Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Divergent synthesis of pyrrolizine derivatives through C–H bond functionalization of pyrroles

Manqing Wang, Yuanshuang Xu, Huihang Hou, Xinying Zhang*, and Xuesen Fan*

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media

and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal

University, Xinxiang, Henan 453007, China

E-mail: xinyingzhang@htu.cn; xuesen.fan@htu.cn

Table of Contents

Ι	General experimental information	S 3
II	Experimental procedures and spectroscopic data	S4-S25
III	Mechanism studies	S26-S29
IV	NMR spectra of 3aa-3ta and 3ab-3at	S30-S107
V	NMR spectra of 4-7	S108-S115
VI	X-ray crystal structure and data of 3ra	S116-S117
VII	X-ray crystal structure and data of 7	S118-S119
VIII	References	S120

I. General experimental information

Commercial reagents were used without further purification. *N*-Alkoxycarbamoyl pyrroles (1)^[1], trifluoromethyl ynones $2^{[2]}$ and [RhCp*Cl₂]₂^[3] were prepared based on literature procedures. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 MHz or 565 MHz. Chemical shifts were expressed in parts per million (δ), and were reported as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), q (quartet), m (multiplet), etc. The coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were obtained *via* ESI-TOF mode. All reactions were monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

II. Experimental procedures and spectroscopic data

1. Typical procedure for the synthesis of 3aa and spectroscopic data of 3aa-3ta and 3ab-3at

To a reaction tube equipped with a stir bar were added with methyl 1-(methoxycarbamoyl)-1*H*-pyrrole-3-carboxylate (**1a**, 39.6 mg, 0.2 mmol), KOAc (3.9 mg, 0.04 mmol), [RhCp*Cl₂]₂ (6.2 mg, 0.01 mmol), 1,1,1-trifluoro-4-phenylbut-3-yn-2-one (**2a**, 43.6 mg, 0.22 mmol) and CH₃OH (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 3 h. Upon completion, it was quenched with saturated aqueous solution of NH₄Cl, and then extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate (2:1) as eluent to afford **3aa**. **3ba-3ta** and **3ab-3at** were obtained in a similar manner.

MeO₂C

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3aa)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (62.3 mg, 79%), mp 183.0-183.9 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 11.32 (s, 1H), 9.13 (s, 1H), 7.76 (s, 1H), 7.68-7.67 (m, 2H), 7.55-7.54 (m, 3H), 6.71 (s, 1H), 3.76 (s, 3H), 3.57 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO- d_6): δ 164.1, 159.1, 139.3, 136.8, 130.8, 130.3, 129.4, 128.5, 128.3, 123.9, 122.7 (q, ¹ J_{C-F} = 285.3 Hz), 121.2, 105.4, 90.4 (q, ² J_{C-F} = 33.2 Hz), 63.0, 51.6. ¹⁹F NMR (376 MHz, DMSO- d_6): δ -80.32 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₅F₃N₂NaO₅ 419.0825; Found 419.0823.

3-Hydroxy-N-methoxy-1-phenyl-3-(trifluoromethyl)-3H-pyrrolizine-2-carboxamide (3ba)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (56.7 mg, 84%), mp 151.4-152.0 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.06 (s, 1H), 8.62 (s, 1H), 7.64-7.63 (m, 2H), 7.53-7.50 (m, 3H), 7.16 (s, 1H), 6.30 (s, 2H), 3.54 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.7, 140.2, 136.1, 131.1, 130.4, 129.3, 128.5, 127.0, 123.1 (q, ¹*J*_{C-F} = 285.5 Hz), 119.6, 114.4, 105.5, 89.5 (q, ²*J*_{C-F} = 31.7 Hz), 63.0. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.32 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₃F₃N₂NaO₃ 361.0770; Found 361.0768.

