Supplementary Information

Silver-Catalyzed P-centered anion nucleophilic addition to isocyanide: Access to 2-phosphinoyl indoles/indol-3-ols

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.

Table of Contents

I. General information	3
II. Preparation and analytical data of isocyanide 1 and 5	3
III. Preparation and analytical data of 2-phosphinoyl indoles	5
IV. Optimization of reaction conditions for 2-phosphinoyl indol-3-ol	12
V. Scale-up experiment	22
VI. Synthetic utility of 2-phosphinoyl indoles	23
VII. Mechanistic investigation	25
VIII. X-ray Crystallographic Data of compound 3a, 6m and 11	29
IX. ¹ H NMR, ¹³ C NMR ³¹ P NMR and ¹⁹ F NMR spectra of compounds 1, 3,	4, 5, 6,
7, 8, 9, 10 and 11	33

I. General information

All reagents were commercially available and used without further purification, unless otherwise indicated. Chromatography was carried out on flash silica gel (300–400 mesh). All reactions were monitored by TLC, performed on glass plates with precoated silica gel 60 (F254). ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra were measured on a 400 MHz Bruker instrument, with TMS as the internal standard. All chemical shifts are reported in ppm scale. High-resolution mass spectra (HRMS) were acquired using a Bruker microTOF II focusing spectrometer (ESI).

II. Preparation and analytical data of isocyanides 1 and 5

Isonitriles 1 was prepared according to previous literature report.¹

Ketones S2 and S3 were prepared from S1 according to literature procedures. 2nitrobenzaldehyde and acetophenone are commercially available. Isonitriles 1 were prepared according to the literature procedures by the typical formylation and dehydration procedure.

Analytical data of 3 (3d, 3j)

(E)-3-(4-Bromo-2-isocyanophenyl)-1-phenylprop-2-en-1-one (3d). Eluent: PE/EA (20:1), yellow solid (1.38g, 88%), m.p.: 120-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.6 Hz, 2H), 7.95 (d, *J* = 15.6 Hz, 1H), 7.67 – 7.58 (m, 5H), 7.52 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.7, 170.9, 137.5, 136.8, 133.4, 133.1, 130.8, 130.4, 128.8, 128.7, 128.7, 126.5, 124.2. **HRMS (ESI)** m/z: [M+H] ⁺ called for C₁₆H₁₁BrNO⁺ 312.0019; found 312.0012.

(E)-3-(2-Isocyanophenyl)-1-(o-tolyl)prop-2-en-1-one(3g). Eluent: PE/EA(20:1) , yellow solid (1.0g, 83%), m.p.: 78-81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.70 (m, 2H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.50-7.35 (m, 4H), 7.31 (s, 2H), 7.23 (d, *J* = 16 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 195.5, 169.0, 138.7, 138.2, 137.5, 131.6, 131.2, 131.1, 130.9, 130.2, 129.7, 128.5, 127.8, 127.2, 125.6, 20.5. HRMS (ESI) m/z: [M+H] ⁺ called for C₁₇H₁₄NO⁺ 248.1070; found 248.1060.

o-Carbonyl arylisonitrile 5 was prepared according to previous literature report.²

Ketones **S5**, **S6** and **S7** were prepared from **S4** according to literature procedures. (2-Aminophenyl)(phenyl)methanone and 2-aminophenyl ethenone are commercially available. Isocyanides **5** were prepared according to the literature procedures by the typical formylation and dehydration procedure.

Analytical data of 5 (5i, 5j, 5k, 5l)

(2-Isocyanophenyl)(m-tolyl)methanone (5i). Eluent: PE/EA (20:1), yellow oli (0.59 mg, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.60 – 7.48 (m, 5H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 138.7, 136.4, 136.2, 134.9, 131.4, 130.4, 129.4, 129.2, 128.6, 127.9, 127.6, 21.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₂NO⁺ 222.0913; found.222.0915.

(4-Fluorophenyl)(2-isocyanophenyl)methanone (5j). Eluent: PE/EA (20:1), yellow solid (0.83g, 92%). m.p.: 51-53 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 8.4, 5.2 Hz, 2H), 7.60 – 7.55 (m, 1H), 7.54 – 7.45 (m, 3H), 7.17 (t, J = 8.8 Hz, 2H). ¹³ C

NMR (101 MHz, CDCl₃) δ 192.1, 169.1, 166.3(d, J = 257.8 Hz), 135.9, 132.8(d,J = 9.7 Hz), 132.6(d, J = 3.0 Hz), 131.6, 129.3(d, J = 5.5 Hz), 127.9, 116.2, 116.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -103.050. **HRMS** (**ESI**) m/z: [M+H]⁺ calcd for C₁₄H₉FON⁺ 226.0663; found 226.0647.

(2-Isocyanophenyl)(2-methoxyphenyl)methanone (5k). Eluent: PE/EA (20:1), yellow solid (0.75g, 79%). m.p.: 56-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.58–7.39 (m, 5H), 7.07 (t, *J* = 7.2 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 3.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.2, 168.4, 156.0, 137.6, 134.6, 131.5, 131.1, 129.5, 129.2, 127.6, 127.3, 121.0, 111.7, 55.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₂NO₂⁺ 238.0863; found 238.0858.

(3-Chlorophenyl)(2-isocyanophenyl)methanone (5l). Eluent: PE/EA (20:1), yellow oil (0.78g, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (t, *J* = 2.0 Hz, 1H), 7.67 (dt, *J* = 7.6, 1.2 Hz, 1H), 7.62–7.58 (m, 2H), 7.55–7.49 (m, 3H), 7.44 (t, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.4, 169.4, 137.8, 135.4, 135.1, 133.9, 131.9, 130.1, 129.8, 129.5, 129.4, 128.3, 128.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₉ClNO⁺ 242.0367; found 242.0354.

III. Preparation and analytical data of 2-phosphinoyl indoles

Typical synthetic procedure (with 3a as an example)

(E)-3-(2-Isocyanophenyl)-1-phenylprop-2-en-1-one **1a** (0.3 mmol, 1.5 equiv, 70 mg), diphenylphosphine **2a** (0.2 mmol, 40 mg), Ag₂CO₃ (5 mol%, 2.8 mg) and DABCO (50 mol%, 11.2 mg) were dissolved in 1,4-dioxane (2.0 mL) in a pressure tube, it was placed in a metal bath and heated at 60 °C for 2 h, until the complete consumption of **2a** as monitored by TLC. Then, the mixture was cooled to room temperature, diluted with water (20 mL) and extracted with EtOAc (3 × 10 mL). The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether / ethyl acetate = 1 : 1) to give product **3a** (59 mg, 68 % yield).

Analytical data of 2-phosphinoyl indoles 3

2-(2-(Diphenylphosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one (**3a**). Eluent: PE/EA (1:1), yellow solid (59mg, 68%), **m.p.:** 228-230 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 9.26 (s, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.70(d, *J* = 7.6 Hz, 2H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.50–7.43 (m, 4H), 7.40–7.30 (m, 7H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 4.38 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.7, 138.1(d, *J* = 9.4 Hz), 136.6, 132.9, 132.5, 132.4, 132.1(d, *J* = 109.0 Hz), 132.0 (d, *J* = 10.7 Hz), 128.8(d, *J* = 12.6 Hz), 128.3 (d, *J* = 7.7 Hz), 124.8, 124.6(d, *J* = 123.2 Hz), 120.4 (d, *J* = 12.9 Hz), 119.6 (d, *J* = 12.8 Hz), 112.1, 35.4. ³¹**P NMR** (162 MHz, CDCl₃) δ 21.5. **HRMS (ESI**) m/z: [M+H]⁺ calcd for C₂₈H₂₃NO₂P⁺ 436.1461; found 436.1454.

2-(2-(Diphenylphosphoryl)-5-methoxy-1H-indol-3-yl)-1-phenylethan-1-one (3b). Eluent: PE/EA (1:1), yellow solid (87 mg, 93%), **m.p.:** 241-243 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (s, 1H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.73 – 7.64 (m, 4H), 7.47 (s, 3H), 7.42-7.30 (m, 6H), 7.23 (d, *J* = 8.8 Hz, 1H), 6.95 – 6.83 (m, 2H), 4.38 (s, 2H), 3.77 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.8, 154.7, 136.6, 133.3(d, *J* = 9.5 Hz), 132.9, 132.4, 132.3, 132.1(d, *J* = 108.9 Hz), 131.9(d, *J* = 10.6 Hz), 129.2(d, *J* = 11.3 Hz), 128.8(d, *J* = 12.5 Hz), 128.4(d, *J* = 2.1 Hz), 124.9(d, *J* = 123.4 Hz), 119.2(d, *J* = 12.9 Hz), 116.2, 112.9, 100.8, 55.8, 35.5. ³¹**P NMR** (162 MHz, CDCl₃) δ 21.3. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₂₉H₂₅NO₃P ⁺466.1567; found 466.1588.

2-(5-Chloro-2-(diphenylphosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one (3c). Eluent: PE/EA (1:1), yellow solid (53 mg, 56%), **m.p.:** 262-265 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 7.2 Hz, 2H), 7.55-7.45 (m, 3H), 7.43 (s, 1H), 7.41 – 7.30 (m, 7H), 7.20 (d, *J* = 8.0 Hz, 1H), 4.25 (s, 2H).¹³**C NMR** (101 MHz, CDCl₃) δ 196.2, 136.4 (d, *J* = 9.4 Hz), 136.3, 133.1, 132.6, 132.5, 131.9(d, *J* = 10.7 Hz), 131.6 (d, *J* = 109.5 Hz), 129.8 (d, *J* = 11.4 Hz), 128.9 (d, *J* = 12.6 Hz), 128.3 (d, *J* = 24.3 Hz), 126.4 (d, *J* = 121.5 Hz), 126.2, 125.2, 119.6, 118.6 (d, *J* = 12.9 Hz), 113.3, 35.0. ³¹**P NMR** (162 MHz, CDCl₃) δ 21.4. **HRMS** (**ESI**) m/z: [M+Na]⁺ calcd for C₂₈H₂₁ClNNaO₂P⁺ 492.0891; found 492.0871.

2-(6-Bromo-2-(diphenylphosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one (3d). Eluent: PE/EA (1:1), yellow solid(74.5mg, 73%), m.p.: 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.70 – 7.59 (m, 4H), 7.55 (s, 1H), 7.51-7.41 (m, 3H), 7.38–7.24 (m, 7H), 7.16 (d, *J* = 8.4 Hz, 1H), 4.21 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 196.4, 138.9 (d, *J* = 9.0 Hz), 136.4, 133.1, 132.5, 132.0, 131.9, 131.7 (d, *J* = 109.9 Hz), 128.9 (d, *J* = 12.1 Hz), 128.3 (d, *J* = 23.4 Hz), 127.6 (d, *J* = 11.1 Hz), 125.5 (d, *J* = 122.2 Hz), 123.7, 121.4, 119.0 (d, *J* = 12.5 Hz), 118.4, 115.3, 35.1. ³¹P NMR (162 MHz, CDCl₃) δ 21.7. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₈H₂₁BrNNaO₂P⁺ 536.0385; found 536.0355.

2-(2-(Diphenylphosphoryl)-1H-indol-3-yl)-1-(p-tolyl)ethan-1-one (3e). Eluent: PE/ EA(1:1), yellow solid (62mg, 69%), **m.p.:** 216-218 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 9.04 (s, 1H), 7.77–7.64 (m, 6H), 7.52–7.45 (m, 3H), 7.42–7.32 (m, 5H), 7.22 (d, *J* = 8 Hz, 1H), 7.14 (d, *J* = 8 Hz, 2H), 7.10 (d, *J* = 7.6 Hz, 1H), 4.34 (s, 2H), 2.36 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.3, 143.7, 138.0 (d, *J* = 9.3 Hz), 134.1, 132.4, 132.3, 132.1 (d, *J* = 109.0 Hz), 132.0 (d, *J* = 10.7 Hz), 129.0 (d, *J* = 15.6 Hz), 128.8, 128.4, 124.8, 124.5 (d, *J* = 123.1 Hz), 120.5, 120.4, 119.8 (d, *J* = 12.7 Hz), 112.0, 35.3, 21.6. ³¹**P NMR** (162 MHz, CDCl₃) δ 21.5. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₂₉H₂₅NO₂P⁺ 450.1617; found 450.1599.

