Supplementary Information

Synthesis of Unsymmetrical Dialkoxydiarylsilanes and Diarylsilanediols from Tetraalkoxysilane Having a Dioxasilepane Unit

Kenshiro Hitoshio, Hiroki Maeda, Kento Teranishi,

Jun Shimokawa* and Hideki Yorimitsu*

Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku, Kyoto 606-8502, Japan

shimokawa@kuchem.kyoto-u.ac.jp yori@kuchem.kyoto-u.ac.jp

Table of Contents

Instrumentation and Chemicals	S2
Preparation of Substrates	S3–5
Optimization of Reaction Conditions	S6
Experimental Procedures	S7–12
Characterization Data	
NMR Spectra	S28–133

Instrumentation and Chemicals

¹H NMR (600 MHz), ¹³C NMR (151 MHz), and ¹⁹F NMR (564 MHz) spectra were recorded on a JEOL ECZ-600 spectrometer. ¹H NMR (594 MHz) and ¹³C NMR (149 MHz) spectra were recorded on a JEOL ECA-600 spectrometer. Chemical shifts in ¹H NMR spectra were recorded in delta (δ) units, parts per million (ppm) relative to residual CHCl₃ (δ = 7.26 ppm) and CD₂HCOCD₃ (δ = 2.04 ppm). Chemical shifts in ¹³C NMR spectra were recorded in delta (δ) units, parts per million (ppm) relative to CDCl₃ (δ = 77.00 ppm) and CD₃COCD₃ (δ = 29.80 ppm). For ¹⁹F NMR spectra, fluorobenzene (¹⁹F: δ = -113.50 ppm) were used as an external standard. The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

High resolution mass spectra (HRMS) were obtained on a Bruker micrOTOF II-KR spectrometer in Atmospheric Pressure Chemical Ionization (APCI) method using "LC/MS tuning mix, for APCI, low concentration" (Agilent Technologies, Inc.) as the internal standard or Electrospray Ionization (ESI) method using "ESI-L Low Concentration Tuning Mix" (Agilent Technologies, Inc.) as the internal standard. For all spectroscopic studies, spectroscopic grade solvents were used as purchased unless otherwise noted.

All non-aqueous reactions were carried out under an inert atmosphere of N₂ gas in ovendried glassware unless otherwise noted. Dehydrated MeOH and MeCN were purchased from FUJIFILM Wako Pure Chemical Corporation and stored under nitrogen atmosphere. Dehydrated THF was purchased from Kanto Chemical Co., Inc. and stored under nitrogen atmosphere. Et₃N was used after distillation from CaH₂. All other reagents were commercially available and used without further purification unless otherwise noted.

Analytical thin layer chromatography (TLC) was performed on Merck precoated analytical plates, 0.25-mm thick, silica gel 60 F₂₅₄. Preparative flash chromatography was performed using Silica Gel (Wakosil[®] C-300 purchased from FUJIFILM Wako Pure Chemical Corporation, or Silica Gel 60N, spherical neutral, particle size 100-210 µm, purchased from Kanto Chemical Co., Inc.) and Alumina (activated 200 purchased from Nacalai Tesque, Inc.). Preparative recycling gel permeation chromatography (GPC) was performed on a JAI LC-9260 II NEXT system using CHCl₃ as the eluent.

Preparation of Substrates

Preparation of 1 (1-OMe, 1-OEt)

The synthesis of **1-OMe** is representative. A 500-mL, oven-dried two-necked roundbottomed flask was charged with Et₃N (42.0 mL, 301 mmol) and THF (175 mL). After the mixture was stirred at 0 °C for 5 min, tetrachlorosilane (5.73 mL, 50.0 mmol) was added. Then 2,5-dimethyl-2,5-hexanediol (7.31 g, 50.0 mmol) in THF (25 mL) was slowly added, and the resulting mixture was allowed to warm to room temperature. The reaction mixture was stirred at room temperature for 2 h, then MeOH (5.06 mL, 125 mmol) was added at 0 °C, and the resulting mixture was allowed to warm to room temperature. After 2 h, hexane (175 mL) was added to the flask and the precipitate was filtered off by using a Büchner funnel. The filtrate was concentrated under reduced pressure and passed through pads of silica gel and alumina with hexane/EtOAc (10/1) as an eluent. The resulting solution was concentrated under reduced pressure and purified by distillation (87 °C / 9 torr) to give **1-OMe** as a colorless oil (5.49 g, 23.4 mmol, 47%).

Preparation of 1-OTFE

A 1-L, oven-dried two-necked round-bottomed flask was charged with Et₃N (83.7 mL, 600 mmol) and THF (350 mL). After the mixture was stirred at 0 °C for 5 min, tetrachlorosilane (11.5 mL, 100 mmol) was added to the mixture. 2,5-Dimethyl-2,5-hexanediol (14.6 g, 100 mmol) in THF (50 mL) was slowly added to the reaction mixture, and the resulting mixture was allowed to warm to room temperature. The reaction mixture was stirred at room temperature for 2 h, then 2,2,2-trifluoroethanol (18.2 mL, 250 mmol) was added. After the reaction mixture was refluxed in an oil bath for 21 h, hexane (350 mL) was added to the flask and the precipitate was filtered off by using a Büchner funnel. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 1/0 to 40/1) and then distillation of the resulting residue (46 °C / 0.12 torr) afforded 1-OTFE as a colorless oil (19.0 g, 51.3 mmol, 51%).

Preparation of 1-PDO

A 300-mL, oven-dried two-necked round-bottomed flask was charged with Et₃N (25.1 mL, 180 mmol) and THF (100 mL). After the mixture was stirred at 0 °C for 5 min, tetrachlorosilane (3.44 mL, 30.0 mmol) was added to the mixture. Then, 2,5-dimethyl-2,5-hexanediol (4.39 g, 30.0 mmol) in THF (20 mL) was slowly added to the reaction, and the resulting mixture was allowed to warm to room temperature. The reaction mixture was stirred at room temperature for 2 h. 1,3-Propanediol (2.60 mL, 36.0 mmol) was added to the reaction mixture at 0 °C, and the resulting mixture was allowed to warm to room temperature. After 2 h, hexane (100 mL) was added to the flask and the precipitate was filtered off by using a Büchner funnel. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to give **1-PDO** as a colorless oil (3.78 g, 15.3 mmol, 51%).

Preparation of 2 (2b-OMe, 2b-OEt, 2b-OTFE)

The synthesis of **2b-OMe** is representative. A 300-mL, oven-dried two-necked roundbottomed flask was charged with 2,5-dimethyl-2,5-hexanediol (3.07 g, 21.0 mmol), Et₃N (9.77 mL, 70.0 mmol), and THF (60 mL). After the mixture was stirred at 0 °C for 5 min, trichlorophenylsilane (3.20 mL, 20.0 mmol) was slowly added to the mixture and the resulting mixture was allowed to warm to room temperature. The reaction mixture was stirred at room temperature for 2 h, then MeOH (1.62 mL, 40.0 mmol) was added and the reaction mixture was refluxed in an oil bath. After 16 h, hexane (60 mL) was added to the flask and the precipitate was filtered off by using a Büchner funnel. The filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel (hexane/EtOAc = 1/0 to 30/1) to give **2b-OMe** as a colorless oil (5.01 g, 17.9 mmol, 89%).

Preparation of 3bb

A 200-mL, oven-dried two-necked round-bottomed flask was charged with 2,5-dimethyl-2,5-hexanediol (2.63 g, 18.0 mmol), Et₃N (5.30 mL, 38.0 mmol), and THF (30 mL). After the mixture was stirred at 0 °C for 5 min, dichlorodiphenylsilane (3.11 mL, 15.0 mmol) was slowly added to the mixture and the resulting mixture was refluxed in an oil bath. After 40 h, hexane (30 mL) was added to the flask and the precipitate was filtered off by using a Büchner funnel. The filtrate was concentrated under reduced pressure and the residue was poured into a separatory funnel with hexane (50 mL), saturated NaHCO₃ aq. (30 mL) and partitioned. The organic phase was collected, and the aqueous phase was extracted with hexane (50 mL \times 2). The combined organic extract was washed with brine (30 mL), dried over Na₂SO₄ (ca. 30 g), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 1/0 to 50/1) to provide **3bb** as a white solid (2.15 g, 6.58 mmol, 44%).

Optimization of Reaction Conditions

Table S1.

^a Determined by ¹H NMR analysis using mesitylene as an internal standard.

Table S2.

^a Determined by ¹H NMR analysis using mesitylene as an internal standard.

Table S3.

entry	Deviations from standard conditions	2b-OTFE ^a [%]	2b-OMe ^a [%]
1	none	92	0
2	DIPEA instead of Et ₃ N	89	3
3	DABCO instead of Et ₃ N	71	5
4	imidazole instead of Et ₃ N	51	39
5	pyridine instead of Et_3N	1	91
6	DBU instead of Et_3N	1	1
7	3.0 equiv Et ₃ N	89	1
8	10 equiv Et ₃ N	89	0

^a Determined by ¹H NMR analysis using mesitylene as an internal standard.

