Co(III)-Catalyzed Regioselective Benzannulation of Substituted Pyridones with 1,6-Diynes *via* Dual C-H Bond Activation

Suresh Kumar Yadav and Masilamani Jeganmohan*

Department of Chemistry, Indian Institute of Technology, Madras-600036, India E-Mail: mjeganmohan@iitm.ac.in

Electronic Supplementary Information (ESI)

Table of Contents

S2-S3	Experimental Section
S4	Optimization Studies
S4 – S6	Mechanistic Studies (deuterium labeling study, radical trapping experiment)
S6	Removal of Directing group
S7 – S8	Single-crystal XRD for compounds 3ab .
S9	References
S10 - S61	Copies of ¹ H and ¹³ C NMR Spectra of All Compounds.

Experimental Section

General Information: All reactions were carried out under the N₂ atmosphere in flame-dried glassware. Syringes that were used to transfer anhydrous solvents or reagents were purged with nitrogen before use (three times). Dry solvents are used for the reaction. Column chromatographically purifications were performed using SiO₂ (120- 200 mesh ASTM) from Merck if not indicated otherwise. Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Starting Materials: Pyridones 1¹, 1,6-diynes 2a-p^{2a-f}, 2c^{2g} and CoCp*(CO)I₂³ were prepared according to literature procedures. Commercially available chemicals were purchased from Sigma-Aldrich and Spectrochem. Pvt. Ltd., India, and used without further purification.

General Procedure for the Synthesis of 2q

An oven-dried 100-mL two-neck round-bottom flask equipped with a magnetic stir bar was charged with a solution of alkyne **S1** (500 mg, 2.4 mmol, 1.0 equiv), anhydrous K_2CO_3 (1.3 g, 9.6 mmol, 4.0 equiv), alkyne **S2** and 15 mL acetonitrile solvent were added. The reaction mixture was allowed to stir at 80 °C on a preheated aluminum block for 12 hours. The mixture was allowed to cool to room temperature and was then filtered. The filtrate was concentrated under reduced pressure and purified through a silica gel column using hexane and ethyl acetate as the eluent to give the pure product S3 in 71% (819 mg).

An oven-dried Schlenk tube containing a Teflon-coated stirring bar was charged with $PdCl_2(PPh_3)_2$ (42 mg, 4 mol %) and CuI (23 mg, 8 mol %). The Schlenk tube was sealed, evacuated, and backfilled with N₂ (3 times). A solution of **S3** (500 mg, 1.5 mmol, 1.0 equiv) and 4-iodoanisole (421 mg, 1.2 mmol, 1 equiv) in 15 mL of Et₃N was injected. The reaction mixture

was stirred at room temperature for 6 hours. Then, the reaction mixture was diluted with EtOAc, filtered through Celite, and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexane and ethyl acetate as the eluent to give the pure product **3q** in 58% (388 mg).

General Procedure for the Synthesis of 3

An oven-dried 15-mL pressure tube equipped with a magnetic stir bar was charged with the pyridone **1** (0.2 mmol, 1.0 equiv), 1,6-diyne **2** (0.24 mmol, 1.2 equiv), $Cp*Co(CO)I_2$ (0.02 mmol, 10 mol %), CuOAc(0.1 mmol, 50 mol %) and Ag_2CO_3 (0.24 mmol, 1.2 equiv). The sealed tube was high-vacuumed and refilled with N₂. Then $AgSbF_6$ (0.04 mmol, 20 mol %), and 2.0 ml TFE solvent were added to the reaction mixture after that screw cap was used to cover the pressure tube. The reaction mixture was allowed to stir at 110 °C on the preheated aluminum block for 24 h. Then the reaction mixture was diluted with CH₂Cl₂, filtered through celite, and the filtrate concentrated. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent to give the pure product **3**.

General Procedure for the Synthesis of 3aa (1mmol scale).

An oven-dried 25-mL pressure tube equipped with a magnetic stir bar was charged with the pyridone **1a** (172 mg, 1.0 mmol, 1.0 equiv), 1,6-diyne **2a** (479 mg, 1.2 mmol, 1.2 equiv), Cp*Co(CO)I₂ (48 mg, 10 mol %, 0.1 mmol), CuOAc (62 mg, 0.5 mmol, 50 mol %) and Ag₂CO₃ (330 mg, 1.2 mmol, 1.2 equiv). The sealed tube was high-vacuumed and refilled with N₂. Then AgSbF₆ (69 mg, 0.2 mmol, 20 mol %), and 8.0 ml TFE solvent were added to the reaction mixture after that screw cap was used to cover the pressure tube. The reaction mixture was allowed to stir at 110 °C on the preheated aluminum block for 24 h. Then the reaction mixture was diluted with CH₂Cl₂, filtered through celite, and the filtrate concentrated. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent to give the pure product **3aa** in 84% (478 mg).

Entry	catalyst	solvent	Additive-1 (20 mol %)	Additive-2 (50 mol %)	Oxidant	yield (%) ^b
1	Cp*Co(CO)I ₂	TFE	AgSbF ₆	-	CuOAc (2 equiv)	44
2	Cp*Co(CO)I ₂	TFE	AgSbF ₆	-	Ag ₂ CO ₃ (1 equiv)	52
3	Cp*Co(CO)I ₂	TFE	AgSbF ₆	-	Ag ₂ O (1 equiv)	37
4	Cp*Co(CO)I ₂	TFE	AgSbF ₆	-	AgOAc (2 equiv)	28
5	Cp*Co(CO)I ₂	TFE	AgSbF ₆	-	$Cu(OAc)_2$ (2 equiv)	40
6	Cp*Co(CO)I ₂	TFE	AgSbF ₆	-	Ag_2CO_3 (1.2 equiv)	60
7	Cp*Co(CO)I ₂	TFE	AgSbF ₆	-	Ag_2CO_3 (1.5 equiv)	57
8	Cp*Co(CO)I ₂	TFE	AgSbF ₆	NaOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	55
9	Cp*Co(CO)I ₂	TFE	AgSbF ₆	NaHCO ₃ (50 mol %)	Ag_2CO_3 (1.2 equiv)	62
10	Cp*Co(CO)I2	TFE	AgSbF ₆	CuOAc (50 mol %)	Ag ₂ CO ₃ (1.2 equiv)	96
11	Cp*Co(CO)I ₂	TFE	AgOTf	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	81
12	Cp*Co(CO)I ₂	TFE	AgNTf ₂	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	78
13	Cp*Co(CO)I ₂	toluene	AgSbF ₆	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	trace
14	Cp*Co(CO)I ₂	THF	AgSbF ₆	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	NR
15	Cp*Co(CO)I ₂	HFIP	AgSbF ₆	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	78
16	Cp*Co(CO)I2	МеОН	AgSbF ₆	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	NR
17	Cp*Co(CO)I ₂	ClCH ₂ CH ₂ Cl	AgSbF ₆	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	40
18	-	TFE	AgSbF ₆	CuOAc (50 mol %)	Ag_2CO_3 (1.2 equiv)	NR
19	Cp*Co(CO)I ₂	TFE	AgSbF ₆	CuOAc (50 mol %)	-	20

Table S1. Optimization of the Cyclization Reaction.^a

^{*a*}All reactions were carried out using **1** (0.1 mmol, 1 equiv), **2** (0.12 mmol, 1.2 equiv), CoCp*COI₂ (0.01 mmol, 10 mol %), Additive-1 (20 mol %), Additive-2 (50 mol %), Oxidant in TFE (1 mL) under N₂ medium at 110 °C for 24 h. ^{*b*}Isolated yield of **3**.

