Rh(III)-Catalyzed C(sp²)-H Functionalization/[4+2] Annulation of Oxadiazolones with Iodonium Ylides to Access Diverse Fused-Isoquinolines and Fused-Pyridines

Wang-Liang Chen^a, Jia-Lin Song^{a,b}, Sheng Fang^a, Jiong-Bang Li^a, Shang-Shi Zhang^{*b}, and Bing Shu^{*a}

^aSchool of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China; E-mail: <u>shubing@gdpu.edu.cn</u>.

^bCenter for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P.R. China. E-mail: <u>zhangshangshi@gdpu.edu.cn</u>.

Supporting Information

Table of content

1. General information	S2
2. Synthesis of substrates	S3
3. Optimization of Reaction Conditions	S7
4. General procedure and characterization of products	S9
5. Gram-Scale Synthesis:	S25
6. Synthetic application of the product 4g :	S25
7. Competitive experiment:	S26
8. Mechanistic studies	S27
9. NMR Spectra for New Compounds	S30
10. References	S72

1. General information

Unless otherwise noted, all reactions were carried out at room temperature under an atmosphere of nitrogen with flame-dried glassware. If reaction was not conducted at room temperature, reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The dry solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under nitrogen: 1,2-dichloroethane (CaH₂), dichloromethane (CaH₂). Anhydrous CF₃CH₂OH, HFIP, DCE, 1,4-dioxane, ethyl alcohol and MeOH were purchased from Acros Organics and stored under nitrogen atmosphere. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.

Proton NMR (¹H) were recorded at 400 MHz, and Carbon NMR (¹³C) at 101 MHz NMR spectrometer unless otherwise stated. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br s: broad singlet for proton spectra. Coupling constants (*J*) are reported in Hertz (Hz).

High-resolution mass spectra HRMS-ESI (Quadrupole) were recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV₂₅₄ plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.

No attempts were made to optimize yields for substrate synthesis.

2. Synthesis of substrates

2.1 Synthesis of 3-aryl-1,2,4-oxadiazolones (1a-1u):

$$R \stackrel{\text{Et}_{3}N}{\amalg} \stackrel{\text{CN}}{\longrightarrow} \frac{\underset{\text{NH}_{2}\text{OH}}{\text{HCI}}}{\underset{\text{EtOH, 80 °C, 4 h}}{\text{H}}} R \stackrel{\text{NH}_{2}}{\longrightarrow} \frac{\underset{\text{NH}_{2}}{\text{H}}}{\underset{\text{OH}}{\text{OH}}} \stackrel{\text{CDI}}{\underset{\text{BU}}{\xrightarrow}} \stackrel{\text{CDI}}{\underset{\text{BU}}{\xrightarrow}} R \stackrel{\text{N-O}}{\underset{\text{I},4\text{-dioxane,}}{\xrightarrow}} R \stackrel{\text{N-O}}{\underset{\text{I},00 °C, 3 h}} R \stackrel{\text{N-O}}{\underset{\text{H}}{\longrightarrow}} O$$

Following a modified literature procedure^[1], taking **1a** as an example, to a round bottom flask (100.0 mL) containing benzonitrile (5.15 g, 50.0 mmol) was added hydroxylamine hydrochloride (5.21 g, 75.0 mmol) and Et₃N (7.59 g, 75.0 mmol). Then, ethyl alcohol (50.0 mL) was sequentially added to the system and the reaction mixture was stirred at 80 °C for 4 h. After cooling to ambient temperature, the mixture was concentrated in vacuo. EtOAc was used to extract the product from the aqueous layer. The combined organic layer was washed with water (3 × 50 mL), dried over Na₂SO₄, filtered and concentrated to afford the crude product. This residue was pure enough for the further reaction as white solid.

To a round bottom flask (100.0 mL) containing substituted (*Z*)-*N'*-hydroxybenzimidamide (for example, (*Z*)-*N'*-hydroxybenzimidamide, 4.08 g, 30.0 mmol) were added CDI (*N*,*N'*carbonyldiimidazole, 5.84 g, 36.0 mmol) and DBU (1,8-diazabicyclo[5.4.0]undec-7-ene, 5.02 g, 33.0 mmol). Then, 1,4-dioxane (30.0 mL) was sequentially added to the system and the reaction mixture was stirred at 100 °C for 3 h. After cooling to ambient temperature, the mixture was diluted with water, and adjusted to pH \approx 2 with 3 M HCI and extracted with EtOAc (3× 100 mL). The combined organic layers were washed with water (3× 50 mL), dried over Na₂SO₄, filtered and concentrated to afford the crude product. The crude product was filtered and the precipitate was washed with cold CH₂CI₂ (3 × 10 mL). This residue was pure enough for the further reaction.

2.2 Synthesis of hypervalent iodonium ylides 2a-2f:

Following a modified literature procedure^[2], in a 100 mL oven dried reaction tube with a magnetic stir bar, 5,5-dimethylcyclohexane -1,3-dione (5.0 mmol,1.0 equiv) and MeOH (15 mL)

was subjected and kept the solution at RT. Then, 10.0 mL of 10% aq. KOH solution was added to the reaction mixture at RT. The tube was capped with septa. Further, iodoxybenzene diacetate (6.0 mmol, 1.2 equiv) was dissolved in 20.0 mL MeOH and slowly added to the above reaction mixture via syringe. The resulting mixture was stirred at room temperature for the period of 2 h and evaporated the solvent under reduced pressure, quenched with saturated NaCl (10.0 mL). Then, the mixture was extracted with CH_2Cl_2 and dried over Na_2SO_4 . The product was obtained by recrystallization of dichloromethane and petroleum ether. (**2a-2f**, white solid, 68-89%)

2.3 Synthesis of 1v and 1x:

$$\begin{array}{c} R1 \\ R2 \end{array} \xrightarrow{CN} \underbrace{Et_3N, NH_2OH \cdot HCl}_{\text{EtOH, 80 °C, 4 h}} \xrightarrow{R1} \underbrace{R1}_{R2} \xrightarrow{NH_2} \underbrace{CDI, DBU}_{1,4\text{-dioxane,}} \xrightarrow{R_1} \underbrace{R_1}_{R_2} \xrightarrow{N-O}_{H} \xrightarrow{N-O}_{H}$$

Taking **1v** as an example^[3], to a round bottom flask (100 mL) containing methacrylonitrile (1.0 equiv, 20.0 mmol) was added hydroxylamine hydrochloride (1.5 equiv, 30.0 mmol) and Et₃N (1.5 equiv, 30.0 mmol). Then, ethyl alcohol (20.0 mL) was sequentially added to the system and the reaction mixture was stirred at 80 °C for 4 h. After cooling to ambient temperature, the mixture was concentrated in vacuo. EtOAc was used to extract the product from the aqueous layer. The combined organic layer was washed with water (3 × 50 mL), dried over Na₂SO₄, filtered and concentrated to afford the crude product. This residue was pure enough for the further reaction as white solid.

