Electronic Supplementary Information

One-pot C(sp³)-H difluoroalkylation of tetrahydroisoquinolines and isochromans via electrochemical oxidation and organozinc alkylation

Kazuya Kamata,^a Masami Kuriyama,^{a,*} Hironobu Tahara,^b Akira Nishikawa,^a Kosuke Yamamoto,^a Yosuke Demizu,^c and Osamu Onomura^{a,*}

^a Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

^b Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

^c Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan

mkuriyam@nagasaki-u.ac.jp; onomura@nagasaki-u.ac.jp

Table of Contents

1. General information	S2
2. Experimental procedures and characterizat	ion data
2.1. Experimental setup for the electrochem	nical reaction S3
2.2. MS analysis of the first step	S4
2.3. Cyclic voltammetry	S5
2.4. Compounds 3 and 5	S5-S21
2.5. Gram-scale experiment	S22
2.6. Compound 6	S22-S23
2.7. Synthesis of substrates	S23-S26
3. References	S27
4. NMR spectra	S28-S98

1. General information

All melting points were measured with Yanako MP-J3 and uncorrected. IR spectra were obtained with Shimadzu IRAffinity-1, and absorptions were reported in cm⁻¹. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded with Varian NMR System 500PS SN and JEOL JNM-ECZ400R (500 or 400 MHz for ¹H NMR, 125 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR). Chemical shift values are expressed in parts per million relative to internal TMS (δ 0.00 for ¹H NMR) or CDCl₃ (δ 77.0 for ¹³C NMR). Abbreviations are as follow: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Mass spectra (MS) and high resolution mass spectra (HRMS) were recorded on JEOL JMS-T100TD (time-of-flight mass spectrometer) with direct analysis in real time (DART) method. Cyclic Voltammetry (CV) was performed with Gamry Reference 600. All reactions were carried out under an argon atmosphere unless otherwise noted.

Chemicals were purchased from Sigma-Aldrich, Tokyo Chemical Industry, FUJIFILM Wako Pure Chemicals, and Nacalai tesque and used as received unless otherwise noted. Dry DMSO, DMF, MeCN, and CH₂Cl₂ were bought from FUJIFILM Wako Pure Chemicals, and dry THF was purchased from Kanto Chemical. AcOEt was distilled and stored over 3Å molecular sieves. Toluene was distilled from sodium benzophenone ketyl under an argon atmosphere. CF₃CH₂OH and EtOH were dried over 3Å molecular sieves before use. Tetrahydroisoquinolines **1a-d**,¹ **1e**,² **1f-g**,³ **1h-i**,⁴ **1j**,⁵ **1k**,¹ **1m**,¹ **1n**,² **1o**,¹ **1q**,⁵ **1s**,⁶ fluorinated reagents for the preparation of **2b**,⁷ **2c**,⁸ **2d-e**,⁹ **2f**,⁷ **2g**,¹⁰ and isochromans **4c-d**¹¹, **4e**¹² were prepared as reported. The products were isolated by silica gel column chromatography with Fuji Silysia PSQ 60B and PSQ100B.

2. Experimental procedures and characterization data

2.1. Experimental setup for the electrochemical reaction

Figure S1. Experimental setup for a small-scale reaction

Figure S2. Experimental setup for a gram-scale reaction

2.2. MS analysis of the first step

The reaction was carried out in a cylinder-type undivided cell equipped with a graphite anode $(1 \times 5 \text{ cm}^2)$ and a platinum cathode $(1 \times 2 \text{ cm}^2)$ (distance between the anode and cathode: 1 cm). After the reaction vessel was charged with 2-phenyl-1,2,3,4-tetrahydroisoquinoline (1a) (104.6 mg, 0.5 mmol) and Et₄NBr (21.0 mg, 0.1 mmol), dry MeCN (4.0 mL) and CF₃CH₂OH (200.1 mg, 2.0 mmol) were added. Then, a constant current (5 mA, 2.7 F/mol) was supplied at 0 °C with magnetic stirring. After concentration of the reaction mixture, MS analysis was conducted. The detected data was consistent with that of 2-phenyl-1-(2,2,2-trifluoroethoxy)-1,2,3,4-tetrahydroisoquinoline, which could not be isolated by silica gel column chromatography because of its lability. MS (DART) *m/z*: 308 [M+H]⁺.

Figure S3. MS analysis of the first step

2.3. Cyclic voltammetry

A glassy carbon electrode (surface area: 0.0201 cm^2), an Au wire electrode, and a Ag/Ag⁺ electrode (AgNO₃ (10 mM) and Et₄NBF₄ (0.1 M) in MeCN) were used as working, counter, and reference electrodes, respectively. To prevent any leakage of AgNO₃ into the sample solution, a double junction configuration was used in constructing the reference electrode. Cyclic voltammetry was performed at 50 mV/s under rt using samples (5 mM) in the electrolyte solution (Et₄NBF₄ (0.1 M) in MeCN). The redox potentials were calibrated with ferrocene as a standard.

Figure S4. Cyclic voltammograms of Et4NBr, 1a, and 1q

2.4. Typical procedure for the one-pot difluoroalkylation via electrochemical oxidation

The reactions were carried out in a cylinder-type undivided cell equipped with a graphite anode $(1 \times 5 \text{ cm}^2)$ and a platinum cathode $(1 \times 2 \text{ cm}^2)$ (distance between the anode and cathode: 1 cm). After the reaction vessel was charged with 2-phenyl-1,2,3,4-tetrahydroisoquinoline (**1a**) (104.6 mg, 0.5 mmol) and Et4NBr (21.0 mg, 0.1 mmol), dry MeCN (4.0 mL) and CF₃CH₂OH (200.1 mg, 2.0 mmol) were added. Then, a constant current (5 mA, 2.7 F/mol) was supplied at 0 °C with magnetic stirring. To the undivided cell was added the organozinc reagent (1.13 mL, 0.78 M in THF) prepared through stirring the mixture of Zn powder (118 mg, 1.8 mmol) and ethyl 2-bromo-2,2-difluoroacetate (406 mg, 2 mmol) in dry THF (2 mL) at rt for 5 min.¹³ The reaction mixture was stirred at rt for 6 h. Water was added, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography gave the desired product **3aa**.

Ethyl 2,2-difluoro-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate¹⁴ (3aa)

Silica gel column chromatography (hexane/AcOEt = 20/1) gave 133.6 mg (0.403 mmol, 81% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, *J* = 6.9 Hz, 1H), 7.29-7.26 (m, 1H), 7.24-7.20 (m, 3H), 7.16 (d, *J* = 7.3 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 2H), 6.85 (t, *J* = 7.3 Hz, 1H), 5.29 (dd, *J* = 19.7, 10.5 Hz, 1H), 4.26-4.10 (m, 2H), 3.73-3.80 (m, 1H), 3.67-3.64 (m, 1H), 3.00-2.91 (m, 1H), 2.73 (dt, *J* = 16.5, 3.7 Hz, 1H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.9 (dd, *J* = 34.3, 30.5 Hz, C), 149.3 (C), 136.6 (C), 129.15 (CH), 129.13 (CH), 128.5 (C), 128.3 (d, *J* = 4.8 Hz, CH), 128.2 (CH), 126.1 (CH), 120.1 (CH), 117.0 (CH), 116.6 (dd, *J* = 262.3, 258.5 Hz, C), 62.7 (CH₂), 60.7 (dd, *J* = 27.7, 22.9 Hz, CH), 43.4 (d, *J* = 4.8 Hz, CH₂), 25.0 (CH₂), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -101.3 (ddd, *J* = 252.2, 10.1, 3.6 Hz, 1F), -111.4 (dd, *J* = 252.2, 19.5 Hz, 1F). IR (ATR): 1760, 1600, 1200, 1070, 740 cm⁻¹. HRMS (DART): *m*/*z* [M+H]⁺ Calcd for C₁₉H₂₀F₂NO₂: 332.1462; found: 332.1466.

Ethyl 2,2-difluoro-2-(2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3ba)

Silica gel column chromatography (hexane/AcOEt = 20/1) gave 134.3 mg (0.384 mmol, 77% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.39 (m, 1H), 7.31-7.23 (m, 2H), 7.17 (d, *J* = 7.3 Hz, 1H), 6.94-6.85 (m, 4H), 5.13 (dd, *J* = 20.1, 10.1 Hz, 1H), 4.28-4.16 (m, 2H), 3.78-3.71 (m, 1H), 3.54-3.51 (m, 1H), 2.93-2.85 (m, 1H), 2.68 (dt, *J* = 16.5, 3.7 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.9 (dd, *J* = 29.6, 34.3 Hz, C), 157.5 (d, *J* = 239.4 Hz, C), 146.1 (C), 136.6 (C), 129.2 (CH), 128.32 (d, *J* = 5.7 Hz, CH), 128.27 (CH), 128.2 (C), 126.3 (CH), 119.5 (d, *J* = 7.6 Hz, CH), 116.5 (dd, *J* = 263.2, 258.5 Hz, C), 115.6 (d, *J* = 22.9 Hz, CH), 62.7 (CH₂), 61.1 (dd, *J* = 27.7, 23.8 Hz, CH), 44.7 (d, *J* = 5.7 Hz, CH₂), 24.6 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -101.1 (ddd, *J* = 252.9, 10.1, 3.6 Hz, 1F), -112.6 (dd, *J* = 252.9, 20.2 Hz, 1F), -123.3 (s, 1F). IR (ATR): 1770, 1510, 1190, 1070, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₉H₁₉F₃NO₂: 350.1368; found: 350.1355.