3-Hydroxy-N-methoxy-1,6-diphenyl-3-(trifluoromethyl)-3H-pyrrolizine-2-carboxamide (3ca)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (54.3 mg, 66%), mp 189.0-190.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 8.78 (s, 1H), 7.73-7.71 (m, 2H), 7.69 (s, 1H), 7.67 (d, *J* = 7.2 Hz, 2H), 7.56-7.51 (m, 3H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.8 Hz. 1H), 6.83 (s, 1H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 140.0, 136.9, 135.1, 131.0, 130.5, 130.1, 129.3, 129.2, 128.6, 127.2, 126.5, 125.2, 123.1 (q, ¹*J*_{C-F} = 284.4 Hz), 116.3, 103.3, 90.0 (q, ²*J*_{C-F} = 33.9 Hz), 63.0. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.10 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₇F₃N₂NaO₃ 437.1083; Found 437.1077.

3-Hydroxy-N-methoxy-1-phenyl-6-(*p*-tolyl)-**3-**(trifluoromethyl)-**3H**-pyrrolizine-2-carboxamide (**3da**) Eluent: petroleum ether/ethyl acetate (2:1). White solid (48.7 mg, 57%), mp 194.0-195.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.14 (br s, 1H), 8.73 (br s, 1H), 7.71 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz, 2H), 7.62 (s, 1H), 7.56-7.51 (m, 5H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.78 (s. 1H), 3.56 (s, 3H), 2.28 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 140.0, 136.8, 135.5, 132.2, 131.0, 130.5, 130.1, 129.7, 129.3, 128.6, 127.1, 125.1, 123.0 (q, ¹*J*_{C-F} = 285.5 Hz), 115.9, 103.2, 90.0 (q, ²*J*_{C-F} = 32.9 Hz), 63.0, 21.1. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.10 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₉F₃N₂NaO₃ 451.1240; Found 451.1231.

6-(4-(*tert*-Butyl)phenyl)-3-hydroxy-*N*-methoxy-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxam ide (3ea)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (69.2 mg, 74%), mp 210.2-211.2 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.12 (s, 1H), 8.74 (s, 1H), 7.70 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 2H), 7.62 (s, 1H), 7.58-7.52 (m, 5H), 7.35 (d, J = 8.4 Hz, 2H), 6.76 (s. 1H), 3.56 (s, 3H), 1.28 (s, 9H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 148.8, 140.1, 136.8, 132.2, 131.0, 130.5, 130.0, 129.3, 128.6, 127.2, 125.9, 125.0, 123.0 (q, ${}^{1}J_{C-F} = 285.6$ Hz), 116.0, 103.2, 90.0 (q, ${}^{2}J_{C-F} = 32.9$ Hz), 63.0, 34.6, 31.6. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.11 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₂₅F₃N₂NaO₃ 493.1709; Found 493.1704.

6-(4-Fluorophenyl)-3-hydroxy-*N*-methoxy-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (3fa)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (55.7 mg, 64%), mp 176.0-177.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.16 (br s, 1H), 8.78 (br s, 1H), 7.73-7.71 (m, 4H), 7.69 (s, 1H), 7.56-7.52 (m, 3H), 7.16 (t, *J* = 9.0 Hz, 2H), 6.82 (s. 1H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 161.2 (d, ¹*J*_{C-F} = 240.6 Hz), 159.6, 140.0, 136.9, 131.6 (d, ⁴*J*_{C-F} = 2.3 Hz), 130.9, 130.5, 129.3, 129.1, 128.6, 127.3, 127.0 (d, ³*J*_{C-F} = 7.7 Hz), 123.0 (q, ¹*J*_{C-F} = 285.5 Hz), 116.3, 115.9 (d, ²*J*_{C-F} = 20.9 Hz), 103.4, 90.0 (q, ²*J*_{C-F} = 32.9 Hz), 63.0. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.11 (s), -116.885 – -116.892 (m). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₆F₄N₂NaO₃ 455.0989; Found 455.0991.

Methyl 4-(3-hydroxy-2-(methoxycarbamoyl)-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizin-6-yl)benzoate (3ga)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (78.5 mg, 83%), mp 184.9-186.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.22 (br s, 1H), 8.88 (br s, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.90 (s, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.74-7.73 (m, 2H), 7.58-7.53 (m, 3H), 6.96 (s. 1H), 3.85 (s, 3H), 3.58 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 166.6, 159.5, 140.0, 139.8, 137.3, 130.8, 130.6, 130.2, 129.3, 128.9, 128.6, 127.5, 127.2, 125.1, 123.0 (q, ¹*J*_{C-F} = 284.4 Hz), 117.8, 103.5, 90.2 (q, ²*J*_{C-F} = 32.9 Hz), 63.0, 52.4. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.11 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₉F₃N₂NaO₅ 495.1138; Found 495.1131.