1-(4-Chlorophenyl)-2-(2-(diphenylphosphoryl)-1H-indol-3-yl)ethan-1-one (3f). Eluent: PE/EA (1:1), yellow solid (60.4mg, 65%), **m.p.:** 212-215 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 7.81 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.56-7.46 (m, 3H), 7.46-7.37 (m, 4H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.30-7.22 (m, 3H), 7.16 – 7.07 (m, 1H), 4.44 (s, 2H).¹³ C NMR (101 MHz, CDCl₃) δ 195.8, 139.3, 137.9 (d, *J* = 9.2 Hz), 134.8, 132.6, 132.5, 131.9 (d, *J* = 10.6 Hz), 131.5, 129.9, 128.9 (d, J = 12.5 Hz), 128.8 (d, J = 11.2 Hz), 128.6, 124.9, 124.5 (d, J = 122.7 Hz), 120.6 (d, J = 25.6 Hz), 119.8 (d, J = 11.0 Hz), 120.0, 35.5. ³¹P NMR (162 MHz, CDCl₃) δ 21.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₂ClNO₂P⁺470.1071; found 470.1054.

2-(2-(Diphenylphosphoryl)-1H-indol-3-yl)-1-(o-tolyl)ethan-1-one (**3g**). Eluent: PE/EA (1:1), yellow solid (56 mg, 64%), **m.p.:** 210-212 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 9.11 (s, 1H), 7.69 (dd, *J* = 11.6, 6.0 Hz, 4H), 7.49 (s, 4H), 7.39 (s, 5H), 7.34 –7.20 (m, 3H), 7.18-7.06 (m, *J* = 3 H), 4.34 (s, 2H), 2.36 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 200.5, 138.2, 138.0 (d, *J* = 9.2 Hz), 137.5, 132.5, 132.4, 132.2 (d, *J* = 109.0 Hz), 131.9 (d, *J* = 10.7 Hz), 131.8, 131.2, 128.8 (d, *J* = 12.7 Hz), 128.6, 125.5, 124.8, 124.6 (d, *J* = 123.0 Hz), 120.4 (d, *J* = 32.5 Hz), 119.8 (d, *J* = 12.8 Hz), 112.1, 38.1, 21.3. ³¹**P NMR** (162 MHz, CDCl₃) δ 21.6. **HRMS** (**ESI**) m/z: [M+H]⁺ calcd for C₂₉H₂₅NO₂P⁺450.1617; found 450.1604.

1-(3,4-Dimethoxyphenyl)-2-(2-(diphenylphosphoryl)-1H-indol-3-yl)ethan-1-one (**3h).** Eluent: PE/EA (1:1), yellow solid (63 mg, 64%), **m.p.:** 250-253 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 7.70(d, J = 7.6 Hz, 2H), 7.67 (d, J = 7.2 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.51-7.46 (m, 2H), 7.44 (s, 1H), 7.42–7.36 (m, 4H), 7.33(d, J = 8.4 Hz, 1H), 7.25-7.20 (m, 1H), 7.10 (t, J = 7.6 Hz, 1H), 6.72 (d, J = 8.4 Hz, 1H), 4.41 (s, 2H), 3.87 (d, J = 8.4 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 195.5, 153.1, 148.8, 138.0 (d, J = 9.3 Hz), 132.4, 132.3, 132.1 (d, J = 108.9 Hz), 131.9 (d, J = 10.6 Hz), 129.8, 128.9, 128.8, 124.8, 124.3 (d, J = 123.0 Hz), 123.3, 120.7, 120.5, 120.4, 112.0, 110.5, 109.9, 56.0(d, J = 3.0 Hz), 35.0. ³¹P NMR (162 MHz, CDCl₃) δ 21.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₂₇NO₄P⁺ 496.1672; found 496.1653.

2-(2-(Diphenylphosphoryl)-1H-indol-3-yl)-1-(furan-2-yl)ethan-1-one (3i). Eluent: PE/EA (1:1), yellow solid (64 mg, 75%), **m.p.:** 259-262 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 7.76 – 7.67 (m, 4H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.43 (s, 5H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.29–7.19 (m, 2H), 7.13 (t, *J* = 7.2 Hz, 1H), 6.41 (s, 1H), 4.26 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 195.5, 153.1, 148.8, 138.0 (d, *J* = 9.2 Hz), 132.4, 132.3, 132.1 (d, *J* = 108.8 Hz), 131.9 (d, *J* = 10.6 Hz), 129.8, 128.8 (d, *J* = 12.2 Hz), 124.3 (d, *J* = 123.2 Hz), 124.0 (d, *J* = 152.5 Hz), 120.6 (d, *J* = 13.3 Hz), 120.4, 112.0, 110.2 (d, *J* = 62.0 Hz), 56.0 (d, *J* = 3.9 Hz), 35.1. ³¹P NMR (162 MHz, CDCl₃) δ 21.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₁NO₃P⁺ 426.1254; found 426.1245.

2-(2-(Diphenylphosphoryl)-1H-indol-3-yl)-1-(thiophen-2-yl)ethan-1-one (3j). Eluent: PE/EA (1:1), yellow solid (59 mg, 67%), m.p.: 242-245 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.75–7.66 (m, 5H), 7.63 (d, J = 8.0 Hz, 1H), 7.55–7.49 (m, 3H), 7.47–7.40 (m, 4H), 7.34 (d, J = 8.4 Hz, 1H), 7.29–7.24 (m, 1H), 7.14 (t, J = 7.2 Hz, 1H), 7.01–6.96 (m, 1H), 4.39 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.7, 143.7, 137.9 (d, J = 9.3 Hz), 133.6, 132.8, 132.5, 132.4, 132.0 (d, J = 108.9 Hz), 128.9 (d, J = 12.5 Hz), 128.8, 128.7, 128.0, 124.8, 124.6 (d, J = 122.6 Hz), 120.7 (d, J = 3.8 Hz), 119.5 (d, J = 12.6 Hz), 112.0, 35.9. ³¹P NMR (162 MHz, CDCl₃) δ 21.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₁NO₂PS⁺ 442.1025; found 442.1016.

1-(2-(Diphenylphosphoryl)-1H-indol-3-yl)propan-2-one (3k). Eluent: PE/EA (1:1), yellow solid (24 mg, 32%), **m.p.:** 199-202 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.76 (s, 1H), 7.73 (d, *J* = 7.2 Hz, 4H), 7.70 (d, *J* = 7.6 Hz, 4H), 7.62-7.57 (m, 2H), 7.54 – 7.46 (m, 5H), 7.37 (d, *J* = 8.0 Hz,1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 3.83 (s, 2H), 1.88 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 206.0, 137.7 (d, *J* = 9.2 Hz), 132.7, 132.6, 131.9 (d, *J* = 109.0 Hz), 131.8 (d, *J* = 10.7 Hz), 129.0 (d, *J* = 12.5 Hz), 128.5 (d, *J* = 11.1 Hz), 125.0, 124.8 (d, *J* = 122.1 Hz), 120.4 (d, *J* = 65.4 Hz), 119.3 (d, *J* = 12.6 Hz), 112.0, 40.3, 29.0. ³¹**P NMR** (162 MHz, CDCl₃) δ 21.1. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₂₃H₂₁NO₂P⁺ 374.1304; found 374.1296.

1-(2-(Diphenylphosphoryl)-1H-indol-3-yl)-3,3-dimethylbutan-2-one (3l). Eluent: PE/EA (1:1), yellow solid (22.4 mg, 27%), **m.p.:** 226-228 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.71 (s, 1H), 7.79–7.65 (m, 4H), 7.56 (t, *J* = 7.2 Hz, 2H), 7.51–7.42 (m, 4H), 7.37–7.30 (m, 2H), 7.28–7.22 (m, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 3.92 (s, 2H), 1.04 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 211.5, 138.0 (d, *J* = 8.8 Hz), 132.4, 132.2 (d, *J* = 108.0 Hz), 132.0 (d, *J* = 10.4 Hz), 128.8 (d, *J* = 12.5 Hz), 128.6, 124.9 (d, *J* = 123.9 Hz), 124.6, 124.3, 120.1 (d, *J* = 32.5 Hz), 119.8, 112.1, 44.2, 33.2, 26.7. ³¹**P NMR** (162 MHz, CDCl₃) δ 21.3. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₂₆H₂₇NO₂P⁺ 416.1774; found 416.1765.

2-(2-(Bis(4-methoxyphenyl)phosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one (30). Eluent: PE/EA (1:1), yellow solid (56 mg, 56%), **m.p.:** 252-255 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.40–7.33 (m, 3H), 7.27 (t, *J* = 8.4 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 6.4 Hz, 4H), 4.38 (s, 2H), 3.76 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 162.7 (d, *J* = 2.8 Hz), 137.8 (d, *J* = 9.3 Hz), 136.7, 133.8 (d, *J* = 12.1 Hz), 132.9, 128.9 (d, *J* = 11.3 Hz), 128.3 (d, *J* = 10.3 Hz), 126.3, 125.1, 124.6, 124.0, 122.9, 120.3 (d, *J* = 11.7 Hz), 118.8 (d, *J* = 12.7 Hz), 114.4 (d, *J* = 13.6 Hz), 112.0, 55.3, 35.3. ³¹P NMR (162 MHz, CDCl₃) δ 21.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₀H₂₇NO₄P⁺ 496.1672; found 496.1657.

2-(2-(Bis(3,5-dimethylphenyl)phosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one

(3p). Eluent: PE/EA (1:1), yellow solid (73.1 mg, 74%), m.p.: 257-260 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.52–7.46 (m, 2H), 7.40 – 7.24 (m, 9H), 7.12 (t, J = 7.6 Hz, 1H), 7.06 (s, 2H), 4.37 (s, 2H), 2.23 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 138.7, 138.6, 137.6 (d, J = 9.1 Hz), 136.4, 134.3, 134.2, 132.9, 131.7 (d, J = 108.0 Hz), 129.4 (d, J = 10.6 Hz), 129.1 (d, J = 10.9 Hz), 128.3 (d, J = 8.9 Hz), 125.4 (d, J = 121.1 Hz), 124.6, 120.5, 119.1 (d, J = 12.4 Hz), 111.9, 35.3, 21.2. ³¹P NMR (162 MHz, CDCl₃) δ 21.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₂H₃₁NO₂P⁺ 492.2087; found 492.2070.

2-(2-(Bis(3,5-di-tert-butylphenyl)phosphoryl)-1H-indol-3-yl)-1-phenylethan-1on-e (3q). Eluent: PE/EA (1:1), yellow solid (69.1 mg, 53%), **m.p.:** 248-250 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.75 (d, *J* = 7.2 Hz, 2H), 7.59 (s, 2H), 7.56 (s, 4H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.23 (m, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 4.26 (s, 2H), 1.22 (s, 36H). ¹³**C NMR** (101 MHz, CDCl₃) δ 195.7, 151.5 (d, *J* = 12.3 Hz), 137.8 (d, *J* = 8.9 Hz), 136.5, 132.9, 131.2 (d, *J* = 108.3 Hz), 129.0 (d, *J* = 11.2Hz), 128.3 (d, *J* = 15.6 Hz), 126.6, 126.5, 126.1 (d, *J* = 11.3 Hz), 125.4, 124.5, 120.6, 120.4, 118.6 (d, *J* = 12.5 Hz), 111.7, 35.3, 35.1, 31.2. ³¹**P NMR** (162 MHz, CDCl₃) δ 22.6. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₄₄H₅₅NO₂P⁺ 660.3965; found 660.3951.