To a round bottom flask (50 mL) containing substituted (*E*)*N*'-hydroxymethacrylimidamide, (1.0 equiv, 10.0 mmol) were added CDI (*N*,*N*'-Carbonyldiimidazole, 1.2 equiv, 12.0 mmol) and DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene, 1.1 equiv, 11.0 mmol). Then, 1,4-dioxane (10.0 mL) was sequentially added to the system and the reactionmixture was stirred at 100 °C for 3 h. After cooling to ambient temperature, the mixture was dilutedwith water, and adjusted to pH \approx 2 with 3 M HCI and extracted with EtOAc. The combined organiclayer was washed with water (3× 50.0 mL), dried over Na₂SO₄, filtered and concentrated to afford the crude product. The crude product was filtered and the precipitate was washed with cold CH₂Cl₂ (3 × 10.0 mL). This residue was pure enough for the further reaction. 3-(prop-1-en-2-yl)-1,2,4-oxadiazol-5(4*H*)-one (1v), 73%, white solid.¹H NMR (400 MHz, CDCl₃) δ 5.71 (s, 1H), 5.58 (s, 1H), 2.06 (s, 3H). HRMS (ESI) *m/z* calcd. for C₅H₆N₂O₂Na [M+Na]⁺ 149.0327; Found 149.0323.

(*E*)-3-(but-2-en-2-yl)-1,2,4-oxadiazol-5(4*H*)-one (**1x**), 35%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.10 (q, *J* = 7.2 Hz, 1H), 2.03 (s, 3H), 1.98 (d, *J* = 7.5 Hz, 3H). HRMS (ESI) *m/z* calcd. for C₆H₈N₂O₂Na [M+Na]⁺ 163.0484; Found 163.0482.

2.4 Synthesis of (E)-3-styryl-1,2,4-oxadiazol-5(4H)-one (1w):

Following a modified literature procedure^[3], NaH (1.8 g, 45 mmol, 1.50 equiv) was placed in an over-dried 250 mL two-neck round bottom flask. THF (50.0 mL) was added under nitrogen. The reaction mixture was cooled and diethyl cyanomethylphosphonate(6.37 g, 36.0 mmol, 1.20 equiv) was added dropwise with stirring at 0 °C. The solution was stirred at room temperature for 1.0 h until gas evolution had ceased. And then, the benzaldehyde (30 mmol, 1.00 equiv) were added to the solution dropwise. The solution was stirred at room temperature until no starting material was detected by TLC. The reaction mixture was quenched with water and extracted with ethyl acetate.

To a round bottom flask (100 mL) containing substituted cinnamonitrile (1.0 eq, 30 mmol) were added hydroxylamine hydrochloride (3.13 g, 45.0 mmol, 1.5 equiv) and Et₃N (4.55 g, 45 mmol, 1.5 equiv). Then, ethyl alcohol (50.0 mL) was sequentially added to the system and the reaction mixture was stirred at 80 °C for 4 h. After cooling to ambient temperature, the mixture was concentrated in vacuo. EtOAc was used to extract the product from the aqueous layer. The combined organic layer was washed with water (3 × 50 mL), dried over Na₂SO₄, filtered and concentrated to afford the crude product. This residue was pure enough for the further reaction.

To a round bottom flask (100 mL) containing substituted (*Z*)-*N*-hydroxycinnamimidamide (30.0 mmol, 1.0 equiv) were added CDI (*N*, *N*-carbonyldiimidazole, 5.83 g, 36.0 mmol, 1.2 equiv) and DBU (1,8-diazabicyclo[5.4.0]undec-7-ene, 5.02 g, 33.0 mmol, 1.1 equiv). Then, 1,4-dioxane (30.0 mL) was sequentially added to the system and the reaction mixture was stirred at 100 °C for

3 h. After cooling to ambient temperature, the mixture was diluted with water, and adjusted to $pH\approx 2$ with 3 M HCl and extracted with EtOAc. The combined organic layer was washed with water (3×50 mL), dried over Na₂SO₄, filtered and concentrated to afford the crude product. The crude product was filtered and the precipitate was washed with cold CH₂Cl₂ (3 × 5 mL). This residue was pure enough for the further reaction. 76%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.41 (dd, *J* = 5.0, 2.0 Hz, 3H), 7.28 (d, *J* = 16.7 Hz, 1H), 6.72 (d, *J* = 16.7 Hz, 1H). HRMS (ESI) *m/z* calcd. for C₁₀H₈N₂O₂Na [M+Na]⁺ 211.0484 ; Found 211.0479.

3. Optimization of Reaction Conditions

$H^{H^{-0}} + H^{H^{-1}} + H^{$			Catalyst (2.5 mol%) AgSbF ₆ (10 mol%)		
			Additive (1.0 equiv) Solvent (0.2 M)		
1a 2a (1.5 equiv)			3a		
Entry	Catalyst	Additives	Solvent	Temp (°C)	Yields ^b
1	[Cp*RhCl ₂] ₂	-	DCE	60	46
2	[Cp*IrCl ₂] ₂	-	DCE	60	ND ^c
3 ^d	[Ru(p-cym)Cl ₂] ₂	-	DCE	60	ND
4	[Cp*RhCl ₂] ₂	-	DCM	60	29
5	[Cp*RhCl ₂] ₂	-	HFIP	60	34
6	[Cp*RhCl ₂] ₂	-	CF ₃ CH ₂ OH	60	43
7	[Cp*RhCl ₂] ₂	Cs ₂ CO ₃	DCE	60	ND
8	[Cp*RhCl ₂] ₂	PivOH	DCE	60	41
9	[Cp*RhCl ₂] ₂	B(OH) ₃	DCE	60	51
10	[Cp*RhCl ₂] ₂	HOAc	DCE	60	57
11	[Cp*RhCl ₂] ₂	AdCOOH	DCE	60	75
12	[Cp*RhCl ₂] ₂	AdCOOH	H ₂ O	60	ND
13	[Cp*RhCl ₂] ₂	AdCOOH	DCE	50	53
14	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	82
15	[Cp*RhCl ₂] ₂	AdCOOH	DCE	100	68
16 ^e	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	67
$17^{\rm f}$	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	76
18 ^g	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	57
19 ^h	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	9
20 ⁱ	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	0
21 ^j	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	32

Table S1. Optimization of the Reaction Conditions^a

22 ^k	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	83
23 ¹	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	64
24 ^d	[Cp*RhCl ₂] ₂	AdCOOH	DCE	80	34
25	-	AdCOOH	DCE	80	0

^aReaction Conditons: **1a** (0.2 mmol), **2a** (0.3 mmol), catalyst (2.5 mol%), additives (1.0 equiv), solvent (0.2 M), Temp., 60 °C, 12 h.