3-Hydroxy-*N*-methoxy-1-phenyl-6-(*m*-tolyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (3ha)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (63.9 mg, 75%), mp 177.8-179.4 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.14 (s, 1H), 8.74 (s, 1H), 7.72-7.70 (m, 2H), 7.65 (s. 1H), 7.56-7.52 (m, 3H), 7.51 (s. 1H), 7.45 (d, *J* = 7.8 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.00 (d, *J* = 7.8 Hz, 1H), 6.81 (s, 1H), 3.56 (s, 3H), 2.32 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 140.0, 138.2, 136.8, 134.9, 131.0, 130.5, 130.1, 129.3, 129.0, 128.6, 127.2, 127.1, 125.9, 123.0 (q, ¹*J*_{C-F} = 285.6 Hz), 122.3, 116.2, 103.3, 90.0 (q, ²*J*_{C-F} = 32.9 Hz), 63.0, 21.5. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.11 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₉F₃N₂NaO₃ 451.1240; Found 451.1242.

6-(3-Chlorophenyl)-3-hydroxy-*N*-methoxy-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (3ia)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (67.3 mg, 75%), mp 190.1-191.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.18 (s, 1H), 8.80 (s, 1H), 7.84 (s, 1H), 7.80 (t, *J* = 1.8 Hz, 1H), 7.73-7.71 (m, 2H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.56-7.52 (m, 3H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.22 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 6.93 (s, 1H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 139.8, 137.4, 137.0, 134.2, 130.9, 130.8, 130.6, 129.3, 128.64, 128.56, 127.4, 126.1, 124.8, 123.7, 123.0 (q, ¹*J*_{C-F} = 284.4 Hz), 117.3, 103.5, 90.1 (q, ²*J*_{C-F} = 32.7 Hz), 63.0. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.09 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for $C_{22}H_{16}ClF_3N_2NaO_3$ 471.0694; Found 471.0689.

6-(3-Bromophenyl)-3-hydroxy-*N*-methoxy-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (3ja)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (81.8 mg, 83%), mp 197.9-198.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.18 (s, 1H), 8.80 (s, 1H), 7.94 (s, 1H), 7.84 (s, 1H), 7.73-7.70 (m, 3H), 7.57-7.52 (m, 3H), 7.36-7.35 (m, 1H), 7.29 (t, *J* = 7.8 Hz, 1H), 6.94 (s, 1H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 139.8, 137.6, 137.0, 131.2, 130.8, 130.6, 129.3, 129.0, 128.7, 128.5, 127.7, 127.4, 124.1, 123.0 (q, ¹*J*_{C-F} = 284.4 Hz), 122.9, 117.3, 103.5, 90.1 (q, ²*J*_{C-F} = 32.9 Hz), 63.0. ¹⁹F NMR (375 MHz, DMSO-*d*₆): δ -80.15 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₆BrF₃N₂NaO₃ 515.0189; Found 515.0190.

3-Hydroxy-N-methoxy-1-phenyl-6-(*o*-tolyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (3ka) Eluent: petroleum ether/ethyl acetate (2:1). White solid (65.4 mg, 76%), mp 184.3-186.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.12 (s, 1H), 8.77 (s, 1H), 7.71 (dd, *J*₁ = 7.8 Hz, *J*₂ = 1.8 Hz, 2H), 7.55-7.50 (m, 3H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.33 (s, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 6.6 Hz, 1H), 7.16 (td, *J*₁ = 7.2 Hz, *J*₂ = 1.2 Hz, 1H), 6.58 (s, 1H), 3.57 (s, 3H), 2.41 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 140.2, 136.1, 135.0, 134.9, 131.1, 131.0, 130.5, 129.4, 129.33, 129.27, 128.6, 127.2, 126.8, 126.5, 123.1 (q, ¹*J*_{C-F} = 284.3 Hz), 118.1, 106.1, 90.0 (q, ²*J*_{C-F} = 32.9 Hz), 63.1, 21.6. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.13 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₉F₃N₂NaO₃ 451.1240; Found 451.1237.

