Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Facile synthesis of 2-vinylindolines via a phosphine-mediated α -

umpolung/Wittig olefination/cyclization cascade process

Shuhui Li^{a‡}, Dan Xu^{a‡}, Hui Yao^{a,b,*}, Mengting Tan^a, Xiaoxuan Li^a, Mingguo Liu^a, Long Wang^{b,c}, Nianyu Huang^{a,b,*}, and Nengzhong Wang^{a,b,*}

^aHubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang Hubei 443002, China. ^bHubei Three Gorges Laboratory, Yichang Hubei 443007, China

^cCollege of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang Hubei 443002, China.

[‡]These authors contributed equally to this work.

*Corresponding authors. E-mail: <u>yaohui@ctgu.edu.cn</u>, <u>huangny@ctgu.edu.cn</u>, <u>wangnz@ctgu.edu.cn</u>

Table of Contents

I.	General Information	S2
II.	Representative Procedure of the Reaction	S3
III.	Analytical Data	S 5
IV.	Gram-Scale and Synthetic Manipulations	S17
V.	Mechanistic Studies	S21
VI.	References	S24
VII.	X-Ray Crystallographic Analysis	S25
VIII.	Copies of ¹ H and ¹³ C{ ¹ H} NMR Spectra	S29

I. General Information

Unless otherwise specified, **all reactions** were carried out under a nitrogen atmosphere at room temperature. **All solvents** were purified according to the standard procedures. **All chemicals** which are commercially available were employed without further purification. **Thin-layer chromatography (TLC)** was performed on silica gel plates (GF254) using UV-light (254 and 365 nm). **Flash chromatography** was conducted on silica gel (200–300 mesh). ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker 400 MHz spectrometer. **Chemical shifts** were reported in parts per million (ppm). The ¹H NMR (400 MHz) chemical shifts were measured relative to residual non-deuterated solvent resonance (CDCl₃: $\delta = 7.260$ ppm, (CD₃)₂CO: $\delta = 2.050$ ppm). The ¹³C{¹H} NMR (100 MHz) chemical shifts were given using CDCl₃ or (CD₃)₂CO as the internal standard (CDCl₃: $\delta = 77.00$ ppm, (CD₃)₂CO: $\delta = 29.84$ ppm). **All high-resolution mass spectra (HR-MS)** were obtained on a Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometer solariX (Bruker Daltonik GmbH, Bremen, Germany). **Crystal measurement** was performed by Bruker D8 Venture X-ray diffractionmeter.

II. Representative Procedure of the Reaction

To a stirred solution of *o*-aminobenzaldehyde **1** (0.1 mmol, 1.0 equiv) and allyl carbonate **2** (0.15 mmol, 1.5 equiv) in toluene (2.0 mL) was added PPh₂Cy (0.12 mmol, 1.2 equiv) and benzoic acid (20 mol %) at room temperature. After the reaction of the raw material, the reaction mixture was purified without concentration via flash chromatography on silica gel (PE:EtOAc:DCM = 19:1:6) to afford compounds **3**.

\land	СНО	0 	Phosphine Reagent Additive	
	+ EtO	OBoc	Solvent, rt, 12 h	N OEt
	1a	2a		Ts 3a
Entw	Dhaanhina	Salvant	A dditiyo	Viald [9/1 ^b
		Solvent	Additive	
I	PPh ₃	toluene	-	N.D.
2	$(2-MeC_6H_4)_3P$	toluene	-	N.R.
3	Ph ₂ MeP	toluene	-	trace
4	Ph ₂ PrP	toluene	-	trace
5	Ph ₂ CyP	toluene	-	30
6	PhMe ₂ P	toluene	-	N.D.
7	PhCy ₂ P	toluene		N.D.
8	PBu ₃	toluene	-	trace
9	(MeO) ₃ P	toluene	-	N.D.
10	(EtO) ₃ P	toluene	-	N.D.
11	PPh ₂ Cy	DCM	-	20
12	PPh ₂ Cy	THF	-	trace
13	PPh ₂ Cy	MeCN	-	N.R.
14	PPh ₂ Cy	toluene	C ₆ H ₅ OH	28
15	PPh ₂ Cy	toluene	$4-NO_2C_6H_4OH$	41
16	PPh ₂ Cy	toluene	PhCO ₂ H	88
17	PPh ₂ Cy	toluene	CH ₃ CO ₂ H	53
18	PPh ₂ Cy	toluene	CH ₃ CO ₂ Na	26
19	PPh ₂ Cy	toluene	PhCO ₂ Na	31
20	PPh ₂ Cy	toluene	NaHCO ₃	17
21	PPh ₂ Cy	toluene	KHCO ₃	22
22 ^c	PPh ₂ Cy	toluene	PhCO ₂ H	58
23 ^d	PPh ₂ Cy	toluene	PhCO ₂ H	49

Table S1. Optimization of the reaction conditions.^a

^aUnless otherwise stated, all reactions were performed with **1a** (0.1 mmol), **2a** (0.15 mmol), the phosphine reagent (0.12 mmol) and the additive (20 mol%) in the solvent specified (2.0 mL) at room temperature. ^bIsolated yield. ^cThe additive (10 mol%) in the solvent specified (2.0 mL). ^dThe additive (30 mol%) in the solvent specified (2.0 mL).

III. Analytical Data

Ethyl 2-(1-tosylindolin-2-yl)acrylate (3a)

The **3a** was prepared according to the general procedure described above using **1a** (27.5 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow oily liquid (32.5 mg, 88%)

yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.25 – 7.20 (m, 1H), 7.18 (d, J = 8.1 Hz, 2H), 7.05 – 6.97 (m, 2H), 6.34 (s, 1H), 6.04 (s, 1H), 5.16 – 5.11 (m, 1H), 4.30 – 4.16 (m, 2H), 3.10 (dd, J = 16.5, 10.2 Hz, 1H), 2.61 (dd, J= 16.5, 3.0 Hz, 1H), 2.36 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8, 144.1, 141.6, 140.1, 134.7, 131.1, 129.7, 127.9, 127.1, 125.7, 125.2, 124.9, 117.0, 61.3, 61.0, 36.2, 21.5, 14.1. HRMS (ESI) m/z: calcd. for C₂₀H₂₁NO₄SNa⁺ [M+Na]⁺: 394.1083, found 394.1098.

Isopropyl 2-(1-tosylindolin-2-yl)acrylate (3b)

The **3b** was prepared according to the general procedure described above using **1a** (27.5 mg, 0.1 mmol), **2b** (36.6 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg,

0.2 equiv) and isolated as a yellow oily liquid (32.4 mg, 84% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.1 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.26 – 7.20 (m, 1H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.05 – 6.98 (m, 2H), 6.31 (s, 1H), 6.01 (s, 1H), 5.16 – 5.11 (m, 1H), 5.11 – 5.03 (m, 1H), 3.09 (dd, *J* = 16.5, 10.2 Hz, 1H), 2.61 (dd, *J* = 16.5, 3.1 Hz, 1H), 2.36 (s, 3H), 1.26 (dd, *J* = 6.3, 2.9 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.3, 144.0, 141.6, 140.4, 134.8, 131.2, 129.6, 127.8, 127.1, 125.4, 125.2, 124.9, 117.0, 68.5, 61.4, 36.2, 21.78, 21.75, 21.5. HRMS (ESI) m/z: calcd. for C₂₁H₂₃NO₄SNa⁺ [M+Na]⁺: 408.1240, found 408.1234.