2-(2-(Di(naphthalen-2-yl)phosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one (3r). Eluent: PE/EA (1:1), yellow solid (65.2 mg, 61%), **m.p.:** 265-268 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.33 (s, 1H), 8.29 (s, 1H), 7.92–7.71 (m, 8H), 7.65 (d, *J* = 7.6 Hz, 2H), 7.61-7.48 (m, 5H), 7.39-7.27 (m, 3H), 7.14 (t, *J* = 7.6 Hz, 3H), 4.43 (s, 2H).¹³**C NMR** (101 MHz, CDCl₃) δ 196.6, 138.0 (d, *J* = 9.4 Hz), 136.2, 134.8, 134.7, 134.0 (d, *J* = 10.5 Hz), 132.6, 132.4 (d, *J* = 13.8 Hz), 129.1 (d, *J* = 109.6 Hz), 129.0, 128.9 (d, *J* = 11.4 Hz), 128.7 (d, *J* = 12.2 Hz), 128.4, 128.1, 127.9, 127.7, 126.9, 126.4 (d, *J* = 11.0 Hz), 124.7, 124.6 (d, *J* = 123.6 Hz), 120.4 (d, *J* = 11.2 Hz), 119.6 (d, *J* = 12.8 Hz), 112.1, 35.3.³¹**P NMR** (162 MHz, CDCl₃) δ 21.8. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₃₆H₂₇NO₂P⁺ 536.1774; found 536.1758.

2-(2-(Isopropyl(phenyl)phosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one (3s). Eluent: PE/EA (1:1), yellow solid (32 mg, 40%), **m.p.:** 133-135 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.96 (d, J = 7.6 Hz, 2H), 7.90–7.80 (m, 2H), 7.53–7.42 (m, 3H), 7.40-7.30 (m, 5H), 7.19 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 4.74 (d, J = 17.2 Hz, 1H), 4.56 (d, J = 17.2 Hz, 1H), 2.85 – 2.71 (m, 1H), 1.30-1.15 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 138.0 (d, J = 8.6 Hz), 136.7, 132.1, 132.0, 131.7 (d, J = 98.5 Hz), 130.9 (d, J = 9.3 Hz), 128.9 (d, J = 11.6 Hz), 128.8, 128.7 (d, J = 11.1 Hz), 128.6, 128.5 (d, J = 6.3 Hz), 124.5 (d, J = 112.3 Hz), 124.4, 120.2 (d, J = 15.5 Hz), 118.7 (d, J = 11.4 Hz), 112.0, 35.5, 27.7 (d, J = 75.6 Hz), 15.5 (d, J = 2.8 Hz), 14.9 (d, J = 2.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 34.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₅NO₂P⁺ 402.1617; found 402.1609.

Synthetic procedure of 4a and analytical data

Typical synthetic procedure 4a

(E)-3-(2-Isocyanophenyl)-1-phenylprop-2-en-1-one 1a (0.3 mmol, 1.5 equiv, 70 mg), diphenylphosphine 2a (0.2 mmol, 40 mg) and DABCO (50 mol%, 11.2 mg) were dissolved in 1,4-dioxane (2.0 mL) in a 15 mL pressure tube. It was placed in a metal bath and heated at 60 °C for 2 h, until the complete consumption of 2a as monitored by TLC. Then, the mixture was cooled to room temperature, diluted with water (10 mL) and extracted with EtOAc (3×10 mL). The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether / ethyl acetate = 1 : 1) to give the prodcut 4a (65 mg, 75 % yield). Eluent: PE/EA (1:1), yellow solid, m.p.: 194-196 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.16–8.03(m, 2H), 7.85 (t, J = 7.6 Hz, 3H), 7.60 (s, 3H), 7.54–7.42 (m, 3H), 7.41–7.31 (m, 4H), 7.28–7.20 (m, 2H), 7.12 (q, J = 8.0 Hz, 2H), 4.96–4.86 (m, 1H), 4.16–4.00 (m, 1H), 3.50–3.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.7 (d, J = 13.5 Hz), 166.9, 136.0, 133.5, 133.2 (d, J = 5.2 Hz), 132.5 (d, J = 2.8 Hz), 131.9 (d, J = 2.9 Hz), 131.4 (d, J = 8.7 Hz), 131.0 (d, J = 53.2 Hz), 130.8 (d, J = 9.4 Hz), 130.0 (d, J = 47.7 Hz), 129.5 (d, J = 2.5 Hz), 129.2 (d, J = 11.4 Hz), 129.0 (d, J = 4.0 Hz), 128.4 (d, J = 52.9 Hz), 128.2 (d, J = 11.9 Hz), 127.8 (d, J = 2.6 Hz), 126.7 (d, J = 2.0 Hz), 38.8, 36.5 (d, J = 67.7 Hz).³¹**P** NMR (162 MHz, CDCl₃) δ 33.7.**HRMS** (ESI) m/z: $[M+H]^+$ calcd for C₂₈H₂₃NO₂P⁺436.1461; found 436.1454.

IV. Optimization of reaction conditions for 2-phosphinoyl indol-3-ol

Optimization of reaction conditions^[a]

Entry	5:2	Cata.	Base.	Temp.	Sol.	Time.	Yield
		(5 mol%)		(°C)		(h)	$(\%)^{[b]}$
1	1.5:1	Ag ₂ CO ₃	DABCO	60	1,4-dioxane	C	20
			(50 mol%)			2	30
2	1:1.5	Ag ₂ CO ₃	Cs_2CO_3	60	CUCL	2.5	Q /
			(50 mol%)	00	CHCI3	2.3	04
2	1.1.5		Cs ₂ CO ₃	40	CHCL	2.5	92
3	1:1.5	Ag ₂ CO ₃	(50 mol%)	40	CHCI3		
4	1.1.5	$\Lambda \sim CO$	Cs_2CO_3		CUCI	2.5	72
4	1:1.5	Ag_2CO_3	(50 mol%)	r.t.	CHC13	2.3	12
5	1.1.5	A a. CO.	Cs_2CO_3	40	CUCL	2.5	60
3	1:1.3	Ag_2CO_3	(30 mol%)	40	CHC13	2.3	00
6	1.1.5	$\Lambda \sim CO$	Cs_2CO_3	40	CUCI	2.5	07
0	1:1.3	Ag_2CO_3	(100 mol%)	40	CHCI3	2.3	83
7	1.1.5	$\Lambda \sim CO$	Cs_2CO_3	40	DCM	2.5	70
/	1:1.3	Ag_2CO_3	(50 mol%)	40	DCIVI	2.3	/0
0	1.1.5	$\Lambda \sim CO$	Cs_2CO_3	40	DCE	2.5	0.4
8	1:1.5	Ag_2CO_3	(50 mol%)	40	DCE	2.3	84
0	1.1.0		Cs_2CO_3	40	CUCI	2.5	07
9	1:1.8	Ag_2CO_3	(50 mol%)	40	CHCI3	2.3	83

a) Reaction conditions: **5** (0.2 mmol), **2** (1.5 eq, 0.3 mmol), Ag₂CO₃ (5 mol%), Base and solvent (2 mL) were reacted in a pressure tube at different temperature for 2.5 h. b) Isolated yield.

Typical synthetic procedure (with 6a as an example)

Isocyanophenyl)(phenyl)methanone **5a** (0.2 mmol, 41 mg), diphenylphosphine **2a** (0.3 mmol, 61 mg), Ag₂CO₃ (5 mol%, 2.8 mg), Cs₂CO₃ (50 mol%, 33 mg) and CHCl₃ (2.0 mL) were successively added to a pressure tube (15 mL). It was placed in a metal bath and heated at 40 °C for 2.5 h, until the complete consumption of **5a** as monitored by TLC. Then, the mixture was cooled to room temperature, diluted with water (10 mL) and extracted with DCM (3 × 10 mL). The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether / ethyl acetate = 2 : 1) to give (3-hydroxy-3-phenyl-3H-indol-2-yl) diphenylphosphine oxide **6a** (75 mg, 75 %).

Analytical data of 2-phosphinoyl indoles-3-ols

(3-Hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide (6a). Eluent: PE/EA (2:1), white solid (75.2 mg, 92%), m.p.: 206-208 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.2 Hz, 1H), 7.88 (d, J = 6.8 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 7.2 Hz, 1H), 7.54–7.46 (m, 4H), 7.45-7.35 (m, 2H), 7.31–7.22 (m, 4H), 7.10–6.96 (m, 5H), 5.71(s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 181.6 (d, J = 112.7 Hz), 154.1 (d, J = 25.0 Hz), 143.1 (d, J = 2.1 Hz), 137.1, 132.8 (d, J = 2.9 Hz), 132.2 (d, J = 2.9 Hz), 132.1 (d, J = 10.4 Hz), 131.1 (d, J = 10.4 Hz), 131.0 (d, J = 107.6 Hz), 129.7, 129.2 (d, J = 104.5 Hz), 129.1, 128.7 (d, J = 12.9 Hz), 128.3 (d, J = 12.7 Hz), 128.2, 127.8, 124.8, 123.6, 122.7, 92.0 (d, J = 19.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₁NO₂P⁺410.1304; found 410.1301.

(3-Hydroxy-6-methyl-3-phenyl-3H-indol-2-yl) diphenylphosphine oxide (6b). Eluent: PE/EA (2:1), white solid (57 mg, 67%), m.p.: 180-182 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.60–7.46 (m, 6H), 7.40 (d, *J* = 7.6 Hz, 1H), 7.31–7.21 (m, 2H), 7.13–6.95 (m, 7H), 5.65 (s, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 181.7 (d, *J* = 112.7 Hz), 154.4 (d, *J* = 25.1 Hz), 140.3 (d, *J* = 2.6 Hz), 139.9 (d, *J* = 2.6 Hz), 139.8, 137.4, 132.7 (d, *J* = 2.9 Hz), 132.1 (d, *J* = 2.4 Hz), 132.0 (d, *J* = 10.1 Hz), 131.0 (d, *J* = 10.5 Hz), 131.1 (d, *J* = 107.3 Hz), 129.6, 129.4 (d, *J* = 104.6 Hz), 128.6 (d, *J* = 12.8 Hz), 128.2, 128.0 (d, *J* = 70.0 Hz), 124.9, 123.4, 123.2, 91.8 (d, *J* = 19.4 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 24.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₃NO₂P⁺ 424.1461; found 424.1465.

(6-Fluoro-3-hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide (6c). Eluent: PE/EA (2:1), white solid (56.4 mg, 66%), m.p.: 159–161 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.81 (m, 2H), 7.60–7.35 (m, 7H), 7.32–7.22 (m, 2H), 7.16 (t, J = 7.2 Hz, 1H), 7.1–6.89 (m, 6H), 5.75 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 184.0 (d, J = 120.0 Hz), 163.7 (d, J = 248.4 Hz), 155.4 (d, J = 25.3 Hz), 138.9, 136.7, 132.9 (d, J = 2.9 Hz), 132.3 (d, J = 2.9 Hz), 132.0 (d, J = 10.3 Hz), 131.0 (d, J = 10.4 Hz), 130.7 (d, J = 107.9 Hz), 129.5, 128.7 (d, J = 12.9 Hz), 128.4 (d, J = 12.8 Hz), 128.3, 127.9, 124.9, 124.4 (d, J = 9.7 Hz), 115.5 (d, J = 23.1 Hz), 110.5 (d, J = 24.6 Hz), 91.6 ³¹P NMR (162 MHz, CDCl₃) δ 24.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₀FNO₂P⁺ 428.1210; found 428.1209.

(6-Chloro-3-hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide (6d). Eluent: PE/EA (2:1), white solid (84.3 mg, 95%), m.p.: 179–182 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.69 (s, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.54–7.46 (m, 4H), 7.43 (t, *J* = 7.2 Hz, 1H), 7.32–7.23 (m, 3H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.10-6.96 (m, 5H), 5.73 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 183.7 (d, *J* = 111.0 Hz), 155.2 (d, *J* = 25.1 Hz), 141.6, 136.5, 135.3, 132.9 (d, *J* = 2.9 Hz), 132.3 (d, *J* = 3.0 Hz), 132.0 (d, *J* = 10.0 Hz), 131.1 (d, *J* = 10.6 Hz), 130.7 (d, *J* = 107.9 Hz), 129.0 (d, *J* = 104.9 Hz), 128.8 (d, *J* = 10.7 Hz), 128.6, 128.4 (d, *J* = 12.8 Hz), 128.3, 128.0, 124.9, 124.4, 123.2, 91.7 (d, *J* = 19.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₀ClNO₂P⁺ 444.0915; found 444.0905.