6-(2-Chlorophenyl)-3-hydroxy-*N*-methoxy-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (3la)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (69.6 mg, 78%), mp 180.8-182.6 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.17 (s, 1H), 8.88 (s, 1H), 7.71 (d, *J* = 6.0 Hz, 2H), 7.66 (d, *J* = 7.8 Hz, 1H), 7.63 (s, 1H), 7.56-7.53 (m, 3H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H), 6.76 (s, 1H), 3.58 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.5, 140.0, 136.1, 133.5, 130.90, 130.88, 130.81, 130.77, 130.6, 129.4, 128.6, 128.3, 128.0, 127.4, 126.7, 123.0 (q, ¹*J*_{C-F} = 285.5 Hz), 118.9, 105.9, 90.2 (q, ²*J*_{C-F} = 32.9 Hz), 63.1. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.13 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₆ClF₃N₂NaO₃ 471.0694; Found 471.0693.

F₂C H N OMe

6-(2-Bromophenyl)-3-hydroxy-N-methoxy-1-phenyl-3-(trifluoromethyl)-3H-pyrrolizine-2-carboxamide

(**3ma**)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (76.1 mg, 77%), mp 180.1-181.2 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.15 (s, 1H), 8.87 (s, 1H), 7.71-7.68 (m, 3H), 7.58-7.51 (m, 5H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.70 (s, 1H), 3.58 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.5, 140.0, 135.9, 135.7, 134.0, 131.4, 130.9, 130.6, 129.4, 128.7, 128.6, 128.4, 128.3, 127.4, 123.0 (q, ¹*J*_{C-F} = 285.5 Hz), 121.5, 118.8, 106.2, 90.2 (q, ²*J*_{C-F} = 32.7 Hz), 63.1. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.13 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₆BrF₃N₂NaO₃ 515.0189; Found 515.0191.

3-Hydroxy-*N*-methoxy-6-(naphthalen-1-yl)-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (3na)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (66.3 mg, 71%), mp 178.6-178.8 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.22 (s, 1H), 8.85 (s, 1H), 8.23 (s, 1H), 7.92-7.87 (m, 5H), 7.78 (d, J = 6.6 Hz, 2H), 7.60-7.55 (m, 3H), 7.50 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.02 (s, 1H), 3.60 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.6, 140.0, 137.2, 134.1, 132.6, 132.2, 131.0, 130.6, 130.0, 129.4, 128.7, 128.6, 128.04, 128.01, 127.4, 126.7, 125.7, 124.5, 123.1 (q, ¹*J*_{C-F} = 284.4 Hz), 122.7, 116.9, 103.5, 90.1 (q, ²*J*_{C-F} = 31.7 Hz), 63.1. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.03 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₆H₁₉F₃N₂NaO₃ 487.1240; Found 487.1244.

3-Hydroxy-*N*-methoxy-1-phenyl-6-(thiophen-2-yl)-3-(trifluoromethyl)-3*H*-pyrrolizine-2-carboxamide (30a) Eluent: petroleum ether/ethyl acetate (2:1). White solid (50.5 mg, 60%), mp 197.4-198.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.19 (br s, 1H), 8.83 (br s, 1H), 7.68 (d, *J* = 6.6 Hz, 2H), 7.55-7.52 (m, 3H), 7.50 (s, 1H), 7.33 (d, *J* = 5.4 Hz, 1H), 7.29 (d, *J* = 3.6 Hz, 1H), 7.04-7.03 (m, 1H), 6.63 (s, 1H), 3.56 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.5, 139.8, 138.1, 136.9, 130.8, 130.6, 129.4, 128.5, 128.3, 127.6, 124.3, 123.4, 123.0 (q, ¹*J*_{C-F} = 285.5 Hz), 122.7, 115.7, 103.5, 90.1 (q, ²*J*_{C-F} = 32.9 Hz), 63.0. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.14 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₅F₃N₂NaO₃S 443.0648; Found 443.0645. EtO₂C