Mechanistic Studies

Deuterium Labelling Studies.

To an oven-dried sealed tube charged with a stirring bar under N₂ atmosphere, 2*H*-[1,2'-bipyridin]-2-one **1a** (0.1 mmol), Cp*Co(CO)I₂ (10 mol %), AgSbF₆ (20 mol %), CuOAc (50 mol %), Ag₂CO₃ (1.2 equiv) were added and sealed. The sealed tube was high-vacuumed and

refilled with N₂. Then D₂O (10 equiv) was added to the reaction mixture followed by the addition of 1 ml TFE. The reaction mixture was vigorously stirred at 110 °C on a preheated aluminum block for 12 h. After 12 h, The reaction mixture was cooled to room temperature, diluted with ethyl acetate (EtOAc), and passed through a short celite pad. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography using 50% EtOAc/hexane mixture on silica gel (100-200 mesh) to give the deuterated product **D**-1a in 96% yield. The deuterium incorporation was calculated from ¹H NMR spectroscopy. In the reaction, 26% of deuterium incorporation was observed at C6 of 2*H*-[1,2'- bipyridin]-2-one 1a. This result reveals that the C-H bond activation is a reversible process.

¹H NMR Spectra of Compound **D-1a.** (Solvent CDCl₃, 400 MHz)

Procedure for Radical Trapping Experiment.

An oven-dried 15-mL pressure tube equipped with a magnetic stir bar was charged with the 2*H*-[1,2'- bipyridin]-2-one **1a** (0.2 mmol, 1.0 equiv), 1,6 diyne **2a** (0.24 mmol, 1.2 equiv), Cp*Co(CO)I₂ (0.02 mmol, 10 mol %), CuOAc (0.1 mmol, 50 mol %), Ag₂CO₃ (0.24 mmol, 1.2 equiv) and TEMPO (0.2 mmol, 1.0 equiv). The sealed tube was high-vacuumed and refilled with

N₂. Then AgSbF₆ (0.04 mmol, 20 mol %), and 2.0 ml TFE solvent were added to the reaction mixture. a screw cap was used to cover the tube. Then, the reaction mixture was allowed to stir at 110 °C on the preheated aluminum block for 24 h. Then the reaction mixture was diluted with CH_2Cl_2 , filtered through celite, and the filtrate concentrate. The crude residue was purified through a silica gel column using hexane and ethyl acetate (60%) as eluent to give products **3aa** in 78% yields.

Procedure for removal of directing group

An oven-dried 15-mL pressure tube equipped with a magnetic stir bar was charged with the **3aa** 57 mg (0.1 mmol, 1.0 equiv), CH_2Cl_2 (1 mL), and cooled to 0 °C. Then methyl trifluoromethanesulfonate, 33 mg (0.2 mmol, 2.0 equiv) was added dropwise to the solution. and the resulting solution was stirred for 20 h at room temperature under an N₂ atmosphere. Then, the solvent was removed under reduced pressure, the residue was dissolved in MeOH (1.0 mL), and NaBH₄ 19 mg (0.5 mmol, 5.0 equiv) was added in portions at 0 °C, and the solution was stirred at room temperature for 12 h. Then, the reaction mixture was diluted with CH_2Cl_2 , filtered through celite, and the filtrate concentrate. The crude residue was purified through a silica gel column using hexane and ethyl acetate (50%) as eluent to give products **4aa** in 55% (27 mg) yields.

Sample Preparation for Crystal Growth of 3ab:

The compound **3ab** was dissolved in 1,2-dichloromethane (DCM) and methanol in a beaker and kept for slow evaporation at room temperature. The formation of crystals was observed after seven days. The single crystals were then subjected to X-ray diffraction analysis.

Single-crystal data were collected on a Bruker Axs Kappa Apex2 diffractometer, with graphitemonochromated Mo-K α ($\lambda = 0.71073$ Å) radiation at 293 K. The data was integrated using SAINT PLUS and absorption correction was done using the multi-scan absorption correction method (SADABS). The structure was solved by the direct method (SHELXS-97) as well as by using SHELXT-2014 and refined using the SHELXL-2018/3 program and WinGX v1.70.01 programs packages. All non-hydrogen atoms were refined anisotropically. These data were deposited with Cambridge Crystallographic Data Centre with the following numbers: **CCDC 2328534**

ORTEP Diagram of Compounds 3ab (CCDC No. 2328534).

Crystal data and structure refinement for **3ab**.

Identification code Empirical formula	3ab C ₃₅ H ₃₀ N ₂ O ₅		
Formula weight	558.61		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 11.1034(4) Å	$a = 70.9583(19)^{\circ}$.	
	b = 11.1882(5) Å	b= 87.9029(19)°.	
	c = 12.5867(5) Å	g = 71.6281(18)°.	
Volume	1398.89(10) Å ³		
Z	2		
Density (calculated)	1.326 Mg/m ³		
Absorption coefficient	0.089 mm ⁻¹		
F(000)	588		
Crystal size	0.230 x 0.150 x 0.120 mm ³		
Theta range for data collection	1.938 to 25.000°.		
Index ranges	-13<=h<=13, -13<=k<=13, -14<=l<=14		
Reflections collected	18573		
Independent reflections	4922 [R(int) = 0.0455]		
Completeness to theta	25.000° 99.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4922 / 15 / 381		
Goodness-of-fit on F ²	1.136		
Final R indices [I>2sigma(I)]	R1 = 0.0483, wR2 = 0.1074		
R indices (all data)	R1 = 0.0886, $wR2 = 0.1245$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.257 and -0.290 e.Å ⁻³		

References

- (a) Mohanty, S. R.; Prusty, N.; Gupta, L.; Biswal, P.; Ravikumar, P. C. Cobalt(III)-Catalyzed C-6 Alkenylation of 2-Pyridones by Using Terminal Alkyne with High Regioselectivity. *J. Org. Chem.* 2021, 86, 14, 9444–9454.
- (a) Bao, M.; Lu, W.; Su, H.; Qiu, L.; Xu, X. A convergent formal [4 + 2] cycloaddition of 1,6-diynes and 2. benzyl azides: construction of spiro-polyheterocycles. Org. Biomol. Chem. 2018, 16, 3258-3265. (b) Bai, L.; Yuan, Y.; Liu, J.; Wu, J.; Han, L.; Wang, H.; Wang, Y.; Luan, X. Palladium(0)-Catalyzed Intermolecular Carbocyclization of (1,n)-Diynes and Bromophenols: An Efficient Route to Tricyclic Scaffolds. Angew. Chem., Int. Ed. 2016, 55, 6946- 6950. (c) Richard, V.; Ipouck, M.; Mérel, D. S.; Gaillard, S.; Whitby, R. J.; Witulski, B.; Renaud, J. L. Iron(ii)-catalysed [2+2+2] cycloaddition for pyridine ring construction. Chem. Commun. 2014, 50, 593-595. (d) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. Ruthenium-Catalyzed Transfer Oxygenative Cyclization of α, ω -Diynes: Unprecedented [2 + 2 + 1] Route to Bicyclic Furans via Ruthenacyclopentatriene. J. Am. Chem. Soc. 2012, 134, 7660-7663. (e) Wilking, M.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U. Enantioselective, Desymmetrizing Bromolactonization of Alkynes. J. Am. Chem. Soc. 2013, 135, 8133-8136. (f) Hu, Y.; Yao, H.; Sun, Y.; Wan, J.; Lin, X.; Zhu, T. Efficient Activation of Aromatic C-H Bonds for Fused Polyaromatic Hydrocarbon Construction. Chem. Eur. J. 2010, 16, 7635-7641. (g) Akhmetov, V.; Feofanov, M.; Sharapa, D. I.; Amsharov, K. Alumina-Mediated π-Activation of Alkynes. J. Am. Chem. Soc. 2021, 143, 15420-15426.
- 3. Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491.

