# **Electronic Supplementary Information**

# Cubane-1,3-dicarboxamides as structural isosteres for isophthalamides in hydrogen bond templated interlocked molecules

Sean R. Barlow,<sup>a</sup> Nathan R. Halcovitch,<sup>a</sup> Geoffrey R. Akien,<sup>a</sup> Susannah C. Coote<sup>\* b</sup> and Nicholas H. Evans<sup>\* a</sup>

<sup>a</sup> Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK. <sup>b</sup> Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.

## **Table of Contents**

| Part 1: Experimental Information | S2  |
|----------------------------------|-----|
| Part 2: Spectral Data            | S13 |
| Part 3: Crystallographic Data    | S42 |
| Part 4: References               | S46 |

#### Part 1: Experimental Information

### **General Procedures**

All reagents and solvents were used as obtained from commercial suppliers, unless otherwise stated. Dry solvents, Et<sub>3</sub>N and DIPEA were purchased dry and stored under an inert atmosphere. Cu(CH<sub>3</sub>CN)<sub>4</sub>BF<sub>4</sub> was stored in a desiccator over P<sub>4</sub>O<sub>10</sub>. Deionised water was used in all cases. All aqueous solutions are saturated unless otherwise stated.

Silica gel with a 60 Å particle size was used as the stationary phase for column chromatography. Analytical TLC was used to monitor the progress of column chromatography, with analytical TLC plates examined under short wavelength (254 nm) UV light or staining with potassium permanganate and phosphomolybdic acid solutions as appropriate. Preparatory TLC was carried out on silica gel possessing a fluorescent indicator to allow for examination with short wavelength UV light.

IR spectra were recorded on Bruker or Agilent Technologies FTIR spectrometers. NMR spectra were recorded on Bruker AVANCE III 400 or Bruker Neo 400 spectrometers at 298 K (unless otherwise stated). Mass spectra were recorded on an Agilent 6545 Q-TOF instrument. Melting points were recorded on a Gallenkamp capillary melting point apparatus and are uncorrected.

Dimethylcubane-1,3-dicarboxylate,<sup>1</sup> axle **3**<sup>2</sup>, alkyne-azide **6**<sup>3</sup>, azide **8**<sup>4</sup>, alkyne **9**<sup>5</sup>, bis-amine **ESI-4**<sup>6</sup>, methyl-pyridinium template **ESI-5**<sup>6</sup>, axle **ESI-6**<sup>4</sup> and the all-isophthalamide [2]catenane **ESI-7**<sup>3</sup> were all synthesized according to previously reported procedures.

#### **Experimental Procedures**

Procedure for preparation of cubane-1,3-dicarboxylic acid:



To a solution of dimethylcubane-1,3-dicarboxylate (1.24 g, 5.63 mmol) in THF (25 mL) was added dropwise an aqueous solution of NaOH (6.8 mL, 2.5 M) at room temperature. The reaction was stirred at room temperature for 24 hours, then the THF was evaporated under reduced pressure, with the resulting residue being re-suspended in water (30 mL) and extracted with CHCl<sub>3</sub> (3 x 10 mL). The aqueous layer was acidified to pH < 1 with conc. HCl (aq), then extracted with EtOAc (5 x 10 mL). The combined organic layers were dried over MgSO<sub>4</sub>, filtered and concentrated under reduced pressure to provide the *title product* (1.08 g, 93%) as a white solid.

v<sub>max</sub>/cm<sup>-1</sup> (neat): 2989 (C-H), 2832 (C-H), 2704 (C-H), 2598 (C-H), 1671 (C=O).

**δ<sub>H</sub> (400 MHz,** *d***<sub>6</sub>-DMSO):** 12.40 (s, 2H, OH), 4.29-4.26 (m, 2H, H<sup>1</sup>), 4.11 (app. septet, 2H, H<sup>2</sup>), 3.91 (app. q, 2H, H<sup>3</sup>).

δ<sub>c</sub> (100 MHz, d<sub>6</sub>-DMSO): 172.1 (C<sup>5</sup>), 52.8 (C<sup>4</sup>), 50.2 (C<sup>1</sup>), 48.9 (C<sup>2</sup>), 41.7 (C<sup>3</sup>).

**m/z (ESI):** 215.0313 ([M + Na]<sup>+</sup>); neutral observed mass: 192.0422, C<sub>10</sub>H<sub>8</sub>O<sub>4</sub> requires 192.0423; 191.0350 ([M - H]<sup>-</sup>); neutral observed mass: 192.0423, C<sub>24</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub> requires 192.0423.

Procedure for conversion of cubane-1,3-dicarboxylic acid to cubane-1,3-diacyl chloride 1:



Cubane-1,3-dicarboxylic acid was suspended in dry  $CH_2Cl_2$  (5 mL per 1.0 mmol of cubane) and placed under an atmosphere of argon. To this suspension was added oxalyl chloride (6 eq.) and a catalytic amount of DMF. The reaction was stirred at room temperature until the solution become homogenous. After such time, excess volatiles were removed *in vacu*o to afford cubane-1,3-diacyl chloride **1** as an orange oil, which was reacted on immediately in subsequent reactions.

**δ<sub>H</sub> (400 MHz, CDCI<sub>3</sub>):** 4.84-4.81 (m, 2H, H<sup>1</sup>), 4.45 (app. septet, 2H, H<sup>2</sup>), 4.11 (app. q, 2H, H<sup>3</sup>).

δ<sub>c</sub> (100 MHz, CDCI<sub>3</sub>): 169.6 (C<sup>5</sup>), 60.2 (C<sup>4</sup>), 53.8 (C<sup>1</sup>), 51.6 (C<sup>2</sup>), 42.0 (C<sup>3</sup>).