Butyl 2-(1-tosylindolin-2-yl)acrylate (3c)

The **3c** was prepared according to the general procedure described above using **1a** (27.5 mg, 0.1 mmol), **2c** (38.7 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg,

0.2 equiv) and isolated as a yellow oily liquid (33.7 mg, 85% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.26 – 7.21 (m, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.06 – 6.98 (m, 2H), 6.33 (s, 1H), 6.03 (s, 1H), 5.17 – 5.11 (m, 1H), 4.23 – 4.12 (m, 2H), 3.09 (dd, J = 16.6, 10.2 Hz, 1H), 2.61 (dd, J = 16.6, 3.1 Hz, 1H), 2.36 (s, 3H), 1.69 – 1.62 (m, 2H), 1.43 – 1.37 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8, 144.1, 141.6, 140.1, 134.6, 131.1, 129.6, 127.8, 127.1, 125.6, 125.2, 124.9, 117.0, 64.8, 61.3, 36.2, 30.6, 21.5, 19.2, 13.7. HRMS (ESI) m/z: calcd. for C₂₂H₂₅NO₄SNa⁺ [M+Na]⁺: 422.1397, found 422.1381.

Tert-Butyl 2-(1-tosylindolin-2-yl)acrylate (3d)

The **3d** was prepared according to the general procedure described above using **1a** (27.5 mg, 0.1 mmol), **2d** (38.7 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg,

0.2 equiv) and isolated as a yellow oily liquid (34.7 mg, 87% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCI3) δ 7.72 (d, *J* = 8.2 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.25 – 7.20 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.05 – 6.97 (m, 2H), 6.22 (s, 1H), 5.96 (s, 1H), 5.16 – 5.08 (m, 1H), 3.05 (dd, *J* = 16.6, 10.2 Hz, 1H), 2.59 (dd, *J* = 16.6, 3.0 Hz, 1H), 2.35 (s, 3H), 1.48 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCI₃) δ 165.0, 144.0, 141.6, 141.3, 134.7, 131.3, 129.6, 127.8, 127.1, 125.2, 124.9, 124.8, 117.1, 81.4, 61.4, 36.2, 28.1, 21.5. HRMS (ESI) m/z: calcd. for C₂₂H₂₅NO₄SNa⁺ [M+Na]⁺: 422.1397, found 422.1409.

Cyclohexyl 2-(1-tosylindolin-2-yl)acrylate (3e)

The **3e** was prepared according to the general procedure described above using **1a** (27.5 mg, 0.1 mmol), **2e** (42.6 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg,

0.2 equiv) and isolated as a yellow oily liquid (22.4 mg, 53% yield) after flash column

chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl3) δ 7.73 (d, J = 8.1 Hz, 1H), 7.62 – 7.53 (m, 2H), 7.25 – 7.20 (m, 1H), 7.18 (d, J = 8.1 Hz, 2H), 7.07 – 6.96 (m, 2H), 6.32 (s, 1H), 6.01 (s, 1H), 5.20 – 5.08 (m, 1H), 4.93 – 4.81 (m, 1H), 3.08 (dd, J = 16.6, 10.2 Hz, 1H), 2.62 (dd, J = 16.6, 3.1 Hz, 1H), 2.36 (s, 3H), 1.89 – 1.68 (m, 4H), 1.56 – 1.36 (m, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.1, 144.0, 141.6, 140.5, 134.7, 131.2, 129.6, 127.8, 127.1, 125.4, 125.2, 124.9, 117.0, 73.2, 61.4, 36.2, 31.5, 25.4, 23.6, 21.6. HRMS (ESI) m/z: calcd. for C₂₄H₂₇NO₄SNa⁺ [M+Na]⁺: 448.1553, found 448.1551.

Benzyl 2-(1-tosylindolin-2-yl)acrylate (3f)

The **3f** was prepared according to the general procedure described above using **1a** (27.5 mg, 0.1 mmol), **2f** (43.9 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg,

0.2 equiv) and isolated as a yellow oily liquid (20.2 mg, 46% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.1 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.44 – 7.30 (m, 5H), 7.26 – 7.20 (m, 1H), 7.17 (d, J = 8.1 Hz, 2H), 7.05 – 6.97 (m, 2H), 6.40 (s, 1H), 6.08 (s, 1H), 5.22 (d, J = 3.0 Hz, 2H), 5.19 – 5.14 (m, 1H), 3.09 (dd, J = 16.6, 10.2 Hz, 1H), 2.62 (dd, J = 16.6, 3.1 Hz, 1H), 2.36 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 144.1, 141.5, 139.9, 135.6, 134.6, 131.0, 129.6, 128.6, 128.3, 128.1, 127.8, 127.1, 126.2, 125.2, 124.9, 117.0, 66.7, 61.2, 36.2, 21.5. HRMS (ESI) m/z: calcd. for C₂₅H₂₃NO₄SNa⁺ [M+Na]⁺: 456.1240, found 456.1241.

Ethyl 2-(1-((4-nitrophenyl)sulfonyl)indolin-2-yl)acrylate (3g)

The **3g** was prepared according to the general procedure described above using **1b** (30.6 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow oily liquid (25.2 mg, 63% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.7 Hz, 2H), 7.90 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 8.1 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.11 – 7.01 (m, 2H), 6.36 (s, 1H), 6.01 (s, 1H), 5.16 (d, J = 7.8 Hz, 1H), 4.32 – 4.15 (m, 2H), 3.12 (dd, J = 16.7, 10.2 Hz, 1H), 2.68 (dd, J = 16.7, 3.0 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.5, 150.4, 143.2, 140.6, 139.7, 130.9, 128.3, 128.2, 125.8, 125.67, 125.65, 124.3, 116.6, 61.6, 61.2, 36.2, 14.1. HRMS (ESI) m/z: calcd. for C₁₉H₁₈N₂O₆SNa⁺ [M+Na]⁺: 425.0778, found 425.0787.

Ethyl 2-(1-((2-bromophenyl)sulfonyl)indolin-2-yl)acrylate (3h)

The **3h** was prepared according to the general procedure described above using **1c** (33.9 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (23.9 mg, 55% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). m.p.: 121.0 – 122.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, J = 7.9, 1.7 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.39 – 7.33 (m, 1H), 7.28 (s, 1H), 7.12 – 7.04 (m, 2H), 6.97 – 6.91 (m, 1H), 6.32 (s, 1H), 6.02 (d, J = 1.4 Hz, 1H), 5.75 (d, J = 10.0 Hz, 1H), 4.32 – 4.17 (m, 2H), 3.62 (dd, J =16.3, 10.0 Hz, 1H), 2.81 (dd, J = 16.3, 2.0 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 140.7, 139.8, 138.0, 135.7, 134.0, 133.3, 129.9, 127.5, 127.4, 125.6, 125.3, 123.9, 120.1, 114.2, 63.1, 61.0, 36.0, 14.1. HRMS (ESI) m/z: calcd. for C₁₉H₁₈BrNO₄SNa⁺ [M+Na]⁺: 458.0032, found 458.0038.