Spectral Data of all Compounds:

N-(3-(4-fluorophenyl)prop-2-yn-1-yl)-*N*-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamid (2q).

Brown semi-solid; eluent (10% ethyl acetate in hexane). The reaction scale is 1.5 mmol (**S3**), 388 mg was isolated and the yield is 58%.¹**H NMR (500 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.1 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.09 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.05 (d, *J* = 8.6 Hz, 2H), 6.85 (t, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.7 Hz, 2H), 4.33 (s, 4H), 3.69 (s, 3H), 2.23 (s, 3H). ¹³C{¹H} NMR (**126 MHz, CDCl₃**) δ 163.44, 161.45, 159.68, 143.68, 135.41, 133.55, 133.48, 133.05, 129.47, 127.91, 118.27, 118.24, 115.44, 115.27, 114.15, 113.73, 85.70, 84.53, 81.52, 80.08, 77.26, 77.00, 76.75, 55.19, 37.54, 37.31, 21.33.

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for C₂₆H₂₂FNO₃SH 448.1377; Found 448.1391.

5,9-Diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (3aa).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 109 mg was isolated and the yield is 96%. Mp: 246–247 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 5.3 Hz, 1H), 7.51 (dd, J = 9.0, 6.1 Hz, 3H), 7.44 (p, 3H), 7.24 – 7.13 (m, 5H), 7.01 (dt, J = 20.0, 7.5 Hz, 2H), 6.93 – 6.82 (m, 2H), 6.75 (dd, J = 11.9, 6.8 Hz, 2H), 6.47 (d, J = 9.8 Hz, 2H), 4.44 – 4.22 (m, 3H), 3.91 (d, J = 15.0 Hz, 1H), 2.32 (s, 3H). ³C{¹H} NMR (101 MHz, CDCl₃) δ 163.2, 152.8, 148.6, 143.8, 139.7, 139.2, 138.4, 137.3, 136.4, 136.0, 134.9, 133.2, 130.2, 129.8, 129.3, 128.9, 128.6, 128.4, 127.8, 127.3, 126.9, 125.9, 122.6, 121.3, 120.8, 54.3, 53.5, 21.4.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{35}H_{27}N_3O_3SH 570.1807$; Found 570.1832. **1-(5-Methylpyridin-2-yl)-5,9-diphenyl-7-tosyl-1,6,7,8-tetrahydro-2***H***pyrrolo**[**3,4-***g*]**quinolin-2-one (3ba).**

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1b**), 108 mg was isolated and the yield is 93%. Mp: 248–249 °C; ¹**H NMR (400 MHz, CDCl₃)** δ 8.06 (s, 1H), 7.64 – 7.47 (m, 6H), 7.28 (d, *J* = 8.3 Hz, 4H), 7.10 (d, *J* = 5.8 Hz, 2H), 6.99 (t, *J* = 7.6 Hz, 2H), 6.79 (d, *J* = 4.9 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 6.55 (t, *J* = 10.0 Hz, 2H), 4.47 (d, *J* = 13.6 Hz, 1H), 4.41 – 4.21 (m, 2H), 3.98 (d, *J* = 14.8 Hz, 1H), 2.41 (s, 3H), 2.18 (s, 3H). ¹³C{¹H} NMR (**101 MHz, CDCl₃**) δ 163.3, 150.2, 148.6, 143.8, 139.8, 139.3, 138.4, 137.3, 137.1, 136.1, 135.0, 133.1, 132.5, 130.0, 129.8, 129.3, 129.0, 128.9, 128.8, 128.4, 128.1, 127.7, 127.3, 126.6, 125.6, 121.3, 120.8, 54.3, 53.5, 21.5, 17.8.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{36}H_{29}N_3O_3SH$ 584.2002; Found 584.1990.

4-Methyl-5,9-diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3ca).

Yellow semi-solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1c), 103 mg was isolated and the yield is 88%. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, *J* = 4.8 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 2H), 7.46 (d, *J* = 4.5 Hz, 3H), 7.31 – 7.04 (m, 7H), 6.89 (dt, *J* = 26.0, 9.4 Hz, 3H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.44 (d, *J* = 14.8 Hz, 2H), 4.37 (dd, *J* = 30.8, 14.4 Hz, 2H), 4.14 (d, *J* = 14.0 Hz, 1H), 3.99 (d, *J* = 14.8 Hz, 1H), 2.41 (s, 3H), 1.77 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.5, 153.3, 149.7, 148.1, 143.7, 140.4, 140.0, 138.3, 137.9, 136.1, 134.9, 133.3, 132.0, 128.8, 128.6, 128.5, 128.2, 127.9, 127.4, 127.3, 126.9, 126.8, 123.4, 122.1, 122.0, 54.3, 54.0, 25.0, 21.4.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₆H₂₉N₃O₃SH 584.2002; Found 584.2019.

4-Chloro-5,9-diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (3da).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1d), 111 mg was isolated and the yield is 92%. Mp: 165–166 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 5.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 2H), 7.44 (q, J = 3.0 Hz, 3H), 7.29 – 7.26 (m, 2H), 7.21 (tt, J = 4.5, 2.6 Hz, 3H), 7.14 (d, J = 8.1 Hz, 1H), 7.09 (t, J = 7.3 Hz, 1H), 6.98 – 6.90 (m, 2H), 6.84 (d, J = 7.6 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.75 (s, 1H), 6.45 (d, J = 7.4 Hz, 1H), 4.47 – 4.30 (m, 2H), 4.18 (d, J = 14.1 Hz, 1H), 3.99 (d, J = 15.0 Hz, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.2, 152.7, 148.2, 145.8, 143.8, 140.4, 140.0, 138.6, 137.3, 136.4, 134.9, 133.2, 133.1, 129.8, 128.8, 128.5, 128.3, 128.0, 127.35, 127.33, 127.1, 127.0, 123.5, 122.5, 119.3, 54.3, 54.0, 21.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₅H₂₆ClN₃O₃SH 604.1456; Found 604.1445.