Experimental Procedures

Reaction of 1-OTFE with 4-tert-butylphenylmagnesium bromide

An oven-dried 20-mL Schlenk tube was charged with **1-OTFE** (370 mg, 0.999 mmol) and THF (0.50 mL). Then 4-*tert*-butylphenylmagnesium bromide (0.68 M in THF, 2.21 mL, 1.5 mmol) was added to the mixture at room temperature, and THF (1.0 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 50 °C on a preheated aluminum block. After 16 h, saturated NH₄Cl aq. (3 mL) was added, and the mixture was poured into a separatory funnel with Et₂O (20 mL), water (20 mL) and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 1/0 to 40/1) to provide **2a-OTFE** as a colorless oil (388 mg, 0.960 mmol, 96%).

Reaction of 1-PDO with 4-tert-butylphenylmagnesium bromide

An oven-dried 20-mL Schlenk tube was charged with **1-PDO** (246 mg, 0.999 mmol) and THF (0.50 mL). Then 4-*tert*-butylphenylmagnesium bromide (0.68 M in THF, 2.21 mL, 1.5 mmol) was added to the mixture at room temperature, and THF (1.0 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 50 °C on a preheated aluminum block. After 16 h, saturated NH₄Cl aq. (3 mL) was added, and the mixture was poured into a separatory funnel with Et₂O (20 mL), water (20 mL) and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 1/0 to 50/1) to provide **3aa** as a colorless wax (302 mg, 0.688 mmol, 69%).

Alkoxide exchange of 2b-OTFE

An oven-dried 20-mL Schlenk tube was charged with **2b-OTFE** (139 mg, 0.400 mmol) and MeOH (1.0 mL). Then Et₃N (279 μ L, 2.00 mmol) was added, and MeOH (1.0 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 80 °C on a preheated aluminum block. After 16 h, the mixture was diluted with EtOAc (5 mL), and poured into a separatory funnel with EtOAc (20 mL), water (20 mL) and partitioned. The organic phase was collected, and the aqueous phase was extracted with EtOAc (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/EtOAc = 1/0 to 30/1) to provide **2b-OMe** as a colorless oil (105 mg, 0.373 mmol, 93%).

General procedure for first arylation and alkoxide exchange of 1-OTFE (GP1)

The synthesis of **2a-OMe** is representative. An oven-dried 20-mL Schlenk tube was charged with **1-OTFE** (370 mg, 0.999 mmol) and THF (0.50 mL). 4-*tert*-Butylphenylmagnesium bromide (0.64 M in THF, 2.34 mL, 1.5 mmol) was added to the mixture at room temperature, and THF (1.0 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 50 °C on a preheated aluminum block. After 16 h, saturated NH₄Cl aq. (3 mL) was added, and the mixture was poured into a separatory funnel with Et₂O (20 mL) and water (20 mL), and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, and concentrated under reduced pressure. The residue was used for alkoxide exchange without purification.

An oven-dried 20-mL Schlenk tube was charged with the residue and MeOH (2.0 mL). Et₃N (0.70 mL, 5.0 mmol) was added to the mixture, and MeOH (3.0 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 80 °C on a preheated

aluminum block. After 24 h, the mixture was diluted with EtOAc (5 mL) and poured into a separatory funnel with EtOAc (20 mL) and water (20 mL), and partitioned. The organic phase was collected, and the aqueous phase was extracted with EtOAc (20 mL \times 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with an eluent (hexane/toluene = 1/0 to 1/1) to provide **2a-OMe** as a colorless oil (266 mg, 0.791 mmol, 79%).

An oven-dried 20-mL Schlenk tube was charged with 2,2-dimethoxy-4,4,7,7-tetramethyl-1,3,2-dioxasilepane **1-OMe** (234 mg, 0.998 mmol). Then naphthalen-1-ylmagnesium bromide (0.20 M in THF, 7.50 mL, 1.5 mmol) was added to the mixture at room temperature, and THF (0.50 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 80 °C on a preheated aluminum block. After 24 h, saturated NH₄Cl aq. (3 mL) was added, and the mixture was poured into a separatory funnel with Et₂O (20 mL), water (20 mL) and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/toluene = 1/0 to 3/1) to provide **2k-OMe** as a colorless oil (240 mg, 0.726 mmol, 73%).

Reaction of 1-OMe with o-tolylmagnesium bromide (GP3)

An oven-dried 20-mL Schlenk tube was charged with **1-OMe** (234 mg, 0.998 mmol) and THF (0.50 mL). Then *o*-tolylmagnesium bromide (0.73 M in THF, 2.05 mL, 1.5 mmol) was added to the mixture at room temperature, and THF (1.0 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 80 °C on a preheated aluminum block. After 24 h, saturated NH₄Cl aq. (3 mL) was added, and the mixture was poured into a separatory funnel with Et₂O (20 mL), water (20 mL) and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with an eluent (hexane/toluene = 1/0 to 1/1) to provide **21-OMe** as a colorless oil (259 mg, 0.880 mmol, 88%).

General procedure for second arylation of 2a-OMe (GP4)

The synthesis of **3ae** is representative. An oven-dried 20-mL Schlenk tube was charged with **2a-OMe** (337 mg, 1.00 mmol) and THF (0.50 mL). 4-Methoxyphenylmagnesium bromide (0.82 M in THF, 1.83 mL, 1.5 mmol) was added to the mixture at room temperature, and THF (1.0 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 80 °C on a preheated aluminum block. After 24 h, saturated NH₄Cl aq. (3 mL) was added to the reaction at room temperature. The mixture was poured into a separatory funnel with Et₂O (20 mL) and water (20 mL), and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/toluene = 1/0 to 3/1) to provide **3ae** as a colorless oil (381 mg, 0.924 mmol, 92%).

General procedure for synthesis of 5 (GP5)

The synthesis of **5bb** is representative. An oven-dried 20-mL Schlenk tube was charged with **3bb** (163 mg, 0.499 mmol), sodium iodide (225 mg, 1.50 mmol) and MeCN (1.0 mL). After the mixture was stirred at 0 °C for 5 min, chlorotrimethylsilane (0.189 mL, 1.50 mmol) was slowly added to the mixture, and MeCN (1.5 mL) was added to wash the inner side of the tube. The resulting mixture was allowed to warm to room temperature and stirring was continued for 30 min. Saturated NH₄Cl aq. (3 mL) was added to the reaction, and the mixture was poured into a separatory funnel with Et₂O (20 mL), water (20 mL), saturated Na₂SO₃ aq. (2 drops) and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, and concentrated under reduced pressure.

A 200-mL round-bottomed flask was charged with the residue, MeCN (25 mL), H₂O (25 mL), and NaOH aq. (1.0 M, 5.0 mL). The resulting mixture was stirred at 50 °C in a preheated oil bath. After 1 h, saturated NH₄Cl aq. (10 mL) was added, and the mixture was poured into a separatory funnel with Et₂O (20 mL) and water (20 mL), and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (20 mL × 2). The combined organic extract was washed with brine (10 mL), dried over Na₂SO₄ (ca. 10 g), filtered, concentrated under reduced pressure. The residue was recrystallized from DCM/hexane to provide **5bb** as a white solid (93.7 mg, 0.433 mmol, 87%).

Gram-scale synthesis of 2a-OMe

An oven-dried 200-mL Schlenk tube was charged with **1-OTFE** (3.70 g, 9.99 mmol) and THF (5.0 mL). 4-*tert*-Butylphenylmagnesium bromide (0.65 M in THF, 23.1 mL, 15 mmol) was added to the mixture at room temperature, and THF (10 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 50 °C in an oil bath. After 16 h, saturated NH₄Cl aq. (30 mL) was added. The mixture was poured into a separatory funnel with Et₂O (100

mL) and water (100 mL), and partitioned. The organic phase was collected, and the aqueous phase was extracted with Et₂O (50 mL \times 2). The combined organic extract was washed with brine (50 mL), dried over Na₂SO₄ (ca. 20 g), filtered, and concentrated under reduced pressure. The residue was used for alkoxide exchange without purification.

An oven-dried 100-mL Schlenk tube was charged with the residue and MeOH (30 mL). Et₃N (7.0 mL, 50 mmol) was added to the mixture, and MeOH (20 mL) was added to wash the inner side of the tube. The resulting mixture was stirred at 80 °C in an oil bath. After 24 h, the mixture was diluted with EtOAc (30 mL), and the reaction mixture was poured into a separatory funnel with EtOAc (100 mL) and water (100 mL), and partitioned. The organic phase was collected, and the aqueous phase was extracted with EtOAc (50 mL × 2). The combined organic extract was washed with brine (50 mL), dried over Na₂SO₄ (ca. 50 g), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with an eluent (hexane/toluene = 1/0 to 1/1) to provide **2a-OMe** as a colorless oil (2.73 g, 8.10 mmol, 81%).