^bIsolated yield.

°ND: Not detected.

^dNo AgSbF₆.

^eUnder N₂ atmosphere.

^fUnder O₂ atmosphere.

 ${}^{g}AgBF_{4}$ instead of $AgSbF_{6}$.

 ${}^{h}Ag_{2}CO_{3}$ instead of AgSbF₆.

 $^{i}Cu(OAc)_{2}$ instead of AgSbF₆.

^j2.0 equiv AdCOOH was used. ^k4% [Cp*RhCl₂]₂ was used.

 1 1% [Cp*RhCl₂]₂ was used.

4. General procedure and characterization of products

General procedure A

In an oven-dried Schlenk tube under air, a mixture of the 3-aryl-1,2,4-oxadiazol-5(4*H*)-ones 1(0.20 mmol, 1.0 equiv), 2-(phenyl- λ 3-iodaneylidene)cyclohexane-1,3-diones 2 (0.30 mmol, 1.5 equiv), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mol%), AdCOOH (36.0 mg, 0.2 mmol, 1.0 equiv), and DCE or CH₃CH₂OH (1.0 mL, 0.2 M) was stirred at 80 °C for 8-12 h. Then the reaction mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **3a-3t**, **4a-4e**.

General procedure B

In an oven-dried Schlenk tube under air, a mixture of the 3-alkenyl-1,2,4-oxadiazol-5(4*H*)ones 1 (0.20 mmol, 1.0 equiv), 2-(phenyl- λ 3-iodaneylidene)cyclohexane-1,3-diones 2 (0.30 mmol, 1.5 equiv), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mol%), AdCOOH (36.0 mg, 0.2 mmol, 1.0 equiv), and CH₃CH₂OH (1.0 mL, 0.20 M) was stirred at rt for 0.33-2 h. Then the reaction mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **5a-5f**.

General procedure C

In an oven-dried Schlenk tube under air, a mixture of the (*E*)-3-styryl-1,2,4-oxadiazol-5(4*H*)one **1w** (0.20 mmol, 1.0 equiv), 5,5-dimethyl-2-(phenyl- λ 3-iodaneylidene)cyclohexane-1,3-dione **2a** (0.40 mmol, 2.0 equiv), [Cp*RhCl₂]₂ (3.1 mg, 0.005 mmol, 2.5 mol%), AgSbF₆ (6.9 mg, 0.02 mmol, 10.0 mol%), AgBF₄(7.8 mg, 0.04 mmol, 20.0 mol%), PivOH (20.4 mg, 0.2 mmol, 1.0 equiv), and DCM (1.0 mL, 0.2 M) was stirred at 50 °C for 8 h. Then the reaction mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **5g**.

Characterization of products

6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3a)

Following the general procedure A, the product **3a** was obtained in 82% yield (46.1 mg, 0.160 mmol) as a whitesolid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 9.13 (d, *J* = 8.4 Hz, 1H), 8.18 – 8.16 (m, 1H), 7.75 – 7.71 (m, 1H), 7.55 (t, *J* = 7.2 Hz, 1H), 3.45 (s, 2H), 2.56 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 154.9, 152.0, 145.1, 133.6, 129.6, 128.9, 127.5, 123.4, 116.9, 115.1, 52.8, 37.8, 32.2, 28.2. HRMS (ESI) *m/z* calcd. for C₁₆H₁₅N₂O₃ [M+H]⁺ 283.1082; Found 283.1081.

10-fluoro-6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3b)

Following the general procedure A, the product **3b** was obtained in 96% yield (57.8 mg, 0.192 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, *J* = 11.9, 2.5 Hz, 1H), 8.17 (dd, *J* = 8.8, 5.8 Hz, 1H), 7.29 (s, 1H), 3.46 (s, 2H), 2.56 (s, 2H), 1.20 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 196.6, 165.7 (d, *J* = 253.3 Hz), 154.7, 151.5, 146.4, 132.2 (d, *J* = 11.3 Hz), 125.9 (d, *J* = 9.7 Hz), 117.2 (d, *J* = 24.0 Hz), 114.4 (d, *J* = 26.8 Hz), 114.3 (d, *J* = 3.4 Hz), 113.3 (d, *J* = 2.8 Hz), 52.6, 37.8, 32.1, 28.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -101.6. HRMS (ESI) *m/z* calcd. for C₁₆H₁₄FN₂O₃ [M+H]⁺ 301.0988; Found 301.0992.

10-chloro-6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)dione (3c)

Following the general procedure A, the product **3c** was obtained in 29% yield (18.2 mg, 0.057 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.22 (s, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.54 (d, *J* = 8.5 Hz, 1H), 3.46 (s, 2H), 2.58 (s, 2H), 1.21 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 196.8, 154.6, 151.5, 146.4, 140.3, 130.9, 129.4, 127.4, 124.7, 115.1, 114.1, 52.6, 37.7, 32.1, 28.1. HRMS (ESI) *m/z* calcd. for C₁₆H₁₄ClN₂O₃ [M+H]⁺ 317.0693; Found 317.0699.

10-bromo-6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)dione (3d))

Following the general procedure A, the product **3d** was obtained in 41% yield (29.8 mg, 0.082 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (s, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 1.8 Hz, 1H), 3.45 (s, 2H), 2.56 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 154.6, 151.6, 146.3, 132.2, 131.0, 130.5, 128.9, 124.7, 115.6, 114.0, 52.7, 37.8, 32.2, 28.2. HRMS (ESI) *m/z* calcd. for C₁₆H₁₄BrN₂O₃ [M+H]⁺ 361.0188; Found 361.0179.