4-Fluoro-5,9-diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3ea).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1e), 105 mg was isolated and the yield is 89%. Mp: 169–170 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 4.7 Hz, 1H), 7.56 (dd, J = 18.1, 8.2 Hz, 5H), 7.29 (dt, J = 16.6, 9.0 Hz, 6H), 7.10 (dt, J = 20.6, 7.8 Hz, 2H), 6.96 (q, J = 6.3 Hz, 2H), 6.84 (dd, J = 21.7, 7.7 Hz, 2H), 6.54 (d, J = 7.6 Hz, 1H), 4.41 (dt, J = 27.5, 14.1 Hz, 3H), 3.99 (d, J = 14.8 Hz, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.4, 157.2, 151.9, 151.1, 148.6, 143.8, 138.9, 138.8, 136.9, 136.7, 136.3, 135.7, 134.7, 134.6, 133.0, 131.0, 129.8, 129.2, 129.1, 128.8, 128.7, 128.6, 127.9, 127.8, 127.3, 127.1, 127.0, 126.1, 123.0, 119.51, 119.45, 117.8, 117.6, 54.2, 53.5, 21.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -128.40 (s, 1F).

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for $C_{35}H_{26}FN_3O_3SH$ 588.1752; Found 588.1730.

4-(Benzyloxy)-5,9-diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3fa).

Yellow Semi-solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1f**), 116 mg was isolated, and the yield is 86%. ¹**H NMR (500 MHz, CDCl₃)** δ 8.24 (s, 1H), 7.54 (d, J = 7.9 Hz, 2H), 7.28 – 7.12 (m, 9H), 7.06 (q, J = 7.1, 6.7 Hz, 4H), 6.98 – 6.75 (m, 6H), 6.46 (s, 1H), 5.97 (s, 1H), 4.71 (s, 2H), 4.37 (d, J = 14.3 Hz, 1H), 4.25 (d, J = 12.5 Hz, 1H), 4.14 (d, J = 12.9 Hz, 1H), 3.97 (d, J = 14.8 Hz, 1H), 2.40 (s, 3H). ¹³C{¹H} NMR (**126 MHz, CDCl₃**) δ 164.6, 164.4, 153.4, 143.7, 140.4, 140.3, 139.3, 137.7, 136.1, 134.1, 133.9, 133.4, 132.2, 129.8, 128.9, 128.6, 128.3, 128.1, 128.0, 127.8, 127.3, 126.94, 126.90, 126.6, 117.1, 97.7, 71.0, 54.3, 54.0, 21.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₄₂H₃₃N₃O₄SH 676.2265; Found 676.2272.

3-Methyl-5,9-diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3ga).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1g**), 112 mg was isolated and the yield is 96%. Mp: 170–171 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.25 (dd, J = 4.9, 1.9 Hz, 1H), 7.58 (d, J = 8.3 Hz, 2H), 7.57 – 7.48 (m, 3H), 7.44 (d, J = 1.4 Hz, 1H), 7.30 – 7.26 (m, 4H), 7.25 – 7.21 (m, 1H), 7.11 (t, J = 7.3 Hz, 1H), 7.08 – 7.04 (m, 1H), 7.00 – 6.93 (m, 1H), 6.91 (ddd, J = 7.4, 4.9, 1.1 Hz, 1H), 6.85 (d, J = 7.9 Hz, 1H), 6.82 (d, J = 7.3 Hz, 1H), 6.55 (d, J = 7.6 Hz, 1H), 4.46 (d, J = 13.5 Hz, 1H), 4.39 – 4.27 (m, 2H), 3.99 (d, J = 14.6 Hz, 1H),

2.41 (s, 3H), 2.09 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.9, 153.1, 148.5, 143.7, 138.3, 138.2, 137.4, 136.4, 136.3, 134.9, 134.0, 133.3, 130.0, 129.8, 129.7, 129.4, 129.0, 128.95, 128.94, 128.5, 128.3, 127.7, 127.3, 126.8, 125.5, 122.5, 120.9, 54.3, 53.6, 21.4, 17.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₆H₂₉N₃O₃SH 584.2002; Found 584.1999.

3-Chloro-5,9-diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3ha).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1h**), 100 mg was isolated and the yield is 83%. Mp: 250–251 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 4.7 Hz, 1H), 7.78 (s, 1H), 7.56 (q, J = 8.6 Hz, 5H), 7.31 – 7.23 (m, 5H), 7.09 (q, J = 9.8, 7.4 Hz, 2H), 6.95 (d, J = 6.8 Hz, 2H), 6.84 (dd, J = 20.0, 7.6 Hz, 2H), 6.53 (d, J = 7.7 Hz, 1H), 4.51 – 4.29 (m, 3H), 3.99 (d, J = 14.9 Hz, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.3, 152.6, 148.5, 143.9, 139.9, 138.1, 136.9, 136.6, 135.8, 135.6, 134.4, 133.1, 130.9, 129.8, 129.3, 129.2, 129.1, 128.90, 128.86, 128.7, 127.9, 127.4, 127.2, 127.1, 126.6, 126.0, 122.9, 120.3, 54.3, 53.5, 21.5.

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for $C_{35}H_{26}ClN_3O_3SH$ 604.1456; Found 604.1466.

5,9-Diphenyl-1-(pyridin-2-yl)-7-tosyl-3-(trifluoromethyl)-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (3ia).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1i), 116 mg was isolated and the yield is 91%. Mp: 155–156 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 4.9 Hz, 1H), 7.94 (s, 1H), 7.58 – 7.41 (m, 5H), 7.18 (dt, J = 15.1, 7.8 Hz, 5H), 7.01 (dt, J = 14.6, 7.5 Hz, 2H), 6.93 – 6.83 (m, 2H), 6.79 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 7.5 Hz, 1H), 6.46 (d, J =

7.7 Hz, 1H), 4.57 - 4.24 (m, 3H), 3.93 (d, J = 15.3 Hz, 1H), 2.32 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 158.9, 151.9, 148.6, 143.9, 142.5, 140.3, 138.3, 138.2, 136.6, 136.5, 135.0, 133.1, 131.1, 129.8, 129.3, 129.2, 129.0, 128.83, 128.80, 128.7, 127.9, 127.4, 127.32, 127.27, 126.1, 123.0, 118.6, 54.3, 53.4, 21.4.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{36}H_{26}F_3N_3O_3SH$ 638.1720; Found 638.1708.

2-Oxo-5,9-diphenyl-1-(pyridin-2-yl)-7-tosyl-2,6,7,8-tetrahydro-1*H*-pyrrolo[3,4-g]quinoline-3-carbonitrile (3ja).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1j**), 48 mg was isolated and the yield is 40%. Mp: 232–233 °C; ¹**H NMR (400 MHz, CDCl₃)** δ 8.25 (d, *J* = 4.8 Hz, 1H), 8.11 (s, 1H), 7.58 (d, *J* = 6.9 Hz, 5H), 7.31 – 7.24 (m, 5H), 7.10 (dd, *J* = 11.1, 3.8 Hz, 2H), 6.97 (t, *J* = 6.4 Hz, 2H), 6.83 (dd, *J* = 15.5, 7.7 Hz, 2H), 6.52 (d, *J* = 7.7 Hz, 1H), 4.53 – 4.31 (m, 3H), 4.00 (d, *J* = 15.5 Hz, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.5, 151.6, 148.7, 146.9, 144.0, 143.8, 140.4, 136.9, 136.4, 136.2, 134.6, 133.0, 131.6, 129.9, 129.4, 129.33, 129.32, 129.2, 128.8, 128.76, 128.72, 128.68, 128.1, 127.5, 127.4, 127.1, 126.5, 123.3, 119.5, 114.7, 106.8, 54.3, 53.3, 21.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₆H₂₆N₄O₃SH 595.1798; Found 595.1811.