(3-Hydroxy-5-methyl-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide (6e). Eluent: PE/EA (2:1), white solid (54 mg, 64%), m.p.: 221–224 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 6.8 Hz, 1H), 7.90 (d, *J* = 7.2 Hz, 1H), 7.63–7.58 (m, 2H), 7.57–7.49 (m, 4H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.34–7.26 (m, 2H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.13–6.99 (m, 6H), 5.69 (s, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.7 (d, *J* = 111.0 Hz), 155.2 (d, *J* = 25.1 Hz), 143.4, 139.5, 137.4, 132.7 (d, *J* = 2.8 Hz), 132.1, 132.0 (d, *J* = 10.3 Hz), 131.2 (d, *J* = 107.7 Hz), 131.1 (d, *J* = 10.4 Hz), 130.1, 129.4 (d, *J* = 104.9 Hz), 128.6 (d, *J* = 12.8 Hz), 128.3 (d, *J* = 12.0 Hz), 128.2, 127.7, 125.0, 124.4, 122.3, 91.8 (d, *J* = 19.1 Hz), 21.5. ³¹P NMR (162 MHz, CDCl₃) δ 24.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₃NO₂P⁺424.1461; found 424.1461.

(5-Fluoro-3-hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide (6f). Eluent: PE/EA (2:1), white solid (75.3 mg, 88%), m.p.: 166–168 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.68–7.62 (m, 1H), 7.61–7.46 (m, 5H), 7.42 (t, J = 7.6 Hz, 1H), 7.32–7.22 (m, 2H), 7.11–6.97 (m, 6H), 6.94 (d, J = 8.0 Hz, 1H), 5.80 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 181.7(d, J = 108.7, 4.3 Hz), 163.3 (d, J = 251.5 Hz), 150.0 (d, J = 24.4 Hz), 145.5 (d, J = 7.9 Hz), 136.6, 132.8 (d, J = 2.8 Hz), 132.2 (d, J = 2.9 Hz), 132.0 (d, J = 10.3 Hz), 131.1 (d, J = 10.5 Hz), 130.8 (d, J = 107.8 Hz), 129.2 (d, J = 104.9 Hz), 128.7 (d, J = 7.7 Hz), 128.4, 128.3 (d, J = 13.0 Hz), 128.0, 124.9, 123.7 (d, J = 9.2 Hz), 116.3 (d, J = 23.9 Hz), 111.8 (d, J = 25.3 Hz), 92.1 (d, J = 19.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.1. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₂₆H₂₀FNO₂P⁺428.1210; found 428.1213.

(5-Chloro-3-hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide (6g). Eluent: PE/EA (2:1), white solid (61.6 mg, 70%), m.p.: 222–224 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 7.2 Hz, 1H), 7.66–7.38 (m, 7H), 7.34 (d, J = 8.0 Hz, 1H), 7.31–7.24 (m, 2H), 7.20 (s, 1H), 7.11-6.96 (m, 5H), 5.76 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 182.1 (d, J = 112.0 Hz), 152.5 (d, J = 25.2 Hz), 144.9 (d, J = 2.7 Hz), 136.4, 135.1, 132.9 (d, J = 2.8 Hz), 132.3 (d, J = 2.9 Hz), 132.0 (d, J = 10.3 Hz), 131.0 (d, J = 10.4 Hz), 130.8 (d, J = 107.8 Hz), 129.8, 129.0 (d, J = 104.9 Hz), 128.6 (d, J = 10.7 Hz), 128.4, 128.3 (d, J = 12.9 Hz), 128.0, 124.9, 124.4, 123.5, 92.1 (d, J =19.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₀ClNO₂P⁺ 444.0915; found 444.0904.

(5-Bromo-3-hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide (6h). Eluent: PE/EA (2:1), white solid (72.1 mg, 74%), m.p.: 221–223 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 7.2 Hz, 1H), 7.61–7.46 (m, 7H), 7.42 (t, J = 7.2 Hz, 1H), 7.36 (s, 1H), 7.31–7.24 (m, 2H), 7.11–6.96 (m, 5H), 5.77 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 182.1 (d, J = 111.9 Hz), 153.0 (d, J = 25.2 Hz), 145.1 (d, J = 2.6 Hz), 136.3, 132.9 (d, J = 2.9 Hz), 132.8, 132.3 (d, J = 2.9 Hz), 132.0 (d, J = 10.4 Hz), 131.0 (d, J = 10.5 Hz), 130.7 (d, J = 107.8 Hz), 128.9 (d, J = 96.8 Hz), 128.7 (d, J = 12.8 Hz), 128.4, 128.3 (d, J = 12.8), 128.0, 127.2, 124.9, 123.9, 123.2, 92.1 (d, J = 19.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₂₀BrNO₂P⁺ 488.0410; found 488.0404.

(3-(4-Fluorophenyl)-3-hydroxy-3H-indol-2-yl)diphenylphosphine oxide (6i). Eluent: PE/EA (2:1), white solid (62.8 mg, 74%), m.p.: 159–162 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.2 Hz, 1H), 7.87 (d, *J* = 7.2 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.62–7.42 (m, 6H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.35–7.25 (m, 3H), 7.22 (d, *J* = 6.8 Hz, 1H), 7.07-6.98 (m, 2H), 6.65 (t, *J* = 8.8 Hz, 2H), 5.76 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 181.3 (d, *J* = 112.5 Hz), 162.3 (d, *J* = 247.3 Hz), 154.0 (d, *J* = 24.9 Hz), 142.7 (d, *J* = 2.5 Hz), 132.9 (d, *J* = 2.9 Hz), 132.8 (d, *J* = 2.9 Hz), 132.3 (d, *J* = 2.9 Hz), 132.0 (d, *J* = 10.4 Hz), 131.0 (d, *J* = 10.4 Hz), 130.8 (d, *J* = 107.8 Hz), 127.0 (d, *J* = 8.4 Hz), 123.6, 122.8, 115.1 (d, J = 21.9Hz), 91.6 (d, J = 19.4 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 24.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -114.8. **HRMS (ESI)** m/z: [M+Na]⁺ calcd for C₂₆H₁₉FNNaO₂P⁺450.1030; found 450.1026.

(3-Hydroxy-3-(2-methoxyphenyl)-3H-indol-2-yl)diphenylphosphine oxide (6j). Eluent: PE/EA (2:1), white solid (60.1 mg, 68%), m.p.: 140–143 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 9.6 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.60–7.46 (m, 5H), 7.43 (t, J = 7.2 Hz, 1H), 7.36–7.25(m, 4H), 7.19 (t, J = 7.6 Hz, 1H), 7.14–7.02 (m, 3H), 6.15 (d, J = 7.6 Hz, 1H), 5.23 (s, 1H), 2.80 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 179.3 (d, J = 115.3Hz), 155.4, 155.1, 141.6 (d, J = 2.9 Hz), 132.7 (d, J = 3.0 Hz), 132.2 (d, J = 10.3 Hz), 131.9 (d, J = 2.9 Hz), 131.4 (d, J = 10.5 Hz), 131.2 (d, J = 106.9 Hz), 129.2, 129.1, 128.9 (d, J = 104.6 Hz), 128.6 (d, J = 12.7 Hz), 128.3, 128.0 (d, J = 12.6Hz), 127.2, 126.8, 122.6, 122.1, 120.8, 109.7, 88.8 (d, J = 20.5 Hz), 53.9. ³¹P NMR (162 MHz, CDCl₃) δ 24.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₃NO₃P⁺ 440.1410; found 440.1397.

(3-Hydroxy-3-(m-tolyl)-3H-indol-2-yl)diphenylphosphine oxide (6k). Eluent: PE/EA (2:1), white solid (57.3 mg, 68%), m.p.: 78–80 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.61–7.49 (m, 5H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.41–7.35 (m,1H), 7.34–7.28 (m, 2H), 7.25 (d, *J* = 5.2 Hz, 2H), 7.02 (d, *J* = 8.0 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.84 (d, *J* = 7.6 Hz, 1H), 6.70 (s, 1H), 1.9 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 181.6 (d, *J* = 112.9 Hz), 154.0 (d, *J* = 25.3 Hz), 143.1 (d, *J* = 2.6 Hz), 137.8, 137.0, 132.7 (d, *J* = 2.8 Hz), 132.2 (d, *J* = 2.8 Hz), 132.1 (d, *J* = 10.7 Hz), 131.1 (d, *J* = 10.3 Hz), 131.0 (d, *J* = 107.4 Hz), 129.6, 129.4 (d, *J* = 104.3 Hz), 129.0, 128.7, 128.6, 128.3 (d, *J* = 8.3 Hz), 128.2, 125.5, 123.6, 122.7, 122.0, 92.0 (d, *J* = 19.2 Hz), 21.3. ³¹P NMR (162 MHz, CDCl₃) δ 24.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₇H₂₃NO₂P⁺ 424.1461; found 424.1468.

(3-(3-Chlorophenyl)-3-hydroxy-3H-indol-2-yl) diphenylphosphine oxide (6l). Eluent: PE/EA (2:1), white solid (70.1 mg, 79%), m.p.: 164–167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.82 (d, J 1H), 7.61–7.19 (m, 11H), 7.06 (d, J = 7.2 Hz, 1H), 7.02–6.86 (m, 2H), 5.79 (s, 1H). ¹³C **NMR** (101 MHz, CDCl₃) δ 180.8 (d, J = 112.6Hz), 154.0 (d, J = 24.7Hz), 142.5 (d, J = 2.3Hz), 139.7, 134.2, 132.9 (d, J = 2.9 Hz), 132.5 (d, J = 3.0 Hz), 132.0 (d, J = 10.5 Hz), 131.0 (d, J = 15.4 Hz), 130.6 (d, J = 107.9 Hz), 129.9, 129.6, 129.3, 129.2, 128.9 (d, J = 104.5 Hz,), 128.7 (d, J = 12.9 Hz), 128.5 (d, J = 12.1 Hz), 128.0, 125.3, 123.6, 122.9, 91.5 (d, J = 19.3Hz). ³¹P NMR (162 MHz, CDCl₃) δ 24.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₆H₁₉ClNNaO₃P⁺466.0734; found 466.0719.

(*E*)-(3-Hydroxy-3-(4-methoxystyryl)-3H-indol-2-yl)diphenylphosphine oxide (6m). Eluent: PE/EA (2:1), white solid (64 mg, 69%), m.p.: 129–132 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.83 (m, 4H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.54–7.47 (m, 3H), 7.46–7.33 (m, 5H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.72 (t, *J* = 8.4 Hz, 3H), 5.78 (d, *J* = 15.6 Hz, 1H), 5.20 (s, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 183.8 (d, *J* = 109.0 Hz), 159.6, 153.4 (d, *J* = 25.7 Hz), 141.6, 133.0 (d, *J* = 25.7 Hz), 132.7, 132.5, 132.1, 132.0 (d, *J* = 9.9 Hz), 131.8 (d, *J* = 9.7 Hz), 129.8, 129.6 (d, *J* = 100.6 Hz), 129.1, 129.0 (d, *J* = 4.4 Hz), 128.9 (d, *J* = 2.6 Hz), 128.2, 124.5, 122.9, 114.4, 90.8 (d, *J* = 19.5 Hz), 55.6. ³¹P NMR (162 MHz, CDCl₃) δ 24.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₂₅NO₃P⁺ 466.1567; found 466.1568.