10-iodo-6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3e)

Following the general procedure A, the product **3e** was obtained in 43% yield (35.1 mg, 0.086 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.58 (s, 1H), 7.87 (dd, J = 15.8, 8.2 Hz, 2H), 3.45 (s, 2H), 2.55 (s, 2H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 196.5, 151.8, 147.2, 146.1, 138.0, 136.5, 130.7, 124.4, 116.1, 113.9, 101.5, 52.7, 37.8, 32.2, 28.2. HRMS (ESI) *m/z* calcd. for C₁₆H₁₄IN₂O₃ [M+H]⁺ 409.0049; Found 409.0054.

10-methoxy-6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)dione (3f)

Following the general procedure A, the product **3f** was obtained in 63% yield (39.7 mg, 0.127 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.73 (d, *J* = 2.2 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.09 (dd, *J* = 8.8, 2.3 Hz, 1H), 3.94 (s, 3H), 3.45 (s, 2H), 2.56 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 197.2, 163.3, 154.9, 151.8, 145.9, 131.7, 125.0, 117.4, 114.7, 110.1, 109.6, 55.7, 52.8, 37.8, 32.1, 28.2. HRMS (ESI) *m/z* calcd. for C₁₇H₁₇N₂O₄ [M+H]⁺ 313.1188; Found 313.1190.

6,6,10-trimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3g)

Following the general procedure A, the product **3g** was obtained in 84% yield (49.8 mg, 0.168 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF (Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.94 (s, 1H),

8.04 (d, *J* = 8.1 Hz, 1H), 7.37 (dd, *J* = 8.1, 1.0 Hz, 1H), 3.44 (s, 2H), 2.55 (s, 2H), 2.51 (s, 3H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 197.1, 155.0, 152.1, 145.0, 144.6, 130.1, 129.6, 127.6, 123.3, 115.1, 114.3, 52.9, 37.8, 32.2, 28.2, 22.5. HRMS (ESI) *m/z* calcd. for C₁₇H₁₇N₂O₃ [M+H]⁺ 297.1239; Found 297.1236.

6,6-dimethyl-10-(trifluoromethoxy)-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3h)

Following the general procedure A, the product **3h** was obtained in 50% yield (36.6 mg, 0.099 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ (ppm)9.14 (s, 1H), 8.21 (d, *J* = 8.8 Hz, 1H), 7.40 (dd, *J* = 8.7, 0.9 Hz, 1H), 3.46 (s, 2H), 2.57 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) δ 196.6, 154.6, 152.9 (d, *J* = 1.8 Hz), 151.3, 146.6, 131.7, 125.4, 121.3, 120.3 (q, *J* = 259.5 Hz), 119.3, 115.2, 114.1, 52.6, 37.8, 32.2, 28.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.5. HRMS (ESI) *m/z* calcd. for C₁₇H₁₄F₃N₂O₄ [M+H]⁺ 367.0905; Found 367.0908.

6,6-dimethyl-3,8-dioxo-5,6,7,8-tetrahydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-10carbaldehyde (3i)

Following the general procedure A, the product **3i** was obtained in 41% yield (39.5 mg, 0.127 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). RF (Petroleum ether/EtOAc 16:1): 0.19. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.59 (s, 1H), 8.28 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 3.46 (s, 2H), 2.59 (s, 2H), 1.21 (s, 6H). ¹³C NMR

(101 MHz, CDCl₃) δ (ppm) 196.3, 154.3, 151.0, 147.0, 132.0, 131.3, 130.3, 124.3, 120.2, 117.7, 117.3, 113.7, 52.5, 37.8, 32.2, 28.2. HRMS (ESI) *m/z* calcd. for C₁₇H₁₅N₂O₄ [M+H]⁺ 311.1032; Found 311.1029.

6,6-dimethyl-10-(trifluoromethyl)-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3j)

Following the general procedure A, the product **3j** was obtained in 40% yield (28.3 mg, 0.081 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.54 (s, 1H), 8.29 (d, *J* = 8.3 Hz, 1H), 7.79 (dd, *J* = 8.3, 1.2 Hz, 1H), 3.47 (s, 2H), 2.59 (s, 2H), 1.21 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ (ppm) 196.4, 154.5, 151.3, 146.4, 135.1 (q, *J* = 32.9 Hz), 130.2, 125.3 (q, *J* = 3.3 Hz), 124.9 (q, *J* = 4.2 Hz), 124.2, 123.4 (d, *J* = 273.3 Hz), 119.6, 114.3, 52.6, 37.8, 32.2, 28.2. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -63.2. HRMS (ESI) *m/z* calcd. for C₁₇H₁₄F₃N₂O₃ [M+H]⁺ 351.0956; Found 351.0954.

12-fluoro-6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3k)

Following the general procedure A, the product **3k** was obtained in 89% yield (53.2 mg, 0.177 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.97 (d, J = 8.4 Hz, 1H), 7.70 (td, J = 8.4, 5.9 Hz, 1H), 7.33 – 7.27 (m, 1H), 3.47 (s, 2H), 2.57 (s, 2H), 1.20 (s,

6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 196.5, 159.7 (d, J = 262.3 Hz), 154.2, 149.9 (d, J = 6.7 Hz), 146.1, 134.6 (d, J = 8.8 Hz), 131.5, 123.2 (d, J = 4.0 Hz), 115.9 (d, J = 18.7 Hz), 114.7(d, J = 1.7 Hz), 106.5 (d, J = 13.1 Hz), 52.8, 37.9, 32.1, 28.2. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) - 103.4. HRMS (ESI) *m/z* calcd. for C₁₆H₁₄FN₂O₃ [M+H]⁺ 301.0988; Found 301.0989.

12-bromo-6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (3l)

Following the general procedure A, the product **31** was obtained in 60% yield (42.8 mg, 0.118 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 9.16 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.51 (t, *J* = 8.2 Hz, 1H), 3.48 (s, 2H), 2.56 (s, 2H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 154.5, 151.3, 145.6, 135.3, 133.2, 132.6, 126.3, 120.0, 117.3, 115.0, 52.9, 37.9, 32.1, 28.2. HRMS (ESI) *m/z* calcd. for C₁₆H₁₃BrN₂O₃Na [M+Na]⁺ 383.0008 ; Found 382.9998.