Ethyl 2-(2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2-difluoroacetate (3ca)

Silica gel column chromatography (hexane/AcOEt = 20/1) gave 144.1 mg (0.394 mmol, 79% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 6.9 Hz, 1H), 7.31-7.27 (m, 1H), 7.25-7.22 (m, 1H), 7.19-7.16 (m, 3H), 6.87 (d, *J* = 9.2 Hz, 2H), 5.22 (dd, *J* = 18.8, 11.0 Hz, 1H), 4.28-4.13 (m, 2H), 3.80-3.72 (m, 1H), 3.62-3.56 (m, 1H), 2.97-2.89 (m, 1H), 2.76 (dt, *J* = 16.5, 4.1 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.8 (dd, *J* = 33.4, 30.5 Hz, C), 147.9 (C), 136.4 (C), 129.1 (CH), 129.0 (CH), 128.4 (CH), 128.3 (d, *J* = 4.8 Hz, CH), 128.2 (C), 126.3 (CH), 125.0 (C), 118.0 (CH), 116.4 (dd, *J* = 263.2, 258.5 Hz, C), 62.8 (CH₂), 60.8 (dd, *J* = 27.7, 22.9 Hz, CH), 43.6 (d, *J* = 4.8 Hz, CH₂), 25.0 (CH₂), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -101.9 (ddd, *J* = 252.9, 10.8, 2.9 Hz, 1F), -111.2 (dd, *J* = 252.9, 18.8 Hz, 1F). IR (ATR): 1760, 1490, 1210, 1110, 1060, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₉H₁₉³⁵ClF₂NO₂: 366.1072; found: 366.1081.

Ethyl 2-(2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2-difluoroacetate (3da)

Silica gel column chromatography (hexane/AcOEt = 20/1) gave 150.5 mg (0.367 mmol, 73% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 7.1 Hz, 1H), 7.32-7.30 (m, 2H), 7.29-7.27 (m, 1H), 7.25-7.21 (m, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 8.9 Hz, 2H), 5.23 (dd, *J* = 18.5, 11.0 Hz, 1H), 4.28-4.12 (m, 2H), 3.79-3.72 (m, 1H), 3.62-3.56 (m, 1H), 2.98-2.90 (m, 1H), 2.77 (dt, *J* = 16.5, 4.1 Hz, 1H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.8 (dd, *J* = 33.4, 29.6 Hz, C), 148.3 (C), 136.4 (C), 132.0 (CH), 129.1 (CH), 128.4 (CH), 128.3 (d, *J* = 4.8 Hz, CH), 128.2 (C), 126.3 (CH), 118.4 (CH), 116.3 (dd, *J* = 262.3, 258.5 Hz, C), 112.2 (C), 62.9 (CH₂), 60.8 (dd, *J* = 27.7, 23.8 Hz, CH), 43.5 (d, *J* = 4.8 Hz, CH₂), 25.1 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -102.1 (ddd, *J* = 252.9, 10.8, 2.9 Hz, 1F), -111.0 (dd, *J* = 252.9, 18.8 Hz, 1F). IR (ATR): 1760, 1490, 1210, 1060, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₉H₁₉⁷⁹BrF₂NO₂: 410.0567; found: 410.0577.

Ethyl 2-(2-(4-cyanophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2-difluoroacetate (3ea)

Silica gel column chromatography (hexane/AcOEt = 4/1) gave 104.0 mg (0.292 mmol, 58% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (d, *J* = 8.9 Hz, 2H), 7.33-7.29 (m, 2H), 7.26-7.21 (m, 2H), 7.00 (d, *J* = 8.9 Hz, 2H), 5.45 (t, *J* = 14.2 Hz, 1H), 4.27-4.11 (m, 2H), 3.87-3.80 (m, 1H), 3.69-3.63 (m, 1H), 3.02 (t, *J* = 6.0 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.5 (dd, *J* = 32.4, 30.5 Hz, C), 151.6 (C), 136.0 (C), 133.4 (CH), 128.9 (CH), 128.8 (CH), 128.2 (d, *J* = 2.9 Hz, CH), 128.0 (d, *J* = 1.9 Hz, C), 126.4 (CH), 119.6 (C), 115.9 (t, *J* = 260.4 Hz, C), 114.2 (CH), 100.9 (C), 63.1 (CH₂), 60.4 (dd, *J* = 26.7, 23.8 Hz, CH), 42.6 (d, *J* = 2.9 Hz, CH₂), 26.2 (d, *J* = 1.9 Hz, CH₂), 13.7 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -105.6 (dd, *J* = 252.9, 13.7 Hz, 1F), -107.9 (dd, *J* = 252.9, 14.5 Hz, 1F). IR (ATR): 2210, 1750, 1520, 1180, 1110, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₀H₁₉F₂N₂O₂: 357.1415; found: 357.1402.

Ethyl 2,2-difluoro-2-(2-(4-(methoxycarbonyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1yl)acetate (3fa)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 128.7 mg (0.331 mmol, 66% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 9.2 Hz, 2H), 7.35-7.28 (m, 2H), 7.25-7.19 (m, 2H), 6.97 (d, *J* = 9.2 Hz, 2H), 5.47 (dd, *J* = 16.5, 12.4 Hz, 1H), 4.25-4.08 (m, 2H), 3.86 (s, 3H), 3.84-3.80 (m, 1H), 3.76-3.70 (m, 1H), 3.06-2.90 (m, 2H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 166.9 (C), 163.7 (dd, *J* = 33.4, 30.5 Hz, C), 152.3 (C), 136.2 (C), 131.2 (CH), 129.0 (CH), 128.6 (CH), 128.34 (C), 128.31 (CH), 126.3 (CH), 120.3 (C), 116.1 (dd, *J* = 261.3, 259.4 Hz, C), 113.9 (CH), 63.1 (CH₂), 60.4 (dd, *J* = 27.7, 23.8 Hz, CH), 51.7 (CH₃), 42.6 (d, *J* = 3.8 Hz, CH₂), 26.0 (CH₂), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -103.8 (ddd, *J* = 252.9, 12.3, 2.2 Hz, 1F), -109.0 (dd, *J* = 252.9, 16.6 Hz, 1F). IR (ATR): 1770, 1710, 1520, 1190, 1110, 740 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₁H₂₂F₂NO₄: 390.1517; found: 390.1513.

Ethyl 2-(2-(4-acetylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2-difluoroacetate (3ga)

Silica gel column chromatography (hexane/AcOEt = 4/1) gave 123.6 mg (0.331 mmol, 66% yield) of the product as pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 8.9 Hz, 2H), 7.34-7.28 (m, 2H), 7.26-7.19 (m, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 5.49 (dd, *J* = 15.8, 13.0 Hz, 1H), 4.26-4.10 (m, 2H), 3.88-3.81 (m, 1H), 3.77-3.71 (m, 1H), 3.07-2.93 (m, 2H), 2.52 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 196.4 (C), 163.7 (dd, *J* = 33.4, 30.5 Hz, C), 152.4 (C), 136.2 (C), 130.3 (CH), 129.0 (CH), 128.7 (CH), 128.32 (C), 128.29 (CH), 128.1 (C), 126.4 (CH), 116.1 (t, *J* = 261.3 Hz, C), 113.6 (CH), 63.1 (CH₂), 60.4 (dd, *J* = 27.7, 23.8 Hz, CH), 42.6 (d, *J* = 3.8 Hz, CH₂), 26.1 (CH₂ + CH₃), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -104.3 (dd, *J* = 252.9, 13.0 Hz, 1F), -108.6 (dd, *J* = 252.9, 15.9 Hz, 1F). IR (ATR): 1760, 1660, 1520, 1200, 1100, 750 cm⁻¹. HRMS (DART): *m*/*z* [M+H]⁺ Calcd for C₂₁H₂₂F₂NO₃: 374.1568; found: 374.1570.

Ethyl 2,2-difluoro-2-(2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1yl)acetate (3ha)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 162.1 mg (0.406 mmol, 81% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 8.7 Hz, 2H), 7.35-7.33 (m, 1H), 7.29 (d, *J* = 7.3 Hz, 1H), 7.25-7.21 (m, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 2H), 5.40 (dd, *J* = 16.7, 12.4 Hz, 1H), 4.27-4.11 (m, 2H), 3.86-3.79 (m, 1H), 3.72-3.66 (m, 1H), 3.04-2.97 (m, 1H), 2.91 (dt, *J* = 16.5, 4.8 Hz, 1H), 1.18 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.8 (dd, *J* = 32.4, 30.5 Hz, C), 151.4 (C), 136.2 (C), 129.0 (CH), 128.6 (CH), 128.3 (d, *J* = 3.8 Hz, CH), 128.2 (C), 126.5 (q, *J* = 3.8 Hz, CH), 126.4 (CH), 124.6 (q, *J* = 270.9 Hz, C), 120.9 (q, *J* = 32.4 Hz, C), 116.2 (dd, *J* = 262.3, 259.4 Hz, C), 114.7 (CH), 63.0 (CH₂), 60.7 (dd, *J* = 27.7, 23.8 Hz, CH), 42.8 (d, *J* = 3.8 Hz, CH₂), 25.7 (CH₂), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -61.4 (s, 3F), -103.7 (dd, *J* = 252.9, 12.3 Hz, 1F), -109.4 (dd, *J* = 252.9, 16.6 Hz, 1F). IR (ATR): 1770, 1520, 1160, 1110, 750, 710 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₀H₁₉F₅NO₂: 400.1336; found: 400.1346.

