m, 2H, Ar*H*), 7.62 – 7.56 (m, 2H, Ar*H*), 7.49 – 7.43 (m, 4H, Ar*H*), 7.01 – 6.97 (m, 2H, Ar*H*), 6.69 – 6.65 (m, 2H, Ar*H*), 5.56 (dd, *J* = 3.6, 1.1 Hz, 1H, 4b-H), 5.35 (dd, *J* = 3.4, 1.8 Hz, 1H, 2a-H), 5.25 (dd, *J* = 10.2, 3.4 Hz, 1H, 3a-H), 5.22 (d, *J* = 1.7 Hz, 1H, 1a-H), 5.10 (t, *J* = 10.0 Hz, 1H, 4a-H), 4.96 (d, *J* = 7.8 Hz, 1H, 1b-H), 4.53 – 4.43 (m, 3H, 5a-H, 6b-H), 4.22 – 4.16 (m, 2H, 2b-H, 5b-H), 4.07 (dd, *J* = 9.3, 3.5 Hz, 1H, 3b-H), 3.72 (s, 3H, OC*H*₃), 2.11 (s, 3H, COC*H*₃), 2.03 (s, 3H, COC*H*₃), 1.97 (s, 3H, COC*H*₃), 1.29 (d, *J* = 6.2 Hz, 3H, 6a-C*H*₃), 0.12 (s, 9H, Si*Me* (x3)). ¹³C NMR (150 MHz, CDCl₃) δ 170.10, 170.07, 170.0, 169.7, 166.0, 165.9, 155.3, 151.0, 133.4, 133.2, 130.0, 129.8, 129.6, 129.3, 128.5, 128.4, 118.0, 114.5, 100.3, 98.2, 75.1, 74.1, 71.6, 71.0, 70.7, 69.4, 69.3, 66.5, 62.9, 55.6, 20.81, 20.76, 20.7, 17.4, -0.2. HRMS (ESI) Calcd for C₄₂H₅₄NO₁₆Si⁺ [M+NH₄]⁺: 856.3207, found: 856.3225; C₄₂H₅₀NaO₁₆Si⁺ [M+Na]⁺: 861.2761, found: 861.2767.

2-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-3-O-(2,3,4,6-tetra-O-benzoyl-

β-D-glucopyranosyl)-4,6-di-*O*-benzoyl-α-D-galactopyranosyl trichloroaetimidate (4)

To a solution of **13** (1.1 g, 0.8 mmol) in solvent of CH₃CN/H₂O (80 mL, v/v = 4:1), CAN (2.2 g, 4.1 mmol) was added. The mixture was stirred for 15 min at 0 °C. After the TLC analysis showed the reaction was complete, the solution was diluted with ethyl acetate and washed with NaHCO₃ (aq.) and brine, dried over Na₂SO₄, filtered, and concentrated. Then the organic layer was concentrated. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 1:1) on silica gel to afford compound S1 (890 mg, 89 %) as white solid. Compound S1 (1.6 g, 1.3 mmol) was dissolved in anhydrous DCM, and trichloroacetonitrile (391 µL, 3.9 mmol) and DBU (39 µL, 260 µmol) were added in sequence at 0 °C. The reaction was further stirred for 5 h at this temperature. After the TLC analysis showed the reaction was complete, the reaction was concentrated and purified by column chromatography (petroleum ether/ethyl acetate = 1:1) on silica gel to afford compound 4 (1.4 g, 78 %) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H, NHCCl₃), 8.05 – 7.93 (m, 6H, ArH), 7.94 – 7.88 (m, 2H, ArH), 7.76 – 7.71 (m, 2H ArH), 7.56 – 7.29 (m, 11H ArH), 7.21 (td, J = 7.8, 2.0 Hz, 4H ArH), 6.51 (d, J = 3.7 Hz, 1H, 1b-H), 6.03 – 5.95 (m, 2H, 4b-H, 3c-H), 5.70 (t, J = 9.7 Hz, 1H, 4c-H), 5.47 – 5.43 (t, 1H, 2c-H), 5.39 – 5.34 (m, 2H, 1c-H, 2a-H), 5.23 (dd, J = 10.2, 3.1 Hz, 1H, 3a-H), 5.07 (t, J = 10.0 Hz, 1H, 4a-H), 4.88 (d, J = 1.8 Hz, 1H, 1a-H), 4.63 – 4.52 (m, 4H, 5c-H, 3b-H, 6c-H), 4.47 – 4.33 (m, 3H, 5b-H, 6b-H), 4.26 (dd, J = 9.9, 3.7 Hz, 1H, 2b-H), 3.96 – 3.87 (m, 1H, 5a-H), 2.12 (s, 3H, COCH₃), 2.06 (s, 3H, COCH₃), 2.02 (s, 3H, COCH₃), 1.15 (d, J = 6.3 Hz, 3H, 6a-CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 169.8, 169.5, 166.2, 166.0, 165.9, 165.4, 165.3, 165.1, 164.6, 160.8, 133.3, 133.2, 133.13, 133.07, 133.03, 132.96, 132.9, 129.93, 129.86, 129.8, 129.73, 129.66, 129.64, 129.58, 129.5, 129.1, 129.04, 129.03, 128.3, 128.15, 128.10, 99.8, 95.0, 90.8, 72.7, 72.4, 72.3, 71.7, 70.5, 70.1, 69.9, 69.6, 69.4, 69.1, 67.7, 63.0, 62.7, 60.3, 21.0, 20.93, 20.85, 20.82, 20.77, 17.4. HRMS (ESI) Calcd for C₆₈H₆₂Cl₃NNaO₂₄⁺ [M+Na]⁺: 1404.2620, found: 1404.2660.