Model cubane-1,3-dicarboxamide ESI-1



To a solution of benzylamine (61 mg, 0.06 mL, 0.57 mmol) and  $Et_3N$  (78 mg, 0.10 mL, 0.78 mmol) in dry  $CH_2Cl_2$  (2 mL) under argon was added a dropwise solution of cubane-1,3-diacyl chloride **1** (59 mg, 0.26 mmol) in dry  $CH_2Cl_2$  (3 mL). The reaction was stirred at room temperature for 1 hour, then the reaction was diluted to 10 mL and washed with 1 M HCl (aq) (1 x 10 mL), NaHCO<sub>3</sub> (aq) (1 x 10 mL) and brine (1 x 10 mL). The organic layer dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The crude material was purified by silica gel column chromatography (98:2 CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH) to afford the *title product* (75 mg, 78%) as a colourless solid.

*R*<sub>f</sub>: 0.17 [CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 98:2].

v<sub>max</sub>/cm<sup>-1</sup> (neat): 3255 (N-H), 3065 (C-H), 2991 (C-H), 1623 (C=O), 1237 (C-N).

**δ<sub>H</sub> (400 MHz, CDCl<sub>3</sub>):** 7.39-7.27 (10H, m, H<sup>8</sup>, H<sup>9</sup> & H<sup>10</sup>), 5.92 (2H, bs, H<sup>α</sup>), 4.47 (4H, d, J = 5.8 Hz, H<sup>6</sup>), 4.40-4.37 (2H, m, H<sup>1</sup>), 4.22 (2H, app. septet, H<sup>2</sup>), 3.97 (2H, app. q, H<sup>3</sup>).

**δ**<sub>c</sub> (100 MHz, CDCI<sub>3</sub>): 170.8 (C<sup>5</sup>), 138.0 (C<sup>7</sup>), 128.7 (C<sup>9</sup>), 127.9 (C<sup>8</sup>), 127.6 (C<sup>10</sup>), 54.7 (C<sup>4</sup>), 51.1 (C<sup>1</sup>), 49.5 (C<sup>2</sup>), 43.3 (C<sup>6</sup>), 41.9 (C<sup>3</sup>).

**m/z (ESI):** 371.1756 ([M + H]<sup>+</sup>); neutral observed mass: 370.1684, C<sub>24</sub>H<sub>22</sub>N<sub>2</sub>O<sub>2</sub> requires 370.1681.

Leigh-style isophthalamide [2]catenane ESI-27



To a vigorously stirring solution of  $Et_3N$  (924 mg, 1.26 mL, 9.15 mmol) in dry CHCl<sub>3</sub> (30 mL) was added dropwise solutions of isophthaloyl chloride (211 mg, 1.04 mmol) in dry CHCl<sub>3</sub> (30 mL) and *p*-xylylenediamine (141 mg, 1.04 mmol) in dry CHCl<sub>3</sub> (30 mL) simultaneously by the use of a motorised syringe pump (rate = 0.15 mL/min). After addition, the reaction was stirred under argon at room temperature for 16 hours. The reaction mixture was then filtrated under gravity and washed with 1 M HCl (aq) (2 x 50 mL), 1 M NaOH (aq) (2 x 50 mL) and water (1 x 50 mL). The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo* to afford the *title product* (48 mg, 17%) as a colourless solid.

**δ<sub>H</sub> (400 MHz,** *d***<sub>6</sub>-DMSO):** 8.50 (8H, bs, H<sup>α</sup>), 7.97 (4H, s, H<sup>3</sup>), 7.80 (8H, d, *J* = 8.0 Hz, H<sup>2</sup>), 7.43 (4H, t, *J* = 8.0 Hz, H<sup>1</sup>), 6.66 (16H, bs, H<sup>8</sup>), 3.93 (16H, bs, H<sup>6</sup>).

Data matches literature values.<sup>7</sup>



To a vigorously stirring solution of Et<sub>3</sub>N (924 mg, 1.26 mL, 9.15 mmol) in dry CHCl<sub>3</sub> (30 mL) was added dropwise solutions of cubane-1,3-diacyl chloride **1** (200 mg, 1.04 mmol) in dry CHCl<sub>3</sub> (30 mL) and *p*-xylylenediamine (141 mg, 1.04 mmol) in dry CHCl<sub>3</sub> (30 mL) simultaneously by the use of a motorised syringe pump (rate = 0.15 mL/min). After addition, the reaction was stirred under argon at room temperature for 16 hours. The reaction mixture was then filtrated under gravity and washed with 1 M HCl (aq) (2 x 50 mL), 1 M NaOH (aq) (2 x 50 mL) and water (1 x 50 mL). The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The crude material was purified by careful silica gel column chromatography (97:3 – 95:5 CH<sub>2</sub>Cl<sub>2</sub>:CH<sub>3</sub>OH) to afford the *title product* (12.5 mg, 4%) as colourless solid.

*R*<sub>f</sub>: 0.19 [CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 97:3].

v<sub>max</sub>/cm<sup>-1</sup> (neat): 3295 (N-H), 2480 (C-H), 1623 (C=O), 1528 (C-O), 1438 (C-H).

**δ<sub>H</sub> (400 MHz, 1:1 CDCI<sub>3</sub>:CD<sub>3</sub>OD):** 7.26-7.23 (8H, m, H<sup>8</sup>), 7.22 (8H, s, H<sup>8'</sup>), 4.40-4.37 (12H, m, H<sup>1</sup> & H<sup>6</sup>), 4.35 (8H, s, H<sup>6'</sup>), 4.32-4.29 (4H, m, H<sup>1'</sup>), 4.25-4.20 (8H, m, H<sup>2</sup>), 3.99-3.95 (8H, m, H<sup>3</sup>).