11-fluoro-6,6,12-trimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)dione (3m)

Following the general procedure A, the product **3m** was obtained in 37% yield (23.1 mg, 0.073 mmol) as a pale yellow liquid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.02 (dd, J = 9.2, 5.4 Hz, 1H), 7.37 (t, J = 9.1 Hz, 1H), 3.44 (s, 2H), 2.67 (s, 3H), 2.54 (s, 2H),

1.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm)197.0, 160.3 (d, J = 247.7 Hz), 154.5, 152.9, 144.0, 127.0 (d, J = 3.4 Hz), 126.8 (d, J = 8.7 Hz), 124.8 (d, J = 18.9 Hz), 120.1 (d, J = 24.1 Hz), 118.5 (d, J = 5.2 Hz), 115.2, 52.9, 37.7, 32.1, 28.2, 13.8 (d, J = 6.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -113.3. HRMS (ESI) *m/z* calcd. for C₁₇H₁₆FN₂O₃ [M+H]⁺ 315.1145; Found 315.1148.

12-bromo-6,6-dimethyl-10-(trifluoromethyl)-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3f]phenanthridine-3,8(5H)-dione (3n)

Following the general procedure A, the product **3n** was obtained in 96% yield (77.2 mg, 0.180 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 14:1 v/v). Rf (Petroleum ether/EtOAc 14:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 9.56 (s, 1H), 8.03 (s, 1H), 3.48 (s, 2H), 2.58 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.1, 154.1, 150.7, 147.1, 134.6 (q, *J* = 33.5 Hz), 133.2, 131.5 (q, *J* = 3.5 Hz), 123.4 (q, *J* = 4.0 Hz), 122.5 (q, *J* = 273.8 Hz), 120.5, 120.0 (d, *J* = 0.6 Hz), 114.1, 52.7, 37.9, 32.1, 28.2.¹⁹F NMR (376 MHz, CDCl₃) δ -63.4. HRMS (ESI) *m/z* calcd. for C₁₇H₁₂BrF₃N₂O₃Na [M+Na]⁺ 450.9881; Found 450.9874.

12-bromo-6,6-dimethyl-10-(trifluoromethoxy)-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3f]phenanthridine-3,8(5H)-dione (30)

Following the general procedure A, the product **30** was obtained in 64% yield (57.2 mg, 0.128 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 9.22 (dd, *J* = 2.2, 0.9

Hz, 1H), 7.69 (d, J = 1.5 Hz, 1H), 3.48 (s, 2H), 2.57 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.2, 154.2, 151.5, 150.7, 147.2, 134.0, 127.0(d, J = 0.9 Hz), 121.5, 120.2 (d, J = 260.6 Hz), 117.7, 115.7, 113.9, 52.7, 37.9, 32.0, 28.2.¹⁹F NMR (376 MHz, CDCl₃) δ -57.5. HRMS (ESI) m/z calcd. for C₁₇H₁₃BrF₃N₂O₄ [M+H]⁺ 445.0011; Found 445.0013.

2,2-dimethyl-2,3-dihydro-12H-[1,3]dioxolo[4,5-i][1,2,4]oxadiazolo[4,3-f]phenanthridine-

4,12(1H)-dione (3p)

Following the general procedure A, the product **3p** was obtained in 74% yield (48.2 mg, 0.148 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.77 (d, *J* = 8.2 Hz, 1H), 7.06 (d, *J* = 8.3 Hz, 1H), 6.14 (s, 2H), 3.38 (s, 2H), 2.59 (s, 2H), 1.21 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 193.7, 154.9, 152.3, 152.0, 143.6, 142.9, 119.3, 116.3, 112.1, 111.4, 110.3, 101.9, 51.8, 37.1, 33.2, 28.6. HRMS (ESI) *m/z* calcd. for C₁₇H₁₁N₂O₅Na [M+Na]⁺ 349.0801; Found 349.0798.

6,6-dimethyl-6,7-dihydro-3H-furo[2,3-c][1,2,4]oxadiazolo[4,3-a]quinoline-3,8(5H)-dione (3q)

Following the general procedure A, the product **3q** was obtained in 81% yield (44.2 mg, 0.162 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 10:1 v/v). Rf (Petroleum ether/EtOAc 10:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.82 (s, 1H), 7.54 (d, *J* = 1.6 Hz, 1H), 3.44 (s, 2H), 2.51 (s, 2H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ

(ppm) 195.0, 154.6, 149.3, 145.5, 144.6, 134.2, 126.3, 113.7, 109.9, 50.93, 36.8, 32.9, 28.3. HRMS (ESI) *m/z* calcd. for C₁₄H₁₃N₂O₄ [M+H]⁺ 273.0875; Found 273.0875.

6,6-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-a]thieno[2,3-c]quinoline-3,8(5*H*)-dione (3r)

Following the general procedure A, the product **3r** was obtained in 95% yield (55.1 mg, 0.191 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 12:1 v/v). Rf (Petroleum ether/EtOAc 12:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.41 (d, *J* = 5.2 Hz, 1H), 7.77 (d, *J* = 5.2 Hz, 1H), 3.47 (s, 2H), 2.54 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 195.2, 154.7, 150.3, 145.2, 138.6, 132.8, 126.8, 118.3, 115.1, 51.6, 37.1, 32.6, 28.3. HRMS (ESI) *m/z* calcd. for C₁₄H₁₃N₂O₃S [M+H]⁺ 289.0647; Found 289.0646.

6,6,11-trimethyl-5,6,7,11-tetrahydro-3H,8H-[1,2,4]oxadiazolo[4,3-a]pyrrolo[2,3-c]quinoline-3,8-dione (3s)

Following the general procedure A, the product **3s** was obtained in 87% yield (50.2 mg, 0.176 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 12:1 v/v). Rf (Petroleum ether/EtOAc 12:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.20 (d, *J* = 2.7 Hz, 1H), 7.07 (d, *J* = 2.7 Hz, 1H), 4.01 (s, 3H), 3.38 (s, 2H), 2.47 (s, 2H), 1.16 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 196.1, 155.0, 147.5, 140.7, 131.6, 123.1, 114.9, 113.7, 107.2, 51.3, 36.7, 36.4, 32.8, 28.3. HRMS (ESI) *m/z* calcd. for C₁₅H₁₆N₃O₃ [M+H]⁺ 286.1191; Found 286.1194.