26-azido-pseudodiosgen-3-yl 2-*O*-(2,3,4-tri-*O*-acetyl-α-L-rhamnopyranosyl)-3-*O*-(2,3,4,6-tetra-*O*-benzoyl-β-D-glucopyranosyl)-4,6-di-*O*-benzoyl-β-Dgalactopyranoside (16)

S16

To a solution of donor 4 (50 mg, 36.2 µmol) and 4 Å molecular sieves in a mixed solvent of DCM/tBuCN (724 μ L, v/v = 5:1, 0.05 M) was added acceptor **3** (19 mg, 43.4 μ mol) at room temperature. After the reaction mixture cooling down to -50 °C, gold(III) chloride (1.1 mg, 3.62µmol) was added into the reaction. After the TLC analysis showed the reaction was complete (10 min), the reaction was quenched by addition of triethylamine and diluted with 50 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 1:1) on silica gel to afford compound 16 (48 mg, 81%) as semisolid. ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.95 (m, 7H, ArH), 7.93 – 7.86 (m, 2H, ArH), 7.77 – 7.70 (m, 2H, ArH), 7.64 – 7.58 (m, 2H, ArH), 7.58 – 7.18 (m, 19H, ArH), 5.96 (t, J = 9.6 Hz, 1H, 3c-H), 5.70 – 5.60 (m, 2H, 4c-H, 4b-H), 5.40 – 5.25 (m, 4H, 3a-H, 2a-H, 2c-H, 5b-H), 5.21 – 5.14 (m, 2H, 1a-H, 1c-H), 5.08 (t, J = 9.9 Hz, 1H, 4a-H), 4.75 (ddd, J = 10.1, 7.8, 5.7 Hz, 1H, 6c-H), 4.60 (dd, J = 12.2, 4.7 Hz, 1H, 6c-H), 4.54 - 4.47 (m, 1H, 6b-H), 4.47 - 4.31 (m, 3H, 5a-H, 6b-H, 1b-H), 4.19 (ddd, J =21.5, 8.8, 3.7 Hz, 2H, 5c-H, 3b-H), 3.98 (dd, *J* = 9.4, 7.8 Hz, 1H, 2b-H), 3.87 (dd, *J* = 7.9, 5.3 Hz, 1H, 5b-H), 3.52 (tt, J = 11.1, 4.6 Hz, 1H), 3.23 (dd, J = 12.0, 5.6 Hz, 1H), 3.10 (dd, J = 12.0, 7.0 Hz, 1H), 2.48 (d, J = 10.1 Hz, 1H), 2.45 - 2.37 (m, 1H), 2.25 $(dd, J = 28.1, 13.9 Hz, 1H), 2.13 (s, 3H, COCH_3), 2.04 (s, 3H, COCH_3), 2.05 (s, 3H,$ $COCH_3$, 1.92 – 1.68 (m, 2H), 1.60 (d, J = 7.0 Hz, 5H), 1.51 – 1.38 (m, 2H), 1.36 – 1.21 (m, 5H), 1.15 (d, J = 6.2 Hz, 3H, 6a-CH₃), 0.97 (d, J = 6.7 Hz, 6H), 0.89 (q, J = 7.1, 5.5Hz, 3H), 0.68 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.2, 170.0, 166.0, 165.98, 165.96, 165.5, 165.1, 164.7, 151.2, 140.3, 133.3, 133.1, 133.03, 133.00, 132.91, 132.88, 130.1, 130.0, 129.9, 129.88, 129.80, 129.77, 129.71, 129.68, 129.6, 129.1, 129.0, 128.9, 128.4, 128.34, 128.29, 128.2, 128.1, 121.8, 104.0, 100.0, 99.3, 97.2, 84.3, 79.7, 74.0,