Ethyl 2,2-difluoro-2-(2-(4-(trifluoromethoxy)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3ia)

Silica gel column chromatography (hexane/AcOEt = 15/1) gave 146.2 mg (0.352 mmol, 70% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (d, *J* = 6.9 Hz, 1H), 7.31-7.28 (m, 1H), 7.26-7.22 (m, 1H), 7.18 (d, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 9.1 Hz, 2H), 6.93 (d, *J* = 9.1 Hz, 2H), 5.25 (dd, *J* = 18.5, 11.0 Hz, 1H), 4.25-4.11 (m, 2H), 3.82-3.74 (m, 1H), 3.63-3.57 (m, 1H), 2.99-2.91 (m, 1H), 2.79 (dt, *J* = 16.5, 4.1 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.9 (dd, *J* = 34.3, 30.5 Hz, C), 148.1 (C), 142.3 (C), 136.4 (C), 129.1 (CH), 128.5 (CH), 128.3 (d, *J* = 3.8 Hz, CH), 128.2 (C), 126.3 (CH), 122.1 (CH), 120.5 (q, *J* = 255.6 Hz, C), 117.5 (CH), 116.3 (dd, *J* = 262.3, 258.5 Hz, C), 62.9 (CH₂), 61.0 (dd, *J* = 27.7, 23.8 Hz, CH), 43.7 (d, *J* = 4.8 Hz, CH₂), 25.2 (CH₂), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -58.3 (s, 3F), -102.2 (ddd, *J* = 263.7, 10.8, 2.9 Hz, 1F), -111.1 (dd, *J* = 252.9, 18.1 Hz, 1F). IR (ATR): 1770, 1510, 1250, 1150, 740 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₀H₁₉F₅NO₃: 416.1285; found: 416.1289.

tert-Butyl 1-(2-ethoxy-1,1-difluoro-2-oxoethyl)-3,4-dihydroisoquinoline-2(1*H*)carboxylate (3ja)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 67.8 mg (0.191 mmol, 38% yield) of the product as colorless oil. Rotamers were observed. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.27 (m, 2H), 7.23 (d, *J* = 7.1 Hz, 1H), 7.20-7.17 (m, 1H), 5.77-5.62 (m, 1H), 4.38-4.30 (m, 2H), 4.21-4.18 + 3.88-3.85 (m, 1H), 3.63-3.57 + 3.47-3.40 (m, 1H), 2.93-2.82 (m, 2H), 1.46 (s, 9H), 1.40-1.32 (m, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.5 (t, *J* = 32.4 Hz, C), 163.6 (t, *J* = 30.5 Hz, C), 155.0 (C), 154.1 (C), 136.1 (C), 129.3 (CH), 129.1 (d, *J* = 3.8 Hz, CH), 128.8 (CH), 128.4 (CH), 128.1 (C), 127.9 (C), 126.2 (CH), 126.1 (CH), 115.4 (t, *J* = 259.4 Hz, C), 115.0 (t, *J* = 259.4 Hz, C), 80.7 (C), 63.0 (CH₂), 56.6 (t, *J* = 25.8 Hz, CH), 55.7 (dd, *J* = 28.6, 23.8 Hz, CH), 39.9 (CH₂), 38.0 (CH₂), 28.2 (CH₃), 27.7 (CH₂), 27.3 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -105.1 (dd, *J* = 258.7, 10.8 Hz, 1F), -111.6 (dd, *J* = 258.7, 18.8 Hz, 1F). IR (ATR): 1760, 1610, 1510, 1190, 1100, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺

Calcd for C₁₈H₂₄F₂NO₄: 356.1673; found: 356.1672.

Ethyl 2,2-difluoro-2-(2-p-tolyl-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3ka)

Silica gel column chromatography (hexane/AcOEt = 20/1) gave 141.4 mg (0.409 mmol, 82% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, *J* = 6.6 Hz, 1H), 7.28-7.21 (m, 2H), 7.15 (d, *J* = 7.1 Hz, 1H), 7.02 (d, *J* = 8.4 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 5.20 (dd, *J* = 20.1, 10.1 Hz, 1H), 4.27-4.12 (m, 2H), 3.77-3.69 (m, 1H), 3.61-3.58 (m, 1H), 2.97-2.88 (m, 1H), 2.67 (dt, *J* = 16.5, 3.4 Hz, 1H), 2.24 (s, 3H), 1.16 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.0 (dd, *J* = 34.3, 30.5 Hz, C), 147.2 (C), 136.7 (C), 129.8 (C), 129.6 (CH), 129.1 (CH), 128.5 (C), 128.3 (d, *J* = 4.8 Hz, CH), 128.1 (CH), 126.1 (CH), 117.6 (CH), 116.6 (dd, *J* = 263.2, 258.5 Hz, C), 62.6 (CH₂), 60.8 (dd, *J* = 27.7, 22.9 Hz, CH), 43.8 (d, *J* = 4.8 Hz, CH₂), 24.7 (CH₂), 20.3 (CH₃), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.8 (dd, *J* = 252.2, 10.1, 3.6 Hz, 1F), -112.1 (dd, *J* = 252.2, 20.2 Hz, 1F). IR (ATR): 1760, 1510, 1190, 1100, 750 cm⁻¹. HRMS (DART): *m*/*z* [M+H]⁺ Calcd for C₂₀H₂₂F₂NO₂: 346.1619; found: 346.1620.

Ethyl 2,2-difluoro-2-(2-(4-(trimethylsilyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3la)

Silica gel column chromatography (hexane/AcOEt = 25/1) gave 123.2 mg (0.305 mmol, 61% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.34 (m, 3H), 7.28-7.19 (m, 2H), 7.15 (d, *J* = 7.3 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 2H), 5.33 (dd, *J* = 18.8, 11.2 Hz, 1H), 4.27-4.09 (m, 2H), 3.81-3.65 (m, 2H), 3.04-2.95 (m, 1H), 2.77 (dt, *J* = 16.5, 4.1 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H), 0.21 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 164.0 (dd, *J* = 33.4, 29.6 Hz, C), 149.6 (C), 136.6 (C), 134.4 (CH), 130.1 (C), 129.1 (CH), 128.6 (C), 128.30 (d, *J* = 4.8 Hz, CH), 128.26 (CH), 126.1 (CH), 116.5 (dd, *J* = 262.3, 258.5 Hz, C), 115.7 (CH), 62.8 (CH₂), 60.8 (dd, *J* = 28.6, 23.8 Hz, CH), 42.7 (d, *J* = 4.8 Hz, CH₂), 25.3 (CH₂), 13.8 (CH₃), -1.01 (CH₃).¹⁹F NMR (376 MHz, CDCl₃): δ -101.5 (ddd, *J* = 252.2, 10.8, 2.9 Hz, 1F), -110.5 (dd, *J* = 252.2, 18.8 Hz, 1F). IR (ATR): 1760, 1600, 1310, 1260, 1100, 850 cm⁻¹. HRMS (DART): *m/z*

 $[M+H]^+$ Calcd for C₂₂H₂₈F₂NO₂Si: 404.1857; found: 404.1844.

Ethyl 2,2-difluoro-2-(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3ma)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 139.5 mg (0.386 mmol, 77% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.41 (m, 1H), 7.30-7.23 (m, 2H), 7.16 (d, *J* = 7.1 Hz, 1H), 6.87-6.84 (m, 2H), 6.78-6.75 (m, 2H), 5.08 (dd, *J* = 21.0, 9.4 Hz, 1H), 4.28-4.14 (m, 2H), 3.74 (s, 3H), 3.72-3.67 (m, 1H), 3.50-3.46 (m, 1H), 2.91-2.83 (m, 1H), 2.62 (dt, *J* = 16.2, 3.4 Hz, 1H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.0 (dd, *J* = 34.3, 29.6 Hz, C), 154.3 (C), 143.8 (C), 136.8 (C), 129.2 (CH), 128.5 (C), 128.3 (d, *J* = 5.7 Hz, CH), 128.1 (CH), 126.2 (CH), 120.3 (CH), 116.6 (dd, *J* = 263.2, 258.5 Hz, C), 114.4 (CH), 62.6 (CH₂), 61.1 (dd, *J* = 27.7, 23.8 Hz, CH), 55.5 (CH₃), 45.1 (d, *J* = 4.8 Hz, CH₂), 24.3 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.6 (ddd, *J* = 252.1, 9.4, 3.6 Hz, 1F), -113.4 (dd, *J* = 252.2, 21.0 Hz, 1F). IR (ATR): 1770, 1510, 1240, 1100, 1040, 750, cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₀H₂₂F₂NO₃: 362.1568; found: 362.1565.

Ethyl 2,2-difluoro-2-(2-(3-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3na)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 126.1 mg (0.349 mmol, 70% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 6.6 Hz, 1H), 7.28-7.20 (m, 2H), 7.16-7.11 (m, 2H), 6.56 (dd, *J* = 8.1, 2.3 Hz, 1H), 6.50 (t, *J* = 2.3 Hz, 1H), 6.40 (dd, *J* = 8.1, 2.3 Hz, 1H), 5.28 (dd, *J* = 19.2, 10.8 Hz, 1H), 4.28-4.12 (m, 2H), 3.77 (s, 3H), 3.78-3.71 (m, 1H), 3.67-3.62 (m, 1H), 3.01-2.93 (m, 1H), 2.74 (dt, *J* = 16.5, 3.9 Hz, 1H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.9 (dd, *J* = 34.3, 30.5 Hz, C), 160.5 (C), 150.6 (C), 136.6 (C), 129.8 (CH), 129.1 (CH), 128.5 (C), 128.3 (d, *J* = 4.8 Hz, CH), 128.2 (CH), 126.1 (CH), 116.5 (dd, *J* = 262.3, 258.5 Hz, C), 109.4 (CH), 104.5 (CH), 103.5 (CH), 62.8 (CH₂), 60.9 (dd, *J* = 27.7, 23.8 Hz, CH), 55.1 (CH₃), 43.2 (d, *J* = 4.8 Hz, CH₂), 25.1 (CH₂), 13.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -101.5 (ddd, *J* = 252.1, 10.8, 2.9 Hz, 1F), -111.1 (dd, *J*

= 252.1, 19.5 Hz, 1F). IR (ATR): 1760, 1490, 1210, 1170, 1060, 730 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₂₀H₂₂F₂NO₃: 362.1568; found: 362.1576.