(3-Ethyl-3-hydroxy-3H-indol-2-yl)diphenylphosphine oxide (6n). Eluent: PE/EA (2:1), white solid (38.8 mg, 54%), m.p.: 35–38 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 7.2 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 7.6 Hz, 1H), 7.60 (d, *J* = 7.2 Hz, 1H), 7.58–7.52 (m, 3H), 7.50–7.41 (m, 3H), 7.40–7.30 (m, 2H), 4.48 (s, 1H), 2.30–2.20 (m, 1H), 2.17–2.07 (m, 1H), 0.37 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 182.3 (d, *J* = 111.3 Hz), 154.0 (d, *J* = 25.8 Hz), 139.7 (d, *J* = 2.9 Hz), 132.7 (d, *J* = 2.9 Hz), 132.6 (d, *J* = 2.9 Hz), 131.9 (d, *J* = 107.2 Hz), 131.8 (d, *J* = 10.4 Hz), 131.5 (d, *J* = 10.0 Hz), 129.6 (d, *J* = 103.2 Hz), 129.5, 128.6 (d, *J* = 12.5 Hz), 128.7 (d, *J* = 12.8 Hz), 128.4, 123.0, 122.6, 92.4 (d, *J* = 19.2 Hz), 30.6, 7.4. ³¹P NMR (162 MHz, CDCl₃) δ 23.1. HRMS (ESI) m/z: [M+H]⁺ calcd d for C₂₂H₂₁NO₂P⁺ 362.1304; found 362.1298.

(3-Hydroxy-3-isopropyl-3H-indol-2-yl)diphenylphosphine oxide (60). Eluent: PE/EA (2:1), white solid (50 mg, 67%), m.p.: 70–73 °C.¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 6.4 Hz, 1H), 7.98 (d, *J* = 7.2 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.56–7.44 (m, 5H), 7.41–7.35 (m, 3H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.24– 7.18 (m, 1H), 4.34 (s, 1H), 2.68–2.60 (m, 1H), 1.16 (d, J = 6.8 Hz, 3H), 0.01 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 183.0 (d, J = 110.9 Hz), 154.6 (d, J = 26.2 Hz), 138.1 (d, J = 2.9 Hz), 132.6 (d, J = 2.9 Hz), 132.5 (d, J = 2.8 Hz), 132.2 (d, J = 107.3 Hz), 131.8 (d, J = 10.5 Hz), 131.6 (d, J = 9.8 Hz), 129.5, 129.3 (d, J = 103.1 Hz), 128.9 (d, J = 12.5 Hz), 128.7 (d, J = 12.8 Hz), 127.9, 124.3, 122.6, 95.1 (d, J = 18.9 Hz), 33.8, 16.3, 16.0. ³¹P NMR (162 MHz, CDCl₃) δ 23.0 HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₃NO₂P⁺ 376.1461; found 376.1443.

(3-Hydroxy-3-phenyl-3H-indol-2-yl)di-p-tolylphosphine oxide (6p). Eluent: PE/EA (2:1), white solid (61.9 mg, 71%), m.p.: 177–180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.42–7.33 (m, 3H), 7.31–7.21 (m, 4H), 7.10–7.03 (m, 5H), 6.99 (t, J = 7.6 Hz, 2H), 5.79 (s, 1H), 2.39 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.1 (d, J = 112.5 Hz), 154.2 (d, J = 25.0 Hz), 143.4 (d, J = 2.7 Hz), 143.3 (d, J = 2.5 Hz), 142.7 (d, J = 2.9 Hz), 137.5, 132.1 (d, J = 10.8 Hz), 131.2 (d, J = 10.8 Hz), 129.6, 129.4 (d, J = 13.3 Hz), 129.1 (d, J = 13.3 Hz), 128.9, 128.2, 128.0 (d, J = 110.1 Hz), 127.6, 126.0 (d, J = 107.3 Hz), 125.0, 123.6, 122.6, 92.0 (d, J = 19.3 Hz), 21.7 (d, J = 1.5 Hz), 21.6 (d, J = 1.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₅NO₂P⁺438.1617; found 438.1607.

(3-Hydroxy-3-phenyl-3H-indol-2-yl)bis(4-methoxyphenyl)phosphine oxide (6q). Eluent: PE/EA (2:1), white solid (90 mg, 96%), m.p.: 69–71 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.42–7.34 (m, 3H), 7.29–7.20 (m, 3H), 7.10–6.96 (m, 7H), 6.76 (d, *J* = 8.0 Hz, 2H), 3.85 (s, 3H), 3.80 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.3 (d, *J* = 113.5 Hz), 163.1 (d, *J* = 2.8 Hz), 162.6 (d, *J* = 2.9 Hz), 154.1 (d, *J* = 25.0 Hz), 143.3 (d, *J* = 2.7 Hz), 137.6, 134.1 (d, *J* = 12.1 Hz), 133.1 (d, *J* = 11.9 Hz), 129.6, 128.9, 128.2, 127.6, 125.0, 123.6, 122.6, 122.4 (d, *J* = 114.6 Hz), 120.3 (d, *J* = 112.0 Hz), 114.1 (d, *J* = 13.9 Hz), 113.9 (d, *J* = 13.8 Hz), 91.9 (d, *J* = 19.3 Hz), 55.4, 55.3. ³¹P NMR (162 MHz, CDCl₃) δ 25.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₅NO₄P⁺ 470.1516; found 470.1501.

bis(4-chlorophenyl)(3-hydroxy-3-phenyl-3H-indol-2-yl)phosphine oxide (6r). Eluent: PE/EA (2:1), white solid (63.7 mg, 67%), m.p.: 101–104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.4 (d, J = 7.6 Hz, 2H), 7.43–7.35 (m, 3H), 7.31–7.20 (m, 4H), 7.12–6.99 (m, 5H), 5.47(s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 181.0 (d, J = 114.3 Hz), 153.9 (d, J = 25.5 Hz), 143.0 (d, J = 2.5 Hz), 139.7 (d, J = 3.5 Hz), 139.1 (d, J = 3.6 Hz), 136.8, 133.4 (d, J = 11.1 Hz), 132.4 (d, J = 11.3 Hz), 129.8, 129.4, 129.1 (d, J = 13.5 Hz), 129.0 (d, J = 109.9 Hz), 128.8 (d, J = 13.5 Hz), 128.4, 128.0, 127.7 (d, J = 106.5 Hz), 125.0, 123.7, 122.8, 92.0 (d, J = 19.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₁₉Cl₂NO₂P⁺ 478.0525; found 478.0512.

Bis(3,5-di-tert-butylphenyl)(3-hydroxy-3-phenyl-3H-indol-2-yl)phosphine oxide (6s). Eluent: PE/EA (2:1), white solid (85.7 mg, 68%), m.p.: 211-213 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.69 (m, 3H), 7.62 (s, 1H), 7.46–7.40 (m, 3H), 7.38 (t, J = 7.6 Hz, 1H), 7.28–7.18 (m, 2H), 7.07-7.02 (m, 2H), 6.99–6.88 (m, 3H), 5.97 (s, 1H), 1.30 (s, 18H), 1.23 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 182.3 (d, J = 110.5 Hz), 154.3 (d, J = 24.6 Hz), 150.9 (d, J = 12.5 Hz), 150.7 (d, J = 12.5 Hz), 143.5 (d, J = 2.4 Hz), 137.3, 130.0 (d, J = 106.4 Hz), 129.5, 128.8, 128.2 (d, J = 103.5 Hz), 128.0, 127.5, 126.9 (d, J = 2.9 Hz), 126.4 (d, J = 11.0 Hz), 126.2 (d, J = 3.0 Hz), 125.1 (d, J = 11.0 Hz), 125.0, 123.5, 122.5, 92.0 (d, J = 19.2 Hz), 35.1, 34.9, 31.3, 31.2. ³¹P NMR (162 MHz, CDCl₃) δ 26.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₄₂H₅₃NO₂P⁺ 634.3808; found 634.3803.

(3-Hydroxy-3-phenyl-3H-indol-2-yl)di(naphthalen-2-yl)phosphine oxide (6t). Eluent: PE/EA (2:1), white solid (77.9 mg, 76%), m.p.: 184–186 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 14.4 Hz, 1H), 8.08 (d, *J* = 14.4 Hz, 1H), 7.94 (d, *J* = 6.0 Hz, 2H), 7.86 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.77–7.69 (m, 3H), 7.64–7.45 (m, 5H), 7.41–7.34 (m, 1H), 7.29–7.22 (m, 2H), 7.15–7.04 (m, 2H), 6.83 (d, J = 6.4 Hz, 3H), 5.83 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 181.7 (d, J = 112.9 Hz), 154.2 (d, J = 25.3 Hz), 143.2, 137.3, 135.2 (d, J = 2.5 Hz), 134.8 (d, J = 2.4 Hz), 134.3 (d, J = 10.4 Hz), 134.0 (d, J = 9.3 Hz), 132.4 (d, J = 12.0 Hz), 132.3 (d, J = 11.8 Hz), 129.7, 129.2, 129.1, 129.0, 128.6 (d, J = 12.2 Hz), 128.5 (d, J = 14.4 Hz), 128.3, 128.2, 128.1, 128.0 (d, J = 108.4 Hz), 127.9, 127.8, 126.9 (d, J = 12.9 Hz), 126.7 (d, J = 10.8 Hz), 126.4 (d, J = 105.2 Hz), 125.4 (d, J = 12.0 Hz), 125.0, 123.7, 122.8, 92.1 (d, J = 19.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₄H₂₅NO₂P⁺ 510.1617; found 510.1605.

(3-Hydroxy-3-phenyl-3H-indol-2-yl)(isopropyl)(phenyl)phosphine oxide 6u/6u' The diastereomers 6u and 6u' can be isolated by column chromatography by using PE/EA (2:1) as eluent. A combined 51% yield in a ratio of 1:1 dr was determined by ¹H NMR of the crude products (using CH_2Br_2 as an internal standard).

6u: m.p.: >300 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.6 Hz, 1H), 7.46–7.34 (m, 4H), 7.29–7.22 (m, 3H), 7.20 (d, *J* = 6.8 Hz, 1H), 7.01–6.87 (m, 5H), 5.54 (s, 1H), 2.83–2.73 (m, 1H), 1.43 (dd, *J* = 17.2, 6.8 Hz, 3H), 1.05 (dd, *J* = 18.0, 7.2 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 181.6 (d, *J* = 101.8 Hz), 154.1 (d, *J* = 23.3 Hz), 143.1 (d, *J* = 2.2 Hz), 137.0, 131.8 (d, *J* = 2.8 Hz), 130.2, 130.1 (d, *J* = 9.6 Hz), 130.0 (d, *J* = 50.9 Hz), 129.6, 128.9, 128.5 (d, *J* = 57.6 Hz), 128.4 (d, *J* = 12.1 Hz), 128.1, 127.6, 124.8, 123.6, 122.4, 91.5 (d, *J* = 16.6 Hz), 27.4 (d, *J* = 72.4 Hz), 15.0 (d, *J* = 3.8 Hz), 13.7 (d, *J* = 2.0 Hz). ³¹**P** NMR (162 MHz, CDCl₃) δ 38.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₃NO₂P⁺ 376.1461; found 376.1481.

6u': m.p.: 91–93 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.10–8.01 (m, 2H), 7.70 (d, J = 8.0 Hz, 1H), 7.59–7.48 (m, 3H), 7.40 (t, J = 7.6 Hz, 1H), 7.34–7.25 (m, 6H), 7.23 (d, J = 7.2 Hz, 1H), 1.99-1.87 (m, 1H), 0.96–0.81 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 182.5 (d, J = 101.8 Hz), 154.3 (d, J = 23.4 Hz), 143.3, 137.4, 132.2 (d, J = 2.9 Hz), 131.7 (d, J = 8.4 Hz), 129.7, 129.0 (d, J = 95.2 Hz), 128.9, 128.5, 128.4, 128.1, 125.3, 123.6, 122.4, 92.6 (d, J = 17.7 Hz), 29.5 (d, J = 69.6 Hz), 14.6, 14.2 (d, J = 2.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 37.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₃NO₂P⁺ 376.1461; found 376.1483.