72.5, 71.4, 71.1, 70.1, 69.9, 69.7, 69.0, 66.5, 64.2, 62.7, 57.6, 55.0, 50.0, 43.3, 39.5, 38.4, 37.0, 36.8, 34.1, 33.0, 32.2, 31.5, 31.2, 29.71, 29.65, 23.2, 20.95, 20.90, 20.86, 19.3, 17.6, 17.3, 14.0, 11.7. HRMS (ESI) Calcd for C₉₃H₁₀₂N₃O_{25⁺} [M+H]⁺: 1661.6831, found: 1661.6881.

Solasodin-3-yl 2-*O*-(2,3,4-tri-*O*-acetyl-α-L-rhamnopyranosyl)-3-*O*-(2,3,4,6tetra-*O*-benzoyl-β-D-glucopyranosyl)-4,6-di-*O*-benzoyl-β-D-galactopyranoside (17)

To a solution of 16 (110 mg, 66.3 µmol) in anhydrous CH₃CN (3 mL) was added NaI (20 mg, 133 µmol) was added. After the mixture was stirred for 30 min at rt, a solution of TMSCl (18 µL, 142.5 µmol) in anhydrous CH₃CN (150 µL) was added dropwise. After the TLC analysis showed the reaction was complete (30min), the reaction was quenched with 10% Na₂S₂O₃ solution, and 5% NaOH was added to adjust the pH value of the solution to 10. The mixture was stirred at rt for 1h. The solution was diluted with DCM and washed with brine, dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography (petroleum ether/ethyl acetate/Et₃N = 1:2:0.03) on silica gel to afford compound **17** (90.4 mg, 84 %) as white foam. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.08 - 7.94 \text{ (m, 6H, ArH)}, 7.90 \text{ (d, } J = 7.8 \text{ Hz}, 2\text{H}, \text{ArH)}, 7.73 \text{ (d, } J = 7.8 \text{ Hz}, 2\text{H}, \text{ArH}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 2\text{H}, \text{ArH}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 2\text{H}, \text{ArH}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 2\text{H}, \text{ArH}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 2\text{H}, \text{ArH}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 2\text{H}, 100 \text{ Hz}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 100 \text{ Hz}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 100 \text{ Hz}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 100 \text{ Hz}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}, 100 \text{ Hz}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}), 7.8 \text{ (d, } J = 7.8 \text{ Hz}), 7.8 \text{ (d, }$ J = 7.8 Hz, 2H, ArH), 7.61 (d, J = 7.7 Hz, 2H, ArH), 7.58 – 7.25 (m, 17H, ArH), 7.21 (t, J = 7.7 Hz, 2H, ArH), 5.96 (t, J = 9.6 Hz, 1H, 3c-H), 5.68 – 5.61 (m, 2H, 4c-H, 4b-H), 5.38 – 5.27 (m, 4H, 3a-H, 2a-H, 2c-H, 5b-H), 5.21 – 5.15 (m, 2H, 1a-H, 1c-H), 5.08 (t, J = 9.8 Hz, 1H, 4a-H), 4.61 (dd, J = 12.2, 4.8 Hz, 1H, 6c-H), 4.55 - 4.25 (m, 5H, 6c-H)H, 6b-H, 5a-H, 6b-H, 1b-H), 4.25 – 4.14 (m, 2H, 5c-H, 3b-H), 3.98 (t, J = 8.6 Hz, 1H, 2b-H), 3.86 (dd, *J* = 7.7, 5.3 Hz, 1H, 5b-H), 3.51 (tt, *J* = 10.8, 4.6 Hz, 1H), 2.71 – 2.56 (m, 2H), 2.44 - 2.37 (m, 1H), 2.27 (t, J = 12.2 Hz, 1H), 2.13 (s, 3H, COCH₃), 2.06 (s, 3H, COC*H*₃), 2.04 (s, 3H, COC*H*₃), 2.02 – 1.94 (m, 2H), 1.89 (q, J = 7.2 Hz, 2H), 1.82 – 1.39 (m, 11H), 1.32 – 1.22 (m, 3H), 1.15 (d, J = 6.2 Hz, 3H, 6a-C*H*₃), 0.96 (d, J = 6.7 Hz, 5H), 0.85 (d, J = 6.2 Hz, 3H), 0.81 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 170.1, 169.9, 166.0, 165.9, 165.5, 165.1, 164.6, 140.3, 133.3, 133.0, 132.8, 130.1, 129.9, 129.8, 129.7, 129.6, 129.2, 129.0, 128.9, 128.38, 128.36, 128.3, 128.13, 128.07, 121.8, 100.1, 99.4, 98.3, 97.2, 79.7, 74.1, 72.6, 71.4, 71.2, 70.2, 69.9, 69.8, 69.0, 66.5, 62.8, 62.7, 60.4, 56.5, 50.1, 47.7, 41.3, 40.5, 39.9, 38.4, 37.0, 36.8, 34.1, 32.2, 31.4, 30.3, 29.7, 20.9, 20.8, 19.3, 19.2, 17.3, 16.4, 15.3, 14.2. HRMS (ESI) Calcd for C_{93H104}NO₂₅⁺ [M+H]⁺: 1635.6926, found: 1635.6963.