Ethyl 2,2-difluoro-2-(2-(2-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (30a)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 127.9 mg (0.354 mmol, 71% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.44 (m, 1H), 7.31-7.25 (m, 2H), 7.17 (d, *J* = 7.1 Hz, 1H), 7.02-6.98 (m, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.79-6.74 (m, 2H), 5.05 (dd, *J* = 22.9, 7.8 Hz, 1H), 4.19-4.00 (m, 2H), 3.77 (s, 3H), 3.63-3.55 (m, 1H), 3.44-3.40 (m, 1H), 2.81-2.72 (m, 1H), 2.65-2.60 (m, 1H), 1.09 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.0 (dd, *J* = 34.3, 29.6 Hz, C), 153.3 (C), 139.3 (C), 137.2 (C), 129.3 (C), 129.1 (CH), 128.1 (d, *J* = 5.7 Hz, CH), 127.8 (CH), 126.0 (CH), 124.2 (CH), 123.3 (CH), 120.6 (CH), 116.5 (dd, *J* = 264.2, 258.5 Hz, C), 111.4 (CH), 82.4 (CH₂), 61.2 (dd, *J* = 26.7, 22.9 Hz, CH), 55.1 (CH₃), 44.6 (d, *J* = 3.8 Hz, CH₂), 25.4 (CH₂), 13.6 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -99.1 (ddd, *J* = 252.1, 7.9, 3.6 Hz, 1F), -114.9 (dd, *J* = 252.1, 23.1 Hz, 1F). IR (ATR): 1770, 1500, 1240, 1120, 1070, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₀H₂₂F₂NO₃: 362.1568; found: 362.1580.

Ethyl 2,2-difluoro-2-(2-(4-methoxynaphthalen-1-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3pa)

Silica gel column chromatography (hexane/AcOEt = 15/1) gave 156.7 mg (0.381 mmol, 76% yield) of the product as pale-orange solids of mp 128-129 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 8.2 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.55-7.47 (m, 3H), 7.36-7.30 (m, 2H), 7.22-7.20 (m, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 5.02 (dd, *J* = 23.8, 7.1 Hz, 1H), 4.15-4.07 (m, 1H), 3.92 (s, 3H), 3.90-3.83 (m, 1H), 3.77-3.71 (m, 1H), 3.27 (dd, *J* = 14.0, 4.8 Hz, 1H), 2.83-2.75 (m, 1H), 2.53-2.49 (m, 1H), 0.81 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.1 (dd, *J* = 35.3, 29.6 Hz, C), 152.5 (C), 140.5 (C), 137.0 (C), 130.1 (C), 129.3 (CH), 129.1 (C), 128.0 (d, *J* = 6.7 Hz, CH), 127.9 (CH), 126.4 (CH), 126.33 (C), 126.27 (CH),

125.4 (CH), 123.1 (CH), 122.3 (CH), 118.6 (CH), 116.6 (dd, J = 262.3, 259.4 Hz, C), 102.9 (CH), 62.6 (dd, J = 26.7, 22.9 Hz, CH), 62.5 (CH₂), 55.3 (CH₃), 45.9 (d, J = 4.8 Hz, CH₂), 23.6 (CH₂), 13.4 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -99.2 (d, J = 254.3 Hz, 1F), -116.3 (dd, J = 254.3, 23.1 Hz, 1F). IR (ATR): 1750, 1590, 1270, 1090, 770, 740 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₂₄H₂₄F₂NO₃: 412.1724; found: 412.1732.

Ethyl 2-(2-benzyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2-difluoroacetate (3qa)

Silica gel column chromatography (hexane/AcOEt = 4/1) gave 122.7 mg (0.355 mmol, 71% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.27 (m, 5H), 7.25-7.21 (m, 3H), 7.18 (d, *J* = 7.3 Hz, 1H), 4.44-4.36 (m, 1H), 4.31 (dd, *J* = 22.2, 9.2 Hz, 1H), 4.26-4.18 (m, 1H), 3.82-3.74 (m, 2H), 3.34-3.27 (m, 1H), 2.99-2.91 (m, 1H), 2.80-2.75 (m 1H), 2.58-2.53 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.3 (dd, *J* = 33.4, 30.5 Hz, C), 138.3 (C), 136.3 (C), 129.4 (d, *J* = 4.8 Hz, CH), 129.0 (CH), 128.7 (CH), 128.3 (CH), 127.9 (CH), 127.7 (C), 127.3 (CH), 126.0 (CH), 116.6 (dd, *J* = 261.3, 254.6 Hz, C), 62.7 (dd, *J* = 26.7, 22.9 Hz, CH), 62.4 (CH₂), 58.6 (CH₂), 42.6 (d, *J* = 5.7 Hz, CH₂), 22.4 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.3 (ddd, *J* = 252.9, 9.4, 3.6 Hz, 1F), -114.1 (dd, *J* = 252.9, 22.4 Hz, 1F). IR (ATR): 1760, 1490, 1200, 1060, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₀H₂₂F₂NO₂: 346.1619; found: 346.1620.

Ethyl 2-(6-chloro-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2difluoroacetate (3ra)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 141.1 mg (0.356 mmol, 71% yield) of the product as pale-yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.38-7.35 (m, 1H), 7.23 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.17 (s, 1H), 6.84-6.81 (m, 2H), 6.78-6.75 (m, 2H), 5.03 (dd, *J* = 21.3, 8.9 Hz, 1H), 4.28-4.15 (m, 2H), 3.74 (s, 3H), 3.71-3.63 (m, 1H), 3.46 (dd, *J* = 14.2, 5.0 Hz, 1H), 2.87-2.79 (m, 1H), 2.59-2.55 (m, 1H), 1.16 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.7 (dd, *J* = 34.3, 29.6 Hz, C), 154.6 (C), 143.4 (C), 138.8 (C), 133.9 (C), 129.6 (d, *J* = 5.7 Hz, CH), 129.1 (CH), 127.0 (C), 126.5 (CH), 120.6 (CH), 116.3 (dd, *J* = 263.2, 257.5 Hz, C),

114.4 (CH), 62.7 (CH₂), 60.7 (dd, J = 27.7, 23.8 Hz, CH), 55.5 (CH₃), 44.8 (d, J = 5.7 Hz, CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.1 (ddd, J = 252.9, 8.7, 2.9 Hz, 1F), -113.7 (dd, J = 252.9, 21.0 Hz, 1F). IR (ATR): 1770, 1510, 1240, 1100, 1050, 730 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₂₀H₂₁³⁵ClF₂NO₃: 396.1178; found: 396.1186.

Ethyl 2-(6,7-dimethoxy-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2difluoroacetate (3sa)

Silica gel column chromatography (hexane/AcOEt = 2/1) gave 147.8 mg (0.351 mmol, 70% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.91 (d, *J* = 2.7 Hz, 1H), 6.86-6.83 (m, 2H), 6.78-6.75 (m, 2H), 6.63 (s, 1H), 4.98 (dd, *J* = 21.5, 9.2 Hz, 1H), 4.29-4.16 (m, 2H), 3.90 (s, 3H), 3.87 (s, 3H), 3.74 (s, 3H), 3.70-3.62 (m, 1H), 3.49-3.44 (m, 1H), 2.82-2.74 (m, 1H), 2.50-2.45 (m, 1H), 1.16 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.0 (dd, *J* = 34.3, 29.6 Hz, C), 154.4 (C), 148.8 (C), 147.3 (C), 143.8 (C), 129.1 (C), 120.6 (CH), 119.9 (C), 116.6 (dd, *J* = 263.2, 256.6 Hz, C), 114.3 (CH), 111.5 (CH), 110.8 (d, *J* = 5.7 Hz, CH), 62.5 (CH₂), 60.8 (dd, *J* = 27.7, 22.9 Hz, CH), 55.9 (CH₃), 55.7 (CH₃), 55.4 (CH₃), 45.2 (d, *J* = 5.7 Hz, CH₂), 23.6 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -99.8 (ddd, *J* = 252.2, 8.7, 2.9 Hz, 1F), -114.2 (dd, *J* = 252.2, 21.7 Hz, 1F). IR (ATR): 1760, 1510, 1220, 1120, 1060, 770 cm⁻¹. HRMS (DART): *m*/*z* [M+H]⁺ Calcd for C₂₂H₂₆F₂NO5: 422.1779; found: 422.1772.

tert-Butyl 2,2-difluoro-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3ab)

In the preparation of the organozinc reagent, the mixture was stirred for 30 min. Silica gel column chromatography (hexane/AcOEt = 20/1) gave 131.5 mg (0.366 mmol, 73% yield) of the product as white solids of mp 92-93 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, *J* = 6.9 Hz, 1H), 7.28-7.20 (m, 4H), 7.14 (d, *J* = 7.3 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 2H), 6.83 (t, *J* = 7.3 Hz, 1H), 5.26 (dd, *J* = 19.7, 10.8 Hz, 1H), 3.81-3.69 (m, 2H), 2.98-2.89 (m, 1H), 2.72-2.66 (m, 1H), 1.37 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 162.7 (dd, *J* = 33.4, 28.6 Hz, C), 149.2 (C), 136.6 (C), 129.1 (CH), 128.8 (C), 128.4 (d, *J* = 4.8 Hz, CH), 128.1 (CH), 126.1 (CH), 119.9 (CH),

116.7 (CH), 116.3 (dd, J = 262.3, 258.5 Hz, C), 84.4 (C), 60.3 (dd, J = 28.6, 23.8 Hz, CH), 43.3 (d, J = 4.8 Hz, CH₂), 27.6 (CH₃), 24.9 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ -101.0 (ddd, J = 250.0, 10.8, 2.9 Hz, 1F), -110.7 (dd, J = 250.0, 19.5 Hz, 1F). IR (ATR): 1750, 1590, 1110, 1070, 750 cm⁻¹. HRMS (DART) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₄F₂NO₂: 360.1775; found: 360.1791.