Ethyl 2-(1-((3-bromophenyl)sulfonyl)indolin-2-yl)acrylate (3i)

The **3i** was prepared according to the general procedure described above using **1d** (33.9 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (24.0 mg, 55% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). m.p.: 33.8 – 34.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, J = 1.8 Hz, 1H), 7.71 (d, J = 8.1 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.28 (d, J = 7.9 Hz, 1H), 7.26 – 7.22 (m, 1H), 7.09 – 7.01 (m, 2H), 6.34 (s, 1H), 6.01 (s, 1H), 5.18 – 5.12 (m, 1H), 4.31 – 4.16 (m, 2H), 3.16 (dd, J = 16.6, 10.2 Hz, 1H), 2.67 (dd, J = 16.7, 3.0 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 141.0, 139.9, 139.5, 136.2, 130.9, 130.5, 130.0, 128.0, 125.7, 125.5, 125.4, 125.3, 123.0, 116.6, 61.5, 61.0, 36.2, 14.1. HRMS (ESI) m/z: calcd. for C₁₉H₁₈BrNO₄SNa⁺ [M+Na]⁺: 458.0032, found 458.0031.

Ethyl 2-(1-(phenylsulfonyl)indolin-2-yl)acrylate (3j)

The **3j** was prepared according to the general procedure described above using **1e** (26.1 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (23.6 mg, 66% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). m.p.: 128.0 – 131.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.1 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.57 – 7.50 (m, 1H), 7.44 – 7.37 (m, 2H), 7.25 – 7.19 (m, 1H), 7.08 – 7.01 (m, 1H), 7.01 – 6.96 (m, 1H), 6.34 (s, 1H), 6.03 (s, 1H), 5.21 – 5.10 (m, 1H), 4.30 – 4.16 (m, 2H), 3.08 (dd, J = 16.6, 10.2 Hz, 1H), 2.62 (dd, J = 16.6, 3.0 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 141.4, 140.0, 137.6, 133.2, 131.1, 129.0, 127.9, 127.0, 125.7, 125.3, 125.0, 116.9, 61.3, 61.0, 36.2, 14.1. HRMS (ESI) m/z: calcd. for C₁₉H₁₉NO₄SNa⁺ [M+Na]⁺: 380.0927, found 380.0935.

Ethyl 2-(1-((4-methoxyphenyl)sulfonyl)indolin-2-yl)acrylate (3k)

The **3k** was prepared according to the general procedure described above using **1f** (29.1 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow oily liquid (34.4 mg, 89% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.25 – 7.20 (m, 1H), 7.06 – 6.97 (m, 2H), 6.88 – 6.81 (m, 2H), 6.33 (s, 1H), 6.04 (s, 1H), 5.16 – 5.09 (m, 1H), 4.30 – 4.15 (m, 2H), 3.81 (s, 3H), 3.11 (dd, J = 16.6, 10.2 Hz, 1H), 2.62 (dd, J = 16.6, 3.0 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ . 165.8, 163.2, 141.6, 140.2, 131.1, 129.24, 129.16, 127.8, 125.6, 125.2, 124.9, 117.0, 114.2, 61.2, 60.9, 55.5, 36.2, 14.1 HRMS (ESI) m/z: calcd. for C₂₀H₂₁NO₅SNa⁺ [M+Na]⁺: 410.1033, found 410.1025.

Ethyl 2-(1-([1,1'-biphenyl]-4-ylsulfonyl)indolin-2-yl)acrylate (31)

The **3l** was prepared according to the general procedure described above using **1g** (33.7 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (22.3 mg, 51% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). m.p.: 122.0 – 123.8 °C. ¹H NMR (400 MHz, CDCl3) δ 7.82 – 7.74 (m, 3H), 7.60 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.3 Hz, 2H), 7.39 (t, J = 7.2 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.04 (q, J = 7.6 Hz, 2H), 6.36 (s, 1H), 6.07 (s, 1H), 5.28 – 5.16 (m, 1H), 4.33 – 4.17 (m, 2H), 3.16 (dd, J = 16.6, 10.2 Hz, 1H), 2.66 (dd, J = 16.6, 2.9 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 145.9, 141.4, 140.1, 138.9, 136.1, 131.1, 129.0, 128.5, 127.9, 127.6, 127.5, 127.2, 125.7, 125.3, 125.0, 116.9, 61.3, 61.0, 36.2, 14.1. HRMS (ESI) m/z: alcd. for C₂₅H₂₃NO₄SNa⁺ [M+Na]⁺: 456.1240, found 456.1240.

Ethyl 2-(1-(mesitylsulfonyl)indolin-2-yl)acrylate (3m)

The **3m** was prepared according to the general procedure described above using **1h** (30.3 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow oily liquid (27.9 mg, 70% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 7.6 Hz, 1H), 7.13 – 7.08 (m, 2H), 6.99 – 6.94 (m, 1H), 6.92 (s, 2H), 6.19 (s, 1H), 5.86 (s, 1H), 5.30 – 5.25 (m, 1H), 4.25 – 4.12 (m, 2H), 3.51 (dd, J = 16.3, 10.0 Hz, 1H), 2.75 (dd, J = 16.4, 2.4 Hz, 1H), 2.57 (s, 6H), 2.28 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 143.0, 142.4, 140.4, 139.5, 132.9, 132.2, 130.9, 127.6, 125.4, 123.8, 115.2, 61.0, 60.9, 36.5, 23.0, 21.0, 14.1. HRMS (ESI) m/z: calcd. for C₂₂H₂₅NO₄SNa⁺ [M+Na]⁺: 422.1397, found 422.1387.

Ethyl 2-(1-(naphthalen-1-ylsulfonyl)indolin-2-yl)acrylate (3n)

The **3n** was prepared according to the general procedure described above using **1i** (31.1 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (24.9 mg, 62% yield) after flash column chromatography on silica gel

(PE:EtOAc:DCM = 19:1:6). m.p.: 80.5 – 82.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 8.4 Hz, 1H), 8.26 – 8.19 (m 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.88 – 7.83 (m 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.53 – 7.45 (m, 3H), 7.24 – 7.16 (m 1H), 7.02 – 6.91 (m, 2H), 6.27 (s, 1H), 5.99 (d, J = 1.4 Hz, 1H), 5.36 – 5.29 (m 1H), 4.26 – 4.13 (m, 2H), 3.01 (dd, J = 16.4, 9.9 Hz, 1H), 2.60 (dd, J = 16.3, 2.2 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 141.6, 139.5, 134.6, 134.3, 133.8, 130.7, 130.4, 128.8, 128.7, 128.0, 127.6, 126.9, 125.7, 125.3, 124.7, 124.0, 116.6, 61.6, 60.9, 36.1, 14.1. HRMS (ESI) m/z: calcd. for C₂₃H₂₁NO₄SNa⁺ [M+Na]⁺: 430.1083, found 430.1087.