Solasonine 1

To a solution of **17** (130mg, 79.5 μ mol) in a mixed solvent of DCM/MeOH (4.5 mL, v/v =1:4) was added 1M NaOH to adjust the pH value of the solution to 12. The mixture was stirred for 4 h at 70 °C. After the TLC analysis showed the reaction was complete. The mixture was concentrated and the residue was purified by column chromatography (DCM/MeOH containing 8% H₂O/Et₃N = 3:1:0.01) on silica gel to afford compound **1** (64 mg, 91 %) as white solid^{1.2}. ¹H NMR (400 MHz, Pyridine-*d*₅) δ 6.25 (d, *J* = 1.4 Hz, 1H), 5.28 (d, *J* = 5.0 Hz, 1H), 5.15 (d, *J* = 7.7 Hz, 1H), 4.89 (d, *J* = 7.8 Hz, 2H), 4.86 (dd, *J* = 3.2, 1.7 Hz, 1H), 4.77 (d, *J* = 3.1 Hz, 1H), 4.66 (dd, *J* = 9.6, 7.8 Hz, 1H), 4.56 (dd, *J* = 9.3, 3.4 Hz, 1H), 4.45 – 4.37 (m, 2H), 4.34 (dd, *J* = 11.2, 6.5 Hz, 1H), 4.30 – 4.23 (m, 3H), 4.20 (dd, *J* = 11.3, 5.1 Hz, 1H), 4.17 – 4.10 (m, 2H), 3.97 (t, *J* = 6.1 Hz, 1H), 3.90 (q, *J* = 7.3, 5.8 Hz, 3H), 2.80 – 2.66 (m, 4H), 2.12 – 1.97 (m, 2H), 1.92 (q, *J* = 9.2, 8.1 Hz, 1H), 1.88 – 1.78 (m, 1H), 1.78 – 1.13 (m, 17H), 1.11 – 0.97 (m, 8H), 0.96 – 0.80 (m, 6H), 0.77 (d, *J* = 4.5 Hz, 3H). ¹³C NMR (150 MHz, Pyridine-d₅) δ 140.8,

121.6, 105.8, 102.2, 100.3, 98.3, 84.7, 79.2, 78.4, 78.3, 77.4, 76.4, 75.0, 74.9, 74.1, 72.8, 72.5, 71.5, 70.4, 69.4, 63.3, 62.52, 62.47, 56.5, 50.2, 47.7, 41.6, 40.6, 39.9, 38.7, 37.4, 37.1, 34.4, 32.5, 32.2, 31.6, 31.2, 30.7, 30.0, 21.0, 19.5, 19.3, 18.5, 16.4, 15.6. **Diosgenyl** 2-O-(2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl)-3-O-(2,3,4,6-tetra-Obenzoyl-β-D-glucopyranosyl)-4,6-di-O-benzoyl-β-D-galactopyranoside (15)