12-chloro-6,6-dimethyl-6,7-dihydro-3*H*-benzo[*c*][1,2,4]oxadiazolo[3,4-*a*][2,7]naphthyridine-3,8(5*H*)-dione (3t)

Following the general procedure A, the product **3t** was obtained in 22% yield (13.8 mg, 0.043 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 9.04 (d, *J* = 5.7 Hz, 1H), 8.61 (d, *J* = 5.7 Hz, 1H), 3.50 (s, 2H), 2.57 (s, 2H), 1.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 195.6, 153.9, 151.9, 150.2, 149.9, 149.5, 139.7, 118.9, 113.3, 112.3, 52.5, 38.1, 32.1, 28.2. HRMS (ESI) *m/z* calcd. for C₁₅H₁₃ClN₃O₃ [M+H]⁺ 318.0645; Found 318.0649.

7,7,10-trimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (4a)

Following the general procedure A, the product **4a** was obtained in 98% yield (58.2 mg, 0.196 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 10:1 v/v). Rf (Petroleum ether/EtOAc 10:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.78 (s, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 3.49 (t, *J* = 6.3 Hz, 2H), 2.47 (s, 3H), 2.03 (t, *J* = 6.3 Hz, 2H), 1.23 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 201.9, 155.0, 151.8, 144.7, 144.3, 130.1, 129.9, 127.7, 123.3, 114.4, 114.3, 42.0, 33.4, 24.2, 22.4, 21.3. HRMS (ESI) *m/z* calcd. for C₁₇H₁₇N₂O₃ [M+H]⁺ 297.1239; Found 297.1235.

6,10-dimethyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (4b)

Following the general procedure A, the product **4b**was obtained in 57% yield (31.9 mg, 0.113 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 12:1 v/v). Rf (Petroleum ether/EtOAc 12:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 3.94 – 3.88 (m, 1H), 2.92 – 2.90 (m, 1H), 2.74 – 2.72 (m, 1H), 2.50 (s, 3H), 2.40 – 2.38 (m, 2H), 1.23 (d, *J* = 5.9 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 197.1, 154.9, 151.9, 146.3, 144.5, 130.0, 129.6, 127.6, 123.3, 115.6, 114.1, 47.2, 32.0, 28.1, 22.4, 20.9. HRMS (ESI) *m/z* calcd. for C₁₆H₁₅N₂O₃ [M+H]⁺ 283.1082; Found 283.1082.

10-methyl-6-phenyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (4c)

Following the general procedure A, the product **4c** was obtained in 90% yield (62.3 mg, 0.181 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.96 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.42 – 7.37 (m, 3H), 7.32 (d, *J* = 2.6 Hz, 2H), 7.31 (d, *J* = 2.5 Hz, 1H), 4.19 – 4.13 (m, 1H), 3.37 – 3.32 (m, 1H), 2.97 – 2.92 (m, 2H), 2.51 (s, 3H), 1.65– 1.63 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ (ppm)196.1, 154.8, 151.8, 146.0, 144.6, 141.3, 130.2, 129.6, 129.1, 127.7, 127.6, 126.7, 123.4, 115.8, 114.3, 45.8, 38.4, 31.8, 22.5. HRMS (ESI) *m/z* calcd. for C₂₁H₁₇N₂O₃ [M+H]⁺ 345.1239; Found 345.1239.

10-methyl-6,7-dihydro-3H-[1,2,4]oxadiazolo[4,3-f]phenanthridine-3,8(5H)-dione (4d)

Following the general procedure A, the product **4d** was obtained in 96% yield (51.6 mg, 0.192 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.86 (s, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 3.50 (t, *J* = 6.2 Hz, 2H)₂ 2.68 – 2.63 (m, 2H), 2.48 (s, 3H), 2.22 – 2.15 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 196.8, 154.9, 151.7, 146.8, 144.5, 129.9, 129.7, 127.7, 123.3, 115.9, 114.2, 39.1, 24.4, 22.5, 20.4. HRMS (ESI) *m/z* calcd. for C₁₅H₁₃N₂O₃ [M+H]⁺ 269.0926; Found 269.0927.

10-methyl-7-hydro-3H,5H-[1,2,4]oxadiazolo[3,4-a]pyrano[3,4-c]isoquinoline-3,8-dione (4e)

Following the general procedure A, the product **4e** was obtained in 92% yield (49.8 mg, 0.184 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, DMSO) δ (ppm) 7.95 (s, 1H), 7.18 (d, *J* = 8.1 Hz, 1H), 6.68 (d, *J* = 8.1 Hz, 1H), 4.47 (s, 2H), 3.52 (s, 2H), 1.64 (s, 3H).¹³C NMR (101 MHz, DMSO) δ (ppm) 192.7, 154.6, 151.6, 146.9, 144.6, 130.7, 129.1, 127.2, 123.7, 114.5, 112.1, 72.1,62.6,22.4. HRMS (ESI) *m/z* calcd. for C₁₄H₁₁N₂O₄ [M+H]⁺ 271.0719; Found 271.0718.

4,8,8-trimethyl-8,9-dihydro-1H-[1,2,4]oxadiazolo[4,3-a]quinoline-1,6(7H)-dione (5a)

Following the general procedure B, the product **5a** was obtained in 92% yield (45.4mg, 0.184 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.38 (s, 1H), 3.34 (s, 2H), 2.42 (s, 2H), 2.21 (s, 3H), 1.14 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 193.9, 155.2, 154.3, 145.4, 127.9, 121.3, 118.1, 50.3, 36.3, 32.7, 28.3, 14.9. HRMS (ESI) *m/z* calcd. for C₁₃H₁₅N₂O₃ [M+H]⁺ 247.1082; Found 247.1081.

4,7,7-trimethyl-8,9-dihydro-1H-[1,2,4]oxadiazolo[4,3-a]quinoline-1,6(7H)-dione (5b)

Following the general procedure B, the product **5b** was obtained in 96% yield (47.1 mg, 0.191 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.40 (s, 1H), 3.47 (t, *J* = 6.1 Hz, 2H), 2.22 (s, 3H), 1.99 (t, *J* = 6.3 Hz, 2H), 1.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 198.8, 155.3, 154.0, 145.4, 128.9, 121.4, 117.1, 40.5, 34.1, 23.9, 20.2, 14.9. HRMS (ESI) *m/z* calcd. for C₁₃H₁₅N₂O₃ [M+H]⁺ 247.1082; Found 247.1077.