Ethyl 2-(1-(methylsulfonyl)indolin-2-yl)acrylate (30)

The **30** was prepared according to the general procedure described above using **1j** (19.9 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow oily liquid (18.2 mg, 62%)

yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.0 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.17 (d, J = 7.4 Hz, 1H), 7.11 – 7.04 (m, 1H), 6.34 (s, 1H), 5.98 (s, 1H), 5.29 – 5.17 (m, 1H), 4.33 – 4.17 (m, 2H), 3.69 (dd, J = 16.7, 10.4 Hz, 1H), 2.87 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 141.4, 140.4, 130.2, 128.2, 125.5, 124.8, 115.5, 61.6, 61.0, 36.6, 36.1, 14.1. HRMS (ESI) m/z: calcd. for C₁₄H₁₇NO₄SNa⁺ [M+Na]⁺: 318.0770, found 318.0770.

Ethyl 2-(1-tosyl-6-(trifluoromethyl)indolin-2-yl)acrylate (3p)

The **3p** was prepared according to the general procedure described above using **1k** (34.3 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH

(2.4 mg, 0.2 equiv) and isolated as a reddish brown oily liquid (24.9 mg, 57% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 7.8 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 7.8 Hz, 1H), 6.37 (s, 1H), 6.03 (s, 1H), 5.26 – 5.13 (m, 1H), 4.33 – 4.16 (m, 2H), 3.19 (dd, J = 17.1, 10.4 Hz, 1H), 2.72 (dd, J = 17.1, 3.0 Hz, 1H), 2.37 (s, 3H), 1.30 (d, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.5, 144.6, 142.3, 139.9, 135.0, 134.4, 130.5 (q, J = 33 Hz), 129.9, 127.1, 126.0, 125.5, 123.9 (d, J = 270 Hz), 121.7 (q, J = 4 Hz), 113.4 (q, J = 33 Hz), 61.7, 61.1, 36.2, 21.6, 14.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.2. HRMS (ESI) m/z: calcd. for C₂₁H₂₀F₃NO₄SNa⁺ [M+Na]⁺: 462.0957, found 462.0967.

Ethyl 2-(6-fluoro-1-tosylindolin-2-yl)acrylate (3q)

The **3q** was prepared according to the general procedure described above using **11** (29.3 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4

mg, 0.2 equiv) and isolated as a white solid (19.7 mg, 51% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). m.p.: 79.2 - 80.2 °C. ¹H

NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.2 Hz, 2H), 7.50 – 7.44 (m, 1H), 7.22 (d, J = 8.0 Hz, 2H), 6.95 – 6.89 (m, 1H), 6.75 – 6.67 (m, 1H), 6.35 (s, 1H), 6.01 (s, 1H), 5.20 – 5.14 (m, 1H), 4.30 – 4.16 (m, 2H), 3.09 (dd, J = 16.3, 10.4 Hz, 1H), 2.60 (dd, J = 16.3, 3.2 Hz, 1H), 2.38 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 165.6, 163.6 (d, J = 242 Hz), 144.4, 142.9 (d, J = 11 Hz), 140.0, 134.6, 129.8, 127.1, 126.2 (d, J = 3 Hz), 125.8, 125.8 (d, J = 3 Hz), 111.5 (d, J = 23 Hz), 104.7 (d, J = 28 Hz), 62.2, 61.0, 35.6, 21.6, 14.1. ¹⁹F{¹H} **NMR (376 MHz, CDCl₃)** δ -113.6. **HRMS (ESI)** m/z: calcd. for C₂₀H₂₀FNO₄SNa⁺ [M+Na]⁺: 412.0989, found 412.0989.

Ethyl 2-(6-chloro-1-tosylindolin-2-yl)acrylate (3r)

The **3r** was prepared according to the general procedure described above using **1m** (30.9 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH

(2.4 mg, 0.2 equiv) and isolated as a yellow solid (19.5 mg, 48% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). m.p.: 87.2 – 88.3 ^oC. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 1.9 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 6.99 (dd, *J* = 8.0, 1.9 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.35 (s, 1H), 6.01 (s, 1H), 5.18 – 5.11 (m, 1H), 4.30 – 4.15 (m, 2H), 3.08 (dd, *J* = 16.7, 10.4 Hz, 1H), 2.60 (dd, *J* = 16.7, 3.2 Hz, 1H), 2.38 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 144.4, 142.8, 139.9, 134.5, 133.5, 129.9, 129.5, 127.1, 125.9, 125.8, 124.9, 117.0, 61.9, 61.1, 35.8, 21.6, 14.1. HRMS (ESI) m/z: calcd. for C₂₀H₂₀ClNO₄SH⁺ [M+H]⁺: 406.0874, found 406.0863.

Ethyl 2-(6-bromo-1-tosylindolin-2-yl)acrylate (3s)

The **3s** was prepared according to the general procedure described above using **1n** (35.3 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH

(2.4 mg, 0.2 equiv) and isolated as a yellow solid (22.3 mg, 50% yield) after flash

column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). m.p.: 95.2 – 96.8 ^oC. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 1.7 Hz, 1H), 7.62 – 7.58 (m, 2H), 7.23 (d, J = 8.1 Hz, 2H), 7.14 (dd, J = 7.9, 1.8 Hz, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.35 (s, 1H), 6.01 (s, 1H), 5.16 – 5.11 (m, 1H), 4.30 – 4.16 (m, 2H), 3.05 (dd, J = 16.9, 10.3 Hz, 1H), 2.59 (dd, J = 16.8, 3.2 Hz, 1H), 2.38 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 144.4, 143.0, 139.8, 134.4, 130.1, 129.8, 127.8, 127.1, 126.4, 125.8, 121.1, 119.8, 61.8, 61.0, 35.8, 21.6, 14.1. HRMS (ESI) m/z: calcd. for C₂₀H₂₀BrNO₄SNa⁺ [M+Na]⁺: 472.0189, found 472.0185.

Ethyl 2-(1-tosyl-5-(trifluoromethyl)indolin-2-yl)acrylate (3t)

The **3t** was prepared according to the general procedure described above using **1o** (34.3 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow oily liquid (23.3 mg,

53% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.5 Hz, 1H), 7.61 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.26 – 7.20 (m, 3H), 6.36 (s, 1H), 6.00 (s, 1H), 5.20 (dd, *J* = 10.4, 3.3 Hz, 1H), 4.30 – 4.16 (m, 2H), 3.22 (dd, *J* = 16.8, 10.5 Hz, 1H), 2.73 (dd, *J* = 16.9, 3.4 Hz, 1H), 2.38 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.5, 144.7, 144.6, 139.9, 134.6, 131.5, 129.9, 127.0, 126.7 (q, *J* = 32 Hz), 126.0, 125.5 (q, *J* = 4 Hz), 122.7, 122.4 (q, *J* = 4 Hz), 116.0, 61.8, 61.1, 36.0, 21.5, 14.1. ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -61.9. HRMS (ESI) m/z: calcd. for C₂₁H₂₀F₃NO₄SNa⁺ [M+Na]⁺: 462.0957, found 462.0962.