7,11-diphenyl-6-(pyridin-2-yl)-9-tosyl-6,8,9,10-tetrahydro-5*H*-pyrrolo[3,4*b*]phenanthridin-5-one (3ka).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1k), 117 mg was isolated and the yield is 94%. Mp: 247–248 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 7.8 Hz, 1H), 8.23 (d, J = 4.8 Hz, 1H), 7.59 (d, J = 7.8 Hz, 2H), 7.57 – 7.48 (m, 3H), 7.38 (t, J = 7.2 Hz, 2H), 7.31 – 7.16 (m, 7H), 7.09 (t, J = 7.1 Hz, 2H), 6.89 (d, J = 8.4 Hz, 3H), 6.49 (d, J =

12.2 Hz, 1H), 4.55 - 4.27 (m, 3H), 4.08 (d, J = 19.6 Hz, 1H), 2.40 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.8, 154.0, 147.9, 143.7, 140.3, 138.1, 138.0, 137.1, 136.1, 134.5, 134.2, 133.2, 132.4, 131.8, 129.83, 129.77, 128.6, 128.2, 127.60, 127.58, 127.4, 127.3, 127.1, 126.8, 126.7, 121.8, 120.7, 54.2, 21.4.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₉H₂₉N₃O₃SH 620.2002; Found 620.2025.

Diethyl 2-oxo-5,9-diphenyl-1-(pyridin-2-yl)-1,2,6,8-tetrahydro-7*H*-cyclopenta[*g*]quinoline-7,7-dicarboxylate (3ab).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1a**), 88 mg was isolated and the yield is 79%. Mp: 178–179 °C; ¹H NMR (**400 MHz, CDCl₃**) δ 8.30 (s, 1H), 7.64 (d, J = 10.2 Hz, 1H), 7.52 (d, J = 7.8 Hz, 2H), 7.47 (d, J = 7.5 Hz, 1H), 7.37 (d, J = 6.7 Hz, 2H), 7.24 (t, J = 9.0 Hz, 1H), 7.14 – 7.08 (m, 1H), 7.04 (d, J = 7.1 Hz, 1H), 6.90 (dt, J = 27.5, 8.8 Hz, 4H), 6.66 (d, J = 7.5 Hz, 1H), 6.54 (d, J = 9.9 Hz, 1H), 4.09 (dd, J = 25.3, 8.2 Hz, 4H), 3.52 – 3.32 (m, 3H), 2.91 (d, J = 17.7 Hz, 1H), 1.15 (d, J = 24.9 Hz, 6H). ¹³C{¹H} NMR (**101 MHz, CDCl₃**) δ 171.2, 170.9, 163.5, 153.0, 148.5, 143.9, 139.0, 138.8, 138.4, 137.2, 136.3, 135.9, 134.0, 129.9, 129.8, 129.3, 129.2, 128.7, 128.6, 128.3, 127.8, 127.5, 127.4, 127.1, 126.3, 122.4, 120.3, 120.3, 61.7, 61.6, 59.7, 41.0, 39.8, 138.

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for $C_{35}H_{30}N_2O_5H$ 559.2227; Found 559.2216.

5,9-Diphenyl-1-(pyridin-2-yl)-6,8-dihydrospiro[cyclopenta[g]quinoline-7,9'-fluoren]-2(1*H*)-one (3ac).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 98 mg was isolated and the yield is 87%. Mp: 266–167 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J =

4.9 Hz, 1H), 7.67 (d, J = 9.8 Hz, 1H), 7.52 (d, J = 7.5 Hz, 2H), 7.29 (dd, J = 23.6, 7.4 Hz, 6H), 7.16 (dt, J = 15.5, 7.8 Hz, 4H), 7.08 – 6.97 (m, 2H), 6.93 (d, J = 7.6 Hz, 1H), 6.82 (td, J = 8.1, 3.7 Hz, 4H), 6.72 (t, J = 7.5 Hz, 1H), 6.53 (d, J = 9.7 Hz, 2H), 3.19 (dt, J = 49.3, 16.2 Hz, 3H), 2.66 (d, J = 17.1 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.6, 161.7, 153.2, 152.2, 151.2, 148.6, 146.9, 139.5, 139.3, 139.0, 138.8, 137.4, 136.8, 136.3, 136.2, 129.9, 129.4, 129.2, 128.60, 128.56, 128.5, 128.1, 127.7, 127.6, 127.6, 127.5, 127.3, 126.1, 122.5, 122.3, 121.7, 120.4, 120.3, 119.7, 56.7, 45.9, 44.7.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₄₁H₂₈N₂OH 565.2274; Found 565.2282.

5,9-Diphenyl-1-(pyridin-2-yl)-6,8-dihydrospiro[cyclopenta[g]quinoline-7,2'-indene]-1',2,3'(1*H*)-trione (3ad).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1a**), 101 mg was isolated and the yield is 93%. Mp: 171–172 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 5.0 Hz, 1H), 7.79 (dd, J = 11.8, 6.0 Hz, 2H), 7.72 – 7.64 (m, 2H), 7.59 (d, J = 9.8 Hz, 1H), 7.38 (t, J = 7.4 Hz, 2H), 7.29 (q, J = 8.5, 8.0 Hz, 3H), 7.19 (t, J = 7.8 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.84 (dp, J = 21.2, 7.0 Hz, 5H), 6.57 (d, J = 7.8 Hz, 1H), 6.47 (d, J = 9.8 Hz, 1H), 3.16 – 2.97 (m, 3H), 2.60 (d, J = 17.4 Hz, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 202.3, 202.2, 163.5, 152.6, 148.2, 144.6, 141.1, 141.0, 139.2, 138.8, 138.2, 137.1, 136.8, 135.9, 135.8, 134.5, 129.7, 129.6, 129.3, 129.2, 128.6, 128.5, 128.1, 127.9, 127.8, 127.6, 127.4, 126.9, 126.3, 123.4, 122.7, 120.5, 120.1, 57.9, 41.1, 40.2.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₇H₂₄N₂O₃H 545.1860; Found 545.1859.

1-(Pyridin-2-yl)-5,9-di-p-tolyl-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4g]quinolin-2-one (3ae).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1a**), 100 mg was isolated and the yield is 84%. Mp: 181–182 °C; ¹**H NMR (400 MHz, CDCl₃)** δ 8.24 (d, *J* = 4.8 Hz, 1H), 7.63 (d, *J* = 10.0 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 7.5 Hz, 2H), 7.25 (dd, *J* = 17.3, 8.1 Hz, 3H), 7.14 (d, *J* = 7.5 Hz, 2H), 6.92 (q, *J* = 5.6, 4.7 Hz, 2H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 6.68 (d, *J* = 7.8 Hz, 1H), 6.54 (d, *J* = 9.8 Hz, 1H), 6.41 (d, *J* = 7.8 Hz, 1H), 4.51 – 4.29 (m, 3H), 4.00 (d, *J* = 14.8 Hz, 1H), 2.47 (s, 3H), 2.41 (s, 3H), 2.26 (s, 3H). ¹³C{¹H} NMR (**101 MHz, CDCl**₃) δ 163.4, 152.9, 148.5, 143.7, 139.8, 139.4, 138.6, 138.2, 136.6, 136.2, 134.9, 134.3, 133.2, 133.0, 130.2, 129.8, 129.7, 129.5, 129.3, 129.2, 128.8, 128.8, 128.7, 128.4, 127.3, 125.8, 122.5, 121.1, 120.9, 54.3, 53.6, 21.5, 21.3, 21.0. **HRMS (ESI-TOF)** m/z: [M + H]⁺ Calcd for C₃₇H₃₁N₃O₃SH 598.2159; Found 598.2130.