The reaction of 2-isocyanobenzaldehyde with diphenyl phosphine oxide 2a

When 2-isocyanobenzaldehyde was treated with diphenyl phosphine oxide under the standard conditions, α -hydroxyphosphine oxide was obtained in 81% yield, probably via the phosphorus nucleophilic addition to the aldehyde group to form a benzo[d][1,3]oxazine intermediate, which hydrolyzed to give the final product N-(2-

V. Scale-up experiment

Scale-up experiment of 2-phosphinoyl indoles

(*E*)-3-(2-isocyanophenyl)-1-phenylprop-2-en-1-one **1a** (4.8 mmol, 1.5 eq, 1.12 g), diphenylphosphine oxide **2a** (3.2 mmol, 0.65 g), Ag_2CO_3 (5 mol%, 44.12 mg), DABCO (50 mol%, 179.49 mg) and 1,4-dioxane (32 mL) were successively added to a round bottom flask (100 mL). The flask was placed in a metal bath and heated at 60 °C for 2 h, until the complete consumption of **2a** as monitored by TLC. Then, the

mixture was cooled to room temperature, diluted with water (100 mL) and extracted with EtOAc (3×50 mL). The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether / ethyl acetate = 1 : 1) to give 2-(2-(diphenylphosphoryl)-1H-indol-3-yl)-1-phenylethan-1-one **3a** (1.00 g, 72 %).

Scale-up experiment of 2-phosphinoyl indoles-3-ol

(2-isocyanophenyl)(phenyl)methanone **1a** (3 mmol, 0.62 g), diphenylphosphine oxide **2a** (4.5 mmol, 0.91 g), Ag₂CO₃ (5 mol%, 41.36 mg), Cs₂CO₃(50 mol%, 488.73 mg) and CHCl₃(25 mL) were successively added to a round bottom flask (100 mL). The flask was placed in a metal bath and heated at 40 °C for 3.5 h, until the complete consumption of **5a** as monitored by TLC. Then, the mixture was diluted with water (100 mL) and extracted with DCM (3×30 mL). The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether / ethyl acetate = 2 : 1) to give (3-hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide **3a** (0.96 g, 78 %).

VI. Synthetic utility of 2-phosphinoyl indoles

Reduction reaction of 2-phosphinoyl indoles³

To a 25 mL round bottom flask was added 2-(2-(diphenylphosphoryl)-1H-indol -3-yl)-1-phenylethan-1-one **3a** (0.2 mmol, 87.10 mg), HSiCl₃ (10.0 eq, 270.90 mg) and PhCl (2 mL). The flask was placed in a metal bath and heated at 120 °C for 24 h, until the complete consumption of **3a** as monitored by TLC. the solvent was removed under reduced pressure and the residue was purified by flash column chromatography (petroleum ether / ethyl acetate = 20 : 1) to give the 2-(2-(diphenylphosphanyl)-1Hindol-3-yl)- 1-phenylethan- 1-one **8** (70.50 mg, 84 %).Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.71 (s, 1H), 7.62(d, *J* = 8.0 Hz, 1H), 7.47– 7.41 (m, 2H), 7.35–7.27 (m, 11H), 7.20–7.11 (m, 2H), 7.07 (t, *J* = 7.6 Hz, 1H), 4.68 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 140.0 (d, J = 51.3 Hz), 138.4, 136.6, 135.7 (d, J = 7.8 Hz), 133.0 (d, J = 18.7 Hz), 132.9, 129.5 (d, J = 66.2 Hz), 129.0, 128.9 (d, J = 6.7 Hz), 128.8 (d, J = 2.1 Hz), 128.7 (d, J = 9.0 Hz), 128.5 (d, J = 6.2 Hz), 128.4, 123.6, 120.1 (d, J = 9.6 Hz), 119.9, 111.2, 36.5 (d, J = 12.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ -34.7(s, 1P). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₂₃NOP⁺ 420.1512; found 420.1500.

Thioreaction of 2-phosphinoyl indoles⁴

To a 15 mL pressure tubing was added 2-(2-(diphenylphosphoryl)-1H-indol-3- yl)-1phenylethan-1-one **3a** (0.15 mmol, 65.2 mg), Lawesson's reagent (2.0 eq, 121.34 mg) and toluene (2 mL). Then the reaction mixture was stirred for 2 hour at 110 °C. Upon completion, the solvent was removed in vacuum and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate 10:1) to give the 2-(2-((diphenyl-14-sulfanylidene)- phosphanyl)-1H-indol-3-yl)-1- phenylethane-1-one **9** (33.8 mg, 50 %). White solid, **m.p.** 82-84 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.81 (s, 1H), 7.78 (d, *J* = 7.2 Hz, 2H), 7.73 (t, *J* = 8.4 Hz, 4H), 7.51 (t, *J* = 10.2 Hz, 1H), 7.39 (m, 10H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.12 (t, *J* = 7.2 Hz, 1H), 4.19 (s, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 195.9, 137.3 (d, *J* = 9.4 Hz), 136.4, 133.0, 132.1 (d, *J* = 89.4 Hz), 132.0, 131.9, 131.6, 129.6 (d, *J* = 10.9 Hz), 128.9 (d, *J* = 13.0 Hz), 128.2 (d, *J* = 31.7 Hz), 124.9, 123.2 (d, *J* = 103.8 Hz), 120.7, 120.3, 118.2 (d, *J* = 11.2 Hz), 112.0, 35.2. ³¹**P NMR** (162 MHz, CDCl₃) δ 31.7. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₂₈H₂₃NOPS⁺ 452.1232; found 452.1217.

Synthesis of 3-phenyl-2-phosphoroyl-indole 10⁵

NaBH₃CN (2.2 equiv) was added in batches to a 25 ml round bottom flask containing (3-hydroxy-3-phenyl-3H-indol-2-yl)diphenylphosphine oxide **5a** (0.2 mmol, 88.8 mg) and HOAc (1.5 ml) at 0 °C, and the mixture was stirred at room temperature for another 30 minutes. After the reaction is completed, the reaction is quenched with a saturated Na₂CO₃ solution, and the organic phase is extracted and collected with DCM (3×10 mL). It is dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography (petroleum ether/ethyl

acetate=2/1) to obtain diphenyl (3-phenyl-1H-indole-2-yl) phosphine oxide **10** (60.6 mg, 77%). White solid, **m.p.** 228–230 °C.¹**H NMR** (400 MHz, CDCl₃) δ 10.26 (s, 1H), 7.63–7.47 (m, 6H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.32–7.24 (s, 5H), 7.15–7.00 (m, 6H).¹³**C NMR** (101 MHz, CDCl₃) δ 137.5 (d, *J* = 51.3 Hz), 133.5, 132.6, 132.1, 131.9, 131.5, 130.5, 128.6 (d, *J* = 11.3 Hz), 128.4 (d, *J* = 12.7 Hz), 127.8, 126.8, 126.6 (d, *J* = 13.5 Hz), 124.7, 123.4, 120.6 (d, *J* = 14.9 Hz), 112.2. ³¹**P NMR** (162 MHz, CDCl₃) δ 22.0. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₂₆H₂₁NOP⁺ 394.1355; found 394.1350.

Synthesis of (E)-2-(diphenylphosphoryl)-2-(4-methoxystyryl)indolin-3-one 11

In a 15 mL pressure tubing was added (*E*)-(3-hydroxy-3- (4-methoxystyryl)-3H - indol-2-yl)diphenylphosphine oxide **6m** (0.1 mmol, 46.5 mg), TMSCl (10 mol%) and CHCl₃ (1 ml), then the pressure tubing was stirred at room temperature for 5 min. After the reaction is finished, concentrate under reduced pressure to obtain the (*E*)-2- (diphenylphosphoryl) -2 -(4-methoxystyryl)indolin-3-one **11** (44.6 mg, 98 %). Yellow solid, **m.p.** 213-215 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, *J* = 7.6 Hz, 1H), 8.32 (d, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.65–7.53 (m, 3H), 7.41 (s, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.28–7.25 (m, 1H), 7.24–7.17 (m, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.90–6.85 (m, 2H), 6.68 (d, *J* = 8.4 Hz, 2H), 6.62 (t, *J* = 7.6 Hz, 1H), 6.35 (dd, *J* = 16.0, 4.4 Hz, 1H), 3.74 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 197.0, 160.3 (d, *J* = 3.2 Hz), 159.4, 137.3, 132.8 (d, *J*

= 9.5 Hz), 132.6 (d, J = 3.0 Hz), 132.4 (d, J = 9.1 Hz), 132.2 (d, J = 3.0 Hz), 131.9 (d, J = 9.4 Hz), 129.7 (d, J = 20.9 Hz), 129.1 (d, J = 3.3 Hz), 128.8, 128.6 (d, J = 12.1 Hz), 128.1 (d, J = 10.2 Hz), 128.0, 124.7, 120.6, 120.1 (d, J = 3.8 Hz), 119.0, 113.8, 112.4, 75.4 (d, J = 62.6 Hz), 55.2. ³¹P NMR (162 MHz, CDCl₃) δ 28.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₉H₂₅NO₃P⁺ 466.1567; found 466.1553.

VII. Mechanistic investigation

Mechanism verification experiment (with 7a as an example)

(*E*)-3-(2-isocyanophenyl) methyl acrylate **11** (0.2 mmol, 37.413 mg), diphenylphosphine oxide **2a** (0.4 mmol, 80.9 mg), Ag_2CO_3 (5 mol%, 2.8 mg), DABCO (50 mol%, 11.2 mg) and 1.4-dioxane (2 ml) were successively added to a pressure tube,

tighten the stopper, heated and stirred in a 60 °C metal bath for 2 hours (monitor the complete consumption of **11** by TLC). The reaction mixture was cooled to room temperature, diluted with water (10 mL) and extract the mixture with EtOAc (3×10 mL). The organic layers were combined, dry over anhydrous Na₂SO₄ and concentrate under reduced pressure. The crude product was purified by column chromatography (dichloromethane/methanol=30/1) to obtain **7a** (65 mg, 50%) of (*E*) -3- (2- (bis (diphenylphosphoryl) methyl) amino) phenyl) methyl acrylate.

Analytical data of 7a, 7b and 7c.

Methyl (*E*)-3-(2-((bis(diphenylphosphoryl)methyl)amino)phenyl)acrylate (7a). Eluent: CH₂Cl₂/MeOH (30:1), green solid (64.7 mg, 55%), m.p.: 168–171 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.89–7.81 (m, 4H), 7.80–7.73 (m, 4H), 7.47–7.24 (m, 13H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.97 (t, *J* = 8.0 Hz, 1H), 6.59 (t, *J* = 7.6 Hz, 1H), 6.49 (d, *J* = 8.4 Hz, 1H), 6.06 (d, *J* = 16.0 Hz, 1H), 5.32 (q, *J* = 12.4 Hz, 1H), 4.83 (s, 1H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 144.0 (t, *J* = 2.5 Hz), 139.5, 132.1, 131.6 (t, *J* = 4.7 Hz), 131.0 (d, *J* = 2.8 Hz), 130.9 (d, *J* = 103.7 Hz), 130.8, 130.0 (d, *J* = 2.8 Hz), 128.4 (m, 1C), 121.6, 119.5, 119.1, 112.7, 57.0 (t, *J* = 63.8 Hz), 51.7. ³¹P NMR (162 MHz, CDCl₃) δ 28.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₅H₃₂NO₄P₂⁺ 592.1801; found 592.1776.

(*E*)-3-(2-((Bis(diphenylphosphoryl)methyl)amino)phenyl)acrylonitrilemethyl (7b). Eluent: CH₂Cl₂/MeOH (30:1), yellow solid (101.3 mg, 91%), **m.p.:** 161-163 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 7.92–7.82 (m, 4H), 7.80–7.68 (m, 4H), 7.57–7.17 (m, 12H), 7.06–6.97 (m, 2H), 6.91 (d, *J* = 4.1 Hz, 1H), 6.63 (t, *J* = 7.6 Hz, 1H), 6.57 (d, *J* = 8.4 Hz, 1H), 5.47 (d, *J* = 4.1 Hz, 1H), 5.33–5.20 (m, 1H), 4.67–4.56 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 144.0 (t, *J* = 2.5 Hz), 132.3, 131.9, 131.5 (m, 1C), 130.4, 130.1 (d, *J* = 100.7 Hz), 128.5 (m, 1C), 127.4, 121.1, 119.5, 118.1, 113.7, 97.2, 57.8 (d, *J* = 62.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₄H₂₉N₂O₂P₂⁺ 559.1699; found 559.1665.