**δ**<sub>c</sub> (100 MHz, 1:1 CDCI<sub>3</sub>:CD<sub>3</sub>OD): 172.5 (C<sup>5</sup>), 137.4 (C<sup>7</sup>), 127.7 (C<sup>8</sup>), 127.7 (C<sup>8</sup>), 54.7 (C<sup>4</sup>), 51.4 (C<sup>1</sup>), 51.1 (C<sup>1'</sup>), 49.5 (C<sup>2</sup>), 42.7 (C<sup>6'</sup>), 42.7 (C<sup>6</sup>), 41.9 (C<sup>3</sup>).

**m/z (ESI):** 1169.4918 ([M + H]<sup>+</sup>); neutral observed mass: 1168.4859, C<sub>72</sub>H<sub>64</sub>N<sub>8</sub>O<sub>8</sub> requires 1168.4847.

Leigh-style isophthalamide [2]rotaxane ESI-3<sup>2</sup>



To a vigorously stirring solution of Et<sub>3</sub>N (184.8 mg, 0.25 mL, 1.83 mmol) and axle **3** (51.8 mg, 0.109 mmol) in dry CHCl<sub>3</sub>/CH<sub>3</sub>CN (9:1, 50 mL) was added dropwise solutions of isophthaloyl chloride (88.5 mg, 0.436 mmol) in dry CHCl<sub>3</sub> (15 mL) and *p*-xylylenediamine (59.3 mg, 0.436 mmol) in dry CHCl<sub>3</sub> (15 mL) simultaneously by the use of a motorised syringe pump (rate = 0.1 mL/min). After addition, the reaction was stirred under argon at room temperature for 16 hours. The reaction mixture was concentrated *in vacuo* and the crude material triturated with  $CH_2Cl_2$  (3 x 1 mL) to afford the *title product* (calculated yield: 82 mg, 75%), contaminated with axle **4**, as a colourless solid.

**δ<sub>H</sub> (400 MHz,** *d***<sub>6</sub>-DMSO):** 8.62 (2H, s, H<sup>3</sup>), 8.52 (2H, bs, H<sup>β</sup>), 8.15 (4H, bs, H<sup>α</sup>), 8.09 (8H, d, J = 8.0 Hz, H<sup>2</sup>), 7.71 (4H, t, J = 8.0 Hz, H<sup>1</sup>), 7.31-7.14 (20H, m, H<sup>a</sup>, H<sup>b</sup> & H<sup>c</sup>), 6.65 (8H, s, H<sup>8</sup>), 5.64 (2H, s, H<sup>h</sup>), 4.21 (8H, s, H<sup>6</sup>), 4.10 (2H, t, J = 7.8 Hz, H<sup>e</sup>), 3.66 (4H, t, J = 7.8 Hz, H<sup>f</sup>).

Data matches literature values.<sup>2</sup>

#### Leigh-style cubane [2]rotaxane 4



To a vigorously stirring solution of Et<sub>3</sub>N (184 mg, 0.25 mL, 1.83 mmol) and axle **3** (51.8 mg, 0.109 mmol) in dry CHCl<sub>3</sub>/CH<sub>3</sub>CN (9:1, 50 mL) was added dropwise solutions of cubane-1,3-diacyl chloride **1** (100 mg, 0.436 mmol) in dry CHCl<sub>3</sub> (15 mL) and *p*-xylylenediamine (59 mg, 0.436 mmol) in dry CHCl<sub>3</sub> (15 mL) simultaneously by the use of a motorised syringe pump (rate = 0.1 mL/min). After addition, the reaction was stirred under argon at room temperature for 16 hours. The reaction mixture was then filtrated under gravity and washed with 1 M HCl (aq) (2 x 40 mL) and water (1 x 40 mL). The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The crude material was purified by silica gel column chromatography (98.5:1.5-95:5 CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH) to afford the *title product* (35 mg, 30%) as a colourless solid.

*R*<sub>f</sub>: 0.18 [CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 98.5:1.5].

v<sub>max</sub>/cm<sup>-1</sup> (neat): 3240 (N-H), 2987 (C-H), 1621 (C=O), 1528 (C-O), 695 (C-C).

**δ<sub>H</sub> (400 MHz,** *d***<sub>6</sub>-DMSO):** 8.10 (4H, bt, J = 5.3 Hz, H<sup>α</sup>), 8.07 (2H, bt, J = 5.4 Hz, H<sup>β</sup>), 7.38 (8H, d, J = 7.4 Hz, H<sup>c</sup>), 7.32 (8H, app. t, H<sup>b</sup>), 7.21 (4H, t, J = 7.3 Hz, H<sup>a</sup>), 6.52 (8H, s, H<sup>8</sup>), 5.03 (2H, s, H<sup>h</sup>), 4.47 (4H, s, H<sup>1</sup>), 4.25 (2H, t, J = 7.8 Hz, H<sup>e</sup>), 4.16 (4H, app. septet, H<sup>2</sup>), 3.99 (8H, d, J = 5.3 Hz, H<sup>6</sup>), 3.93 (4H, app. q, H<sup>3</sup>), 3.71 (4H, app. t, H<sup>f</sup>).

**δ**<sub>c</sub> (100 MHz, *d*<sub>6</sub>-DMSO): 170.9 (C<sup>5</sup>), 164.7 (C<sup>9</sup>), 143.2 (C<sup>d</sup>), 137.4 (C<sup>7</sup>), 129.6 (C<sup>h</sup>), 128.9 (C<sup>b</sup>), 128.3 (C<sup>c</sup>), 127.9 (C<sup>8</sup>), 126.9 (C<sup>a</sup>), 54.5 (C<sup>4</sup>), 50.8 (C<sup>1</sup>), 50.1 (C<sup>e</sup>), 49.2 (C<sup>2</sup>), 44.2 (C<sup>f</sup>), 42.5 (C<sup>6</sup>), 41.6 (C<sup>3</sup>).