5,9-Bis(4-Ethylphenyl)-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3af).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1a**), 114 mg was isolated and the yield is 91%. Mp: 168–169 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 4.9 Hz, 1H), 7.67 – 7.56 (m, 3H), 7.35 (d, J = 7.6 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.19 (dd, J = 18.3, 7.6 Hz, 3H), 6.96 – 6.88 (m, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.54 (d, J = 9.8 Hz, 1H), 6.44 (d, J = 7.9 Hz, 1H), 4.53 – 4.30 (m, 3H), 4.02 (d, J = 14.8 Hz, 1H), 2.77 (q, J = 7.7 Hz, 2H), 2.55 (q, J = 7.6 Hz, 2H), 2.41 (s, 3H), 1.38 – 1.31 (m, 3H), 1.22 (t, J = 7.5 Hz, 3H). ¹³C{¹H}</sup> NMR (101 MHz, CDCl₃) δ 163.4, 152.9, 148.5,

144.4, 143.7, 142.9, 139.8, 139.4, 138.6, 136.3, 134.9, 134.5, 133.25, 133.18, 130.2, 129.8, 129.3, 128.89, 128.87, 128.86, 128.4, 128.3, 128.1, 127.4, 127.35, 127.28, 125.8, 122.5, 121.1, 120.9, 54.4, 53.6, 28.6, 28.5, 21.5, 15.8, 15.4. **HRMS (ESI-TOF)** m/z: $[M + H]^+$ Calcd for C₃₉H₃₅N₃O₃SH 626.2472; Found 626.2499.

5,9-Bis(4-(*tert*-butyl)phenyl)-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3ag).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 113 mg was isolated and the yield is 83%. Mp: 174–175 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 4.9 Hz, 1H), 7.63 (ddd, J = 14.6, 9.0, 1.8 Hz, 3H), 7.53 (d, J = 7.9 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 7.19 (tt, J = 7.8, 3.7 Hz, 3H), 7.11 (d, J = 8.1 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.88 (t, J = 6.2 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.73 (d, J = 8.2 Hz, 1H), 6.54 (dd, J = 9.9, 1.8 Hz, 1H), 6.46 (d, J = 8.2 Hz, 1H), 4.52 (d, J = 13.6 Hz, 1H), 4.43 – 4.25 (m, 2H), 4.06 (d, J = 14.8 Hz, 1H), 2.41 (s, 3H), 1.42 (s, 9H), 1.29 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.3, 152.8, 151.2, 149.5, 148.5, 143.7, 139.7, 139.3, 138.7, 136.2, 134.9, 134.1, 133.1, 132.9, 130.2, 129.7, 129.0, 128.6, 128.5, 127.4, 127.3, 125.8, 125.7, 125.6, 125.5, 124.5, 122.4, 121.0, 120.9, 54.4, 53.6, 34.7, 34.3, 31.3, 31.1, 21.4.

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for C₄₃H₄₃N₃O₃SH 682.3098; Found 682.3109.

5,9-Bis(4-methoxyphenyl)-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3ah).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 99 mg was isolated and the yield is 79%. Mp: 182–183 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 5.2 Hz, 1H), 7.62 – 7.50 (m, 3H), 7.31 – 7.16 (m, 4H), 7.11 (d, J = 7.9 Hz, 2H), 6.98 (d, J = 8.2 Hz, 2H), 6.87 (t, J = 6.3 Hz, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 8.8 Hz, 1H), 6.48 (d, J = 10.0 Hz, 1H), 6.40 (s, 1H), 4.45 – 4.23 (m, 3H), 3.94 (d, J = 15.0 Hz, 1H), 3.84 (s, 3H), 3.70 (s, 3H), 2.34 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.4, 159.6, 158.3, 153.0, 148.6, 143.8, 140.1, 139.6, 138.6, 136.4, 134.7, 133.3, 130.7, 130.5, 130.14, 130.07, 130.0, 129.6, 128.1, 127.4, 127.2, 125.4, 122.6, 121.1, 121.1, 114.4, 114.2, 113.3, 55.4, 55.3, 54.4, 53.6, 21.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₇H₃₁N₃O₅SH 630.2057; Found 630.2021.

5,9-Bis(4-bromophenyl)-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-g]quinolin-2-one (3ai).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 82 mg was isolated and the yield is 57%. Mp: 190–191 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 4.2 Hz, 1H), 7.68 (d, J = 6.3 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 9.8 Hz, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.32 – 7.25 (m, 3H), 7.18 – 7.08 (m, 3H), 7.04 (t, J = 6.3 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.1 Hz, 1H), 6.58 (d, J = 9.9 Hz, 1H), 6.44 (d, J = 8.2 Hz, 1H), 4.48 – 4.25 (m, 3H), 3.98 (d, J = 14.8 Hz, 1H), 2.42 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.0,

152.7, 148.8, 144.0, 139.6, 139.3, 138.0, 136.8, 135.9, 134.7, 134.1, 133.1, 132.4, 132.3, 132.3, 131.8, 131.7, 131.0, 130.7, 130.6, 130.5, 130.3, 129.9, 127.39, 127.37, 124.9, 123.0, 122.9, 121.8, 121.4, 120.7, 54.1, 53.3, 21.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{35}H_{25}Br_2N_3O_3SH$ 726.0056; Found 726.0082.

5,9-Bis(4-chlorophenyl)-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (3aj).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 102 mg was isolated and the yield is 80%. Mp: 179–180 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.27 (dd, J = 5.0, 1.9 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.54 (dd, J = 12.7, 9.1 Hz, 3H), 7.37 (td, J = 7.7, 1.9 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 7.6 Hz, 1H), 7.02 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 6.96 (s, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.77 (s, 1H), 6.58 (d, J = 9.9 Hz, 1H), 6.52 (s, 1H), 4.35 (dd, J = 41.8, 19.4 Hz, 3H), 3.98 (d, J = 14.9 Hz, 1H), 2.41 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 163.0, 152.7, 148.7, 143.9, 139.7, 139.3, 137.9, 136.7, 135.4, 134.8, 134.3, 134.0, 133.21, 133.16, 130.6, 130.3, 129.8, 129.4, 128.8, 127.35, 127.31, 124.9, 122.9, 121.7, 120.8, 54.1, 53.3, 21.4.

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for $C_{35}H_{25}Cl_2N_3O_3SH$ 638.1066; Found 638.1084.