(*E*)-(((2-Styrylphenyl)amino)methylene)bis(diphenylphosphine oxide)methyl (7c). Eluent: CH₂Cl₂/MeOH (30:1), yellow solid (100.6 mg, 83%), m.p.: 159–161 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.80 (m, 4H), 7.80–7.69 (m, 4H), 7.48–7.17 (m, 17H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.87 (t, *J* = 7.6 Hz, 1H), 6.77–6.64 (m, 2H), 6.60 (t, *J* = 7.6 Hz, 1H), 6.41 (d, *J* = 8.4 Hz, 1H), 5.36 (s, 1H), 4.73 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.9 (t, *J* = 2.6 Hz), 137.2, 132.0 (d, *J* = 3.7 Hz), 131.7 (t, *J* = 5.0 Hz), 131.6 (t, *J* = 4.3 Hz), 31.3 (d, *J* = 2.8 Hz), 130.9 (d, *J* = 103.5 Hz), 130.3 (d, *J* = 2.8 Hz), 128.7, 128.5 (t, *J* = 6.1 Hz), 128.3 (t, *J* = 6.2 Hz), 127.8, 127.3, 126.6, 125.1, 123.2, 119.1, 112.3, 56.9 (t, *J* = 64.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 28.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₉H₃₄NO₂P₂⁺ 610.2059; found 610.2029

Radical trapping experiment of 3a

(*E*) -3- (3- (2-isocyanophenol) -1-phenylpropane-2-en-1-one **1a** (0.3 mmol, 1.5 equiv, 70 mg), diphenylphosphine oxide **2a** (0.2 mmol, 40.4 mg), Ag_2CO_3 (5 mol%, 2.8 mg), DABCO (50 mol%, 11.2 mg), BHT (0.4 mmol, 2.0 equiv, 88.1 mg) and 1.4-dioxane (2.0 mL) were successively added to a pressure resistant tube. After tightening the stopper, heated at 60 °C for 2 hours. TLC indicated that substrate **1a** was consumed. The reaction mixture was work up as before and product **3a** was obtained in 68% yield.

Radical trapping experiment of 5a

(2-isocyanophenyl) (phenyl) ketone **5a** (0.2 mmol, 41.4 mg), diphenylphosphine oxide **2a** (0.3 mmol, 1.5 equiv, 60.7 mg), Ag₂CO₃ (5 mol%, 2.8 mg), Cs₂CO₃ (50 mol%, 32.6 mg), TEMPO (2.0 equiv) and CHCl₃ (2 ml) were successively added to a 15 mL pressure tube, tighten the stopper, heated in a 40 °C metal bath for 2.5 hours, and monitor the complete consumption of **5a** through TLC. The reaction mixture was work up as before, and product **6a** was obtained in 89% yield.

References

1. Z. Hu, H. Yuan, Y. Men, Q. Liu, J. Zhang and X. Xu, *Angew. Chem. Int. Ed.* 2016, **55**, 7077–7080.

2. Y. Gue, Z. Hu, J Dong, Q. Liu and X. Xu, Org. Lett. 2017, 19, 5292-5295.

3. C. Chen, J. Ding, L. Liu, Y. Huang and B. Zhu, *Adv. Synth. Catal.* 2022, **364**, 200–205.

4. Y, Liu. P, Xie. J. Li, W. Bai and J. Jiang, Org. Lett. 2019, 21, 4944–4949.

5. X. Guo, J. Dong, Y. Zhu, L. Bao, Z. Hu and X. Xu, Chin. Chem. Lett. 2023, 34, 107608.

VIII. X-ray Crystallographic Data of compound 3a, 6m and 11

X-ray Crystallographic Data of compound 3a Sample preparation

30 mg of **3a** was dissolved in EtOAc and petroleum ether (500 μ L / 3 mL) and the solvent was evaporated slowly at room atmosphere.

Crystal measurement for compound 3a

Suitable single crystals of complex **3a** were selected and mounted in air onto thin glass fibers. X-ray intensity data were measured at 293K on an Agilent SuperNova CCD-based diffractometer (Cu K α radiation $\lambda = 1.54184$ Å). The raw frame data for the complexes were integrated into SHELX-format reflection files and corrected for Lorentz and polarization effects using SAINT. Corrections for incident and diffracted beam absorption effects were applied using SADABS. None of the crystals showed evidence of crystal decay during data collection. All structures were solved by a combination of direct methods and difference Fourier syntheses and refined against F2 by full-matrix least-squares techniques. Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. Hydrogen atoms bonded to carbon and nitrogen were placed in geometrically idealized positions with isotropic displacement parameters set to 1.2Ueq of the attached atom.

3a CCDC 2334871, displacement ellipsoids are drawn at the 30% probability level. Crystal data and structure refinement for 3a

Empirical formula	$C_{28}H_{22}NO_2P$
Formula weight	435.44
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Ă	9.2305(5)
b/Ă	9.3886(6)
c/Ă	15.0613(6)
$\alpha / ^{\circ}$	83.016(4)
β/°	81.790(4)
γ^{\prime}	62.191(6)
Volume/Å ³	1140.40(11)
Z	2
$\rho_{calc}mg/mm^3$	1.268
m/mm ⁻¹	1.261

F(000)	456.0
Crystal size/mm ³	0.25 imes 0.2 imes 0.15
2Θ range for data collection	10.68 to 140.74°
Index ranges	$-11 \le h \le 10, -11 \le k \le 11, -12 \le l \le 18$
Reflections collected	8124
Independent reflections	4282[R(int) = 0.0209]
Data/restraints/parameters	4282/0/289
Goodness-of-fit on F ²	1.054
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0416, wR_2 = 0.1035$
Final R indexes [all data]	$R_1 = 0.0514, wR_2 = 0.1106$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.31

X-ray Crystallographic Data of compound 6m and 11 Crystal measurement for compound 6m and 11

Suitable single crystals of complex **6m** were selected and mounted in air onto thin glass fibers. X-ray intensity data were measured at 113.15 K on an Agilent SuperNova CCD-based diffractometer (Cu K α radiation $\lambda = 1.54184$ Å). The raw frame data for the complexes were integrated into SHELX-format reflection files and corrected for Lorentz and polarization effects using SAINT. Corrections for incident and diffracted beam absorption effects were applied using SADABS. None of the crystals showed evidence of crystal decay during data collection. All structures were solved by a combination of direct methods and difference Fourier syntheses and refined against F2 by full-matrix least-squares techniques. Non-hydrogen atoms were refined with anisotropic displacement parameters during the final cycles. Hydrogen atoms bonded to carbon and nitrogen were placed in geometrically idealized positions with isotropic displacement parameters set to 1.2Ueq of the attached atom.

Sample preparation

25 mg of **6m** was dissolved in EtOAc and petroleum ether (500 μ L / 3 mL) and the solvent was evaporated slowly at room atmosphere.

6m CCDC 2334872, displacement ellipsoids are drawn at the 30% Probability level. Crystal data and structure refinement for 6m

Empirical formula	$C_{29}H_{24}NO_3P$
Formula weight	465.46
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Ă	10.1021(9)
b/Ă	10.6285(9)
c/Ă	12.0861(10)
$\alpha/^{\circ}$	95.272(7)

β/°	112.661(8)
$\gamma/^{\circ}$	92.657(7)
Volume/Å ³	1187.71(17)
Z	2
$\rho_{calc}mg/mm^3$	1.302
m/mm ⁻¹	1.278
F(000)	488.0
Crystal size/mm ³	0.08 imes 0.06 imes 0.02
2Θ range for data collection	7.98 to 134.08°
Index ranges	$-12 \le h \le 12, -12 \le k \le 12, -14 \le l \le 14$
Reflections collected	8165
Independent reflections	4223[R(int) = 0.0488]
Data/restraints/parameters	4223/0/309
Goodness-of-fit on F ²	1.011
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0485, wR_2 = 0.1101$
Final R indexes [all data]	$R_1 = 0.0751, wR_2 = 0.1253$
Largest diff. peak/hole / e Å ⁻²	3 0.32/-0.38

Sample preparation

25 mg of 11 was dissolved in EtOAc and petroleum ether (500 μL / 3 mL) and the solvent was evaporated slowly at room atmosphere.

11 CCDC 2334873, displacement ellipsoids are drawn at the 25% Probability	level.
Crystal data and structure refinement for 11	

Empirical formula	C29.6H25.2Cl1.2NO3P
Formula weight	516.42
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	9.9338(7)
b/Å	11.4115(6)
c/Å	13.4261(9)
$\alpha/^{\circ}$	91.104(5)
β/°	99.247(6)
$\gamma/^{\circ}$	107.898(5)
Volume/Å ³	1425.67(16)
Z	2
$\rho_{calc}mg/mm^3$	1.203
m/mm^{-1}	2.123

F(000)	538.0
Crystal size/mm ³	$0.16 \times 0.11 \times 0.07$
2Θ range for data collection	9.5 to 134.16°
Index ranges	$-11 \le h \le 11, -13 \le k \le 11, -15 \le l \le 16$
Reflections collected	10015
Independent reflections	5070[R(int) = 0.0320]
Data/restraints/parameters	5070/23/350
Goodness-of-fit on F ²	1.054
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0677, wR_2 = 0.1921$
Final R indexes [all data]	$R_1 = 0.0815, wR_2 = 0.2079$
Largest diff. peak/hole / e Å ⁻³	0.91/-0.50

IX. ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra of compounds

1, 3, 4, 5, 6, 7, 8, 9, 10 and 11

¹H NMR (400 MHz, CDCl₃) for 1d

^{13}C NMR (100 MHz, CDCl₃) for 1d

1H NMR (400 MHz, CDCl₃) for 1g

^{13}C NMR (100 MHz, CDCl₃) for 1g

1H NMR (400 MHz, CDCl₃) for 3a

¹³C NMR (101 MHz, CDCl₃) for 3a

³¹P NMR (162 MHz, CDCl₃) for 3a

¹H NMR (101 MHz, CDCl₃) for **3b**

$^{13}C\,NMR$ (400 MHz, CDCl₃) for 3b

1H NMR (400 MHz, CDCl₃) for 3c

¹³C NMR (101 MHz, CDCl₃) for 3c

^{31}P NMR (162 MHz, CDCl₃) for 3c

 1H NMR (400 MHz, CDCl₃) for 3d

^{13}C NMR (101 MHz, CDCl_3) for 3d

510 200 190 100 170 100 130 140 130 120 110 100 90 50 70 50 50 40 30 20 10 0 -10 51 (ppm)

³¹P NMR (162 MHz, CDCl₃) for 3d

= 17 - 20211014 11.144 $= \int_{10}^{10} \int_{10}^{10$

¹H NMR (400 MHz, CDCl₃) for 3e

¹³C NMR (101 MHz, CDCl₃) for 3e

³¹P NMR (162 MHz, CDCl₃) for 3e

$^{13}\mathrm{H}$ NMR (400 MHz, CDCl_3) for 3f

^{13}C NMR (101 MHz, CDCl₃) for 3f

210 200 190 100 170 180 130 140 130 120 110 100 90 50 70 80 50 40 30 20 10 0 -10 f1 (spam)

³¹P NMR (162 MHz, CDCl₃) for 3f

- 21.395

mmm-LY-20231025.21.fid

140 150 150 50 60 40 50 0 -20 -40 -60 -100 -100 -140 -160 -120 -200 -220 -240 fl (ppm)

1H NMR (400 MHz, CDCl_3) for 3g

^{13}C NMR (101 MHz, CDCl_3) for 3g

510 200 150 150 170 160 150 140 130 120 110 100 50 50 70 60 50 40 30 50 10 0 -10 fl (ppw)