Ethyl 2-(5-bromo-1-tosylindolin-2-yl)acrylate (3u)

The **3u** was prepared according to the general procedure described above using **1p** (35.3 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (21.2 mg, 47% yield)

after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). m.p.: 113.7 – 115.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.5 Hz, 1H), 7.57 (d, J= 8.1 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.21 (d, J = 8.0 Hz, 2H), 7.12 (s, 1H), 6.34 (s, 1H), 6.01 (s, 1H), 5.17 – 5.08 (m, 1H), 4.30-4.16 (m, 2H), 3.08 (dd, J = 16.8, 10.3 Hz, 1H), 2.61 (dd, J = 16.9, 3.1 Hz, 1H), 2.38 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.6, 144.4, 140.9, 139.8, 134.4, 133.5, 130.8, 129.8, 128.3, 127.1, 125.9, 118.2, 117.7, 61.6, 61.1, 36.0, 21.6, 14.1. HRMS (ESI) m/z: calcd. for C₂₀H₂₀BrNO₄SNa⁺ [M+Na]⁺: 472.0189, found 472.0193.

Ethyl 2-(5-methyl-1-tosylindolin-2-yl)acrylate (3v)

The **3v** was prepared according to the general procedure described above using **1q** (28.9 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (23.6 mg, 61% yield)

after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). m.p.: 165.0 – 165.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.2 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.17 (d, J = 8.0 Hz, 2H), 7.02 (dd, J = 8.2, 1.6 Hz, 1H), 6.80 (s, 1H), 6.32 (s, 1H), 6.03 (s, 1H), 5.14 – 5.08 (m, 1H), 4.30 – 4.16 (m, 2H), 3.02 (dd, J = 16.5, 10.1 Hz, 1H), 2.55 (dd, J = 16.5, 3.0 Hz, 1H), 2.35 (s, 3H), 2.25 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.8, 144.0, 140.2, 139.2, 134.8, 134.7, 131.2, 129.6, 128.4, 127.1, 125.8, 125.5, 116.8, 61.4, 60.9, 36.1, 21.5, 20.9, 14.1. HRMS (ESI) m/z: calcd. for C₂₁H₂₃NO₄SNa⁺ [M+Na]⁺: 408.1240, found 408.1243.

Ethyl 2-(5-methoxy-1-tosylindolin-2-yl)acrylate (3w)

The **3w** was prepared according to the general procedure described above using **1r** (30.5 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow solid (25.6 mg, 64%)

yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). m.p.: 148.0 – 149.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.8 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.17 (d, J = 8.1 Hz, 2H), 6.76 (dd, J = 8.8, 2.7 Hz, 1H), 6.53 (d, J = 2.6 Hz, 1H), 6.31 (s, 1H), 6.04 (s, 1H), 5.14 – 5.06 (m, 1H), 4.30 – 4.13 (m, 2H), 3.73 (s, 3H), 2.95 (dd, J = 16.6, 10.0 Hz, 1H), 2.52 (dd, J = 16.7, 2.8 Hz, 1H), 2.35 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 157.6, 143.9, 139.8, 134.8, 134.4, 133.1, 129.6, 127.1, 125.6, 118.3, 112.9, 110.8, 61.6, 60.9, 55.5, 36.3, 21.5, 14.1. HRMS (ESI) m/z: calcd. for C₂₁H₂₃NO₅SNa⁺ [M+Na]⁺: 424.1189, found 424.1182.

Ethyl 2-(1-tosyl-2,3-dihydro-1H-benzo[f]indol-2-yl)acrylate (3x)

The **3x** was prepared according to the general procedure described above using **1s** (32.5 mg, 0.1 mmol), **2a** (34.5 mg, 0.15 mmol), PPh₂Cy (32.2 mg, 1.2 equiv), PhCOOH (2.4 mg, 0.2 equiv) and isolated as a yellow oily liquid (30.3 mg,

72% yield) after flash column chromatography on silica gel (PE:EtOAc:DCM = 19:1:6). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.68 – 7.62 (m, 3H), 7.48 – 7.42 (m, 2H), 7.37 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.16 (d, J = 8.0 Hz, 2H), 6.33 (s, 1H), 6.09 – 6.01 (m, 1H), 5.32 – 5.23 (m, 1H), 4.31 – 4.17 (m, 2H), 3.26 (ddd, J = 16.8, 10.0, 1.8 Hz, 1H), 2.82 (dd, J = 16.8, 1.8 Hz, 1H), 2.33 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.7, 144.1, 140.1, 140.0, 135.1, 133.5, 131.40, 131.38, 129.7, 127.9, 127.3, 127.0, 126.0, 125.7, 125.0, 124.0, 113.1, 61.7, 61.0, 35.8, 21.5, 14.1. HRMS (ESI) m/z: calcd. for C₂₄H₂₃NO₄SNa⁺ [M+Na]⁺: 444.1240, found 444.1249.

IV. Gram-Scale and Synthetic Manipulations

(a) Synthesis of 3a on gram-scale.

To a stirred solution of *o*-aminobenzaldehyde **1a** (4.0 mmol, 1.0 eqvuiv) and allyl carbonate **2a** (6 mmol, 1.5 equiv) were added to toluene (80.0 mL) with PPh₂Cy (1.2 equiv) and PhCOOH (20 mol %), and stirred at room temperature. The reaction mixture was purified by flash chromatography on silica gel (PE:EtOAc:DCM = 19:1:6) with a yield of 78%.

(b) Synthetic manipulations of 3a.

Ethyl 3-(p-tolylthio)-2-(1-tosylindolin-2-yl)propanoate (4)

According to the known procedure.¹ *p*-Toluenethiol (18.6 mg, 0.15 mmol) and Pyrrolidine (16 µL, 0.2 mmol) were added to a solution of **3a** (37.1 mg, 0.1 mmol) in CHCl₃ (4.0 mL) at room temperature. The resulting reaction mixture was stirred at rt for 12 hours. The reaction was quenched with saturated NH₄Cl and the mixture was extracted with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column on silica gel (PE:EtOAc:DCM = 5:2:1) to afford a white solid **4** (46.6 mg, 94% yield, 3:1 *d.r.*). m.p.: 99.5 – 101.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 7.24 – 7.18 (m, 1H), 7.16 – 7.08 (m, 4H), 7.03 (t, *J* = 7.3 Hz, 1H), 6.99 (d, *J* = 7.3 Hz, 1H), 4.55 (ddd, *J* = 9.7, 4.2, 2.4 Hz, 1H), 3.87 (q, *J* = 7.1 Hz, 2H), 3.17 (d, *J* = 6.9 Hz, 2H), 3.03 (ddd, *J* = 8.0, 6.3, 4.1 Hz, 1H), 2.81 (dd, J = 16.5, 2.3 Hz, 1H), 2.63 (dd, J = 16.5, 9.7 Hz, 1H), 2.34 (s, 3H), 2.31 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.1, 144.1, 141.8, 136.5, 134.5, 132.4, 131.8, 130.5, 129.8, 129.6, 127.9 127.1, 125.3, 124.7, 118.2, 62.4, 61.0, 51.3, 31.8, 31.6, 21.5, 21.0, 13.9. HRMS (ESI) m/z: calcd. for C₂₇H₂₉NO₄S₂Na⁺ [M+Na]⁺: 518.1430, found 518.1430.