Benzyl 2,2-difluoro-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3ac)

In the preparation of the organozinc reagent, the mixture was stirred for 30 min. Silica gel column chromatography (hexane/AcOEt = 20/1) gave 146.7 mg (0.373 mmol, 75% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.33 (m, 1H), 7.31-7.24 (m, 4H), 7.22-7.18 (m, 3H), 7.15-7.13 (m, 3H), 6.89-6.85 (m, 3H), 5.26 (dd, *J* = 19.7, 10.5 Hz, 1H), 5.22 (d, *J* = 11.9 Hz, 1H), 5.02 (d, *J* = 11.9 Hz, 1H), 3.78-3.70 (m, 1H), 3.61-3.58 (m, 1H), 2.96-2.88 (m, 1H), 2.68 (dt, *J* = 16.5, 3.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 163.9 (dd, *J* = 34.3, 29.6 Hz, C), 149.4 (C), 136.6 (C), 134.1 (C), 129.23 (CH), 129.16 (CH), 128.74 (CH), 128.66 (CH), 128.5 (CH), 128.4 (C), 128.3 (d, *J* = 4.8 Hz, CH), 128.2 (CH), 126.2 (CH), 120.4 (CH), 117.4 (CH), 116.7 (dd, *J* = 263.2, 258.5 Hz, C), 68.4 (CH₂), 60.7 (dd, *J* = 27.7, 22.9 Hz, CH), 43.6 (d, *J* = 4.8 Hz, CH₂), 24.8 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.8 (ddd, *J* = 252.2, 10.8, 2.9 Hz, 1F), -111.3 (dd, *J* = 252.2, 19.5 Hz, 1F). IR (ATR): 1770, 1600, 1200, 1070, 740 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₄H₂₂F₂NO₂: 394.1619; found: 394.1613.

Phenyl 2,2-difluoro-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (3ad)

In the preparation of the organozinc reagent, the mixture was stirred for 30 min. Silica gel column chromatography (hexane/AcOEt = 20/1) gave 150.1 mg (0.396 mmol, 79% yield) of the product as white solids of mp 107-108 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.47 (m, 1H), 7.33-7.18 (m, 8H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.91-6.88 (m. 1H), 6.87-6.84 (m. 2H), 5.43 (dd, *J* = 20.1, 10.3 Hz, 1H), 3.88-3.80 (m, 1H), 3.76-3.71 (m, 1H), 3.00-2.92 (m, 1H), 2.72. (dt, *J* = 16.5, 3.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 162.5 (dd, *J* = 35.3, 31.5 Hz, C), 149.7 (C), 149.3 (C), 136.7 (C), 129.5 (CH), 129.4 (CH), 129.3 (CH), 128.4 (CH), 128.3 (CH), 128.1 (C), 126.6 (CH), 126.3 (CH), 121.1 (CH), 120.7 (CH), 117.6 (CH), 116.8 (dd, *J* = 263.2, 259.4 Hz,

C), 60.7 (dd, J = 28.6, 23.8 Hz, CH), 44.0 (d, J = 5.7 Hz, CH₂), 24.7 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.2 (ddd, J = 252.2, 10.8, 3.6 Hz, 1F), -111.0 (dd, J = 252.1, 20.2 Hz, 1F). IR (ATR): 1770, 1590, 1480, 1180, 1100, 740 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₂₃H₂₀F₂NO₂: 380.1462; found: 380.1455.

S-Phenyl 2,2-difluoro-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)ethanethioate (3ae)

In the preparation of the organozinc reagent, the mixture was stirred for 60 min. Silica gel column chromatography (hexane/AcOEt = 15/1) gave 137.8 mg (0.348 mmol, 70% yield) of the product as white solids of mp 110-111 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.36 (m, 3H), 7.34-7.29 (m, 2H), 7.26-7.20 (m, 6H), 6.98 (d, *J* = 8.2 Hz, 2H), 6.86 (t, *J* = 7.3 Hz, 1H), 5.41 (dd, *J* = 18.1, 12.1 Hz, 1H), 3.92-3.85 (m, 1H), 3.69-3.63 (m, 1H), 3.05-2.98 (m, 1H), 2.91 (dt, *J* = 16.2, 4.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 192.1 (dd, *J* = 35.3, 31.5 Hz, C), 149.2 (C), 136.9 (C), 134.6 (CH), 130.0 (CH), 129.4 (CH), 129.2 (CH), 128.9 (CH), 128.7 (C), 128.6 (d, *J* = 3.8 Hz, CH), 128.4 (CH), 126.2 (CH), 124.9 (C), 119.7 (CH), 118.3 (dd, *J* = 266.1, 264.2 Hz, C), 116.0 (CH), 60.7 (dd, *J* = 26.7, 22.9 Hz, CH), 43.5 (d, *J* = 3.8 Hz, CH₂), 25.7 (CH₂). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.6 (ddd, *J* = 251.4, 11.6, 2.2 Hz, 1F), -109.1 (dd, *J* = 251.4, 18.1 Hz, 1F). IR (ATR): 1700, 1500, 1190, 1070, 740 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₃H₂₀F₂NOS: 396.1234; found: 396.1245.

N,*N*-Diethyl-2,2-difluoro-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)acetamide¹⁴ (3af)

In the preparation of the organozinc reagent, the mixture was stirred for 60 min. Silica gel column chromatography (hexane/AcOEt = 10/1) gave 127.8 mg (0.357 mmol, 71% yield) of the product as white solid of mp 87-88 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.33 (d, *J* = 7.6 Hz, 1H), 7.28-7.24 (m, 3H), 7.21-7.16 (m, 2H), 7.02 (d, *J* = 8.2 Hz, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 5.67 (dd, *J* = 17.8, 10.5 Hz, 1H), 3.88-3.82 (m, 1H), 3.49-3.32 (m, 2H), 3.31-3.15 (m, 2H), 3.13-2.95 (m, 3H), 1.06 (t, *J* = 7.1 Hz, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.3 (t, *J* = 27.7 Hz, C), 149.4 (C), 137.0 (C), 129.9 (d, *J* = 2.9 Hz, C), 129.0 (CH), 128.8 (d, *J* = 1.9 Hz, CH), 128.1 (CH), 126.0 (CH), 118.8 (t, *J* = 263.2 Hz, C), 118.4 (CH), 114.3

(CH), 61.1 (dd, J = 24.8, 22.9 Hz, CH), 43.9 (CH₂), 42.4 (CH₂), 41.8 (dd, J = 9.5, 4.8 Hz, CH₂), 27.2 (d, J = 2.9 Hz, CH₂), 14.3 (CH₃), 11.8 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -100.7 (dd, J = 255.8, 10.8 Hz, 1F), -104.3 (dd, J = 255.8, 18.1 Hz, 1F). IR (ATR): 1650, 1500, 1130, 1050, 740 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₂₁H₂₅F₂N₂O: 359.1935; found: 359.1941.

2,2-Difluoro-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-N-propylacetamide (3ag)

In the preparation of the organozinc reagent, the mixture was stirred for 60 min. Silica gel column chromatography (hexane/AcOEt = 5/1) gave 109.2 mg (0.317 mmol, 63% yield) of the product as white solids of mp 101-102 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.24 (m, 4H), 7.20-7.16 (m, 2H), 7.05 (d, *J* = 8.2 Hz, 2H), 6.82 (t, *J* = 7.3 Hz, 1H), 6.22 (brs, 1H), 5.56 (dd, *J* = 17.4, 12.6 Hz, 1H), 3.83-3.77 (m, 1H), 3.56-3.50 (m, 1H), 3.24-3.19 (m, 2H), 3.02-2.99 (m, 2H), 1.50-1.41 (m, 2H), 0.83 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.0 (t, *J* = 27.7 Hz, C), 149.6 (C), 136.9 (C), 129.4 (d, *J* = 2.9 Hz, C), 129.1 (CH), 128.7 (d, *J* = 2.9 Hz, CH), 128.5 (CH), 128.1 (CH), 126.1 (CH), 118.9 (CH), 117.9 (t, *J* = 261.3 Hz, C), 114.9 (CH), 60.4 (dd, *J* = 24.8, 22.9 Hz, CH), 43.5 (d, *J* = 1.9 Hz, CH₂), 41.2 (CH₂), 26.7 (d, *J* = 2.9 Hz, CH₂), 22.2 (CH₂), 11.1 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -108.8 (dd, *J* = 250.0, 12.3 Hz, 1F), -110.9 (dd, *J* = 250.0, 17.3 Hz, 1F). IR (ATR): 3320, 1680, 1500, 1190, 1040, 760 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₂₀H₂₃F₂N₂O: 345.1778; found: 345.1784.