-N H N OMe

Ethyl 3-(3-hydroxy-2-(methoxycarbamoyl)-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizin-6-yl)acrylate (3pa)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (74.0 mg, 85%), mp 86.0-86.8 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.22 (br s, 0.5H), 11.04 (br s, 1H), 8.90 (br s, 1.5H), 7.71 (s, 0.5H), 7.68-7.66 (m, 1H), 7.60 (d, J = 15.6 Hz, 1H), 7.55-7.49 (m, 6H), 7.25-7.23 (m, 2H), 6.87 (s, 0.5H), 6.77 (d, J = 3.0 Hz, 1H), 6.33 (d, J = 15.6 Hz, 0.5H), 6.22 (d, J = 16.2 Hz, 1H), 4.14 (q, J = 7.2 Hz, 1H), 4.05-4.01 (qd, dd, $J_1 = 7.2$ Hz, $J_2 = 1.8$ Hz, 2H), 3.56 (s, 1.5H), 3.43 (s, 3H), 1.23 (t, J = 7.2 Hz, 1.5H), 1.16 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 167.2, 166.7, 159.3, 158.5, 141.4, 139.4, 138.9, 137.6, 137.0, 135.7, 131.0, 130.7, 130.62, 130.60, 130.3, 129.3, 129.1, 128.9, 128.5, 128.0, 126.3, 123.3, 122.83 (q, ¹*J*_{C-F} = 284.4 Hz), 122.81 (q, ¹*J*_{C-F} = 285.5 Hz), 121.2, 116.7, 116.5, 114.7, 112.5, 103.6, 90.0 (q, ²*J*_{C-F} = 33.9 Hz), 89.7 (q, ²*J*_{C-F} = 33.9 Hz), 63.1, 63.0, 60.1, 60.0, 14.7, 14.5. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.14 (s), -80.21 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₁₉F₃N₂NaO₅ 459.1138; Found 459.1138.

₩ N_OMe

3-Hydroxy-N-methoxy-6-methyl-1-phenyl-3-(trifluoromethyl)-3H-pyrrolizine-2-carboxamide (3qa)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (45.4 mg, 64%), mp 111.2-112.8 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.03 (br s, 1H), 8.50 (br s, 1H), 7.62-7.61 (m, 2H), 7.50-7.49 (m, 3H), 6.93 (s, 1H), 6.15 (s, 1H), 3.54 (s, 3H), 2.06 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆): δ 159.8, 140.3, 136.0, 131.2, 130.4, 129.2, 128.5, 126.6, 124.4, 123.1 (q, ¹*J*_{C-F} = 285.3 Hz), 117.3, 107.0, 89.5 (q, ²*J*_{C-F} = 31.8 Hz), 63.0, 12.6. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -80.38 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₅F₃N₂NaO₃ 375.0927; Found 375.0924.

3-Hydroxy-N-methoxy-5-methyl-1-phenyl-3-(trifluoromethyl)-3H-pyrrolizine-2-carboxamide (3ra)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (41.8 mg, 59%), mp 174.3-175.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 10.96 (s, 1H), 8.51 (s, 1H), 7.59-7.57 (m, 2H), 7.49-7.48 (m, 3H), 6.13 (d, *J* = 3.0 Hz, 1H), 5.98 (d, *J* = 2.4 Hz, 1H), 3.53 (s, 3H), 2.33 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 159.8, 140.5, 135.8, 132.1, 131.3, 130.3, 129.2, 128.4, 125.7, 123.8 (q, ¹*J*_{C-F} = 285.5 Hz), 113.3, 105.5, 90.9 (q, ²*J*_{C-F} = 31.8 Hz), 63.0, 12.6. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -76.88 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₅F₃N₂NaO₃ 375.0927; Found 375.0932.