**m/z (ESI):** 1059.4803 ([M + H]<sup>+</sup>); neutral observed mass: 1058.4730, C<sub>68</sub>H<sub>62</sub>N<sub>6</sub>O<sub>6</sub> requires 1058.4731.

#### Evans-style cubane macrocycle 5



Bis-amine **ESI-4** (300 mg, 0.874 mmol) and methyl-pyridinium template **ESI-5** (334 mg, 0.874 mmol) were dissolved in dry  $CH_2Cl_2$  (25 mL) and placed under an argon atmosphere. To this solution was added  $Et_3N$  (220 mg, 0.30 mL, 2.18 mmol), followed immediately by a dropwise solution of cubane-1,3-diacyl chloride **1** (200 mg, 0.874 mmol). The reaction was stirred at room temperature for 2 hours, then the reaction mixture was washed with 1 M HCl (aq) (2 x 20 mL) and brine (1 x 20 mL). The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The crude material was purified by silica gel column chromatography (99:1-96:4 CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH) to afford the *title product* (110 mg, 25%) as an off-white solid.

*R*<sub>f</sub>: 0.19 [CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 98:2].

v<sub>max</sub>/cm<sup>-1</sup> (neat): 3326 (N-H), 2853 (C-H), 1627 (C=O), 1528 (C-O), 1088 (C-C).

**δ<sub>H</sub> (400 MHz, CDCI<sub>3</sub>):** 7.29 (4H, d, J = 7.7 Hz, H<sup>9</sup>), 7.19 (4H, d, J = 7.7 Hz, H<sup>8</sup>), 6.08 (2H, bs, H<sup>α</sup>), 4.56 (4H, s, H<sup>11</sup>), 4.42 (4H, d, J = 5.5 Hz, H<sup>6</sup>), 4.36 (2H, bs, H<sup>1</sup>), 4.26 (2H, app. septet, H<sup>2</sup>), 3.93 (4H, app. q, H<sup>3</sup>), 3.74-3.65 (8H, m, H<sup>12</sup> & H<sup>13</sup>).

**δ**<sub>c</sub> (100 MHz, CDCI<sub>3</sub>): 170.9 (C<sup>5</sup>), 137.6 (C<sup>10</sup>), 137.4 (C<sup>7</sup>), 128.1 (C<sup>9</sup>), 127.6 (C<sup>8</sup>), 72.8 (C<sup>11</sup>), 70.8 (C<sup>12 or 13</sup>), 69.6 (C<sup>12 or 13</sup>), 54.6 (C<sup>4</sup>), 50.9 (C<sup>1</sup>), 49.7 (C<sup>2</sup>), 43.0 (C<sup>6</sup>), 42.0 (C<sup>3</sup>).

**m/z (ESI):** 501.2379 ([M + H]<sup>+</sup>); neutral observed mass: 500.2307, C<sub>30</sub>H<sub>32</sub>N<sub>2</sub>O<sub>5</sub> requires 500.2311.



To a solution of macrocycle **5** (32.5 mg, 0.065 mmol) and alkyne-azide **6** (32.9 mg, 0.065 mmol) in dry  $CH_2CI_2$  (10 mL) under argon was added  $Cu(CH_3CN)_4BF_4$  (4.7 mg, 0.015 mmol), TBTA (8.0 mg, 0.015 mmol) and DIPEA (8.39 mg, 0.011 mL, 0.065 mmol). The reaction was stirred at room temperature for 16 hours. The reaction mixture was diluted with further  $CH_2CI_2$  (10 mL) and then the solution washed with 0.02 M EDTA in 1 M NH<sub>3</sub> (aq) (2 x 10 mL) and brine (1 x 10 mL). The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The crude material was first purified by silica gel column chromatography (98:2-97:3  $CH_2CI_2/CH_3OH$ ) followed by preparative TLC (94.7:5:0.3  $CH_2CI_2/CH_3OH$ /Acetone) to afford the *title product* (15 mg, 23%) as a colourless glassy solid.

*R*<sub>f</sub>: 0.10 [CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 98:2].

v<sub>max</sub>/cm<sup>-1</sup> (neat): 3302 (N-H), 2868 (C-H), 1638 (C=O), 1526 (C-O), 1071 (C-C).

**δ<sub>H</sub> (400 MHz, CDCI<sub>3</sub>):** 8.15 (1H, d, J = 8.0 Hz, H<sup>c</sup>), 7.82 (1H, d, J = 8.0 Hz, H<sup>e</sup>), 7.64-7.59 (2H, m, H<sup>d</sup> & H<sup>t</sup>), 7.42 (1H, bs, H<sup>δ</sup>), 7.36 (2H, d, J = 7.9 Hz, H<sup>k</sup>), 7.31 (1H, s, H<sup>a</sup>), 7.26 (2H, bs, H<sup>α</sup>), 7.20 (2H, d, J = 7.9 Hz, H<sup>j</sup>), 6.87 (1H, bs, H<sup>β</sup>), 6.82 (1H, bt, J = 6.0 Hz, H<sup>γ</sup>), 6.77 (4H, d, J = 8.0 Hz, H<sup>8</sup>), 6.53 (4H, d, J = 8.0 Hz, H<sup>9</sup>), 4.93 (1H, b app. sextet, H<sup>1</sup>), 4.67 (2H, bs, H<sup>r</sup>), 4.62 (1H, b app. sextet, H<sup>1'</sup>), 4.55-4.47 (4H, m, H<sup>6</sup> & H<sup>m</sup>), 4.41 (2H, bt, J = 6.0 Hz, H<sup>u</sup>), 4.34 (2H, app. septet, H<sup>2</sup>), 4.11-3.93 (12H, m, H<sup>6'</sup>, H<sup>3</sup>, H<sup>3'</sup>, H<sup>h</sup>, H<sup>11</sup>, H<sup>11'</sup> & H<sup>o</sup>), 3.72 (4H, s, H<sup>p/q</sup>), 3.21-3.03 (8H, m, H<sup>w</sup> & H<sup>12/13</sup>), 2.79-2.71 (2H, m, H<sup>12/13'</sup>), 2.20 (2H, bs, H<sup>v</sup>).