4,8-dimethyl-8,9-dihydro-1H-[1,2,4]oxadiazolo[4,3-a]quinoline-1,6(7H)-dione (5c)

Following the general procedure B, the product **5c** was obtained in 97% yield (43.2 mg, 0.195 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 3.91 – 3.85 (m, 1H), 2.91 – 2.89 (m, 1H), 2.71 – 2.62 (m, 1H), 2.32 – 2.25 (m, 1H), 2.23 (s, 3H), 1.67 – 1.66 (m, 1H), 1.21 (d, *J* = 5.8 Hz,3H).¹³C NMR (101 MHz, CDCl₃) δ 193.9, 155.2, 154.1, 146.4, 128.1, 121.4, 118.7, 44.7, 30.6, 28.7, 21.0, 14.8. HRMS (ESI) *m/z* calcd. for C₁₂H₁₃N₂O₃ [M+H]⁺ 233.0926; Found 233.0926.

4-methyl-8-phenyl-8,9-dihydro-1H-[1,2,4]oxadiazolo[4,3-a]quinoline-1,6(7H)-dione (5d)

Following the general procedure B, the product **5d** was obtained in 69% yield (40.8 mg, 0.139 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.45 (s, 1H), 7.38 (d, *J* = 7.0 Hz, 1H), 7.31 (dd, *J* = 18.1, 11.1 Hz, 4H), 4.15 - 4.09 (m, 1H), 3.48 - 3.40 (m, 1H), 3.35 - 3.30 (m, 1H), 2.88 - 2.82 (m, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 193.3, 155.1, 154.1, 146.1, 141.3, 129.1, 128.0, 127.7, 126.7, 121.8, 118.8, 43.4, 39.0, 30.5, 14.9. HRMS (ESI) *m/z* calcd. ForC₁₇H₁₅N₂O₃ [M+H]⁺ 295.1082; Found 295.1088.

4-methyl-8,9-dihydro-1H-[1,2,4]oxadiazolo[4,3-a]quinoline-1,6(7H)-dione (5e)

Following the general procedure B, the product **5e** was obtained in 79% yield (34.6 mg, 0.159 mmol) as a pale white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.44 (s, 1H),

3.51 (t, J = 6.2 Hz, 2H), 2.62 – 2.59 (m, 2H), 2.25 (d, J = 1.1 Hz, 3H), 2.20 (dd, J = 13.0, 6.5 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.9, 155.2, 154.0, 147.0, 128.2, 121.4, 119.0, 36.6, 22.9, 20.8, 14.9. HRMS (ESI) *m/z* calcd. for C₁₁H₁₁N₂O₃ [M+H]⁺ 219.0769; Found 219.0771.

4-methyl-9-hydro-1H,7H-[1,2,4]oxadiazolo[4,3-a]pyrano[4,3-e]pyridine-1,6-dione (5f)

Following the general procedure B, the product **5f** was obtained in 79% yield (34.6 mg, 0.157 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 7.38 (s, 1H), 5.36 (s, 2H), 4.30 (s, 2H), 2.27 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ (ppm) 189.4, 154.5, 153.3, 144.1, 126.4, 123.1, 116.4, 71.5, 61.8, 14.9. HRMS (ESI) *m/z* calcd. for C₁₀H₈N₂O₄Na [M+Na]⁺ 243.0382 ; Found 243.0381.

8,8-dimethyl-5-phenyl-8,9-dihydro-1H-[1,2,4]oxadiazolo[4,3-a]quinoline-1,6(7H)-dione(5g)

Following the general procedure C, the product **5g** was obtained in 32% yield (19.8 mg, 0.064 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 5.0, 1.8 Hz, 3H), 7.15 (dd, J = 6.4, 3.1 Hz, 2H), 6.68 (s, 1H), 3.49 (s, 2H), 2.45 (s, 2H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.4, 154.5, 152.6, 148.6, 147.9, 138.6, 128.4, 128.1, 127.0, 118.1, 111.7, 52.1, 37.5, 32.5, 28.3. HRMS (ESI) *m*/*z* calcd. for C₁₈H₁₆N₂O₃Na [M+Na]⁺ 331.1059; Found 331.1067.

5. Gram-Scale Synthesis:

In an oven-dried Schlenk tube under air, a mixture of the substrates **1g** (3.0 mmol, 1.0 equiv), 4,4-dimethyl-2-(phenyl- λ^3 -iodaneylidene)cyclohexane-1,3-dione **2b** (4.5 mmol, 1.5 equiv), [Cp*RhCl₂]₂ (0.075 mmol, 2.5 mol%), AgSbF₆ (0.3 mmol, 10 mol%), AdCOOH (3.0 mmol, 1.0 equiv) and DCE (0.20 M) was stirred at 80 °C for 10 h. Then the reaction mixture was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product (PE : EA = 16:1) to give **4a** (821.3 mg, 92%).

6. Synthetic application of the product 4g:

Product **6** was prepared following a modified literature procedure^[4]. In an oven-dried Schlenk tube under air, a mixture of the substrate **4a** (0.10 mmol, 1.0 equiv), $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol), AgOAc (0.02 mmol, 20 mol%), LiCO₃ (0.05 mmol, 50 mol%), and TFE (0.5 mL, 0.20 M) was stirred at 140 °C for 24 h. The pure product was purified by flash column chromatography on silica gel to afford the pure product (petroleum ether : ethyl acetate = 2:1) to give **6** (21.3 mg, 84%), white solid. ¹H NMR (400 MHz, CDCl₃) δ 12.05 (s, 1H), 9.13 (s, 1H), 8.30 (d, *J* = 8.2 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 3.08 (t, *J* = 6.3 Hz, 2H), 2.52 (s, 3H), 2.05 (t, *J* = 6.3 Hz, 2H), 1.27 (s, 6H).¹³C NMR (101 MHz, CDCl₃) δ 201.9, 164.4, 151.4, 145.0, 136.2, 128.2, 127.1, 126.4, 122.2, 108.9, 42.1, 34.3, 26.9, 25.0, 22.5. HRMS (ESI) *m/z* calcd. for

C₁₆H₁₉N₂O [M+H]⁺ 255.1497; Found 255.1497.