Methyl 2-(ethoxycarbamoyl)-3-hydroxy-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3sa)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (65.1 mg, 79%), mp 158.8-160.1 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.19 (s, 1H), 9.08 (s, 1H), 7.73 (s, 1H), 7.67-7.66 (m, 2H), 7.54-7.53 (m, 3H), 6.68 (s, 1H), 3.79-3.76 (m, 2H), 3.75 (s, 3H), 1.08 (t, *J* = 6.6 Hz, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 159.3, 139.1, 136.9, 130.8, 130.4, 129.5, 128.4, 123.8, 122.7 (q, ¹*J*_{C-F} = 285.5 Hz), 121.1, 105.3, 90.4 (q, ²*J*_{C-F})

= 32.9 Hz), 70.7, 51.7, 13.8. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.29 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇F₃N₂NaO₅ 433.0982; Found 433.0983.

5-Fluoro-3-hydroxy-N-methoxy-1-phenyl-3-(trifluoromethyl)-3*H*-pyrrolo[1,2-*a*]indole-2-carboxamide

(**3ta**)

Eluent: petroleum ether/ethyl acetate (3:1). White solid (32.2 mg, 40%), mp 178.9-179.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.26 (s, 1H), 10.99 (s, 1H), 7.69-7.66 (m, 2H), 7.56-7.52 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.26 (s, 1H), 7.09 (td, *J*₁ = 7.6 Hz, *J*₂ = 4.8 Hz, 1H), 6.98 (dd, *J*₁ = 11.6 Hz, *J*₂ = 8.0 Hz, 1H), 3.56 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 161.0, 150.1 (d, ¹*J*_{C-F} = 242.9 Hz), 146.0, 140.9, 137.1, 130.9, 130.2, 129.1, 128.8, 128.6 (d, ²*J*_{C-F} = 13.2 Hz), 126.6 (d, ³*J*_{C-F} = 5.4 Hz), 125.6 (q, ¹*J*_{C-F} = 285.6 Hz), 121.6 (d, ³*J*_{C-F} = 6.6 Hz), 119.0, 115.4, 107.1 (d, ²*J*_{C-F} = 16.4 Hz), 80.0 (q, ²*J*_{C-F} = 30.6 Hz), 63.1. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -75.46 (s), -130.51 (dd, *J*₁ = 10.90 Hz, *J*₂ = 4.14 Hz). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₄F₄N₂NaO₃ 429.0833; Found 429.0829.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-(*p*-tolyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3ab)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (58.8 mg, 72%), mp 156.2-157.7 °C. ¹H NMR (600 MHz, DMSO- d_6): δ 11.27 (s, 1H), 9.05 (s, 1H), 7.73 (s, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 6.69 (s, 1H), 3.75 (s, 3H), 3.57 (s, 3H), 2.38 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO- d_6): δ 164.1, 159.3, 140.7, 139.1, 136.9, 130.0, 128.4, 127.6, 127.4, 123.7, 122.8 (q, ¹ $_{JC-F} = 284.4$ Hz), 121.1, 105.4, 90.3 (q, ² $_{L-F} = 284.4$ Hz), 121.1, 105.4, 90.3 (q, ² $_{L-F} = 284.4$ Hz)

= 32.7 Hz), 63.1, 51.6, 21.4. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.29 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇F₃N₂NaO₅ 433.0982; Found 433.0984.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3ac)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (57.7 mg, 68%), mp 185.6-186.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.26 (s, 1H), 9.01 (s, 1H), 7.72 (s, 1H), 7.64 (d, *J* = 9.0 Hz, 2H), 7.09 (d, *J* = 9.0 Hz, 2H), 6.70 (s, 1H), 3.83 (s, 3H), 3.76 (s, 3H), 3.59 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.1, 161.3, 159.4, 138.8, 137.0, 130.2, 126.5, 123.6, 122.8 (q, ¹*J*_{C-F} = 285.5 Hz), 122.5, 121.1, 114.9, 105.4, 90.3 (q, ²*J*_{C-F} = 32.9 Hz), 63.1, 55.8, 51.6. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.28 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇F₃N₂NaO₆ 449.0931; Found 449.0936.