Characterization Data

2,2-Dimethoxy-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (1-OMe):

 $\sum_{\substack{O_{1} \in S_{1} \\ MeO}} R_{f} = 0.36 \text{ (hexane/EtOAc} = 20/1); ^{1}\text{H NMR (CDCl_{3})}: \delta 3.54 \text{ (s, 6H)}, 1.79 \text{ (br, 4H)}, \\ 1.30 \text{ (s, 12H)}; ^{13}\text{C NMR (CDCl_{3})}: \delta 74.0, 50.9, 37.1, 30.1 \text{ (br, four methyl groups)}; \\ \text{HRMS (APCI-MS, positive)}: m/z \text{ [M]}^{+} \text{ Calcd for } C_{10}\text{H}_{22}\text{O4Si} \text{ 234.1282}; \text{ Found } 234.1273. \end{cases}$

2,2-Diethoxy-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (1-OEt):

Obtained as a colorless oil (7.36 g, 28.0 mmol, 56%) from tetrachlorosilane (5.73 mL, 50.0 mmol). Purification was done by distillation (44 °C / 0.15 torr). $R_f = 0.45$ (hexane/EtOAc = 20/1). ¹H NMR (CDCl₃): δ 3.81 (q, J = 6.9 Hz, 4H), 1.78 (br, 4H), 1.30 (s, 12H), 1.22 (t, J = 6.9 Hz, 6H); ¹³C NMR (CDCl₃): δ 73.9, 58.9, 37.3, 30.2 (br, four methyl groups), 18.0; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₂H₂₆O₄Si 262.1595; Found 262.1596.

4,4,7,7-Tetramethyl-2,2-bis(2,2,2-trifluroethoxy)-1,3,2-dioxasilepane (1-OTFE):

(t, J = 8.7 Hz); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₂H₂₀F₆O₄Si 370.1030; Found 370.1026.

8,8,11,11-Tetramethyl-1,5,7,12-tetraoxa-6-silaspiro[5.6]dodecane (1-PDO):

 $R_f = 0.28$ (hexane/EtOAc = 10/1); ¹H NMR (CDCl₃): δ 4.11 (dd, J = 5.5, 4.8 Hz, 4H), 1.87 (ddd, J = 10.8, 5.5, 4.8 Hz, 2H), 1.79 (br, 4H), 1.32 (s, 12H); ¹³C NMR (CDCl₃): δ 74.2, 65.0, 37.2, 30.6, 30.0 (br, four methyl groups); HRMS (APCI-MS,

positive): *m/z* [M]⁺ Calcd for C₁₁H₂₂O₄Si 246.1282; Found 246.1289.

2-(4-tert-Butylphenyl)-2-methoxy-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (2a-OMe):

 $R_{f} = 0.23 \text{ (hexane/toluene} = 1/1); {}^{1}\text{H NMR (CDCl_{3})}: \delta 7.59 \text{ (d, } J = 8.2 \text{ Hz, 2H}\text{), } 7.37 \text{ (d, } J = 8.2 \text{$

for C₁₉H₃₂O₃Si 336.2115; Found 336.2101.

2-(4-tert-Butylphenyl)-2-ethoxy-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (2a-OEt):

Obtained as a colorless oil (248 mg, 0.707 mmol, 71%) from 1-OEt (262 mg, 0.998 mmol).

Purification was done by column chromatography on silica gel (hexane/EtOAc = 50/1 to 30/1) and then GPC (eluent: CHCl₃). $R_f = 0.38$ (hexane/EtOAc = 30/1); ¹H NMR (CDCl₃): δ 7.60 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 3.74 (q, J = 7.2 Hz, 2H), 1.83 (br, 4H), 1.37 (s, 6H), 1.30 (s, 9H), 1.24 (s, 6H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃): δ 152.6, 134.5, 129.9, 124.5, 74.6, 58.3, 37.5, 34.6, 31.2, 30.5 (br, four methyl groups), 18.1; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₀H₃₄O₃Si 350.2272; Found 350.2278.

2-(4-*tert*-Butylphenyl)-4,4,7,7-tetramethyl-2-(2,2,2-trifluoroethoxy)-1,3,2-dioxasilepane (2a-OTFE):

 $R_f = 0.47$ (hexane/EtOAc = 30/1); ¹H NMR (CDCl₃): δ 7.58 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 3.98 (q, J = 8.7 Hz, 2H), 1.85 (br, 4H), 1.37 (s, 6H), 1.31 (s, 9H), 1.27 (s, 6H); ¹³C NMR (CDCl₃): δ 153.4, 134.6, 127.9,

124.8, 124.2 (q, J = 277.8 Hz), 75.4, 61.1 (q, J = 36.1 Hz), 37.4, 34.7, 31.2, 30.3 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ –76.5 (t, J = 8.7 Hz); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₀H₃₁F₃O₃Si 404.1989; Found 404.1992.

2-Methoxy-4,4,7,7-tetramethyl-2-phenyl-1,3,2-dioxasilepane (2b-OMe):

 $R_{f} = 0.24 \text{ (hexane/EtOAc} = 30/1\text{); }^{1}\text{H NMR (CDCl_{3}): } \delta 7.67 \text{ (dd, } J = 7.6, 1.4 \text{ Hz}, 2\text{H}\text{)}, 7.39 \text{ (tt, } J = 7.6, 1.4 \text{ Hz}, 1\text{H}\text{)}, 7.35 \text{ (m, 2H)}, 3.48 \text{ (s, 3H)}, 1.84 \text{ (br, 4H)}, 1.38 \text{ (s, 6H)}, 1.25 \text{ (s, 6H); }^{13}\text{C NMR (CDCl_{3}): } \delta 134.6, 132.8, 129.8, 127.6, 74.7, 50.3, 129.8, 127.6, 74.7, 50.3, 129.8, 127.6, 74.7, 50.3, 129.8, 1$

37.4, 30.4 (br, four methyl groups); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₅H₂₄O₃Si 280.1489; Found 280.1479.

2-Ethoxy-4,4,7,7-tetramethyl-2-phenyl-1,3,2-dioxasilepane (2b-OEt):

Obtained as a colorless oil (5.09 g, 17.3 mmol, 86%) from trichlorophenylsilane (3.20 mL, 20.0 mmol). Purification was done by column chromatography on silica gel (hexane/EtOAc = 1/0 to 30/1). $R_f = 0.25$ (hexane/EtOAc = 30/1); ¹H NMR (CDCl₃): δ 7.67 (dd, J = 7.6, 1.4 Hz, 2H), 7.38 (tt, J = 7.6, 1.4 Hz, 1H), 7.34 (m, 2H), 3.73 (q, J = 6.9 Hz, 2H), 1.83 (br, 4H), 1.37 (s, 6H), 1.23 (s, 6H), 1.18 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃): δ 134.6, 133.5, 129.7, 127.5, 74.7, 58.3, 37.5, 30.5 (br, four methyl groups), 18.1; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₆H₂₆O₃Si 294.1646; Found 294.1636.

2-Phenyl-4,4,7,7-tetramethyl-2-(2,2,2-trifluroethoxy)-1,3,2-dioxasilepane (2b-OTFE):

Obtained as a colorless oil (4.55 g, 13.1 mmol, 65%) from trichlorophenylsilane (3.20 mL, 20.0 mmol). Purification was done by column chromatography on silica gel (hexane/EtOAc = 1/0 to 50/1). R_f = 0.29 (hexane/EtOAc = 30/1); ¹H

NMR (CDCl₃): δ 7.65 (dd, J = 7.6, 1.4 Hz, 2H), 7.42 (tt, J = 7.6, 1.4 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 3.97 (q, J = 8.9 Hz, 2H), 1.86 (br, 4H), 1.38 (s, 6H), 1.26 (s, 6H); ¹³C NMR (CDCl₃): δ 134.6, 131.4, 130.3, 127.8, 124.2 (q, J = 277.8 Hz), 75.5, 61.0 (q, J = 36.2 Hz), 37.4, 30.3 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ -76.5 (t, J = 8.2 Hz); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₆H₂₃F₃O₃Si 348.1363; Found 348.1356.

2-Methoxy-4,4,7,7-tetramethyl-2-(*p*-tolyl)-1,3,2-dioxasilepane (2c-OMe):

Synthesized via **GP1** by using *p*-tolylmagnesium bromide (0.68 M in THF, 2.21 mL, 1.5 mmol). Reaction time was 16 h for arylation and then 24 h for alkoxide exchange. Obtained as a pale yellow oil (237 mg, 0.804 mmol, 80%)

from **1-OTFE** (370 mg, 0.999 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 1/1). $R_f = 0.26$ (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 7.56 (d, J = 7.6 Hz, 2H), 7.17 (d, J = 7.6 Hz, 2H), 3.46 (s, 3H), 2.35 (s, 3H), 1.83 (br, 4H), 1.37 (s, 6H), 1.24 (s, 6H); ¹³C NMR (CDCl₃): δ 139.7, 134.7, 129.2, 128.4, 74.7, 50.3, 37.5, 30.4 (br, four methyl groups), 21.6; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₆H₂₆O₃Si 294.1646; Found 294.1638.

2-Methoxy-4,4,7,7-tetramethyl-2-(*m*-tolyl)-1,3,2-dioxasilepane (2d-OMe):

Synthesized via **GP1** by using *m*-tolylmagnesium bromide (0.71 M in THF, 2.14 mL, 1.5 mmol). Reaction time was 16 h for arylation and then 24 h for alkoxide exchange. Obtained as a colorless oil (239 mg, 0.812 mmol, 81%)

from **1-OTFE** (370 mg, 0.999 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 1/1). $R_f = 0.28$ (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 7.47 (s, 1H), 7.46 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 3.47 (s, 3H), 2.35 (s, 3H), 1.84 (br, 4H), 1.38 (s, 6H), 1.25 (s, 6H); ¹³C NMR (CDCl₃): δ 136.9, 135.2, 132.5, 131.7, 130.7, 127.5, 74.7, 50.4, 37.4, 30.4 (br, four methyl groups), 21.5; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₆H₂₆O₃Si 294.1646; Found 294.1634.