5,9-Bis(4-fluorophenyl)-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (3ak).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 110 mg was isolated and the yield is 91%. Mp: 170–171 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.58 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 7.29 (dt, J = 16.8, 9.2 Hz, 6H), 7.10 (dt, J = 16.6, 8.0 Hz, 2H), 6.96 (s, 2H), 6.83 (dd, J = 21.0, 8.0 Hz, 2H), 6.54 (d, J = 7.7 Hz, 1H), 4.41 (dt, J = 28.8, 14.0 Hz, 3H), 3.99 (d, J = 15.0 Hz, 1H), 2.40 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 157.4, 157.2, 151.9, 151.1, 148.6, 143.8, 138.9, 136.9, 136.7, 136.3, 135.7, 134.7, 134.6, 133.0, 131.0, 129.8, 129.2, 129.1, 128.9, 128.7, 128.6, 127.8, 127.3, 127.1, 127.0, 126.1, 123.0, 119.5, 119.4, 117.8, 117.6, 54.2, 53.5, 21.4. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.52 (s, 1F), -113.95 (s, 1F).

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for $C_{35}H_{25}F_2N_3O_3SH$ 606.1657; Found 606.1647.

1-(Pyridin-2-yl)-7-tosyl-5,9-bis(4-(trifluoromethyl)phenyl)-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (3al).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 59 mg was isolated and the yield is 42%. Mp: 245–246 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 4.8 Hz, 1H), 7.83 (d, J = 7.7 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 9.9 Hz, 1H), 7.43 (d, J = 8.1 Hz, 3H), 7.29 (dd, J = 14.6, 6.8 Hz, 4H), 7.06 – 6.91 (m, 2H), 6.86 (d, J = 8.0 Hz, 1H), 6.73 (s, 1H), 6.60 (d, J = 10.0 Hz, 1H), 4.35 (dd, J = 31.2, 15.9 Hz, 3H), 3.98 (d, J = 15.0 Hz,

1H), 2.42 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.9, 152.5, 148.8, 144.1, 140.7, 139.6, 139.5, 139.2, 137.7, 136.8, 134.0, 133.0, 131.1, 130.3, 129.9, 129.5, 129.2, 127.44, 127.39, 126.2, 125.5, 125.0, 124.9, 123.1, 122.3, 122.1, 120.7, 54.0, 53.2, 21.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.71 (s, 3F, CF₃), -62.97 (s, 3F, CF₃).

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{35}H_{25}F_2N_3O_3SH$ 606.1657; Found 606.1647.

7-((4-nitrophenyl)sulfonyl)-5,9-diphenyl-1-(pyridin-2-yl)-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (3am).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (**1a**), 86 mg was isolated and the yield is 72%. Mp: 247–248 °C; ¹H NMR (**500** MHz, CDCl₃) δ 8.33 (d, J = 8.2 Hz, 2H), 8.25 (d, J = 4.8 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 9.8 Hz, 1H), 7.53 (dd, J = 12.3, 7.1 Hz, 3H), 7.27 (t, J = 8.5 Hz, 3H), 7.13 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.4 Hz, 1H), 6.95 – 6.91 (m, 1H), 6.84 (t, J = 9.8 Hz, 2H), 6.57 (d, J = 9.7 Hz, 2H), 4.44 (dd, J = 34.9, 17.1 Hz, 3H), 4.02 (d, J = 14.7 Hz, 1H). ¹³C{¹H} NMR (**126** MHz, CDCl₃) δ 163.2, 152.7, 150.2, 148.6, 142.5, 139.5, 138.8, 138.3, 137.1, 136.5, 135.9, 135.2, 129.4, 129.3, 129.2, 129.0, 128.9, 128.8, 128.7, 128.6, 128.4, 127.9, 127.3, 127.1, 126.0, 124.5, 122.7, 121.7, 121.1, 54.4, 53.7.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₄H₂₄N₄O₅SH 601.1540; Found 601.1539.

5,9-diphenyl-1-(pyridin-2-yl)-1,6,7,8-tetrahydro-2*H*-cyclopenta[g]quinolin-2-one (3an).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 20 mg was isolated and the yield is 24%. Mp: 172–173 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, J = 4.9 Hz, 1H), 7.65 (dd, J = 9.9, 1.8 Hz, 1H), 7.51 (t, J = 7.4 Hz, 2H), 7.44 (dd, J = 8.3, 6.3 Hz, 1H), 7.36 (d, J = 7.1 Hz, 2H), 7.24 (t, J = 6.7 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.90 (dt, J = 21.7, 6.1 Hz, 4H), 6.67 (d, J = 7.6 Hz, 1H), 6.52 (dd, J = 9.8, 1.8 Hz, 1H), 2.75 (td, J = 7.4, 1.8 Hz, 3H), 2.30 (dt, J = 16.8, 7.5 Hz, 1H), 1.89 (dt, J = 20.3, 7.6 Hz, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.8, 153.4, 148.5, 148.3, 139.4, 138.5, 138.2, 138.1, 136.2, 135.7, 130.1, 129.5, 128.6, 128.4, 128.1, 127.6, 127.5, 127.4, 127.1, 126.1, 122.3, 119.8, 33.8, 32.5, 24.9.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₉H₂₂N₂OH 415.1805; Found 415.1825.

5,9-Diphenyl-1-(pyridin-2-yl)-6,8-dihydrofuro[3,4-g]quinolin-2(1*H*)-one (3ap).

Brown Semi-solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (1a), 72 mg was isolated, and the yield is 86%. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (dd, J = 5.3, 1.9 Hz, 1H), 7.72 (d, J = 9.9 Hz, 1H), 7.52 (t, J = 7.2 Hz, 2H), 7.47 (t, J = 7.4 Hz, 1H), 7.37 (d, J = 1.7 Hz, 1H), 7.35 (d, J = 1.2 Hz, 1H), 7.26 (td, J = 7.5, 1.9 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H), 7.04 (t, J = 7.2 Hz, 2H), 4.91 (d, J = 14.1 Hz, 1H), 4.45 (d, J = 13.7 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.5, 152.9, 148.7, 143.2, 139.1, 138.7, 137.9, 136.7, 136.4, 133.5, 133.3, 129.6, 129.1, 129.0, 128.9, 128.8, 128.3, 128.2, 127.6, 127.4, 126.7, 124.6, 122.6, 120.9, 120.6, 74.2, 73.6.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₈H₂₀N₂O₂H 417.1598; Found 417. 1617.

5,9-Diphenyl-1-(pyridin-2-yl)-7-tosyl-1,6,7,8-tetrahydro-4*H*-pyrrolo[3,4g]quinolin-4-one (3la).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (11), 74 mg was isolated and the yield is 65%. Mp: 172–173 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 4.8 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.45 (d, J = 7.4 Hz, 1H), 7.35 (t, J = 7.4 Hz, 2H), 7.32 – 7.25 (m, 2H), 7.20 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 7.4 Hz, 2H), 7.00 (d, J = 5.9 Hz, 3H), 6.84 (t, J = 6.3 Hz, 1H), 6.75 (d, J = 6.7 Hz, 2H), 6.68 (d, J = 8.0 Hz, 1H), 6.06 (d, J = 7.8 Hz, 1H), 4.25 (d, J = 6.6 Hz, 4H), 2.32 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 178.5, 156.0, 148.9, 143.7, 143.5, 140.7, 140.3, 140.2, 138.5, 137.1, 136.8, 133.4, 133.1, 129.7, 129.3, 128.2, 128.1, 127.5, 127.3, 126.7, 126.7, 126.1, 122.2, 120.8, 112.5, 54.2, 53.6, 21.4.