To a solution of donor 4 (50 mg, 36.2 µmol) and 4 Å molecular sieves in solvent of DCM/tBuCN (3.6 mL, v/v = 5:1, 0.01 M) was added acceptor 5 (19 mg, 43.4 µmol) at room temperature. After the reaction mixture cooling down to -50 °C, gold(III) chloride (1.1 mg, 3.62µmol) was added into the reaction. After the TLC analysis showed the reaction was complete (10 min), the reaction was quenched by addition of triethylamine and diluted with 50 mL of DCM. Then the precipitate was filtered off through a pad of Celite. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 3:1) on silica gel to afford compound 15 (49.6 mg, 84%) as semisolid. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.95 (m, 6H, ArH), 7.90 (d, J = 7.9 Hz, 2H, ArH), 7.73 (d, J = 7.7 Hz, 2H, ArH), 7.61 (d, J = 7.7 Hz, 2H, ArH), 7.56 – 7.18 (m, 15H, Ar*H*), 5.96 (t, *J* = 9.6 Hz, 1H, 3c-H), 5.70 – 5.62 (m, 2H, 4c-H, 4b-H), 5.40 – 5.27 (m, 5H, 2c-H, 2a-H, 3a-H), 5.22 - 5.15 (m, 2H, 1c-H, 1a-H), 5.08 (t, J = 9.7 Hz, 1H, 4a-H), 4.61 (dd, J = 12.2, 4.8 Hz, 1H, 6c-H), 4.54 – 4.30 (m, 6H, 6c'-H, 5a-H, 1b-H, 5b-H, 6b-H, 6b'-H), 4.25 – 4.09 (m, 2H, 5c-H), 3.98 (t, J = 8.6 Hz, 1H, 3b-H), 3.86 (dd, J = 7.8, 5.2 Hz, 1H, 2b-H), 3.50 (ddd, J = 15.6, 10.8, 5.5 Hz, 2H), 3.38 (t, J = 10.9 Hz, 1H), 2.46 - 2.38 (m, 1H), 2.32 - 2.23 (m, 1H), 2.13 (s, 3H, COCH₃), 2.05 (d, J = 5.8Hz, 6H, COCH₃), 2.03 – 1.93 (m, 1H), 1.92 – 1.70 (m, 4H), 1.69 – 1.60 (m, 6H), 1.55 -1.36 (m, 3H), 1.35 - 1.22 (m, 4H), 1.15 (d, J = 6.2 Hz, 3H, $6a-CH_3$), 1.00 - 0.95 (m, 6H), 0.94 - 0.83 (m, 2H), 0.79 (d, J = 6.4 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 169.2,

169.1, 169.0, 165.00, 164.98, 164.9, 164.5, 164.1, 163.6, 139.3, 132.3, 132.02, 132.00, 131.97, 131.9, 131.8, 129.1, 128.9, 128.8, 128.74, 128.69, 128.65, 128.63, 128.56, 128.1, 127.93, 127.87, 127.4, 127.3, 127.13, 127.08, 120.8, 108.3, 99.0, 98.3, 96.2, 79.8, 78.8, 76.5, 73.0, 71.5, 70.4, 70.1, 69.1, 68.9, 68.7, 68.0, 65.8, 65.5, 61.6, 61.1, 55.5, 49.0, 40.6, 39.2, 38.7, 37.4, 35.9, 35.8, 35.6, 31.1, 30.9, 30.8, 30.4, 29.3, 28.7, 28.6, 27.8, 19.9, 19.81, 19.78, 18.2, 16.3, 16.1, 15.3, 13.5. HRMS (ESI) Calcd for $C_{93}H_{103}O_{26}^+$ [M+H]⁺: 1636.6766, found: 1636.6751; $C_{93}H_{102}NaO_{26}^+$ [M+Na]⁺: 1658.6586, found: 1636.6586; $C_{93}H_{106}NO_{26}^+$ [M+NH4]⁺: 1653.7032, found: 1653.7023. Saponin 2