Ethyl 2-(indolin-2-yl)acrylate (5)

According to the known procedure.² TfOH (30.0 mg, 0.2 mmol) was added to a solution of **3a** (37.1 mg, 0.1 mmol) in DCE (2.0 mL) at room temperature. The resulting reaction mixture was heated at 90 °C and stirred by reflux for 4 hours. The reaction was quenched with saturated NaHCO₃ and the mixture was extracted with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column on silica gel (PE:EtOAc:DCM = 5:1:1) to afford a brown oil **5** (14.3 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 7.00 (m, 2H), 6.73 – 6.68 (m, 1H), 6.65 (d, *J* = 7.7 Hz, 1H), 6.29 (t, *J* = 1.2 Hz, 1H), 5.95 (t, *J* = 1.4 Hz, 1H), 4.78 (t, *J* = 9.0, 1H), 4.31 – 4.19 (m, 2H), 4.07 (s, 1H), 3.40 (dd, *J* = 15.6, 9.1 Hz, 1H), 2.84 (dd, *J* = 15.5, 8.9 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.6, 150.4, 142.5, 127.8, 127.4, 124.6, 123.9, 118.9, 109.1, 60.8, 59.0, 36.5, 14.2. HRMS (ESI) m/z: calcd. for C₁₃H₁₅NO₂Na⁺ [M+Na]⁺: 240.0995, found 240.0994.

Ethyl 2,3-dihydroxy-2-(1-tosylindolin-2-yl)propanoate (6)

According to the known procedure.³ Potassium osmiate dihydrate (7.3 mg, 0.02 mmol) and 4-methylmorpholine N-oxide (0.05 mL, 0.52 mmol) were added to a solution of **3a** (37.1 mg, 0.1 mmol) in acetone: $H_2O = 5:1$ (4.0 mL) at room temperature. The resulting reaction mixture was stirred at rt for 12 h. The reaction was

quenched with saturated Na₂SO₃ and the mixture was extracted with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column on silica gel (PE:EtOAc:DCM = 5:2:1) to afford a white solid **6** (28.6 mg, 71% yield, 1.4:1 *d.r.*). m.p.: 109.2 – 110.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.25 – 7.18 (m, 1H), 7.13 (d, J = 8.0 Hz, 2H), 7.08 – 7.02 (m, 1H), 7.00 – 6.95 (m, 1H), 4.61 (dd, J = 8.9, 2.5 Hz, 1H), 4.16 – 4.09 (m, 2H), 4.09 – 4.04 (m, 1H), 3.88 (dd, J = 11.9, 6.6 Hz, 1H), 3.50 (s, 1H), 2.70 (t, J = 7.2 Hz, 1H), 2.62 (dd, J = 16.5, 2.5 Hz, 1H), 2.54 (dd, J = 16.4, 8.9 Hz, 1H), 2.34 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 172.7, 144.3, 141.9, 133.8, 133.7, 129.6, 127.6, 127.2, 125.8, 124.2, 118.9, 80.5, 64.8, 64.1, 62.5, 30.6, 21.5, 14.0. HRMS (ESI) m/z: calcd. for C₂₀H₂₃NO₆SNa⁺ [M+Na]⁺: 428.1138, found 428.1146.

Ethyl 3-(benzylamino)-2-(1-tosylindolin-2-yl)propanoate (7)

Benzylamine (53.6 mg, 0.5 mmol) was added to a solution of **3a** (37.1 mg, 0.1 mmol) in Toluene (2.0 mL) at room temperature. The resulting reaction mixture was heated at 110 °C and stirred by reflux for 18 hours. The reaction was quenched with saturated NaHCO₃ and the mixture was extracted with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column on silica gel (PE:EtOAc:DCM = 10:5:1) to afford a brown oil **7** (43.6 mg, 91% yield, 3:1 *d.r.*). ¹**H NMR (400 MHz, (CD₃)₂CO)** δ 7.58 – 7.51 (m, 3H), 7.31 – 7.28 (m, 3H), 7.27 – 7.25 (m, 3H), 7.25 – 7.18 (m, 2H), 7.10 – 7.02 (m, 2H), 7.78 – 7.71 (m, 1H), 3.99 – 3.90 (m, 2H), 3.76 – 3.63 (m, 2H), 3.03 – 2.97 (m, 1H), 2.93 – 2.90 (m, 1H), 2.88 – 2.87 (m, 1H), 2.86 – 2.83 (m, 1H), 2.71 (dd, *J* = 16.6, 9.7 Hz, 1H), 2.34 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, (CD₃)₂CO) δ 172.4, 145.1, 142.8, 141.7, 135.8, 134.1, 130.5, 128.9, 128.8, 128.3, 128.0, 127.4,

126.0, 125.8, 118.6, 62.8, 61.0, 54.3, 52.1, 46.9, 32.8, 21.4, 14.3. **HRMS (ESI)** m/z: calcd. for $C_{27}H_{30}N_2O_4SH^+$ [M+H]⁺: 479.1999, found 479.2005.

Ethyl (Z)-2-ethyl-4-(2-((4-methylphenyl)sulfonamido)phenyl)but-2-enoate (8)

The **3a** (37.1 mg, 0.1 mmol) and CuBr₂ (11.2 mg, 0.05 mmol)was added to an reaction tube. Vacuum for 15 minutes and inject nitrogen. Then, THF (1 mL), Me₃SiCl (31.1 mg, 0.3 mmol) and HMPA (53.6 mg, 0.3 mmol) were added at -48 °C and MeMgBr (0.15 mL, 0.15 mmol) was added drop by drop for 1 hours. The reaction was quenched with saturated NH₄Cl and the mixture was extracted with EtOAc. The combined organic phases were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column on silica gel (PE:EtOAc = 5:2) to afford a white solid **8** (29.1 mg, 75% yield) and **9** (2.9 mg, 8% yield). Compound data of **8**: ¹**H NMR (400 MHz, CDCl₃) \delta 7.59 (d,** *J* **= 8.3 Hz, 2H), 7.23 (d,** *J* **= 8.0 Hz, 2H), 7.20 – 7.13 (m, 3H), 7.12 – 7.05 (m, 1H), 6.57 (dd,** *J* **= 15.4, 8.0 Hz, 2H), 4.18 (q,** *J* **= 7.1 Hz, 2H), 3.29 (d,** *J* **= 7.5 Hz, 2H), 2.40 (s, 3H), 2.31 (q,** *J* **= 7.5 Hz, 2H), 1.28 (t,** *J* **= 7.1 Hz, 3H), 1.00 (t,** *J* **= 7.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃)** δ 167.3, 143.9, 137.6, 136.5, 135.8, 134.4, 134.1, 129.8, 129.6, 127.5, 127.19, 127.15, 126.2, 60.6, 29.9, 21.5, 20.1, 14.2, 13.7. **HRMS (ESI)** m/z: calcd. for C₂₁H₂₅NO₄SNa⁺ [M+Na]⁺: 410.1397, found 410.1407.