Ethyl 2,2-difluoro-2-(isochroman-1-yl)acetate (5aa)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 92.6 mg (0361 mmol, 72% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 7.1 Hz, 1H), 7.31-7.23 (m, 2H), 7.18 (d, *J* = 7.3 Hz, 1H), 5.26 (dd, *J* = 21.0, 4.8 Hz, 1H), 4.45-4.33 (m, 1H), 4.19-4.14 (m, 1H), 3.85-3.79 (m, 1H), 2.93-2.86 (m, 1H), 2.81 (dt, *J* = 16.2, 5.3 Hz, 1H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.5 (dd, *J* = 33.4, 29.6 Hz, C), 135.3 (C), 128.8 (CH), 128.2 (C), 128.0 (CH), 126.7 (d, *J* = 5.7 Hz, CH), 126.3 (CH), 114.9 (dd, *J* = 263.2, 253.7 Hz, C), 74.2 (dd, *J* = 28.6, 24.8 Hz, CH), 63.0 (CH₂), 62.9 (d, *J* = 1.9 Hz, CH₂), 28.5 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -106.7 (dt, *J* = 257.2, 4.3 Hz, 1F), -119.2

(dd, J = 257.2, 21.0 Hz, 1F). IR (ATR): 1760, 1190, 1110, 1070, 750 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₁₃H₁₅F₂O₃: 257.0989; found: 257.0994.

Ethyl 2,2-difluoro-2-(6-methylisochroman-1-yl)acetate (5ba)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 92.1 mg (0.341 mmol, 68% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15 (s, 1H), 7.11 (d, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 5.21 (dd, *J* = 21.0, 4.8 Hz, 1H), 4.45-4.33 (m, 2H), 4.17-4.12 (m, 1H), 3.82-3.77 (m, 1H), 2.88-2.72 (m, 2H), 2.34 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.6 (dd, *J* = 33.4, 29.6 Hz, C), 135.9 (C), 132.2 (C), 128.9 (CH), 128.6 (CH), 128.0 (C), 127.1 (d, *J* = 5.7 Hz, CH), 115.0 (dd, *J* = 262.3, 254.6 Hz, C), 74.2 (dd, *J* = 27.7, 23.8 Hz, CH), 63.0 (d, *J* = 1.9 Hz, CH₂), 62.9 (CH₂), 28.1 (CH₂), 21.2 (CH₃), 14.0 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -106.6 (dt, *J* = 256.5, 4.3 Hz, 1F), -119.2 (dd, *J* = 256.5, 21.0 Hz, 1F). IR (ATR): 1770, 1500, 1100, 1070, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₄H₁₇F₂O₃: 271.1146; found: 271.1150.

Ethyl 2,2-difluoro-2-(6-methoxyisochroman-1-yl)acetate (5ca)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 95.1 mg (0.332 mmol, 66% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.25 (m, 1H), 6.81 (dd, *J* = 8.7, 2.4 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 1H), 5.21 (dd, *J* = 20.8, 5.0 Hz, 1H), 4.44-4.33 (m, 2H), 4.17-4.11 (m, 1H), 3.81 (s, 3H), 3.80-3.76 (m, 1H), 2.90-2.83 (m, 1H), 2.77 (dt, *J* = 16.5, 5.0 Hz, 1H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.6 (dd, *J* = 34.3, 29.6, Hz, C), 159.2 (C), 136.8 (C), 127.9 (d, *J* = 5.7 Hz, CH), 120.2 (C), 114.9 (dd, *J* = 262.3, 252.7, Hz, C), 113.5 (CH), 112.6 (CH), 74.0 (dd, *J* = 27.7, 23.8, Hz, CH), 62.9 (CH₂), 62.6 (d, *J* = 1.9 Hz, CH₂), 55.2 (CH₃), 28.8 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -107.0 (dt, *J* = 256.5, 5.1 Hz, 1F), -119.6 (dd, *J* = 256.5, 21.0 Hz, 1F). IR (ATR): 1770, 1610, 1500, 1250, 1100, 1070, 700 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₄H₁₇F₂O₄: 287.1095; found: 287.1089.

Ethyl 2,2-difluoro-2-(6-fluoroisochroman-1-yl)acetate (5da)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 95.8 mg (0.349 mmol, 70% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.30 (m, 1H), 6.98-6.94 (m, 1H), 6.90 (dd, *J* = 9.2, 2.3 Hz, 1H), 5.23 (dd, *J* = 21.0, 4.8 Hz, 1H), 4.45-4.33 (m, 2H), 4.17-4.12 (m, 1H), 3.83-3.77 (m, 1H), 2.92-2.85 (m, 1H), 2.83-2.76 (m, 1H), 1.37 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.4 (dd, *J* = 33.4, 29.6 Hz, C), 162.2 (d, *J* = 248.0 Hz, C), 137.7 (d, *J* = 7.6 Hz, C), 128.5 (dd, *J* = 8.6, 6.7 Hz, CH), 123.9 (d, *J* = 3.1 Hz, C), 115.4 (d, *J* = 21.9 Hz, CH), 114.8 (dd, *J* = 263.2, 253.7 Hz, C), 113.8 (CH), 73.9 (dd, *J* = 28.6, 24.8 Hz, CH), 63.0 (CH₂), 62.4 (d, *J* = 1.9 Hz, CH₂), 28.5 (CH₂), 14.0 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -106.7 (dt, *J* = 257.9, 3.6, Hz, 1F), -113.8 (s, 1F), -119.3 (dd, *J* = 257.9, 21.0 Hz, 1F). IR (ATR): 1770, 1500, 1230, 1100, 1070, 730 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C_{13H14}F₃O₃: 275.0895; found: 275.0893.

Ethyl 2-(6-chloroisochroman-1-yl)-2,2-difluoroacetate (5ea)

Silica gel column chromatography (hexane/AcOEt = 8/1) gave 98.8 mg (0.340 mmol, 68% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.28 (m, 1H), 7.24-7.22 (m, 1H), 7.19 (s, 1H), 5.22 (dd, *J* = 21.0, 4.8 Hz, 1H), 4.45-4.33 (m, 2H), 4.17-4.12 (m, 1H), 3.83-3.77 (m, 1H), 2.90-2.75 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.2 (dd, *J* = 33.4, 29.6 Hz, C), 137.2 (C), 133.9 (C), 128.7 (CH), 128.0 (d, *J* = 6.7 Hz, CH), 126.73 (C), 126.66 (CH), 114.7 (dd, *J* = 263.2, 254.6 Hz, C), 73.9 (dd, *J* = 28.6, 24.8 Hz, CH), 63.0 (CH₂) 62.4 (d, *J* = 1.9 Hz, CH₂), 28.3 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.6 (dt, *J* = 257.9, 2.9 Hz, 1F), -119.2 (dd, *J* = 257.9, 21.0 Hz, 1F). IR (ATR): 1760, 1490, 1190, 1110, 1070, 720 cm⁻¹. HRMS (DART): *m*/*z* [M+H]⁺ Calcd for C₁₃H₁₄³⁵ClF₂O₃: 291.0600; found: 291.0594.

Ethyl 2,2-difluoro-2-(8-methylisochroman-1-yl)acetate (5fa)

Silica gel column chromatography (hexane/AcOEt = 10/1) gave 95.3 mg (0.353 mmol, 71% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.23-7.20 (m, 1H), 7.18-7.16 (m, 2H), 5.23 (dd, *J* = 21.3, 5.3 Hz, 1H), 4.45-4.33 (m, 2H), 4.22-4.16 (m, 1H), 3.90-3.84 (m, 1H), 2.72 (t, *J* = 5.7 Hz, 2H), 2.27 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 163.6 (dd, *J* = 33.4, 29.6 Hz, C), 136.2 (C), 133.6 (C), 129.5 (CH), 128.0 (C), 125.8 (CH), 124.2 (d, *J* = 5.7 Hz, CH), 115.1 (dd, *J* = 263.2, 254.6 Hz, C), 74.3 (dd, *J* = 28.6, 24.8 Hz, CH), 62.9 (CH₂), 62.6 (d, *J* = 1.9 Hz, CH₂), 25.6 (CH₂), 19.0 (CH₃), 14.0 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -105.9 (dt, *J* = 256.5, 5.1 Hz, 1F), -118.2 (dd, *J* = 256.5, 21.0 Hz, 1F). IR (ATR): 1770, 1500, 1100, 1070, 750 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₄H₁₇F₂O₃: 271.1146; found: 271.1151.

N,N-Diethyl-2,2-difluoro-2-(isochroman-1-yl)acetamide (5af)

Silica gel column chromatography (hexane/AcOEt = 4/1) gave 86.2 mg (0.304 mmol, 61% yield) of the product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.37 (d, *J* = 7.1 Hz, 1H), 7.29-7.22 (m, 2H), 7.17 (d, *J* = 7.1 Hz, 1H), 5.45 (dd, *J* = 19.2, 6.2 Hz, 1H), 4.23-4.18 (m, 1H), 3.77 (dt, *J* = 10.5, 3.4 Hz, 1H), 3.56-3.36 (m, 4H), 3.02-2.94 (m, 1H), 2.72 (dt, *J* = 16.0, 3.4 Hz, 1H), 1.19 (t, *J* = 6.9 Hz, 3H), 1.18 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 162.7 (t, *J* = 27.7 Hz, C), 135.8 (C), 129.3 (d, *J* = 1.9 Hz, C), 128.6 (CH), 127.7 (CH), 127.1 (d, *J* = 5.7 Hz, CH), 126.2 (CH), 117.1 (dd, *J* = 266.1, 253.7 Hz, C), 75.0 (dd, *J* = 27.7, 24.8 Hz, CH), 63.5 (CH₂), 42.3 (CH₂), 42.2 (dd, *J* = 9.5, 3.8 Hz, CH₂), 29.1 (CH₂), 14.6 (CH₃), 12.3 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ 102.1 (d, *J* = 263.0 Hz, 1F), 113.1 (dd, *J* = 263.0, 18.8 Hz, 1F). IR (ATR): 1650, 1190, 1110, 750 cm⁻¹. HRMS (DART): *m*/z [M+H]⁺ Calcd for C₁₅H₂₀F₂NO₂: 284.1462; found: 284.1455.