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for $C_{35}H_{27}N_3O_3SH$ 570.1807; Found 570.1827.

5,9-Diphenyl-1-(pyridin-2-yl)-6,8-dihydrospiro[cyclopenta[g]quinoline-7,9'-fluoren]-4(1*H*)-one (3lc).

White Solid; eluent (80% ethyl acetate in hexane). The reaction scale is 0.2 mmol (11), 60 mg was isolated and the yield is 52%. Mp: 268–269 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, J = 4.8 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.35 (dt, J = 20.4, 7.7 Hz, 3H), 7.28 – 7.17 (m, 9H), 6.99 – 6.89 (m, 6H), 6.87 (d, J = 8.0 Hz, 1H), 6.24 (d, J = 7.8 Hz, 1H), 3.22 (s, 2H), 3.19 (s, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 179.1, 156.5, 151.5, 149.0, 147.5, 143.2, 141.8, 140.5, 140.3, 139.4, 138.3, 138.2, 138.1, 130.2, 128.8, 127.9, 127.8, 127.5, 127.4, 127.3, 126.6, 126.0, 125.9, 122.0, 121.0, 119.7, 112.6, 56.6, 46.0, 44.7.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₄₁H₂₈N₂OH 565.2274; Found 565.2285.

5,9-Diphenyl-1-(pyridin-2-yl)-6,8-dihydrospiro[cyclopenta[g]quinoline-7,2'-indene]-1',3',4(1*H*)-trione (3ld).

White Solid; eluent (80% ethyl acetate in hexane). The reaction scale is 0.2 mmol (11), 36 mg was isolated and the yield is 33%. Mp: 224–225 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, J = 5.0 Hz, 1H), 7.90 (dd, J = 5.7, 3.1 Hz, 2H), 7.79 (dd, J = 5.7, 3.1 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 7.40 – 7.36 (m, 3H), 7.32 – 7.28 (m, 3H), 7.03 (t, J = 7.4 Hz, 2H), 6.98 (d, J = 7.3 Hz, 3H), 6.92 (dd, J = 7.4, 4.9 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.19 (d, J = 7.8 Hz, 1H), 3.10 (s, 2H), 3.09 (s, 2H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 202.4, 179.0, 156.3, 149.0, 145.2, 143.3, 141.7, 141.2, 140.7, 138.3, 138.0, 137.9, 137.7, 135.9, 132.0, 130.2, 128.4, 127.9, 127.3, 126.8, 126.2, 123.5, 122.0, 121.1, 112.5, 58.0, 41.1, 40.7.

HRMS (**ESI-TOF**) m/z: $[M + H]^+$ Calcd for $C_{37}H_{25}N_2O_3H$ 545.1860; Found 545.1872.

1-(Pyridin-2-yl)-5,9-di-p-tolyl-7-tosyl-1,6,7,8-tetrahydro-4H-pyrrolo[3,4-g]quinolin-4-one (3le).

White Solid; eluent (70% ethyl acetate in hexane). The reaction scale is 0.2 mmol (11), 65 mg was isolated and the yield is 54%. Mp: 230–231 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 4.9 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.7 Hz, 1H), 7.27 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 7.7 Hz, 2H), 7.06 (d, J = 7.7 Hz, 2H), 6.93 (dd, J = 7.5, 4.9 Hz, 1H), 6.87 (d, J = 7.7 Hz, 2H), 6.74 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 7.5 Hz, 2H), 6.14 (d, J = 7.8 Hz, 1H), 4.36 (s, 2H), 4.33 (s, 2H), 2.44 (s, 3H), 2.40 (s, 3H), 2.24 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 178.7, 156.3, 148.9, 143.7, 143.4, 140.9, 140.4, 138.3, 137.24, 137.18, 137.0, 136.2, 133.9, 133.6, 133.3, 129.8, 129.3, 128.9, 127.4, 126.7, 126.3, 122.0, 120.8, 112.7, 54.4, 53.8, 21.5, 21.3, 21.0.

HRMS (**ESI-TOF**) m/z: [M + H]⁺ Calcd for C₃₇H₃₁N₃O₃SH 598.2159; Found 598.2167.

5,9-Diphenyl-7-tosyl-1,6,7,8-tetrahydro-2*H*-pyrrolo[3,4-*g*]quinolin-2-one (4aa).

White Solid; eluent (50% ethyl acetate in hexane). The reaction scale is 0.1 mmol (**3aa**), 27 mg was isolated and the yield is 55%. Mp: 268–279 °C; ¹H NMR (**500 MHz, CDCl**₃) δ 8.50 (s, 1H), 7.68 – 7.64 (m, 2H), 7.60 – 7.47 (m, 7H), 7.32 – 7.27 (m, 4H), 7.26 – 7.23 (m, 2H), 6.50 (d, J = 9.9 Hz, 1H), 4.49 – 4.45 (m, 4H), 2.41 (s, 3H). ¹³C{¹H} NMR (**126 MHz, CDCl**₃) δ 161.9, 143.8, 138.5, 137.9, 136.1, 135.8, 135.0, 133.5, 132.6, 130.2, 129.9, 129.6, 129.5, 129.09, 129.07, 129.0, 128.6, 127.5, 122.5, 121.4, 118.4, 53.6, 53.3, 21.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₃₀H₂₄N₂O₃SH 493.1580; Found 493.1586.

Spectral Data of all Compounds: ¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR Spectra of Compound **2q.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3aa.** Solvent CDCl₃

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3ba.** Solvent CDCl₃.

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ca.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3da.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ea.** Solvent CDCl₃

¹⁹F NMR Spectra of Compound **3ea.** (Solvent CDCl₃, 471 MHz)

 1 H (500 MHz) and 13 C{ 1 H} (126 MHz) NMR Spectra of Compound **3fa.** Solvent CDCl₃

¹H (500 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3ga.** Solvent CDCl₃.

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3ha.** Solvent CDCl₃.

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3ia.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ja.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ka.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ab.** Solvent CDCl₃

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3ac.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ad.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ae.** Solvent CDCl₃

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3af.** Solvent CDCl₃

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3ag.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ah.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ai.** Solvent CDCl₃

¹H (500 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound **3aj.** Solvent CDCl₃

 1 H (400 MHz) and 13 C{ 1 H} (101 MHz) NMR Spectra of Compound **3ak.** Solvent CDCl₃

¹⁹F NMR Spectra of Compound 3ak. (Solvent CDCl₃, 471 MHz)

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound 3al. Solvent CDCl₃

¹⁹F NMR Spectra of Compound 3al. (Solvent CDCl₃, 471 MHz)

¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR Spectra of Compound 3am. Solvent CDCl₃

¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR Spectra of Compound 3an. Solvent CDCl₃

¹H (400 MHz) and ¹³C{¹H} (101 MHz) NMR Spectra of Compound 3la. Solvent CDCl₃

¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR Spectra of Compound 3lc. Solvent CDCl₃

¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR Spectra of Compound 3ld. Solvent CDCl₃

 ^{1}H (500 MHz) and $^{13}\text{C}\{^{1}\text{H}\}$ (126 MHz) NMR Spectra of Compound 3le. Solvent CDCl_3

¹H (500 MHz) and ¹³C{¹H} (126 MHz) NMR Spectra of Compound 4aa. Solvent CDCl₃