**δ**<sub>c</sub> (100 MHz, CDCl<sub>3</sub>): 171.7 (C<sup>5</sup>), 168.7 (C<sup>n</sup>), 166.3 (C<sup>x</sup>), 165.9 (C<sup>9</sup>), 144.7 (C<sup>s</sup>), 138.4 (C<sup>i</sup>), 137.3 (C<sup>i</sup>), 137.2 (C<sup>7</sup>), 134.5 (C<sup>10</sup>), 133.2 (C<sup>b/f</sup>), 132.9 (C<sup>b/f</sup>), 132.2 (C<sup>e</sup>), 131.9 (C<sup>c</sup>), 129.8 (C<sup>j</sup>), 129.4 (C<sup>9</sup>), 128.9 (C<sup>k</sup>), 128.3 (C<sup>8</sup>), 128.2 (C<sup>d</sup>), 124.1 (C<sup>a</sup>), 122.6 (C<sup>t</sup>), 73.9 (C<sup>11</sup>), 70.6 (C<sup>o</sup>), 70.6 (C<sup>p/q</sup>), 70.3 (C<sup>12(')/13(')</sup>), 69.6 (C<sup>p/q</sup>), 68.8 (C<sup>12/13</sup>), 64.8 (C<sup>r</sup>), 54.8 (C<sup>4</sup>), 52.9 (C<sup>1'</sup>), 51.0 (C<sup>1</sup>), 49.1 (C<sup>2</sup>), 47.7 (C<sup>u</sup>), 44.1 (C<sup>6</sup>), 43.9 (C<sup>h</sup>), 42.5 (C<sup>m</sup>), 42.4 (C<sup>3</sup>), 41.4 (C<sup>3'</sup>), 36.8 (C<sup>w</sup>), 29.9 (C<sup>v</sup>). **m/z (ESI):** 1007.4658 ([M + H]<sup>+</sup>); neutral observed mass: 1006.4588, C<sub>56</sub>H<sub>62</sub>N<sub>8</sub>O<sub>10</sub> requires

1006.4589.



To a solution of macrocycle **5** (20 mg, 0.040 mmol) and azide **8** (16 mg, 0.047 mmol) in dry  $CH_2CI_2$  (1 mL) under argon was added alkyne **9** (13 mg, 0.047 mmol),  $Cu(CH_3CN)_4BF_4$  (1.4 mg, 0.0046 mmol), TBTA (2.4 mg, 0.0046 mmol) and DIPEA (6.6 mg, 0.009 mL, 0.051 mmol). The reaction was stirred at room temperature for 16 hours. The reaction mixture was diluted with further  $CH_2CI_2$  (10 mL) and then the solution washed with 0.02 M EDTA in 1 M NH<sub>3</sub> (aq) (2 x 10 mL) and brine (1 x 10 mL). The organic layer was dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. The crude material was first purified by silica gel column chromatography (98:2-95:5  $CH_2CI_2/CH_3OH$ ) followed by preparative TLC (87:3:10  $CH_2CI_2/CH_3OH$ /acetone) to afford the *title product* (4.5 mg, 10%) as a glassy colourless solid.

*R*<sub>f</sub>: 0.21 [CH<sub>2</sub>Cl<sub>2</sub>/CH<sub>3</sub>OH 98:2].

v<sub>max</sub>/cm<sup>-1</sup> (neat): 3321 (N-H), 2868 (C-H), 1625 (C=O), 1507 (C-O), 1079 (C-C).

**δ<sub>H</sub> (400 MHz, CDCI<sub>3</sub>):** 8.52 (2H, s, H<sup>d</sup>), 8.08 (1H, s, H<sup>c</sup>), 8.03 (1H, s, H<sup>q</sup>), 7.99 (2H, s, H<sup>o</sup>), 7.90 (1H, s, H<sup>i</sup>), 7.04 (1H, bs, H<sup>β</sup>), 6.75 (4H, d, J = 7.8 Hz, H<sup>8</sup>), 6.69 (2H, bs, H<sup>α</sup>), 6.60 (4H, d, J = 7.8 Hz, H<sup>9</sup>), 5.59 (2H, s, H<sup>g</sup>), 4.84 (1H, bs, H<sup>1</sup>), 4.60-4.52 (3H, m, H<sup>1</sup>' & H<sup>6</sup>), 4.34 (2H, app. septet, H<sup>2</sup>), 4.29 (2H, d, J = 9.7 Hz, H<sup>11</sup>), 4.22 (2H, t, J = 5.9 Hz, H<sup>j</sup>), 4.12-4.06 (1H, m, H<sup>3</sup>), 4.03-3.92 (5H, m, H<sup>3'</sup>, H<sup>11'</sup> & H<sup>6'</sup>), 3.82-3.58 (8H, m, H<sup>12</sup> & H<sup>13</sup>), 2.85 (2H, app. q, H<sup>j</sup>), 1.88 (2H, app. quintet, H<sup>k</sup>).