Product **7** was prepared as followed. In an oven-dried Schlenk tube under air, a mixture of the substrates **4a** (0.10 mmol, 1.0 equiv), KOH (0.20 mmol, 2.0 equiv), and EtOH (0.5 mL, 0.20 M) was stirred at 80 °C for 0.5 h. The pure product was purified by flash column chromatography on silica to afford the pure product (petroleum ether : ethyl acetate = 64:1) to give **7** (21.7 mg, 77%), white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (s, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 7.33 (dd, *J* = 8.4, 1.4 Hz, 1H), 4.61 (q, *J* = 7.1 Hz, 2H), 3.12 (t, *J* = 6.4 Hz, 2H), 2.54 (s, 3H), 2.02 (t, *J* = 6.4 Hz, 2H), 1.49 (d, *J* = 7.1 Hz, 3H), 1.26 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 204.8, 162.4, 160.5, 143.0, 136.9, 128.0, 125.4, 124.1, 117.0, 114.9, 62.6, 42.4, 35.2, 30.4, 24.9, 22.5, 14.5. HRMS (ESI) *m/z* calcd. for C₁₈H₂₂NO₂ [M+H]⁺ 284.1650; Found 284.1653.

7. Competitive experiment:

In an oven-dried Schlenk tube under air, a mixture of the substrates **1g** (0.1 mmol), **1j** (0.1 mmol), **2a** (0.3 mmol), (Cp*RhCl₂)₂ (2.5 mol%), AgSbF₆ (10.0 mol%), AdCOOH (0.2 mmol) and DCE (0.2 M) was stirred at 80 °C for 8 h. Then the reaction mixture was purified by flash column chromatography onsilica with an appropriate solvent (petroleum ether : ethyl acetate = 16:1) toafford the product **3g: 3j** = 2.0:1.

8. Mechanistic studies

(1) Reversibility of C-H bond cleavage

To a reaction tube equipped with a stir bar were charged with 3-(*p*-tolyl)-1,2,4-oxadiazol-5(4*H*)-one (**1g**, 35.2 mg, 0.20 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 0.0050 mmol), AgSbF₆ (6.8 mg, 10 mol%), AdCOOH (36.1 mg, 0.2 mmol), CD₃OD (0.5 mL) and DCE (0.5 mL). The resulting mixture was stirred at 80 °C for 10 h. Afterwards, cooled to room temperature, quenched with saturated brine (5.0 mL), and extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using PE/EA (2:1) as eluent to afford H/D **1g**. ¹H NMR analysis revealed 50% deuteration at the *ortho*-position of phenyl ring based on the doublet at δ : 7.66.

(2) An intermolecular KIE experiment

To a reaction tube equipped with a stir bar were added 3-(*p*-tolyl)-1,2,4-oxadiazol-5(4*H*)-one (**1g**, 17.6 mg, 0.10 mmol), 4,4-dimethyl-2-(phenyl- λ^3 -iodaneylidene)cyclohexane-1,3-dione(**2b**, 51.3 mg, 0.15 mmol), [Cp*RhCl₂]₂ (1.6 mg, 0.025 mmol), AgSbF₆ (3.4 mg, 10 mol%), AdCOOH (18.0 mg, 0.10 mmol) and DCE (0.5 mL). The resulting mixture was then stirred at 80 °C for 15 min. Afterwards, cooled to room temperature, quenched with saturated brine (5.0 mL), and extracted with EtOAc (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure.The residue was purified by silica gel

chromatography using PE/EA (16:1) as eluent to afford a mixture of **3g**. Upon analyzing the corresponding ¹H NMR spectrum, the average intermolecular *KIE* (K_H/K_D) was determined as 1.7 ($K_H/K_D = 0.63/0.37$) based on the double doublet at δ : 8.04.

9. NMR Spectra for New Compounds

¹³CNMR spectrum of **3b** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **3b** (376 MHz, CDCl₃)

 13 C NMR spectrum of **3c** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3d** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3e** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3f** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3g** (101 MHz, DMSO)

¹³C NMR spectrum of **3h** (101 MHz, CDCl₃)

S39

¹³C NMR spectrum of **3i** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3j** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **3j** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3k** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **3k** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3l** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3m** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **3m** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3n** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **3n** (376 MHz, CDCl₃)

¹³C NMR spectrum of **30** (101 MHz, CDCl₃)

¹⁹F NMR spectrum of **30** (376 MHz, CDCl₃)

¹³C NMR spectrum of **3p** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3q** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3r** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3s** (101 MHz, CDCl₃)

¹³C NMR spectrum of **3t** (101 MHz, CDCl₃)

¹³C NMR spectrum of **4a** (101 MHz, CDCl₃)

¹³C NMR spectrum of **4b** (101 MHz, CDCl₃)

¹³C NMR spectrum of **4c** (101 MHz, CDCl₃)

¹³C NMR spectrum of **4d** (101 MHz, CDCl₃)

¹³C NMR spectrum of **4e** (101 MHz, DMSO)

¹³C NMR spectrum of **5a** (101 MHz, CDCl₃)

¹³C NMR spectrum of **5b** (101 MHz, CDCl₃)

 ^{13}C NMR spectrum of 5c (101 MHz, CDCl₃)

¹³C NMR spectrum of **5d** (101 MHz, CDCl₃)

¹³C NMR spectrum of **5e**(101 MHz, CDCl₃)

¹³C NMR spectrum of **5f** (151 MHz, CDCl₃)

¹³C NMR spectrum of **5g** (101 MHz, CDCl₃)

¹³C NMR spectrum of **6** (101 MHz, CDCl₃)

¹³C NMR spectrum of 7 (101 MHz, CDCl₃)

¹H NMR spectrum of **1v** (400 MHz, CDCl₃)

¹H NMR spectrum of **1x** (400 MHz, CDCl₃)

¹H NMR spectrum of **1w** (400 MHz, CDCl₃)

10. References

- Wu W, Fan S, Wu X, Fang L, Zhu J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J Org Chem 2023, 88(4): 1945-1962.
- 2. Wu F, Xiao L, Xie H, Chen SY, Song JL, Zheng YC, Liu YZ, Zhang SS. Rhodium(III)catalyzed regioselective C(sp(2))-H activation of indoles at the C4-position with iodonium ylides. Org Biomol Chem 2022, **20**(25): 5055-5059.
- Yu X, Chen K, Wang Q, Guo S, Zha S, Zhu J. Associative Covalent Relay: An Oxadiazolone Strategy for Rhodium(III)-Catalyzed Synthesis of Primary Pyridinylamines. Angew Chem Int Ed Engl 2017, 56(19): 5222-5226.
- Wang Y, Zhang Q, Hao Y, Luo C, Huang X, Guo L, Wu Y. C-H Activation-Engaged Synthesis of Diverse Fused-Heterocycles from the Reactions of 3-Phenyl-1,2,4-oxadiazol-5(2H)-ones with Vinylene Carbonate. Organometallics 2022, 41(17): 2494-2507.