Compound data of 9: ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.24 – 7.18 (m, 1H), 7.12 (d, J = 8.1 Hz, 2H), 7.07 – 6.98 (m, 2H), 4.41 (td, J = 8.1, 2.9 Hz, 1H), 4.11 – 3.98 (m, 2H), 2.59 – 2.49 (m, 3H), 2.33 (s, 3H), 1.97 – 1.76 (m, 2H), 1.15 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.6, 143.9, 143.8, 141.4, 135.2, 133.1, 129.5, 127.6, 127.1, 125.4, 125.0, 118.9, 63.6, 60.5, 52.5, 32.8, 22.6, 21.5, 14.2, 11.6. HRMS (ESI) m/z: calcd. for C₂₁H₂₅NO₄SNa⁺ [M+Na]⁺: 410.1397, found 410.1402.

V. Mechanistic Studies

(a) Control Experiments of 1a and 2a.

1a + 27.5 mg 34	PPh 2a PhCO ₂ H(1.5 mg toluene,	² Cy 20 mol%) rt, 12 h	CHO N Ts Int-1 (Not deteced)		O N Ts 3a
PPh ₂ Cy	0.2 equiv	0.5 equiv	0.8 equiv	1.0 equiv	1.2 equiv
3a (%)	2.2 mg (6%)	9.0 mg (24%)	16.1 mg (43%)	23.4 mg (63%)	32.5 mg (88%)
1a (%)	24.1 mg (88%)	18.4 mg (67%)	9.6 mg (35%)	3.3 mg (12%)	0.0 mg (0%)

To a stirred solution of *o*-aminobenzaldehyde **1a** (27.5 mg, 0.1 mmol) and allyl carbonate **2a** (34.5 mg, 0.15 mmol, 1.5 equiv) in toluene (2.0 mL) was added PPh₂Cy (0.2-1.2 equiv) and benzoic acid (2.4 mg, 20 mol%) at room temperature for 12 h. The reaction mixture was purified without concentration via flash chromatography on silica gel (PE:EtOAc:DCM = 19:1:6) to afford compounds **3a** and **1a**.

(b) Transformation Experiment of 3a'

To a stirred solution of *o*-aminobenzaldehyde **1a** (27.5 mg, 0.1 mmol) and allyl carbonate **2a** (34.5 mg, 0.15 mmol, 1.5 equiv) in toluene (2.0 mL) was added PPh₂Cy (32.2 mg, 0.12 mmol, 1.2 equiv) and benzoic acid (2.4 mg, 20 mol%) at room temperature for 12 h. The reaction mixture was purified without concentration via flash chromatography on silica gel (PE:EtOAc:DCM = 19:1:6) to afford compounds **3a'** (1.9 mg, 5% yield). Compound data of **3a'**: ¹H NMR (400 MHz, (CD₃)₂CO) δ 7.73 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 8.2 Hz, 1H), 7.38 – 7.25 (m, 4H), 7.10 – 7.04 (m, 1H), 6.26 (s, 1H), 5.86 (s, 1H), 4.99 (s, 1H), 4.85–4.79 (m, 2H), 4.21 (qd, J = 7.1, 4.6 Hz, 2H), 2.35 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz,

(CD₃)₂CO) δ 166.0, 145.1, 142.9, 139.8, 135.9, 133.6, 130.5, 130.4, 128.4, 127.3, 126.2, 125.0, 115.9, 76.7, 72.8, 61.5, 21.4, 14.3. HRMS (ESI) m/z: calcd. for $C_{20}H_{21}NO_5SNa^+$ [M+Na]⁺: 410.1033, found 410.1038.

(c) Control Experiment of 1a and 2g

To a stirred solution of *o*-aminobenzaldehyde **1a** (27.5 mg, 0.1 mmol) and allyl carbonate **2g** (46.0 mg, 0.15 mmol, 1.5 equiv) in toluene (2.0 mL) was added PPh₂Cy (32.2 mg, 0.12 mmol, 1.2 equiv) and benzoic acid (2.4 mg, 20 mol%) at room temperature for 12 h. The reaction mixture was purified without concentration via flash chromatography on silica gel (PE:EtOAc:DCM = 20:3:1) to afford compounds **Int-2'** (38.9 mg, 87% yield). Compound data of **Int-2'**: ¹H **NMR (400 MHz, CDCl₃)** δ 7.65 – 7.55 (m, 3H), 7.46 – 7.34 (m, 6H), 7.30 – 7.27 (m, 1H), 7.23 – 7.20 (m, 1H), 7.18 – 7.14 (m, 2H), 7.03 (d, *J* = 16.2 Hz, 1H), 6.70 (d, *J* = 16.3 Hz, 1H), 6.57 (s, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 2.30 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} **NMR (100 MHz, CDCl₃)** δ 167.0, 143.8, 139.9, 136.4, 135.3, 133.6, 132.4, 130.0, 129.51, 129.48, 129.0, 128.8, 128.7, 128.6, 127.3, 126.5, 126.3, 125.5, 125.3, 61.2, 21.5, 14.4. **HRMS (ESI)** m/z: calcd. for C₂₆H₂₅NO₄SNa⁺ [M+Na]⁺: 470.1397, found 470.1404.

(d) The Deuterium Labeling Experiment

To a stirred solution of *o*-aminobenzaldehyde **1a** (27.5 mg, 0.1 mmol), allyl carbonate **2a** (34.5 mg, 0.15 mmol, 1.5 equiv), D₂O (40.0 mg, 20.0 equiv), PPh₂Cy (32.2 mg,

0.12 mmol, 1.2 equiv), benzoic acid (2.4 mg, 20 mol%) and 2.0 mL of toluene. The resulting reaction mixture was stirred at room temperature for 12 h. The reaction mixture was concentrated and the residue was purified by silica gel flash column chromatography (PE:EtOAc:DCM = 19:1:6) to afford corresponding product d-**3a''** as a yellow oily liquid (18.1 mg, 48% yield).