2-Methoxy-2-(4-methoxyphenyl)-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (2e-OMe):

Synthesized via **GP1** by using 4-methoxyphenylmagnesium bromide (0.82 M in THF, 1.83 mL, 1.5 mmol). Reaction time was 16 h for arylation and then 24 h for alkoxide exchange. Obtained as a colorless oil (225 mg, 0.726 mmol, 73%) from **1-OTFE** (370 mg, 0.999 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 0/1) and then GPC (eluent: CHCl₃). R_f = 0.29 (toluene); ¹H NMR (CDCl₃): δ 7.61–7.59 (d, J = 8.9 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.46 (s, 3H), 1.82 (br, 4H), 1.37 (s, 6H), 1.24 (s, 6H); ¹³C NMR (CDCl₃): δ 160.9, 136.2, 123.9, 113.3, 74.6, 54.9, 50.3, 37.4, 30.4 (br, four methyl groups); HRMS (APCI-MS, positive): m/z [M+H]⁺ Calcd for C₁₆H₂₇O₄Si 311.1673; Found 311.1681.

2-Methoxy-2-(3-methoxyphenyl)-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (2f-OMe):

Synthesized via **GP1** by using 3-methoxyphenylmagnesium bromide (0.69 MeO \longrightarrow Synthesized via **GP1** by using 3-methoxyphenylmagnesium bromide (0.69 M in THF, 2.17 mL, 1.5 mmol). Reaction time was 24 h for arylation then 16 h for alkoxide exchange. Obtained as a colorless oil (254 mg, 0.819 mmol, 82%) from **1-OTFE** (370 mg, 0.999 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 0/1). R_f = 0.28 (toluene); ¹H NMR (CDCl₃): δ 7.29 (t, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 2.7 Hz, 1H), 6.94–6.92 (dd, *J* = 8.7, 2.7 Hz, 1H), 3.82 (s, 3H), 3.47 (s, 3H), 1.84 (br, 4H), 1.38 (s, 6H), 1.25 (s, 6H); ¹³C NMR (CDCl₃): δ 158.7, 134.3, 128.8, 126.9, 119.6, 115.4, 74.8, 55.0, 50.3, 37.4, 30.4 (br, four methyl groups); HRMS (APCI-MS, positive): *m/z* [M]⁺ Calcd for C₁₆H₂₆O₄Si 310.1595; Found 310.1601.

4-(2-Methoxy-4,4,7,7-tetramethyl-1,3,2-dioxasilepan-2-yl)-N,N-dimethylaniline (2g-OMe):

Synthesized via **GP1** by using 4-dimethylaminophenylmagnesium bromide (0.66 M in THF, 2.27 mL, 1.5 mmol). Reaction time was 16 h for arylation and then 72 h for alkoxide exchange. Obtained as a colorless oil (180 mg,

0.556 mmol, 56%) from **1-OTFE** (370 mg, 0.999 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 0/1) and GPC (eluent: CHCl₃). R_f = 0.56 (hexane/EtOAc = 4/1); ¹H NMR (CDCl₃): δ 7.52 (d, *J* = 8.2 Hz, 2H), 6.70 (d, *J* = 8.2 Hz, 2H), 3.46 (s, 3H), 2.96 (s, 6H), 1.82 (br, 4H), 1.36 (s, 6H), 1.24 (s, 6H); ¹³C NMR (CDCl₃): δ 151.4, 135.8, 118.1, 111.5, 74.3, 50.2, 40.1, 37.5, 30.5 (br, four methyl groups); HRMS (APCI, positive): m/z [M+H]⁺ Calcd for C₁₇H₂₉NO₃Si 324.1989; Found 324.1990.

2-(4-Fluorophenyl)-2-methoxy-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (2h-OMe):

Synthesized via GP1 by using 4-fluorophenylmagnesium bromide (0.67 M in THF, 2.24 mL,

Me₂N

1.5 mmol). Reaction time was 24 h for arylation then 16 h for alkoxide exchange. Obtained as a colorless oil (235 mg, 0.787 mmol, 79%) from 1-OTFE (370 mg, 0.999 mmol). Purification was done by column

chromatography on silica gel (hexane/toluene = 1/0 to 1/1). $R_f = 0.31$ (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 7.65 (dd, J = 8.2, 6.9 Hz, 2H), 7.03 (dd, J = 9.6, 8.2 Hz, 2H), 3.47 (s, 3H), 1.83 (br, 4H), 1.37 (s, 6H), 1.24 (s, 6H); ¹³C NMR (CDCl₃): δ 164.2 (d, J = 250.0 Hz), 136.7 (d, J = 8.7 Hz), 128.5 (d, J = 2.9 Hz), 114.8 (d, J = 18.8 Hz), 74.9, 50.4, 37.4, 30.5 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ –111.0 (tt, J = 9.9, 6.6 Hz); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₅H₂₃FO₃Si 298.1395; Found 298.1389.

2-Methoxy-4,4,7,7-tetramethyl-2-(3-trifluoromethylphenyl)-1,3,2-dioxasilepane (2i-OMe):

Synthesized via **GP1** by using 3-trifluoromethylphenylmagnesium bromide (0.65 M in THF, 2.31 mL, 1.5 mmol). Reaction time was 24 h for arylation and then 16 h for alkoxide exchange. Obtained as a pale yellow oil (231 mg,

0.664 mmol, 67%) from **1-OTFE** (370 mg, 0.999 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 1/1). $R_f = 0.63$ (toluene); ¹H NMR (CDCl₃): δ 7.90 (s, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 3.49 (s, 3H), 1.85 (br, 4H), 1.39 (s, 6H), 1.25 (s, 6H); ¹³C NMR (CDCl₃): δ 137.9, 134.3, 131.1 (d, J = 4.4 Hz), 129.8 (q, J = 31.9 Hz), 127.9, 126.5 (d, J = 2.9 Hz), 124.3 (q, J = 273.5 Hz), 75.2, 50.5, 37.5, 30.4 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ -63.0; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₆H₂₃F₃O₃Si 348.1363; Found 348.1365.

2-Methoxy-4,4,7,7-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxasilepane (2j-OMe):

Synthesized via **GP1** by using naphthalen-2-ylmagnesium bromide (0.68 M in THF, 2.21 mL, 1.5 mmol). Reaction time was 24 h for arylation and then 16 h for alkoxide exchange. Obtained as a white solid (275 mg, 0.834 mmol,

83%) from **1-OTFE** (370 mg, 0.999 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 0/1). $R_f = 0.44$ (toluene); ¹H NMR (CDCl₃): δ 8.20 (s, 1H), 7.88–7.86 (m, 1H), 7.83–7.80 (m, 2H), 7.73–7.71 (m, 1H), 7.51–7.46 (m, 2H), 3.50 (s, 3H), 1.87 (br, 4H), 1.41 (s, 6H), 1.28 (s, 6H); ¹³C NMR (CDCl₃): δ 135.8, 134.1, 132.7, 130.4, 130.3, 128.3, 127.6, 126.8, 126.5, 125.6, 74.8, 50.4, 37.5, 30.4 (br, four methyl groups); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₁₉H₂₆O₃Si 330.1646; Found 330.1647.

2-Methoxy-4,4,7,7-tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxasilepane (2k-OMe):

 $R_f = 0.31$ (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 8.38 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 7.5 Hz, 1H), 7.51 (m, 1H), 7.48–7.44 (m, 2H), 3.41 (s, 3H), 1.91–1.87 (m, 4H), 1.44 (s, 6H), 1.24 (s, 6H); ¹³C NMR (CDCl₃): δ 136.9, 135.5, 133.2, 131.1, 130.6, 129.0, 128.4, 125.9, 125.3,

124.9, 75.1, 50.1, 37.6, 30.4 (br four methyl groups); HRMS (APCI, positive): m/z [M]⁺ Calcd for C₁₉H₂₆O₃Si 330.1646; Found 330.1648.

2-Methoxy-4,4,7,7-tetramethyl-2-(o-tolyl)-1,3,2-dioxasilepane (2l-OMe):

 $R_{f} = 0.22 \text{ (hexane/toluene} = 1/1);^{1}\text{H NMR (CDCl_{3}): } \delta 7.71 \text{ (dd, } J = 7.6, 1.4 \text{ Hz}, 1\text{H}),$ 7.28 (td, $J = 7.6, 1.4 \text{ Hz}, 1\text{H}), 7.15-7.13 \text{ (m, 2H)}, 3.43 \text{ (s, 3H)}, 2.50 \text{ (s, 3H)}, 1.83 \text{ (br, 4H)}, 1.39 \text{ (s, 6H)}, 1.24 \text{ (s, 6H)}; ^{13}\text{C NMR (CDCl_{3}): } \delta 144.2, 136.0, 131.7, 130.0,$

129.5, 124.5, 74.8, 49.9, 37.5, 30.3 (br, four methyl groups), 22.4; HRMS (APCI, positive): *m/z* [M+H]⁺ Calcd for C₁₆H₂₇O₃Si 295.1724; Found 295.1731.