2.5. Gram-scale experiment

The reaction was carried out in a two-necked flask-type undivided cell equipped with a graphite anode $(1 \times 5 \text{ cm}^2)$ and a platinum cathode $(1 \times 2 \text{ cm}^2)$ (distance between the anode and cathode: 1 cm). After the reaction vessel was charged with 2-phenyl-1,2,3,4-tetrahydroisoquinoline (**1a**) (1.05 g, 5 mmol) and Et₄NBr (210 mg, 1 mmol), dry MeCN (40 mL) and CF₃CH₂OH (2.00 g, 20 mmol) were added. Then, a constant current (5 mA, 2.7 F/mol) was supplied at 0 °C with magnetic stirring. To the undivided cell was added the organozinc reagent (11.3 mL, 0.78 M in THF) prepared through stirring the mixture of Zn powder (1.18 g, 18 mmol) and ethyl 2-bromo-2,2-difluoroacetate (4.06 g, 20 mmol) in dry THF (20 mL) at rt for 5 min.¹³ The reaction mixture was stirred at rt for 6 h. Water was added, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 20/1) gave 1.253 g (3.78 mmol, 76% yield) of the desired product **3aa** as colorless oil.

2.6. Synthesis of compound 6

2.6.1. CAN oxidation¹⁵ for 3pa

Ammonium cerium(IV) nitrate (411.2 mg, 0.75 mmol) in H₂O (2.5 mL) was added to the solution of ethyl 2,2-difluoro-2-(2-(4-methoxynaphthalen-1-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (**3pa**) (102.9 mg, 0.25 mmol) in MeCN (7.5 mL). After stirring at 0 °C for 1 h, NaBH₄ (47.3 mg, 1.25 mmol) was added at 0 °C. The mixture was stirred at 0 °C for 30 min, and water was added. The resulting mixture was filtered through celite, and the celite pad was washed with MeCN and toluene. After the filtrate was extracted with AcOEt, the combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 3/1) gave 47.2 mg (0.185 mmol, 74% yield) of the desired product **6**.

2.6.2. Pd/C-catalyzed reduction for 3qa

To ethyl 2-(2-benzyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-2,2-difluoroacetate (**3qa**) (86.3 mg, 0.25 mmol) in EtOH (4.7 mL) was added Pd/C (23.4 mg, 10% w/w). After stirring under a hydrogen atmosphere at rt for 12 h, the reaction mixture was filtered. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 3/1) gave 62.1 mg (0.243 mmol, 97 % yield) of the desired product **6**.

Ethyl 2,2-difluoro-2-(1,2,3,4-tetrahydroisoquinolin-1-yl)acetate (6)

Pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, J = 7.3 Hz, 1H), 7.25-7.18 (m, 2H), 7.15 (d, J = 7.3 Hz, 1H), 4.58 (dd, J = 20.4, 8.5 Hz, 1H), 4.40-4.28 (m, 2H), 3.26-3.18 (m, 1H), 3.05-2.99 (m, 1H), 2.81-2.69 (m, 2H), 1.76 (brs, 1H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 164.3 (dd, J = 33.4, 31.5 Hz, C), 136.9 (C), 129.33 (C), 129.25 (CH), 128.2 (d, J = 4.8 Hz, CH), 127.7 (CH), 125.9 (CH), 116.8 (dd, J = 261.3, 254.6 Hz, C), 62.6 (CH₂), 56.5 (dd, J = 24.8, 22.9 Hz, CH), 39.6 (d, J = 1.9 Hz, CH₂), 29.1 (CH₂), 13.9 (CH₃). ¹⁹F NMR (376 MHz, CDCl₃): δ -102.7 (ddd, J = 255.8, 8.8, 2.9 Hz, 1F), -114.5 (dd, J = 255.8, 20.2 Hz, 1F). IR (ATR): 3360, 1770, 1190, 1070, 750 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₁₃H₁₆F₂NO₂: 256.1149; found: 256.1148.

2.7. Synthesis of substrates

2-(4-(Trimethylsilyl)phenyl)-1,2,3,4-tetrahydroisoquinoline (11)

To the solution of 2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinoline (1d) (720.5 mg, 2.5 mmol) in dry THF (10 mL) was added *n*-BuLi (2.0 M in cyclohexane, 1.88 mL, 3.76 mmol) dropwise at -78 °C. The mixture was stirred at -78 °C for 2 h. Then, TMSCl (353.1 mg, 3.25 mmol) was added dropwise at -78 °C. The reaction mixture was gradually warmed to rt and stirred at rt for 6 h. Water was added, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO4. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 20/1) gave 502.3 mg (1.78 mmol, 71% yield) of the desired product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J*=8.1 Hz, 2H), 7.19-7.15 (m, 4H), 6.97 (d, *J* = 8.1 Hz, 2H), 4.44 (s, 2H), 3.59 (t, *J* = 5.7 Hz, 2H), 2.98 (t, *J* = 5.7 Hz, 2H), 0.24 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 150.7 (C), 135.0 (C), 134.5 (CH), 134.4 (C), 128.4 (CH), 128.0 (C), 126.5 (CH), 126.3 (CH), 126.0 (CH), 1110, 830 cm⁻¹. HRMS (DART): *m*/z [M+H]⁺ Calcd for C₁₈H₂₄NSi: 282.1678; found: 282.1686.

2-(4-Methoxynaphthalen-1-yl)-1,2,3,4-tetrahydroisoquinoline (1p)

A reaction tube was charged with BINAP (171.2 mg, 0.275 mmol) and Pd(OAc)₂ (56.1 mg, 0.25 mmol), and toluene (12.5 mL) was added. Then, 1-bromo-4-methoxynaphthalene (1186 mg, 5.0 mmol), 1,2,3,4-tetrahydroisoquinoline (799.1 mg, 6.0 mmol), and *t*-BuOK (785.5 mg, 7.0 mmol) was added, and the reaction mixture was stirred at 100 °C for 4 h. Water was added, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 20/1) gave 954.9 mg (3.30 mmol, 66% yield) of the desired product as white solids of mp 112-113 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.28-8.25 (m, 2H), 7.52-7.47 (m, 2H), 7.22-7.17 (m, 3H), 7.12-7.09 (m, 2H), 6.76 (d, *J* = 8.3 Hz, 1H), 4.25 (s, 2H), 3.99 (s, 3H), 3.66-2.76 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 152.0 (C), 142.8 (C), 135.6 (C), 134.5 (C), 130.2 (C), 129.0 (CH), 126.5 (C), 126.4 (CH), 126.2 (CH), 126.1 (CH), 125.7 (CH), 125.3 (CH), 123.4 (CH), 122.3 (CH), 115.0 (CH), 103.3 (CH), 55.8 (CH₂), 55.5 (CH₃), 51.6 (CH₂), 29.8 (CH₂). IR (ATR): 1590, 1260, 1090, 1020, 810 cm⁻¹. HRMS (DART) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₀NO: 290.1545; found: 290.1546.

6-Chloro-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinoline (1r)

After a flask was charged with 6-chloro-3,4-dihydroisoquinolin-1(2*H*)-one¹⁶ (908.1 mg, 5.0 mmol), 4-iodoanisole (1755 mg, 7.5 mmol), CuI (95.2 mg, 0.5 mmol), and K₃PO₄ (2123 mg, 10 mmol), toluene (5.0 mL) was added. Then, dipivaloylmethane (92.1 mg, 0.5 mmol) was added, and the reaction mixture was refluxed for 24 h. Water was added at rt, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 4/1) gave 951.2 mg (3.31 mmol, 66% yield) of 6-chloro-2-(4-methoxyphenyl)-3,4-dihydroisoquinoline-1(2*H*)-one as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.5 Hz, 1H), 7.34 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.30-7.27 (m, 2H), 7.244-7.239 (m, 1H), 6.96-6.92 (m, 2H), 3.94 (t, *J* = 6.4 Hz, 2H), 3.83 (s, 3H), 3.12 (t, *J* = 6.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 163.6 (C), 157.9 (C), 139.9 (C), 137.9 (C), 135.7 (C), 130.3 (CH), 128.2 (C), 127.5 (CH), 126.9 (CH), 126.6 (CH), 114.2 (CH), 55.5 (CH₃), 49.5 (CH₂), 28.4 (CH₂). IR (ATR):

1510, 1250, 1090, 1030, 840 cm⁻¹. HRMS (DART): m/z [M+H]⁺ Calcd for C₁₆H₁₅³⁵ClNO₂: 288.0791; found: 288.0781.

A flask was charged with LiAlH₄ (56.9 mg, 1.5 mmol), and dry THF (12 mL) was added. Then, 6-chloro-2-(4-methoxyphenyl)-3,4-dihydroisoquinoline-1(2*H*)-one (287.7 mg, 1.0 mmol) was added at 0 °C, and the reaction mixture was refluxed for 20 h. Water and aqueous 1M NaOH were added, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 15/1) gave 167.0 mg (0.61 mmol, 61% yield) of the desired product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.15-7.14 (m, 2H), 7.07-7.04 (m, 1H), 6.99-6.95 (m, 2H), 6.89-6.85 (m, 2H), 4.24 (s, 2H), 3.78 (s, 3H), 3.42 (t, *J* = 6.0 Hz, 2H), 2.95 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 153.7 (C), 145.0 (C), 136.4 (C), 133.1 (C), 131.7 (C), 128.5 (CH), 127.8 (CH), 126.1 (CH), 118.2 (CH), 114.5 (CH), 55.6 (CH₃), 52.3 (CH₂), 48.2 (CH₂), 28.9 (CH₂). IR (ATR): 1510, 1240, 1190, 1090, 1030, 810 cm⁻¹. HRMS (DART) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₇³⁵ClNO: 274.0999; found: 274.0988.