VI. References

- (a) Patil, D. V.; Phun, L. H.; France, S. Indium-Catalyzed Homo-Nazarov Cyclizations of Alkenyl Cyclopropyl Ketones. *Org. Lett.* 2010, *12*, 5684–5687. (b) Cabrera, S.; Alemán, J.; Bolze, P.; Bertelsen, S.; Jørgensen, K. A. An Unexpected Organocatalytic Asymmetric Tandem Michael/Morita–Baylis–Hillman Reaction. *Angew. Chem. Int. Ed.* 2008, *47*, 121–125.
- Javorskis, T.; Orentas, E. Chemoselective Deprotection of Sulfonamides Under Acidic Conditions: Scope, Sulfonyl Group Migration, and Synthetic Applications. J. Org. Chem. 2017, 82, 13423–13439.
- Gao, J.; Li, Y.; Wang, N.; Li, Z.; Huang, N.; Yao, H. One-Pot Stereoselective Synthesis of 2, 3, 4-Unprotected β-N-Glycopyranosides from Glycals and Amines. *Adv. Synth. Catal.* 2023, 365, 2350–2355.

VII. X-Ray Crystallographic Analysis

Crystal Growth Method: 20 mg of **3j** was added in a HPLC vial and dissolved by 1.0 mL DCM, closed the lid. Then put it in a large bottle, added PE to the same level of the liquid in the HPLC vial, tighten the lid, put it in a fumehood and waited for growth.

Figure S1. X-ray structure of **3j** (ellipsoid contour at 50% probability CCDC 2287281)

Crystal Growth Method: 15 mg of **4** was added in a HPLC vial and dissolved by 1.0 mL DCM, closed the lid. Then put it in a large bottle, added PE to the same level of the liquid in the HPLC vial, tighten the lid, put it in a fumehood and waited for growth.

Figure S2. X-ray structure of **4** (ellipsoid contour at 50% probability CCDC 2293949)

Crystal Growth Method: 5 mg of **3a'** was added in a HPLC vial and dissolved by 1.0 mL DCM, closed the lid. Then put it in a large bottle, added PE to the same level of the liquid in the HPLC vial, tighten the lid, put it in a fumehood and waited for growth.

Figure S3. X-ray structure of **3a'** (ellipsoid contour at 50% probability CCDC 2325027)

Identification code	3j	4	3a'
Empirical formula	$C_{19}H_{19}NO_4S$	$C_{27}H_{29}NO_4S_2$	$C_{20}H_{21}NO_5S$
Formula weight	357.41	495.63	387.44
Temperature/K	150.00(10)	100.0(6)	99.97(15)
Crystal system	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	$P2_1/n$	P-1
a/Å	8.30100(10)	9.24180(10)	8.0093(9)
b/Å	11.06510(10)	19.5215(3)	9.9303(10)
c/Å	18.7113(2)	14.0366(2)	13.0524(6)
$\alpha/^{\circ}$	90	90	92.274(6)
β/°	93.4680(10)	99.178(2)	107.728(8)
γ/°	90	90	106.033(10)
Volume/Å ³	1715.51(3)	2499.98(6)	941.63(16)
Ζ	4	4	2
$Pcalc(g/cm^3)$	1.384	1.317	1.366
μ/mm^{-1}	1.884	2.204	1.800
F(000)	752.0	1048.0	408.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1	$0.16 \times 0.14 \times 0.12$	$0.15 \times 0.14 \times 0.1$
Radiation	Cu Kα (λ = 1.54184)	Cu Kα (λ = 1.54184)	Cu Kα (λ = 1.54184)
2⊖ range for data collection/°	9.29 to 148.79	7.824 to 148.864	7.176 to 150.146
	$-10 \le h \le 9$,	$-9 \le h \le 11$,	$-6 \le h \le 9,$
Index ranges	$-13 \le k \le 13,$	$-22 \le k \le 23,$	$-12 \le k \le 12,$
	$-22 \le l \le 22$	$-17 \le l \le 14$	$-15 \le l \le 16$
Reflections collected	18184	13621	7837
Independent	$3454 [R_{int} = 0.0211,$	$4968 [R_{int} = 0.0430,$	3580 [Rint = 0.0590,
reflections	$R_{sigma} = 0.0120$	$R_{sigma} = 0.0514$	$R_{sigma} = 0.0619$
Data/restraints/parameters	3454/0/228	4968/0/310	3580/0/255
Goodness-of-fit on F ²	1.033	1.096	1.162
Final R indexes [I>=2σ (I)]	$\begin{array}{l} R_1 = 0.0297, \\ wR_2 = 0.0770 \end{array}$	$R_1 = 0.0453,$ $wR_2 = 0.1197$	R1 = 0.0793, wR2 = 0.2277
Final R indexes [all data]	$\begin{array}{l} R_1 = 0.0301, \\ wR_2 = 0.0772 \end{array}$	$R_1 = 0.0548,$ $wR_2 = 0.1248$	R1 = 0.0908, wR2 = 0.2536
Largest diff. peak/hole / e Å ⁻³	0.28/-0.37	0.38/-0.49	1.02/-1.27

Table S1. Crystal data and structure refinement for 3j, 4, and 3a'.

VIII. Copies of ¹H and ¹³C{¹H} NMR Spectra

7,745 7,757 7,757 7,759 7,759 7,759 7,759 7,728 7,729 7,728 7,729

¹H NMR (400 MHz, CDCl₃)

7,745 7,757 7,757 7,757 7,758 7,759 7,759 7,759 7,759 7,759 7,729 7,739 7,749

¹H NMR (400 MHz, CDCl₃)

8,226 8,227 7,162 7,162 7,162 7,162 7,162 7,145 7,145 7,145 7,145 7,146 7,145 7,1467,146 7,146 7,146 7,1467,146 7,146

8,8566 8,8566 8,8239 8,8239 8,8239 8,8239 8,8230 8,8230 8,8230 8,8230 8,8230 8,8230 8,8230 8,8230 7,869 7,7516 7,7517 7,7516 7,7517 7,7517 7,7516 7,7517 7,7

¹⁹F{¹H} NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F{¹H} NMR (376 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

7,895 7,601 7,601 7,601 7,505 7,506 7,506 7,506 7,705

¹H NMR (400 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

$\begin{array}{c} 7.613 \\ 7.591 \\ 7.592 \\ 7.591 \\ 7.592 \\ 7.392 \\ 7.399 \\ 7.399 \\ 7.399 \\ 7.399 \\ 7.394 \\ 7.394 \\ 7.394 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.319 \\ 7.328$

¹H NMR (400 MHz, CDCl₃)

7,613 7,564 7,564 7,564 7,754 7,754 7,754 7,754 7,754 7,7036 7,7037 7,7034 7,7036 7,7037 7,7036 7,7037 7,7036 7,7036 7,7037 7,7036 7,7037 7,7036 7,7037 7,7036 7,10036 7,7046 7,7046 7,7046 7,7046 7,7046 7,7046 7,7046 7,7046 7,7046 7,7046 7,7

$\begin{array}{c} 7.645\\ 7.633\\ 7.533\\ 7.531\\ 7.533\\ 7.531\\ 7.531\\ 7.531\\ 7.531\\ 7.531\\ 7.531\\ 7.531\\ 7.531\\ 6.755\\ 6.775\\ 6.$

[7,8106] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,810] [7,731] [7,732] [7,732] [7,732] [7,733] [7