2,2-Bis(4-*tert*-butylphenyl)-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (3aa):

 $R_{f} = 0.37 \text{ (hexane/EtOAc} = 50/1\text{); }^{1}\text{H NMR (CDCl_{3}): } \delta 7.57 \text{ (d, } J = 8.2 \text{ Hz, } 4\text{H}\text{), } 1.29 \text{ (s, } 18\text{H}\text{), } 1.28 \text{ (s, } 12\text{H}\text{); }^{1}\text{Bu} \text{ (DCl_{3}): } \delta 152.1, } 134.4, 133.6, 124.3, 75.2, 37.9, 34.6, } 31.3, 30.8 \text{ (br, four methyl groups); } HRMS (APCI-MS, positive): <math>m/z \text{ [M]}^{+} \text{ Calcd for } 10^{-1} \text{ Calcd for$

C₂₈H₄₂O₂Si 438.2949; Found 438.2934.

2-(4-*tert*-Butylphenyl)-2-(4-methoxyphenyl)-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (3ae):

 $R_f = 0.42$ (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 7.58 (m, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 6.87 (d, J = 8.2 Hz, 2H), 3.80 (s, 3H), 1.85 (br, 4H), 1.29 (s, 9H), 1.28 (s, 6H), 1.27 (s, 6H); ¹³C NMR

(CDCl₃): δ 160.7, 152.2, 136.2, 134.4, 133.5, 128.2, 124.3, 113.1, 75.2, 54.9, 37.9, 34.6, 31.2, 30.7 (br, four methyl groups); HRMS (APCI, positive): *m/z* [M]⁺ Calcd for C₂₅H₃₆O₃Si 412.2428; Found 412.2428.

2-(4-tert-Butylphenyl)-2-(4-dimethylaminophenyl)-4,4,7,7-tetramethyl-1,3,2-

dioxasilepane (3ag):

Synthesized via **GP4** by using 4-dimethylaminophenylmagnesium bromide (0.66 M in THF, 2.27 mL,1.5 mmol). Obtained as a white solid (413 mg, 0.971 mmol, 97%) from **2a-OMe** (337 mg, 1.00 mmol).

Purification was done by column chromatography on silica gel (hexane/toluene=1/0 to 1/1). R_f = 0.21 (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 6.69 (d, *J* = 8.2 Hz, 2H), 2.95 (s, 6H), 1.84 (br, 4H), 1.29 (s, 9H), 1.28 (br, 12H); ¹³C NMR (CDCl₃): δ 151.9, 151.1, 135.8, 134.4, 134.1, 124.2, 122.3, 111.3, 74.9, 40.1, 37.8, 34.5, 31.2, 30.8 (br, four methyl groups); HRMS (APCI, positive): *m/z* [M+H]⁺ Calcd for C₂₆H₄₀NO₂Si 426.2823; Found 426.2830.

2-(4-tert-Butylphenyl)-2-(4-fluorophenyl)-4,4,7,7-tetramethyl-1,3,2-dioxasilepane (3ah):

Synthesized via **GP4** by using 4-fluorophenylmagnesium bromide (0.67 M in THF, 2.24 mL, 1.5 mmol). Obtained as a colorless oil (364 mg, 0.910 mmol, 91%) from **2a-OMe** (337 mg, 1.00 mmol). Purification was done by

column chromatography on silica gel (hexane/toluene=1/0 to 10/1). $R_f = 0.32$ (hexane/toluene = 10/1); ¹H NMR (CDCl₃): δ 7.63 (dd, J = 8.2, 6.9 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 7.00 (dd, J = 8.9, 8.2 Hz, 2H), 1.85 (br, 4H), 1.30 (s, 9H), 1.29 (s, 6H), 1.26 (s, 6H); ¹³C NMR (CDCl₃): δ 164.0 (d, J = 248.8 Hz), 152.5, 136.6 (d, J = 7.2 Hz), 134.3, 132.9, 132.8 (d, J = 4.3 Hz), 124.5, 114.5 (d, J = 20.2 Hz), 75.4, 37.9, 34.6, 31.2, 30.7 (br, four methyl group); ¹⁹F NMR (CDCl₃): δ -111.9; HRMS (APCI, positive): m/z [M]⁺ Calcd for C₂₄H₃₃FO₂Si 400.2228; Found 400.2234.

2-(4-tert-Butylphenyl)-4,4,7,7-tetramethyl-2-(3-trifluoromethylphenyl)-1,3,2-

dioxasilepane (3ai):

Synthesized via **GP4** by using 3-trifluoromethylphenylmagnesium bromide (0.65 M in THF, 2.31 mL, 1.5 mmol). Obtained as a white solid (366 mg, 0.811 mmol, 81%) from **2a-OMe** (337 mg, 1.00 mmol).

Purification was done by column chromatography on silica gel (hexane/toluene=1/0 to 20/1). R_f = 0.39 (hexane/toluene = 10/1); ¹H NMR (CDCl₃): δ 7.93 (s, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.55–7.53 (m, 2H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.35–7.34 (m, 2H), 1.86 (br, 4H), 1.303 (s, 6H), 1.298 (s, 9H), 1.27 (s, 6H); ¹³C NMR (CDCl₃): δ 152.8, 138.8, 137.9, 134.4, 132.4, 131.0 (d, *J* = 4.3 Hz), 129.7 (q, *J* = 31.8 Hz), 127.7, 126.1 (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 7.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 7.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, *J* = 2.9 Hz), 124.6, 124.5 (q, *J* = 2.5 Hz) (d, J) (d, J

271.6 Hz), 75.8, 38.0, 34.7, 31.2, 30.7 (br, four methyl group); ¹⁹F NMR (CDCl₃): δ –62.9; HRMS (APCI, positive): m/z [M]⁺ Calcd for C₂₅H₃₃F₃O₂Si 450.2196; Found 450.2210.

2-(4-tert-Butylphenyl)-4,4,7,7-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxasilepane (3aj):

Synthesized via **GP4** by using naphthalen-2-ylmagnesium bromide (0.68 M in THF, 2.21 mL,1.5 mmol). Obtained as a white solid (351 mg, 0.811 mmol, 81%) from **2a-OMe** (337 mg, 1.00 mmol). Purification was done by column chromatography on silica gel (hexane/EtOAc = 1/0 to 50/1), then (hexane/toluene = 10/1) and GPC (eluent: CHCl₃). R_f = 0.47 (hexane/toluene = 3/1); ¹H NMR (CDCl₃): δ 8.18 (s, 1H), 7.84 (m, 1H), 7.81–7.79 (m, 2H), 7.74 (m, 1H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.49–7.44 (m, 2H), 7.33 (d, *J* = 8.9 Hz, 2H), 1.89 (br, 4H), 1.33 (s, 6H), 1.30 (s, 6H), 1.29 (s, 9H); ¹³C NMR (CDCl₃): δ 152.4, 135.6, 134.7, 134.4, 134.0, 133.2, 132.8, 130.7, 128.4, 127.7, 126.6, 126.3, 125.6, 124.5, 75.4, 38.0, 34.6, 31.2, 30.8 (br, four methyl groups); HRMS (APCI, positive): *m/z* [M]⁺ Calcd for C₂₈H₃₆O₂Si 432.2479; Found 432.2470.

2-(4-tert-Butylphenyl)-4,4,7,7-tetramethyl-2-phenyl-1,3,2-dioxasilepane (3ba):

4,4,7,7-Tetramethyl-2,2-diphenyl-1,3,2-dioxasilepane (3bb):

 $R_f = 0.26$ (hexane/EtOAc = 30/1); ¹H NMR (CDCl₃): δ 7.64 (dd, J = 8.2, 1.4 Hz, 4H), 7.36 (tt, J = 7.6, 1.4 Hz, 2H), 7.32–7.30 (m, 4H), 1.86 (br, 4H), 1.28 (s, 12H); ¹³C NMR (CDCl₃): δ 136.8, 134.5, 129.5, 127.4, 75.4, 37.9, 30.7 (br, four

methyl groups); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₀H₂₆O₂Si 326.1697; Found 326.1692.

4,4,7,7-Tetramethyl-2-phenyl-2-(*p*-tolyl)-1,3,2-dioxasilepane (3bc):

Me

Synthesized via **GP4** by using *p*-tolylmagnesium bromide (0.68 M in THF, 2.21 mL, 1.5 mmol). Reaction time was 16 h. Obtained as a white solid (320 mg, 0.938 mmol, 94%) from **2b-OMe** (280 mg, 0.998 mmol). Purification

was done by column chromatography on silica gel (hexane/toluene = 1/0 to 5/1). $R_f = 0.27$ (hexane/toluene = 5/1); ¹H NMR (CDCl₃): δ 7.63 (dd, J = 7.6, 1.4 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.35 (tt, J = 7.6, 1.4 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.30 (dd, J = 8.2, 1.4 Hz, 1H), 7.14 (d, J = 7.6 Hz, 2H), 2.33 (s, 3H), 1.85 (br, 4H), 1.27 (s, 6H), 1.27 (s, 6H); ¹³C NMR (CDCl₃): δ 139.3, 137.0, 134.6, 134.5, 133.2, 129.4, 128.3, 127.4, 75.3, 37.9, 30.7 (br, four methyl groups), 21.6; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₁H₂₈O₂Si 340.1853; Found 340.1841.