To a solution of **15** (55.4mg, 33.9 μ mol) in a mixed solvent of DCM/MeOH (1.8 mL, v/v = 1:2) was added 1M NaOH to adjust the pH value of the solution to 9-10. The mixture was stirred for 6h at rt. After the TLC analysis showed the reaction was complete. The mixture was concentrated and the residue was purified by column chromatography (DCM/MeOH = 2:1) on silica gel to afford compound **2** (24.9 mg, 83%) as white solid^{3, 5}. ¹H NMR (400 MHz, Pyridine-*d*₅) δ 6.27 (s, 1H), 5.32 (d, *J* = 5.1 Hz, 1H), 5.20 (d, *J* = 7.7 Hz, 1H), 5.05 – 4.77 (m, 4H), 4.72 – 4.52 (m, 3H), 4.47 (dd, *J* = 11.7, 2.4 Hz, 1H), 4.32 (tdd, *J* = 16.6, 11.1, 5.1 Hz, 6H), 4.20 (t, *J* = 9.1 Hz, 1H), 4.08 – 3.85 (m, 5H), 3.63 – 3.55 (m, 1H), 3.51 (t, *J* = 10.0 Hz, 1H), 2.84 – 2.57 (m, 3H), 2.08 (ddd, *J* = 25.4, 11.7, 6.4 Hz, 2H), 2.00 – 1.77 (m, 3H), 1.76 – 1.36 (m, 12H), 1.26 (q, *J* = 7.7, 7.3 Hz, 2H), 1.19 – 1.00 (m, 6H), 0.99 – 0.78 (m, 5H), 0.71 (d, *J* = 5.1 Hz, 4H). ¹³C NMR (100 MHz, Pyridine-d₅) δ 140.7, 121.6, 109.1, 105.7, 101.9, 100.2, 84.7, 81.0, 78.24, 78.20, 77.4, 76.3, 75.1, 74.8, 73.8, 72.7, 72.4, 71.4, 70.2, 69.2, 66.7,

62.7, 62.4, 62.3, 56.5, 50.1, 41.8, 40.3, 39.7, 38.6, 37.3, 37.0, 32.1, 31.5, 30.4, 30.0, 29.8, 29.1, 20.9, 19.2, 18.4, 17.2, 16.2, 14.9.

6. References

- A. Usubillaga, I. Aziz, M. C. Tettamanzi, R. Waibel and H. Achenbach, *Phytochemistry*, 1997, 44, 537-543.
- 2. K. Fukuhara and I. Kubo, *Phytochemistry*, 1991, **30**, 685-687.
- 3. S. Yahara, T. Nakamura, Y. Someya, T. Matsumoto, T. Yamashita and T. Nohara, *Phytochemistry*, 1996, **43**, 1319-1323.
- 4. S. Bhaduri and N. L. Pohl, *Org. Lett.*, 2016, **18**, 1414-1417.
- 5. G. Gu, Y. Du and R. J. Linhardt, *J. Org. Chem.*, 2004, **69**, 5497-5500.

7. Copies of NMR Spectra

¹H spectrum of compound **10** (400 MHz, CDCl₃)

S26

HSQC of compound 11

¹³C spectrum of compound **11** (100 MHz, CDCl₃)

¹H spectrum of compound **12** (400 MHz, CDCl₃)

¹H- ¹H COSY of compound **12**

S31

¹³C spectrum of compound **12** (100 MHz, CDCl₃)

¹H spectrum of compound **7** (400 MHz, CDCl₃)

¹H-¹H COSY of compound **7**

HSQC of compound 7

¹³C spectrum of compound **7** (100 MHz, CDCl3)

¹H spectrum of compound 13β (400 MHz, CDCl₃)

HSQC of compound 13β

¹³C spectrum of compound 13β (100 MHz, CDCl₃)

¹H spectrum of compound **13**α (400 MHz, CDCl₃)

 $^1\text{H-}\,^1\text{H}$ COSY of compound 13α

HSQC of compound 13a

¹³C spectrum of compound **13**a (100 MHz, CDCl₃)

¹H spectrum of compound **14** (400 MHz, CDCl₃)

¹H- ¹H COSY of compound **14**

¹³C spectrum of compound **14** (100 MHz, CDCl₃)

¹H spectrum of compound **18** (600 MHz, CDCl₃)

¹H- ¹H COSY of compound **18**

HSQC of compound 18

¹³C spectrum of compound **15** (150 MHz, CDCl₃)

¹H spectrum of compound **4** (400 MHz, CDCl₃)

HSQC of compound 4

¹³C spectrum of compound **4** (100 MHz, CDCl₃)

¹H spectrum of compound **16** (400 MHz, CDCl₃)

¹H- ¹H COSY of compound **16**

HSQC of compound 16

¹³C spectrum of compound **16** (100 MHz, CDCl₃)

¹H spectrum of compound **17** (400 MHz, CDCl₃)

HSQC of compound 17

¹³C spectrum of compound **17** (100 MHz, CDCl3)

¹H spectrum of compound **1** (400 MHz, pyridine-d₅)

¹³C spectrum of compound **1** (150 MHz, pyridine-d₅)

¹H spectrum of compound **15** (400 MHz, CDCl₃)

¹³C spectrum of compound **15** (150 MHz, CDCl₃)

¹H spectrum of compound **2** (400 MHz, pyridine-d₅)

¹³C spectrum of compound **2** (100 MHz, pyridine-d₅)