**δ**<sub>c</sub> (100 MHz, CDCl<sub>3</sub>): 171.4 (C<sup>5</sup>), 163.8 (C<sup>f</sup>), 163.7 (C<sup>m</sup>), 141.6 (C<sup>h</sup>), 137.2 (C<sup>7</sup>), 135.8 (C<sup>10</sup>), 134.9 (C<sup>n or e</sup>), 132.3 (q, J = 34 Hz, C<sup>b or p</sup>), 131.9 (C<sup>n or e</sup>), 131.0 (q, J = 34 Hz, C<sup>b or p</sup>), 129.8 (C<sup>d</sup>), 128.5 (C<sup>o</sup>), 128.5 (C<sup>9</sup>) 128.1 (C<sup>8</sup>), 126.6 (C<sup>c</sup>), 125.1 (C<sup>i</sup>), 124.1 (C<sup>q</sup>), 73.6 (C<sup>11</sup>), 70.8 (C<sup>12 or 13</sup>), 69.6 (C<sup>12 or 13</sup>), 58.9 (C<sup>g</sup>), 54.6 (C<sup>4</sup>), 52.4 (C<sup>1'</sup>), 50.3 (C<sup>1</sup>), 49.4 (C<sup>2</sup>), 47.9 (C<sup>j</sup>), 43.8 (C<sup>6</sup>), 42.5 (C<sup>3</sup>), 41.4 (C<sup>3</sup>), 37.4 (C<sup>i</sup>), 29.7 (C<sup>k</sup>).

**m/z (ESI):** 1137.3414 ([M + H]<sup>+</sup>); neutral observed mass: 1136.3341, C<sub>54</sub>H<sub>48</sub>F<sub>12</sub>N<sub>6</sub>O<sub>8</sub> requires 1136.3342.

## Part 2: Spectra Data



180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

#### Cubane-1,3-dicarboxylic acid

### IR (neat):



HRMS:

#### Figure: Full range view of Compound spectra and potential adducts.



#### **Compound Table**

| Compound Label   | RT    | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
|------------------|-------|---------------|------------------|------------------|------------|---------------|
|                  | (min) | (m/z)         | mass (Da)        | (Da)             | (ppm)      | score (%)     |
| Cpd 1: C10 H8 O4 | 0.75  | 215.0313      | 192.0422         | 192.0423         | -0.39      | 98.43         |

Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae

#### Figure: Full range view of Compound spectra and potential adducts.



#### **Compound Table**

|                  |             |               |                  | _                |            |               |
|------------------|-------------|---------------|------------------|------------------|------------|---------------|
| Compound Labol   | RT<br>(min) | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
| Compound Laber   |             | (11/2)        | mass (Da)        | (Da)             | (ppin)     | score (%)     |
| Cpd 1: C10 H8 O4 | 0.76        | 191.0350      | 192.0423         | 192.0423         | 0.14       | 99.35         |

Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):



100 90 80 Chemical Shift (ppm) 180 170 Ó 

Model cubane-1,3-dicarboxamide **ESI-1** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):



Model cubane-1,3-dicarboxamide ESI-1





HRMS:

## Figure: Full range view of Compound spectra and potential adducts.



#### Compound Table

|                                                                                                                                  | RT    | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
|----------------------------------------------------------------------------------------------------------------------------------|-------|---------------|------------------|------------------|------------|---------------|
| Compound Label                                                                                                                   | (min) | (m/z)         | mass (Da)        | (Da)             | (ppm)      | score (%)     |
| Cpd 1: C24 H22 N2 O2                                                                                                             | 0.78  | 371.1756      | 370.1684         | 370.1681         | 0.61       | 99.28         |
| Mass arrays of between -E 00 and E 00 and with isstence match scarge about 60% are considered confirmation of molecular formulae |       |               |                  |                  |            |               |

<sup>1</sup>H NMR (400 MHz, 1:1 CDCl<sub>3</sub>:CD<sub>3</sub>OD):



<sup>1</sup>H-<sup>1</sup>H COSY NMR (1:1 CDCl<sub>3</sub>:CD<sub>3</sub>OD):



<sup>1</sup>H-<sup>13</sup>C HSQC NMR (1:1 CDCl<sub>3</sub>:CD<sub>3</sub>OD):



S19

<sup>1</sup>H-<sup>13</sup>C HMBC NMR (1:1 CDCI<sub>3</sub>:CD<sub>3</sub>OD):



<sup>1</sup>H-<sup>1</sup>H ROESY NMR (1:1 CDCl<sub>3</sub>:CD<sub>3</sub>OD):



S20





### HRMS:



#### Figure: Full range view of Compound spectra and potential adducts.

#### **Compound Table**

| Compound Label       | RT<br>(min) | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
|----------------------|-------------|---------------|------------------|------------------|------------|---------------|
| compound caper       | ()          | (111/2)       | mass (bu)        | (Du)             | (PPiii)    | 30010 (70)    |
| Cpd 1: C72 H64 N8 O8 | 0.68        | 1169.4918     | 1168.4859        | 1168.4847        | 0.99       | 74.16         |

Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae

Leigh-style cubane [2]rotaxane 4



<sup>1</sup>H-<sup>1</sup>H COSY NMR (*d*<sub>6</sub>-DMSO):



<sup>1</sup>H-<sup>13</sup>C HMBC NMR (*d*<sub>6</sub>-DMSO):









HRMS:

#### Figure: Full range view of Compound spectra and potential adducts.



Compound Table

|                                                                                                                                 | RT    | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
|---------------------------------------------------------------------------------------------------------------------------------|-------|---------------|------------------|------------------|------------|---------------|
| Compound Label                                                                                                                  | (min) | (m/z)         | mass (Da)        | (Da)             | (ppm)      | score (%)     |
| Cpd 1: C68 H62 N6 O6                                                                                                            | 0.69  | 1059.4803     | 1058.4730        | 1058.4731        | -0.06      | 99.88         |
| Mass errors of between -5.00 and 5.00 nom with isotope match scores above 60% are considered confirmation of molecular formulae |       |               |                  |                  |            |               |