4,4,7,7-Tetramethyl-2-phenyl-2-(*m*-tolyl)-1,3,2-dioxasilepane (3bd):

Synthesized via **GP4** by using *m*-tolylmagnesium bromide (0.71 M in THF, 2.11 mL, 1.5 mmol). Reaction time was 16 h. Obtained as a white solid (307 mg, 0.902 mmol, 90%) from **2b-OMe** (280 mg, 0.998 mmol). Purification was done by column chromatography on silica gel (hexane/EtOAc = 1/0 to 30/1). $R_f = 0.28$ (hexane/toluene = 5/1); ¹H NMR (CDCl₃): δ 7.64 (dd, J = 7.6, 1.4 Hz, 2H), 7.44 (m, 2H), 7.35 (tt, J = 7.6, 1.4 Hz, 1H), 7.33–7.29 (m, 2H), 7.21 (t, J = 7.6 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 2.32 (s, 3H), 1.86 (br, 4H), 1.28 (s, 6H), 1.27 (s, 6H); ¹³C NMR (CDCl₃): δ 136.9, 136.6, 136.6, 135.0, 134.5, 131.6, 130.3, 129.4, 127.4, 127.3, 75.4, 37.9, 30.7 (br, four methyl groups), 21.5; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₁H₂₈O₂Si 340.1853; Found 340.1842.

2-(4-Methoxyphenyl)-4,4,7,7-tetramethyl-2-phenyl-1,3,2-dioxasilepane (3be):

Synthesized via **GP4** by using 4-methoxyphenylmagnesium bromide (0.82 M in THF, 1.83 mL, 1.5 mmol). Reaction time was 16 h. Obtained as a pale yellow oil (321 mg, 0.899 mmol, 90%) from **2b-OMe** (280 mg, 0.998 mmol). Purification was done by column chromatography on silica gel (hexane/EtOAc = 1/0 to 20/1) and then GPC (eluent: CHCl₃). R_f = 0.63 (toluene); ¹H NMR (CDCl₃): δ 7.63 (dd, J = 8.2, 1.4 Hz, 2H), 7.57 (d, J = 8.9 Hz, 2H), 7.35 (tt, J = 7.6, 1.4 Hz, 1H), 7.31 (t, J = 7.6 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 1.85 (br, 4H), 1.272 (s, 6H), 1.266 (s, 6H); ¹³C NMR (CDCl₃): δ 160.7, 137.0, 136.1, 134.5, 129.4, 127.8, 127.4, 113.1, 75.2, 54.8, 37.8, 30.7 (br, four methyl groups); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₁H₂₈O₃Si 356.1802; Found 356.1790.

2-(3-Methoxyphenyl)-4,4,7,7-tetramethyl-2-phenyl-1,3,2-dioxasilepane (3bf):

Synthesized via **GP4** by using 3-methoxyphenylmagnesium bromide (0.69 M in THF, 2.17 mL, 1.5 mmol). Reaction time was 16 h. Obtained as a white solid (332 mg, 0.931 mmol, 93%) from **2b-OMe** (280 mg, 0.998 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 1/1). $R_f = 0.28$ (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 7.64 (dd, J = 8.2, 1.4 Hz, 2H), 7.35 (tt, J = 7.6, 1.4 Hz, 1H), 7.32–7.29 (m, 2H), 7.26 (tt, J = 7.6, 1.4 Hz, 1H), 7.24–7.20 (m, 2H), 6.90 (ddd, J = 8.2, 2.7, 1.4 Hz, 1H), 3.79 (s, 3H), 1.86 (br, 4H), 1.283 (s, 6H), 1.277 (s, 6H); ¹³C NMR (CDCl₃): δ 158.6, 138.3, 136.6, 134.4, 129.5, 128.7, 127.4, 126.9, 119.7, 114.9, 75.4, 54.9, 37.8, 30.6 (br, four methyl groups); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd

for C₂₁H₂₈O₃Si 356.1802; Found 356.1815.

NMe₂

N,*N*-Dimethyl-4-(4,4,7,7-tetramethyl-2-phenyl-1,3,2-dioxasilepan-2-yl)aniline (3bg):

Synthesized via **GP4** by using 4-dimethylaminophenylmagnesium bromide (0.66 M in THF, 2.27 mL, 1.5 mmol). Reaction time was 16 h. Obtained as a white solid (327 mg, 0.886 mmol, 89%) from **2b-OMe** (280 mg, 0.998

mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 1/1). $R_f = 0.13$ (hexane/toluene = 1/1); ¹H NMR (CDCl₃): δ 7.64 (dd, J = 7.6, 1.4 Hz, 2H), 7.50 (d, J = 8.9 Hz, 2H), 7.33 (tt, J = 7.6, 1.4 Hz, 1H), 7.30–7.28 (m, 2H), 6.68 (d, J = 8.9 Hz, 2H), 2.95 (s, 6H), 1.85 (br, 4H), 1.28 (s, 6H), 1.26 (s, 6H); ¹³C NMR (CDCl₃): δ 151.1, 137.6, 135.7, 134.5, 129.1, 127.3, 121.8, 111.3, 75.0, 40.0, 37.8, 30.7 (br, four methyl groups); HRMS (APCI-MS, positive): m/z [M+H]⁺ Calcd for C₂₂H₃₂NO₂Si 370.2197; Found 370.2201.

2-(4-Fluorophenyl)-4,4,7,7-tetramethyl-2-phenyl-1,3,2-dioxasilepane (3bh):

Synthesized via **GP4** by using 4-fluorophenylmagnesium bromide (0.67 M in THF, 2.24 mL, 1.5 mmol). Reaction time was 16 h. Obtained as a white solid (318 mg, 0.924 mmol, 92%) from **2b-OMe** (280 mg, 0.998 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 10/1). $R_f = 0.33$ (hexane/toluene = 5/1); ¹H NMR (CDCl₃): δ 7.63–7.60 (m, 4H), 7.37 (tt, J = 7.6, 1.4 Hz, 1H), 7.34–7.30 (m, 2H), 7.00 (dd, J = 8.9, 8.2 Hz, 2H), 1.85 (br, 4H), 1.271 (s, 6H), 1.266 (s, 6H); ¹³C NMR (CDCl₃): δ 164.0 (d, J = 248.5 Hz), 136.6 (d, J = 7.2 Hz), 136.5, 134.5, 132.5 (d, J = 2.9 Hz), 129.6, 127.5, 114.6 (d, J = 20.2 Hz), 75.5, 37.9, 30.6 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ –111.7 (tt, J = 9.9, 6.7 Hz); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₀H₂₅FO₂Si 344.1602; Found 344.1595.

4,4,7,7-Tetramethyl-2-phenyl-2-(3-trifluoromethylphenyl)-1,3,2-dioxasilepane (3bi):

Synthesized via **GP4** by using 3-trifluoromethylphenylmagnesium bromide (0.65 M in THF, 2.31 mL, 1.5 mmol). Obtained as a white solid (331 mg, 0.840 mmol, 84%) from **2b-OMe** (280 mg, 0.998 mmol). Purification was

done by column chromatography on silica gel (hexane/toluene = 1/0 to 10/1). $R_f = 0.31$ (hexane/toluene = 10/1); ¹H NMR (CDCl₃): δ 7.91 (s, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.62 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.38 (m, 1H), 7.33 (t, J = 7.2 Hz, 2H), 1.86 (br, 4H), 1.29 (s, 6H), 1.27 (s, 6H); ¹³C NMR (CDCl₃): δ 138.3, 137.9, 135.9, 134.5, 130.9 (d, J = 2.9 Hz), 129.8, 129.6 (q, J = 31.8 Hz), 129.5, 129.3, 127.8, 127.6, 126.2 (d, J = 4.3 Hz), 124.4 (q, J = 273.1 Hz), 75.9, 37.9, 30.6 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ –62.9; HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₁H₂₅F₃O₂Si 394.1570; Found 394.1577.

4,4,7,7-Tetramethyl-2-(naphthalen-2-yl)-2-phenyl-1,3,2-dioxasilepane (3bj):

Synthesized via **GP4** by using naphthalen-2-ylmagnesium bromide (0.68 M in THF, 2.21 mL, 1.5 mmol). Reaction time was 16 h. Obtained as a white solid (352 mg, 0.935 mmol, 94%) from **2b-OMe** (280 mg, 0.998 mmol). Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 5/1). $R_f = 0.26$ (hexane/toluene = 5/1); ¹H NMR (CDCl₃): δ 8.16 (s, 1H), 7.85–7.80 (m, 2H), 7.79 (d, J = 8.2 Hz, 1H), 7.73 (dd, J = 8.2, 1.4 Hz, 1H), 7.67 (dd, J = 8.2, 1.4 Hz, 2H), 7.49–7.44 (m, 2H), 7.37 (tt, J = 7.6, 1.4 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 1.89 (br, 4H), 1.31 (s, 6H), 1.30 (s, 6H); ¹³C NMR (CDCl₃): δ 136.7, 135.6, 134.6, 134.3, 134.0, 132.7, 130.6, 129.5, 128.4, 127.6, 127.5, 126.7, 126.4, 125.6, 75.5, 37.9, 30.7 (br, four methyl groups); HRMS (APCI-MS, positive): m/z [M]⁺ Calcd for C₂₄H₂₈O₂Si 376.1853; Found 376.1849.