^{31}P NMR (162 MHz, CDCl₃) for 3g

¹H NMR (400 MHz, CDCl₃) for **3h**

^{13}C NMR (101 MHz, CDCl₃) for 3h

140 120 100 50 60 40 20 0 -20 -40 -60 -50 -100 -120 -140 -100 -120 -200 -200 -200 -240 fl (ppm)

¹H NMR (400 MHz, CDCl₃) for 3i

¹³C NMR (101 MHz, CDCl₃) for **3i**

³¹P NMR (162 MHz, CDCl₃) for 3i

 1H NMR (400 MHz, CDCl₃) for 3j

^{31}H NMR (101 MHz, CDCl_3) for 3j

slo soo 190 180 170 180 130 140 130 120 110 100 90 50 70 80 50 40 30 20 10 0 -10 fl (ppm)

^{31}P NMR (162 MHz, CDCl_3) for 3j

- 21.456

mmm-LY-20231017.11.fid

140 120 100 20 60 40 20 0 −20 −40 −50 −10 −100 −120 −140 −160 −20 −200 −220 −240

¹H NMR (400 MHz, CDCl₃) for 3k

^{13}C NMR (101 MHz, CDCl₃) for 3k

^{31}P NMR (162 MHz, CDCl₃) for 3k

1H NMR (400 MHz, CDCl₃) for 3l

- 1.039

¹³C NMR (101 MHz, CDCl₃) for **3**l

210 200 190 130 170 180 150 140 130 120 110 100 90 50 70 60 50 40 30 20 10 0 -10 fl (ppm)

^{31}P NMR (162 MHz, CDCl_3) for 3l

-21.318

жи-LY-20240104.41.fid

1H NMR (400 MHz, CDCl_3) for $\mathbf{30}$

^{13}C NMR (101 MHz, CDCl_3) for 3o

³¹P NMR (162 MHz, CDCl₃) for 30

1H NMR (400 MHz, CDCl₃) for 3p

^{13}C NMR (101 MHz, CDCl_3) for 3p

³¹P NMR (162 MHz, CDCl₃) for 3p

- 21.444

mmm-LY-20231005.21.fid

140 120 100 50 60 40 20 0 -20 -40 -50 -50 -100 -120 -140 -160 -120 -500 -520 -540

¹H NMR (400 MHz, CDCl₃) for 3q

¹³C NMR (101 MHz, CDCl₃) for 3q

¹H NMR (400 MHz, CDCl₃) for 3r

^{13}C NMR (101 MHz, CDCl_3) for 3r

zio zao 190 180 170 180 190 140 190 100 100 90 80 70 60 50 40 90 20 10 0 -10 #1 (ppm)

^{31}P NMR (162MHz, CDCl₃) for 3r

- 21.798

жжн-LY-20231026.31.fid

140 150 100 50 60 40 20 0 -20 -40 -60 -100 -120 -140 -150 -150 -200 -200 -240 fl (ppm)

1H NMR (400 MHz, CDCl₃) for 3s

¹³C NMR (101 MHz, CDCl₃) for **3t**

³¹P NMR (162 MHz, CDCl₃) for 3s

¹H NMR (400 MHz, CDCl₃) for 4a

¹³C NMR (101 MHz, CDCl₃) for 4a

210 200 190 100 170 180 190 140 130 120 110 100 90 50 70 80 50 40 30 20 10 0 -10 £1 (ppm)

³¹P NMR (162 MHz, CDCl₃) for 4a

- 33.728

mmm-LV-20231106.11.fid

140 120 100 50 60 40 20 0 -20 -40 -50 -50 -100 -120 -140 -160 -120 -500 -520 -540

^{1}H NMR (400 MHz, CDCl₃) for 5i

^{13}C NMR (101 MHz, CDCl₃) for 5i

510 500 190 100 170 180 190 140 190 100 100 100 90 50 70 60 50 30 30 50 10 0 −10 £1 (spen)

1H NMR (400 MHz, CDCl₃) for 5j

2.0 12.5 11.0 10.5 10.0 9.5 9.0 5.5 5.0 7.5 7.0 9.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 5.0 1.5 1.0 0.5 0.0 51 (ppm)

^{13}C NMR (101 MHz, CDCl₃) for 5j

^{19}F NMR (376 MHz, CDCl_3) for 5j

жжн-LY-20231225.21.fid

¹H NMR (400 MHz, CDCl₃) for 5k

^{13}C NMR (101 MHz, CDCl_3) for 5k

1H NMR (400 MHz, CDCl₃) for 5l

^{13}C NMR (101 MHz, CDCl_3) for 5l

¹H NMR (400 MHz, CDCl₃) for 6a

¹³C NMR (101 MHz, CDCl₃) for 6a

³¹P NMR (162 MHz, CDCl₃) for 6a

^{13}C NMR (101 MHz, CDCl₃) for 6b

³¹P NMR (162 MHz, CDCl₃) for 6b

mmm-LY-20230819.11.fid

¹H NMR (400 MHz, CDCl₃) for 6c

^{13}C NMR (101 MHz, CDCl₃) for 6c

³¹P NMR (162 MHz, CDCl₃) for 6c

mmm-LY-20230617.12.fid

--111.525

10 0 -10 -20 -30 -40 -50 -60 -78 -50 -90 -100 -110 -120 -130 -140 -150 -160 -170 -150 -190 -200 -210 fl (pps)

¹H NMR (400 MHz, CDCl₃) for 6d

¹³C NMR (101 MHz, CDCl₃) for 6d

¹H NMR (400 MHz, CDCl₃) for 6e

¹³C NMR (101 MHz, CDCl₃) for 6e

³¹P NMR (162 MHz, CDCl₃) for 6e

-24.331

====LY-20230523.21.fid

140 120 100 20 00 40 20 0 -20 -40 -00 -100 -120 -140 -100 -120 -200 -200 -200 -200 -240

¹H NMR (400 MHz, CDCl₃) for 6f

^{13}C NMR (101 MHz, CDCl₃) for 6f

³¹P NMR (162 MHz, CDCl₃) for 6f

^{19}F NMR (376 MHz, CDCl₃) for 6f

mmm=LY=20230613.12.fid

--111.118

¹H NMR (400 MHz, CDCl₃) for 6g

¹³C NMR (101 MHz, CDCl₃) for 6g

^{31}P NMR (162 MHz, CDCl₃) for 6g

жн-LY-20231229.21.fid

-24.176

78

HC 6.0

6.0 5.5 fl (pps) 3.0 4.5

4.0 3.5 3.0

1.0 0.5 0.0

2.5 2.0 1.5

5.01

0.5

1.07

7.5 7.0

7.151

. 0 11 5 11 0 10 5 10 0 9 5 9 0 8 5 8 0

^{13}C NMR (101 MHz, CDCl₃) for 6h

140 120 100 50 60 40 20 0 -20 -40 -50 -100 -120 -140 -150 -150 -200 -200 -240 fl (pps)

¹H NMR (400 MHz, CDCl₃) for 6i

¹³C NMR (101 MHz, CDCl₃) for 6i

^{31}P NMR (162 MHz, CDCl₃) for 6i

^{19}F NMR (376 MHz, CDCl₃) for 6i

mmm-LY-20230814.12.fid

10 0 -10 -20 -30 -40 -50 -50 -50 -50 -90 -100 -110 -120 -130 -140 -150 -160 -170 -150 -190 -200 -210 fl (ppm)

¹H NMR (400 MHz, CDCl₃) for 6j

^{13}C NMR (101 MHz, CDCl₃) for 6j

³¹P NMR (162 MHz, CDCl₃) for 6j

¹H NMR (400 MHz, CDCl₃) for 6k

^{13}C NMR (101 MHz, CDCl₃) for 6k

³¹P NMR (162 MHz, CDCl₃) for 6k

-24.200

mmm-LV-20240323.11.fid

¹H NMR (400 MHz, CDCl₃) for **6**l

¹³C NMR (101 MHz, CDCl₃) for 6l

¹H NMR (400 MHz, CDCl₃) for 6m

¹³C NMR (101 MHz, DMSO-*d*₆) for **6m**

^{31}P NMR (162 MHz, CDCl₃) for 6m

mmm302-20230308.70.fid

¹H NMR (400 MHz, CDCl₃) for 6n

¹³C NMR (101 MHz, CDCl₃) for 6n

³¹P NMR (162 MHz, CDCl₃) for 6n

^{13}C NMR (101 MHz, CDCl₃) for 60

³¹P NMR (162 MHz, CDCl₃) for 60

-22.984

mmm=LY=20240316.11.fid

HO POPh₂

140 120 100 50 60 40 20 0 -20 -40 -60 -50 -100 -120 -140 -160 -120 -200 -220 -240 fl (ppm)

¹H NMR (400 MHz, CDCl₃) for 6p

¹³C NMR (101 MHz, CDCl₃) for 6p

154,284 154,284 143,339 143,339 143,375 143,375 143,375 142,708 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1132,465 1122,481 1128,501 1128,501 1126,525 1126,525 1126,525 1126,525 1125,525 1125,527 1125,527 1125,527 1125,527 1125,527 1125,527 1125,527 1125,527 1125,527 1125,527 1125,527 1125,5

³¹P NMR (162 MHz, CDCl₃) for 6p

^1H NMR (400 MHz, CDCl₃) for 6q

^{13}C NMR (101 MHz, CDCl₃) for 6q

93

^1H NMR (400 MHz, CDCl₃) for 6q

¹³C NMR (101 MHz, CDCl₃) for 6r

^{31}P NMR (162 MHz, CDCl₃) for 6r

¹H NMR (400 MHz, CDCl₃) for 6s

¹³C NMR (101 MHz, CDCl₃) for 6s

³¹P NMR (162 MHz, CDCl₃) for 6s

- 25.975

жжн-LY-20230530.41.fid

140 120 100 50 60 40 20 0 -20 -40 -50 -100 -120 -140 -100 -120 -200 -200 -200 -200

¹H NMR (400 MHz, CDCl₃) for 6t

¹³C NMR (101 MHz, CDCl₃) for 6t

³¹P NMR (162 MHz, CDCl₃) for 6t

¹H NMR (400 MHz, CDCl₃) for the crude products of **6u** and **6u**'

¹H NMR (400 MHz, CDCl₃) for 6u

0.3 0.0 3.3 fl (ppn) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

0.0

¹³C NMR (101 MHz, CDCl₃) for 6t

9.5 9.0 8.5 8.0 7.5 7.0

.0.0 11.5 11.0 10.5 10.0

150 150 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

130 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -25 fl (ppm)

¹H NMR (400 MHz, CDCl₃) for 7a

¹³C NMR (101 MHz, CDCl₃) for 7a

140 120 -240 100 50 60 40 20 -20 -40 -50 fl (ppm) -80 -100 -100 -140 -100 -130 -200 -220

¹H NMR (400 MHz, CDCl₃) for 7b

^{13}C NMR (101 MHz, CDCl_3) for 7b

¹H NMR (400 MHz, CDCl₃) for 7c

^{13}C NMR (101 MHz, CDCl₃) for 7c

³¹P NMR (162MHz, CDCl₃) for 7c

1H NMR (400 MHz, CDCl₃) for $\boldsymbol{8}$

^{13}C NMR (101 MHz, CDCl_3) for 8

140 120 20 -180 -200 -220 -240 100 50 0 -20 -40 -80 fl (ppm) 40 -80 -100 -140 -100 -120

^{1}H NMR (400 MHz, CDCl₃) for 9

^{13}C NMR (101 MHz, CDCl₃) for 9

^{31}P NMR (162 MHz, CDCl₃) for 9

1H NMR (400 MHz, CDCl₃) for 10

^{13}C NMR (101 MHz, CDCl₃) for 10

140 120 100 50 60 40 20 5 -20 -40 -60 -50 -100 -120 -140 -160 -120 -200 -220 -240 fl (ppm)

¹H NMR (400 MHz, CDCl₃) for 11

^{13}C NMR (101 MHz, CDCl₃) for 11

^{31}P NMR (162 MHz, CDCl₃) for 11

140 120 100 20 60 40 20 0 -20 -40 -50 -20 -100 -120 -140 -160 -120 -200 -220 -240