6-Methylisochroman (4b)

To the solution of 6-bromoisochroman¹⁷ (426.1 mg, 2.0 mmol) in dry THF (8.0 mL) was added *n*-BuLi (2.0 M in cyclohexane, 1.5 mL, 3.0 mmol) dropwise at -78 °C. The mixture was stirred at -78 °C for 2 h. Then, dimethyl sulfate (252.3 mg, 2.0 mmol) was added dropwise at -78 °C. The reaction mixture was gradually warmed to rt and stirred at rt for 6 h. Water was added, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 15/1) gave 174.1 mg (1.17 mmol, 59% yield) of the desired product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.02 (d, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 7.8 Hz, 1H), 6.80 (s, 1H), 4.74 (s, 2H), 3.96 (t, *J* = 5.7 Hz, 2H), 2.82 (t, *J* = 5.7 Hz, 2H), 2.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 135.5 (C), 134.7 (C), 130.1 (C), 128.7 (CH), 127.1 (CH), 124.8 (CH), 67.9 (CH₂), 65.5 (CH₂), 27.9 (CH₂), 21.0 (CH₃). IR (ATR): 1500, 1230, 1100, 810 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₀H₁₃O: 149.0966; found: 149.0972.

8-Methylisochroman (4f)

To the solution of 8-bromoisochroman¹⁷ (426.1 mg, 2.0 mmol) in dry THF (8.0 mL) was added *n*-BuLi (2.0 M in cyclohexane, 1.5 mL, 3.0 mmol) dropwise at -78 °C. The mixture was stirred

at -78 °C for 2 h. Then, dimethyl sulfate (252.3 mg, 2.0 mmol) was added dropwise at -78 °C. The reaction mixture was gradually warmed to rt and stirred at rt for 6 h. Water was added, and then the resulting mixture was extracted with AcOEt. The combined organic layers were dried over Na₂SO₄. Concentration and purification through silica gel column chromatography (hexane/AcOEt = 15/1) gave 186.2 mg (1.26 mmol, 63% yield) of the desired product as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.10-7.03 (m, 2H), 6.84 (d, *J* = 7.3 Hz, 1H), 4.77 (s, 2H), 4.02 (t, *J* = 5.7 Hz, 2H), 2.71 (t, *J* = 5.7 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 136.4 (C), 134.7 (C), 131.7 (C), 127.6 (CH), 125.6 (CH), 122.0 (CH), 68.2 (CH₂), 65.5 (CH₂), 26.0 (CH₂), 18.8 (CH₃). IR (ATR): 1510, 1230, 1100, 810 cm⁻¹. HRMS (DART): *m/z* [M+H]⁺ Calcd for C₁₀H₁₃O: 149.0966; found: 149.0962.

3. References

- (1) M. Brzozowski, J. A. Forni, G. P. Savage and A. Polyzos, Chem. Commun., 2015, 51, 334-337.
- (2) Z. Chen, S. Zheng, Z. Wang, Z. Liao and W. Yuan, ChemPhotoChem, 2021, 5, 906-910.
- (3) For 1f: (a) A. M. Nauth, N. Otto and T. Opatz, *Adv. Synth. Catal.*, 2015, 357, 3424-3428; For 1g: (b) J. Zhou, S. Wang, Y. Lu, L. Li, W. Duan, Q. Wang, H. Wang and W. Wei, *Green Chem.*, 2021, 23, 767-773.
- (4) B. Yi, N. Yan, N. Yi, Y. Xie, X. Wen, C.-T. Au and D. Lan, RSC Adv., 2019, 9, 29721-29725.
- (5) For N-Boc-THIQ (1j): (a) S. Geng, B. Xiong, Y. Zhang, J. Zhang, Y. He and Z. Feng, Chem. Commun., 2019, 55, 12699-12702; For N-Bn-THIQ (1q): (b) Y. Zhao, J. Jin, P. Wai and H. Chan, Adv. Synth. Catal., 2019, 361, 1313-1321.
- (6) H.-L. Liu, Z. He, N.-N. Wang, H. Xu, P. Fang and T.-S. Mei, Org. Lett. 2023, 25, 608-613.
- (7) T. L. Andersen, M. W. Frederiksen, K. Domino and T. Skrydstrup, *Angew. Chem. Int. Ed.*, 2016, **55**, 10396-10400.
- (8) B. Du, C.-M. Chan, P.-Y. Lee, L.-H. Cheung, X. Xu, Z. Lin and W.-Y. Yu, *Nat. Commun.*, 2021, **12**, 412.
- (9) F. de Azambuja, S. M. Lovrien, P. Ross, B. R. Ambler and R. A. Altman, J. Org. Chem., 2019, 84, 2061-2071.
- (10) T. Meiresonne, G. Verniest, N. De Kimpe and S. Mangelinckx, J. Org. Chem., 2015, 80, 5111-5124.
- (11) S. E. Reisman, A. G. Doyle and E. N. Jacobsen, J. Am. Chem. Soc., 2008, 130, 7198-7199.
- (12) R. Yang, Z.-F. Gao, J.-Y. Zhao, W.-B. Li, L. Zhou and F. Miao, J. Agric. Food Chem., 2015, 63, 1906-1914.
- (13) M. Mineno, Y. Sawai, K. Kanno, N. Sawada and H. Mizufune, J. Org. Chem., 2013, 78, 5843-5850.
- (14) Q. Chen, J. Zhou, Y. Wang, C. Wang, X. Liu, Z. Xu, L. Lin and R. Wang, Org. Lett., 2015, 17, 4212-4215.
- (15) D. Taniyama, M. Hasegawa and K. Tomioka, Tetrahedron Lett., 2000, 41, 5533-5536.
- (16) Y. Liu, J. Wu, M. Zhou, W. Chen, D. Li, Z. Wang, B. Hornsperger, J. D. Aebi, H.-P. Märki, B. Kuhn, L. Wang, A. Kuglstatter, J. Benz, S. Müller, R. Hochstrasser, G. Ottaviani, J. Xin, S. Kirchner, S. Mohr, P. Verry, W. Riboulet, H. C. Shen, A. V. Mayweg, K. Amrein and X. Tan, *J. Med. Chem.*, 2020, **63**, 6876-6897.
- (17) X. Liu, B. Sun, Z. Xie, X. Qin, L. Liu and H. Lou, J. Org. Chem., 2013, 78, 3104-3112.

3aa_19F_vd.esp

3ca_19F_vd.esp

3da_1H.esp

192 184 176 168

152 144

136 128 120

160

104 96 88 Chemical Shift (ppm)

112

80 72 64 56 48 40 32 24 16 8 0 -8

3da_19F_vd.esp

3da ¹⁹F NMR (376 MHz, CDCl₃)

-101.756 -102.429 -110.633 -110.683 -111.306 -111.306

1.00 1.01 ↓ ↓ -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 Chemical Shift (ppm)

3ea_19F_vd.esp

192 184

104 96 88 Chemical Shift (ppm)

80 72 64 56 48 40

24 16

Ó -8

3fa_19F_vd.esp

1.00 0.97 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 Chemical Shift (ppm) 3ga_1H_vd2a.esp

3ga_19F_vda.esp

-103.988 -104.626 -104.660 -108.335 -108.364 -109.007

1.001.00 □ □ -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 Chemical Shift (ppm)

3ha_1H_vn.esp

3ia_1H_vn.esp

3ja_1H_va.esp

3ja_19F_vda.esp

1.00 1.01 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 Chemical Shift (ppm) 3ka_1H_vn.esp

3ka_19F_vdn.esp

1.00 1.00 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 Chemical Shift (ppm) 3la_1H_va.esp

3la_19F_vda.esp

0. -F | F OEt `SiMe₃ **3la** ¹⁹F NMR (376 MHz, CDCl₃)

3na_19F_vdn.esp

3na ¹⁹F NMR (376 MHz, CDCl₃)

1.00 1.00 -16 -24 -32 -40 -48 -56 -64 -72 -80 -88 -96 -104 -112 -120 -128 -136 -144 -152 -160 -168 -176 -184 Chemical Shift (ppm)

-101.174 -101.845 -101.852

-110.699 -110.751 -111.421

3oa_19F_vdn.esp

3pa_1H_vn.esp

3pa_19F_vdn.esp

3qa_19F_vdn.esp

192 184 176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8 Chemical Shift (ppm)

80 72 64 56 48 40 192 184 176 136 104 96 88 Chemical Shift (ppm) 152 144 120 112 24 16 8 0 160 32 -8 168 128

3ab_19F_vd.esp

3ac_1H_v2.esp

3ac_19F_vd.esp

3ad_19F_vd.esp

3ae_19F.esp

3af_19F_vd.esp

3ag_19F_vd.esp

5aa_19F_vd.esp

5ba_19F.esp

5ca_1H.esp

5ca_19F_vd.esp

5da_1H.esp

5ea_19F.esp

5fa_19F.esp

5af_19F_v2.esp

6_1H_v2.esp

104 96 88 Chemical Shift (ppm) 48 40 80 72 64 <u>5</u>6 -8

6_19F_vd.esp

1p_1H_vn.esp