4-(2-(4-Methoxyphenyl)-4,4,7,7-tetramethyl-1,3,2-dioxasilepan-2-yl)-*N*,*N*-dimethylaniline (3eg):

Synthesized via **GP4** by using 4-dimethylaminophenylmagnesium bromide (0.69 M in THF, 2.17 mL, 1.5 mmol). Obtained as a colorless oil (394 mg, 0.987 mmol, 99%) from **2e-OMe** (310 mg, 0.999 mmol).

Purification was done by column chromatography on silica gel (hexane/toluene = 2/1 to 0/1). R_f = 0.27 (hexane/toluene = 1/2); ¹H NMR (CDCl₃): δ 7.56 (d, *J* = 8.2 Hz, 2H), 7.51 (br, 2H), 6.85 (d, *J* = 8.2 Hz, 2H), 6.69 (br, 2H), 3.79 (s, 3H), 2.97 (br, 6H), 1.84 (br, 4H), 1.27 (s, 6H), 1.26 (s, 6H); ¹³C NMR (CDCl₃): δ 160.5, 151.1, 136.1, 135.8, 128.8, 122.3, 113.0, 111.4, 74.9, 54.8, 40.1,

37.8, 30.7(br, four methyl groups); HRMS (APCI, positive): m/z [M+H]⁺ Calcd for C₂₃H₃₄NO₃Si 400.2302; Found 400.2299.

2-(4-Methoxyphenyl)-4,4,7,7-tetramethyl-2-(3-trifluoromethylphenyl)-1,3,2-dioxasilepane (3ei):

Synthesized via **GP4** by using 3-trifluoromethylphenylmagnesium bromide (0.65 M in THF, 2.31 mL, 1.5 mmol). Obtained as a colorless oil (339 mg, 0.799 mmol, 80%) from **2e-OMe** (310 mg, 0.999 mmol).

Purification was done by column chromatography on silica gel (hexane/toluene=1/0 to 5/1). R_f= 0.24 (hexane/toluene = 5/1); ¹H NMR (CDCl₃): δ 7.90 (s, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 8.9 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 8.9 Hz, 2H), 3.81 (s, 3H), 1.86 (br, 4H), 1.28 (s, 6H), 1.26 (s, 6H); ¹³C NMR (CDCl₃): δ 161.0, 138.7, 137.9, 136.1, 130.9 (d, *J* = 4.3 Hz), 129.6 (q, *J* = 31.8 Hz), 127.7, 127.0, 126.1 (d, *J* = 4.3 Hz), 124.5 (q, *J* = 273.1 Hz), 113.4, 75.7, 54.9, 37.9, 30.6 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ -62.9; HRMS (APCI, positive): *m/z* [M]⁺ Calcd for C₂₂H₂₇F₃O₃Si 424.1682; Found 424.1679.

4-(2-(4-Fluorophenyl)-4,4,7,7-tetramethyl-1,3,2-dioxasilepan-2-yl)-*N*,*N*-dimethylaniline (3hg):

Synthesized via **GP4** by using 4-dimethylaminophenylmagnesium bromide (0.74 M in THF, 2.03 mL, 1.5 mmol). Obtained as a colorless oil (376 mg, 0.971 mmol, 97%) from **2h-OMe** (298 mg, 0.999 mmol).

Purification was done by column chromatography on silica gel (hexane/toluene = 1/0 to 3/1). R_f = 0.21 (hexane/toluene = 3/1); ¹H NMR (CDCl₃): δ 7.61 (dd, J = 8.9, 6.2 Hz, 2H), 7.49 (brd, J = 6.9 Hz, 2H), 6.99 (dd, J = 9.6, 8.9 Hz, 2H), 6.69 (br, 2H), 2.96 (s, 6H), 1.84 (s, 4H), 1.28 (s, 6H), 1.25 (s, 6H); ¹³C NMR (CDCl₃): δ 163.8 (d, J = 248.5 Hz), 151.3, 136.6 (d, J =7.2 Hz), 135.7, 133.4, 121.6, 114.4 (d, J = 20.2 Hz), 111.4, 75.1, 40.0, 37.9, 30.7 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ -112.4; HRMS (APCI, positive): m/z [M+H]⁺ Calcd for C₂₂H₃₁FNO₂Si 388.2103; Found 388.2119.

2-(4-Fluorophenyl)-4,4,7,7-tetramethyl-2-(3-trifluoromethylphenyl)-1,3,2-dioxasilepane (3hi):

Synthesized via **GP4** by using 3-trifluoromethylphenylmagnesium bromide (0.65 M in THF, 2.31 mL, 1.5 mmol). Obtained as a colorless oil (392 mg, 0.950 mmol, 95%) from **2h-OMe** (298 mg, 0.999 mmol). Purification was

done by column chromatography on silica gel (hexane/toluene=1/0 to 5/1). $R_f = 0.50$ (hexane/toluene = 5/1) ; ¹H NMR (CDCl₃): δ 7.89 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.62–7.58 (m, 3H), 7.43 (t, J = 7.6 Hz, 1H), 7.03 (t, J = 8.9 Hz, 2H), 1.86 (br, 4H), 1.28 (s, 6H), 1.27 (s, 6H); ¹³C NMR (CDCl₃): δ 164.2 (d, J = 248.5 Hz), 138.1, 137.8, 136.6 (d, J = 7.2 Hz), 131.7 (d, J = 2.9 Hz), 130.9 (d, J = 4.3 Hz), 129.8 (q, J = 31.8 Hz), 127.8, 126.3 (d, J = 4.3 Hz), 124.4 (q, J = 271.7 Hz), 114.9 (d, J = 20.2 Hz), 76.0, 37.9, 30.6 (br, four methyl groups); ¹⁹F NMR (CDCl₃): δ -63.0, -111.0 (tt, J = 9.5, 6.3 Hz); HRMS (APCI, positive): m/z [M]⁺ Calcd for C₂₁H₂₄F₄O₂Si 412.1476; Found 412.1477.

4,4,7,7-Tetramethyl-2-(*o*-tolyl)-2-(*p*-tolyl)-1,3,2-dioxasilepane (3lc):

Synthesized via **GP4** by using *p*-tolylmagnesium bromide (0.74 M in THF, 2.03 mL, 1.5 mmol). Obtained as a white solid (306 mg, 0.864 mmol, 87%) from **2I-OMe** (294 mg, 0.998 mmol). Purification was done by column chromatography on silica gel (hexane/toluene=100/1 to 10/1). R_f = 0.29 (hexane/toluene = 10/1) ; ¹H NMR (acetone-*d*₆): δ 7.83 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.26 (td, *J* = 7.6, 1.4 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 7.6 Hz, 1H), 2.29 (s, 3H), 2.27 (s, 3H), 1.88 (br, 4H), 1.26 (s, 6H), 1.25 (s, 6H); ¹³C NMR (acetone-*d*₆): δ 144.3, 139.9, 136.5, 136.1, 135.2, 135.0, 130.6, 130.4, 129.0, 125.3, 76.1, 38.6, 30.9 (br, four methyl groups), 22.8, 21.5; HRMS (ESI-MS, positive): *m/z* [M+Na]⁺ Calcd for C₂₂H₃₀O₂SiNa 377.1907; Found: 377.1916.

Diphenylsilanediol (5bb):

^{HO} OH Si AH), 7.37 (t, J = 7.6 Hz, 2H), 7.33 (t, J = 7.6 Hz, 4H), 5.99 (s, 2H); ¹³C NMR (acetone- d_6): δ 138.1, 135.1, 130.3, 128.3; HRMS (APCI, negative): m/z [M–H]⁻ Calcd for C₁₂H₁₁O₂Si 215.0534; Found 215.0525.

(4-Fluorophenyl)(phenyl)silanediol (5bh):

^{HO} OH Synthesized via **GP5**. Obtained as a white solid (86.6 mg, 0.370 mmol, 74%) from **3bh** (172 mg, 0.499 mmol). Purification was done by column chromatography on silica gel (hexane/Et₂O =1/0 to 2/1). R_f = 0.33 (CHCl₃/MeOH = 10/1); ¹H NMR (acetone-*d*₆): δ 7.72 (ddd, *J* = 8.2, 6.9, 2.1 Hz, 2H), 7.67 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.38 (tt, *J* = 7.6, 1.4 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.11 (ddd, *J* = 9.6, 8.9, 2.1 Hz, 2H), 6.08 (s, 2H); ¹³C NMR (acetone-*d*₆): δ 164.8 (d, *J* = 245.6 Hz), 137.8, 137.4 (d, *J* = 7.2 Hz), 135.0, 134.2 (d, *J* = 2.9 Hz), 130.4, 128.3, 115.2 (d, *J* = 20.2 Hz); ¹⁹F NMR (acetone-*d*₆): δ -111.4; HRMS (APCI, negative): *m/z* [M–H]⁻ Calcd for C₁₂H₁₀FO₂Si 233.0440; Found 233.0439.