Evans-style cubane macrocycle 5

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):



#### Evans-style cubane macrocycle 5

IR (neat):



#### HRMS:



#### Figure: Full range view of Compound spectra and potential adducts.

#### Compound Table

|                      | RT    | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
|----------------------|-------|---------------|------------------|------------------|------------|---------------|
| Compound Label       | (min) | (m/z)         | mass (Da)        | (Da)             | (ppm)      | score (%)     |
| Cpd 1: C30 H32 N2 O5 | 0.67  | 501.2379      | 500.2307         | 500.2311         | -0.83      | 99.51         |

Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae



<sup>1</sup>H-<sup>1</sup>H COSY NMR (CDCl<sub>3</sub>):



<sup>1</sup>H-<sup>13</sup>C HSQC NMR (CDCl<sub>3</sub>):



<sup>1</sup>H-<sup>13</sup>C HMBC NMR (CDCl<sub>3</sub>):



<sup>1</sup>H-<sup>1</sup>H ROESY NMR (CDCl<sub>3</sub>): Intercomponent couplings circled







HRMS:

#### Figure: Full range view of Compound spectra and potential adducts.



#### Compound Table

|                       | RT    | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
|-----------------------|-------|---------------|------------------|------------------|------------|---------------|
| Compound Label        | (min) | (m/z)         | mass (Da)        | (Da)             | (ppm)      | score (%)     |
| Cpd 1: C56 H62 N8 O10 | 0.78  | 1007.4658     | 1006.4588        | 1006.4589        | -0.06      | 99.70         |

Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae





<sup>1</sup>H-<sup>1</sup>H COSY NMR (CDCl<sub>3</sub>):



<sup>1</sup>H-<sup>13</sup>C HMBC NMR (CDCl<sub>3</sub>):



<sup>1</sup>H-<sup>1</sup>H ROESY NMR (CDCl<sub>3</sub>): Intercomponent couplings circled







HRMS:

#### Figure: Full range view of Compound spectra and potential adducts.



#### Compound Table

|                          | RT    | Observed mass | Neutral observed | Theoretical mass | Mass error | Isotope match |
|--------------------------|-------|---------------|------------------|------------------|------------|---------------|
| Compound Label           | (min) | (m/z)         | mass (Da)        | (Da)             | (ppm)      | score (%)     |
| Cpd 1: C54 H48 F12 N6 O8 | 0.80  | 1137.3414     | 1136.3341        | 1136.3342        | -0.06      | 99.81         |

Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae

Leigh-style isophthalamide [2]catenane ESI-27

<sup>1</sup>H NMR (400 MHz, *d*<sub>6</sub>-DMSO):

Our isolated yield = 17% (Literature yield = 20%)



Leigh-style isophthalamide [2]rotaxane ESI-3<sup>2</sup>

<sup>1</sup>H NMR (400 MHz, *d*<sub>6</sub>-DMSO):

10% of axle **3** remains. Our isolated yield = 75% (Literature yield = 97%)



# **Comparison Spectra of Interlocked Molecules**

## [2]Rotaxane 4



<sup>1</sup>H NMR spectra of (a) [2]rotaxane **4**, (b) axle **3** (*d*<sub>6</sub>-DMSO, 400 MHz, 298 K).



<sup>1</sup>H NMR spectra of (a) alkyne-azide **6**, (b) [2]catenane **7**, (c) macrocycle **5** (CDCl<sub>3</sub>, 400 MHz, 298 K).

# [2]Rotaxane 10



<sup>1</sup>H NMR spectra of (a) axle **ESI-6**, (b) [2]rotaxane **10**, (c) macrocycle **5** (CDCl<sub>3</sub>, 400 MHz, 298 K).

# Comparison of Cubane [2]Catenane 7 and its all-Isophthalamide analogue ESI-7

NMR of (a) Cubane [2]Catenane 7 vs (b) all-Isophthalamide analogue ESI-7 (CDCI<sub>3</sub>, 298 K)



VT NMR of all-isophthalamide analogue ESI-7



<sup>1</sup>H NMR spectra of all-isophthalamide [2]catenane **ESI-7** (CDCl<sub>3</sub>, 400 MHz).

## Part 3: Crystallographic Data

## Leigh-style cubane [2]rotaxane 4

Crystals of [2]rotaxane **4** were grown by slow evaporation of a 1:1 chloroform:methanol solution. A suitable crystal was selected and studied using an Agilent SuperNova AtlasS2 diffractometer. Using Olex2<sup>8</sup> the structure was solved with the ShelXT<sup>9</sup> structure solution program using Direct Methods and refined with the ShelXL<sup>10</sup> refinement package using Least Squares minimisation.



Solid-state molecular structure of [2]rotaxane **4**. Thermal ellipsoids are displayed at 50% probability, with hydrogen atoms and solvent molecules omitted for clarity.