(4-tert-Butylphenyl)(naphthalen-2-yl)silanediol (5aj):

(4-tert-Butylphenyl)(4-fluorophenyl)silanediol (5ah):

Synthesized via **GP5**. Reaction time was 2 h for the second step. Obtained as a white solid (80.0 mg, 0.275 mmol, 55%) from **3ah** (200 mg, 0.499 mmol). Purification was done by column chromatography on silica gel

(hexane/Et₂O =1/0 to 2/1). R_f = 0.50 (CHCl₃/MeOH = 10/1); ¹H NMR (acetone- d_6): δ 7.74–7.71 (m, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.12–7.09 (m, 2H), 5.94 (s, 2H), 1.29 (s, 9H); ¹³C NMR (acetone- d_6): δ 164.8 (d, J = 247.1 Hz), 153.2, 137.4 (d, J = 7.2 Hz), 135.0, 134.5 (d, J = 2.9 Hz), 134.4, 125.2, 115.2 (d, J = 18.8 Hz), 35.1, 31.4; ¹⁹F NMR (acetone- d_6): δ –111.7; HRMS (APCI, negative): m/z [M–H][–] Calcd for C₁₆H₁₉FO₂Si 289.1055; Found 289.1062.

o-Tolyl(p-tolyl)silanediol (5lc):

^{HQ} OH M_{Me} Synthesized via **GP5**. Obtained as a white solid (39.0 mg, 0.160 mmol, 32%) from **3lc** (177 mg, 0.499 mmol). Purification was done by column chromatography on silica gel (hexane/Et₂O =1/0 to 1/1). R_f = 0.47 (CHCl₃/MeOH = 10/1); ¹H NMR (acetone- d_6): δ 7.76 (dd, J = 7.6, 1.4 Hz, 1H), 7.53 (d, J = 7.6 Hz, 2H), 7.26 (td, J = 7.6, 1.4 Hz, 1H), 7.15 (d, J = 7.6 Hz, 2H), 7.13 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 5.80 (s, 2H), 2.38 (s, 3H), 2.30 (s, 3H); ¹³C NMR (acetone- d_6): δ 144.7, 139.9, 136.6, 136.4, 135.2, 135.1, 130.5, 130.3, 129.0, 125.2, 23.0, 21.5; HRMS (APCI, negative): m/z [M–H][–] Calcd for C₁₄H₁₆O₂Si 243.0836; Found 243.0833.

Figure S1. ¹H NMR (600 MHz, CDCl₃) spectrum of 1-OMe

Figure S2. ¹³C NMR (151 MHz, CDCl₃) spectrum of 1-OMe

Figure S3. ¹H NMR (600 MHz, CDCl₃) spectrum of 1-OEt

Figure S4. ¹³C NMR (151 MHz, CDCl₃) spectrum of 1-OEt

Figure S5. ¹H NMR (600 MHz, CDCl₃) spectrum of 1-OTFE

Figure S6. ¹³C NMR (151 MHz, CDCl₃) spectrum of 1-OTFE

Figure S7. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 1-OTFE

Figure S8. ¹H NMR (600 MHz, CDCl₃) spectrum of 1-PDO

Figure S9. ¹³C NMR (151 MHz, CDCl₃) spectrum of 1-PDO

Figure S10. ¹H NMR (600 MHz, CDCl₃) spectrum of 2a-OMe

Figure S11. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2a-OMe

ppm

Figure S12. ¹H NMR (600 MHz, CDCl₃) spectrum of 2a-OEt

Figure S13. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2a-OEt

Figure S14. ¹H NMR (600 MHz, CDCl₃) spectrum of 2a-OTFE

Figure S15. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2a-OTFE

ppm

Figure S17. ¹H NMR (600 MHz, CDCl₃) spectrum of 2b-OMe

Figure S18. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2b-OMe

Figure S19. ¹H NMR (600 MHz, CDCl₃) spectrum of **2b-OEt**

Figure S20. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2b-OEt

Figure S21. ¹H NMR (600 MHz, CDCl₃) spectrum of 2b-OTFE

Figure S22. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2b-OTFE

Figure S23. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of **2b-OTFE**

Figure S24. ¹H NMR (600 MHz, CDCl₃) spectrum of 2c-OMe

Figure S25. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2c-OMe

Figure S26. ¹H NMR (600 MHz, CDCl₃) spectrum of 2d-OMe

Figure S27. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2d-OMe

Figure S28. ¹H NMR (600 MHz, CDCl₃) spectrum of 2e-OMe

Figure S29. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2e-OMe

Figure S30. ¹H NMR (600 MHz, CDCl₃) spectrum of 2f-OMe

Figure S31. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2f-OMe

Figure S32. ¹H NMR (600 MHz, CDCl₃) spectrum of 2g-OMe

Figure S33. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2g-OMe

Figure S34. ¹H NMR (600 MHz, CDCl₃) spectrum of 2h-OMe

Figure S35. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2h-OMe

Figure S36. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 2h-OMe

Figure S37. ¹H NMR (600 MHz, CDCl₃) spectrum of 2i-OMe

Figure S38. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2i-OMe

Figure S39. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 2i-OMe

Figure S40. ¹H NMR (600 MHz, CDCl₃) spectrum of 2j-OMe

Figure S41. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2j-OMe

Figure S42. ¹H NMR (600 MHz, CDCl₃) spectrum of 2k-OMe

Figure S43. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2k-OMe

Figure S44. ¹H NMR (600 MHz, CDCl₃) spectrum of 21-OMe

Figure S45. ¹³C NMR (151 MHz, CDCl₃) spectrum of 2l-OMe

Figure S46. ¹H NMR (600 MHz, CDCl₃) spectrum of 3aa

Figure S47. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3aa

Figure S48. ¹H NMR (600 MHz, CDCl₃) spectrum of 3ae

Figure S49. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3ae

Figure S50. ¹H NMR (594 MHz, CDCl₃) spectrum of 3ag

Figure S51. ¹³C NMR (149 MHz, CDCl₃) spectrum of 3ag

ppm

Figure S52. ¹H NMR (600 MHz, CDCl₃) spectrum of **3ah**

Figure S53. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3ah

Figure S54. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 3ah

Figure S55. ¹H NMR (600 MHz, CDCl₃) spectrum of 3ai

Figure S56. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3ai

Figure S57. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 3ai

Figure S58. ¹H NMR (600 MHz, CDCl₃) spectrum of 3aj

Figure S59. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3aj

Figure S60. ¹H NMR (600 MHz, CDCl₃) spectrum of 3ba

Figure S61. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3ba

Figure S62. ¹H NMR (600 MHz, CDCl₃) spectrum of **3bb**

Figure S63. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3bb

Figure S64. ¹H NMR (600 MHz, CDCl₃) spectrum of 3bc

Figure S65. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3bc

Figure S66. ¹H NMR (600 MHz, CDCl₃) spectrum of **3bd**

Figure S67. ¹³C NMR (151 MHz, CDCl₃) spectrum of **3bd**

Figure S68. ¹H NMR (600 MHz, CDCl₃) spectrum of 3be

Figure S69. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3be

Figure S70. ¹H NMR (600 MHz, CDCl₃) spectrum of 3bf

Figure S71. ¹³C NMR (151 MHz, CDCl₃) spectrum of **3bf**

Figure S72. ¹H NMR (600 MHz, CDCl₃) spectrum of 3bg

Figure S73. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3bg

Figure S74. ¹H NMR (600 MHz, CDCl₃) spectrum of **3bh**

Figure S75. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3bh

Figure S76. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 3bh

S103

S104

Figure S78. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3bi

Figure S79. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 3bi

Figure S80. ¹H NMR (600 MHz, CDCl₃) spectrum of 3bj

Figure S81. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3bj

Figure S82. ¹H NMR (600 MHz, CDCl₃) spectrum of 3eg

Figure S83. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3eg

Figure S84. ¹H NMR (600 MHz, CDCl₃) spectrum of 3ei

Figure S85. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3ei

Figure S87. ¹H NMR (600 MHz, CDCl₃) spectrum of 3hg

Figure S88. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3hg

Figure S91. ¹³C NMR (151 MHz, CDCl₃) spectrum of 3hi

Figure S92. ¹⁹F NMR (564 MHz, CDCl₃) spectrum of 3hi

Figure S93. ¹H NMR (600 MHz, acetone-*d*₆) spectrum of **3lc**

Figure S94. ¹³C NMR (151 MHz, acetone-*d*₆) spectrum of **3lc**

Figure S95. ¹H NMR (600 MHz, acetone-*d*₆) spectrum of **5bb**

Figure S96. ¹³C NMR (151 MHz, acetone-*d*₆) spectrum of **5bb**

Figure S97. ¹H NMR (600 MHz, acetone-*d*₆) spectrum of **5bh**

Figure S98. ¹³C NMR (151 MHz, acetone-*d*₆) spectrum of **5bh**

Figure S101. ¹³C NMR (151 MHz, acetone-*d*₆) spectrum of **5aj**

Figure S103. ¹³C NMR (151 MHz, acetone-*d*₆) spectrum of 5ah

Figure S104. ¹⁹F NMR (564 MHz, acetone-*d*₆) spectrum of **5ah**

Figure S105. ¹H NMR (600 MHz, acetone-*d*₆) spectrum of 5lc

Figure S106. ¹³C NMR (151 MHz, acetone-*d*₆) spectrum of 5lc