Crystal data and structural refinement for [2]rotaxane 4:

| CCDC Number                         | 2335982                                                                       |
|-------------------------------------|-------------------------------------------------------------------------------|
| Empirical formula                   | C <sub>71</sub> H <sub>65</sub> Cl <sub>9</sub> N <sub>6</sub> O <sub>6</sub> |
| Formula weight                      | 1417.34                                                                       |
| Temperature/K                       | 100.00(10)                                                                    |
| Crystal system                      | orthorhombic                                                                  |
| Space group                         | Pccn                                                                          |
| a/Å                                 | 22.1773(3)                                                                    |
| b/Å                                 | 20.9754(3)                                                                    |
| c/Å                                 | 15.2190(2)                                                                    |
| α/°                                 | 90                                                                            |
| β/°                                 | 90                                                                            |
| V/°                                 | 90                                                                            |
| Volume/Å <sup>3</sup>               | 7079.54(17)                                                                   |
| Z                                   | 4                                                                             |
| ρ <sub>calc</sub> g/cm <sup>3</sup> | 1.330                                                                         |
| µ/mm <sup>-1</sup>                  | 3.698                                                                         |
| F(000)                              | 2936.0                                                                        |
| Crystal size/mm <sup>3</sup>        | 0.12 × 0.09 × 0.05                                                            |
| Radiation                           | Cu Kα (λ = 1.54184)                                                           |
| 2O range for data collection/°      | 7.974 to 152.522                                                              |
| Index ranges                        | -25 ≤ h ≤ 27, -26 ≤ k ≤ 22, -18 ≤ l ≤ 12                                      |
| Reflections collected               | 30112                                                                         |
| Independent reflections             | 7251 [R <sub>int</sub> = 0.0381, R <sub>sigma</sub> = 0.0218]                 |
| Data/restraints/parameters          | 7251/73/419                                                                   |
| Goodness-of-fit on F <sup>2</sup>   | 1.075                                                                         |
| Final R indexes [I>=2σ (I)]         | R <sub>1</sub> = 0.0821, wR <sub>2</sub> = 0.2500                             |
| Final R indexes [all data]          | $R_1 = 0.0902$ , $wR_2 = 0.2599$                                              |
| Largest diff. peak/hole / e Å-3     | 0.783/-0.373                                                                  |

### Macrocycle 5

Crystals of macrocycle **5** were grown by slow evaporation of a chloroform solution. A suitable crystal was selected and studied using an Agilent SuperNova AtlasS2 diffractometer. Using Olex2<sup>8</sup> the structure was solved with the ShelXT<sup>9</sup> structure solution program using Intrinsic Phasing and refined with the ShelXL<sup>10</sup> refinement package using Least Squares minimisation. The twin law was found using CrysAlisPro,<sup>11</sup> the twin is comprised of 2 components rotated by 179.97 degrees around [1.00 -0.00 -0.00] (reciprocal) or [0.90 -0.01 0.44] (direct).



Solid-state molecular structure of macrocycle **5**. Thermal ellipsoids are displayed at 50% probability, with hydrogen atoms and solvent molecules omitted for clarity.

| CCDC Number                                 | 2335981                                                       |
|---------------------------------------------|---------------------------------------------------------------|
| Empirical formula                           | C <sub>30</sub> H <sub>36</sub> N <sub>2</sub> O <sub>7</sub> |
| Formula weight                              | 536.61                                                        |
| Temperature/K                               | 100.00(10)                                                    |
| Crystal system                              | monoclinic                                                    |
| Space group                                 | Cc                                                            |
| a/Å                                         | 52.946(3)                                                     |
| b/Å                                         | 10.4697(6)                                                    |
| c/Å                                         | 9.7763(5)                                                     |
| α/°                                         | 90                                                            |
| β/°                                         | 95.237(5)                                                     |
| γ/°                                         | 90                                                            |
| Volume/Å <sup>3</sup>                       | 5296.7(5)                                                     |
| Z                                           | 8                                                             |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 1.321                                                         |
| µ/mm <sup>-1</sup>                          | 0.770                                                         |
| F(000)                                      | 2288.0                                                        |
| Crystal size/mm <sup>3</sup>                | 0.11 × 0.09 × 0.04                                            |
| Radiation                                   | Cu Kα (λ = 1.54184)                                           |
| 2Θ range for data collection/°              | 8.61 to 151.786                                               |
| Index ranges                                | -65 ≤ h ≤ 65, -13 ≤ k ≤ 13, -11 ≤ l ≤ 11                      |
| Reflections collected                       | 9678                                                          |
| Independent reflections                     | 9678 [R <sub>sigma</sub> = 0.0322]                            |
| Data/restraints/parameters                  | 9678/918/695                                                  |
| Goodness-of-fit on F <sup>2</sup>           | 1.529                                                         |
| Final R indexes [I>=2σ (I)]                 | R <sub>1</sub> = 0.1099, wR <sub>2</sub> = 0.3276             |
| Final R indexes [all data]                  | R <sub>1</sub> = 0.1239, wR <sub>2</sub> = 0.3505             |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.59/-0.51                                                    |
| Flack parameter                             | 0.4(5)                                                        |

#### Part 4: References

- 1) N. Kazi, M. C. Aublette, S. L. Allinson and S. C. Coote, *Chem. Commun.*, 2023, **59**, 7971-793.
- F. G. Gatti, D. A. Leigh, S. A. Nepogodiev, A. M. Z. Slawin, S. J. Teat and J. K. Y. Wong, J. Am. Chem. Soc., 2001, 123, 5983-5989.
- 3) S. R. Barlow, G. R. Akien and N. H. Evans, Org. Biomol. Chem., 2023, 21, 402-414.
- B. E. Fletcher, M. J. G. Peach and N. H. Evans, Org. Biomol. Chem., 2017, 15, 2797-2803.
- 5) A. Vidonne and D. Philp, *Tetrahedron*, 2008, **64**, 8464-8475.
- J. A. Wisner, P. D. Beer and M. G. B. Drew, *Angew. Chem. Int. Edit.*, 2001, 40, 3606-3609.
- 7) A. G. Johnston, D. A. Leigh, R. J. Pritchard and M. D. Deegan, *Angew. Chem. Int. Ed. Engl.*, 1995, **34**, 1209-1212.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.
- 9) G. M. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.
- 10) G. M. Sheldrick, Acta Cryst. C, 2015, 71, 3-8.
- 11) CrysAlisPRO, Oxford Diffraction/Agilent Technologies UK Ltd, Yarnton, England.