Methyl 1-(4-fluorophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3ad)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (62.4 mg, 75%), mp 176.3-178.0 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.32 (br s, 1H), 9.13 (br s, 1H), 7.75 (s, 1H), 7.74-7.71 (m, 2H), 7.39 (t, *J* = 9.0 Hz, 2H), 6.72 (s, 1H), 3.76 (s, 3H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 163.5 (d, ¹*J*_{C-F} = 247.2 Hz), 159.0, 138.3, 136.7, 130.9 (d, ³*J*_{C-F} = 8.9 Hz), 128.2, 126.7 (d, ⁴*J*_{C-F} = 2.3 Hz), 123.9, 122.7 (q, ¹*J*_{C-F} = 284.4 Hz), 121.2, 116.5 (d, ²*J*_{C-F} = 21.9 Hz), 105.5, 90.3 (q, ²*J*_{C-F} = 32.9 Hz), 63.1, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.31 (s), -109.95 - -110.00 (m). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄F₄N₂NaO₅

437.0731; Found 437.0730.

Methyl 1-(4-chlorophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6carboxylate (3ae)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (66.8 mg, 78%), mp 72.6-73.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.34 (br s, 1H), 9.16 (br s, 1H), 7.75 (s, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 6.72 (s, 1H), 3.76 (s, 3H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 158.9, 138.2, 136.4, 135.5, 130.3, 129.6, 129.1, 128.7, 124.0, 122.7 (q, ¹*J*_{C-F} = 285.5 Hz), 121.2, 105.5, 90.4 (q, ²*J*_{C-F} = 33.9 Hz), 63.1, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.28 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄ClF₃N₂NaO₅ 453.0436; Found 453.0440.

Methyl 1-(4-bromophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6carboxylate (3af)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (59.3 mg, 63%), mp 185.1-186.5 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.33 (br s, 1H), 9.16 (br s, 1H), 7.76-7.74 (m, 3H), 7.60 (d, *J* = 8.4 Hz, 2H), 6.71 (s, 1H), 3.75 (s, 3H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 158.9, 138.3, 136.4, 132.5, 130.5, 129.4, 128.7, 124.2, 124.0, 122.7 (q, ¹*J*_{C-F} = 284.4 Hz), 121.2, 105.5, 90.4 (q, ²*J*_{C-F} = 32.9 Hz), 63.1, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.27 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄BrF₃N₂NaO₅ 496.9930; Found 496.9922.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-(4-(methoxycarbonyl)phenyl)-3-(trifluoromethyl)-3*H*pyrrolizine-6-carboxylate (3ag)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (64.9 mg, 71%), mp 185.1-186.5 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.37 (br s, 1H), 9.21 (br s, 1H), 8.11 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 8.4 Hz, 2H), 7.77 (s, 1H), 6.74 (s, 1H), 3.90 (s, 3H), 3.76 (s, 3H), 3.56 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 166.1, 164.0, 158.7, 138.4, 136.3, 134.7, 131.4, 130.2, 129.8, 128.9, 124.1, 122.6 (q, ¹*J*_{C-F} = 284.4 Hz), 121.3, 105.6, 90.4 (q, ²*J*_{C-F} = 32.9 Hz), 63.1, 52.8, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.28 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₇F₃N₂NaO₇ 477.0880; Found 477.0871.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-(*m*-tolyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3ah)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (43.9 mg, 54%), mp 192.6-193.6 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.27 (br s, 1H), 9.07 (br s, 1H), 7.73 (s, 1H), 7.46-7.40 (m, 3H), 7.34 (d, *J* = 7.2 Hz, 1H), 6.68 (s, 1H), 3.75 (s, 3H), 3.55 (s, 3H), 2.38 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.1, 159.1, 139.3, 138.7, 136.9, 131.5, 130.3, 129.4, 128.8, 128.2, 125.6, 123.8, 122.7 (q, ¹*J*_{C-F} = 284.4 Hz), 121.1, 105.4, 90.3 (q, ²*J*_{C-F} = 33.9 Hz), 63.0, 51.7, 21.4. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.31 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇F₃N₂NaO₅ 433.0982; Found 433.0985.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-(3-methoxyphenyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3ai)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (51.2 mg, 60%), mp 187.8-188.4 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.32 (br s, 1H), 9.11 (br s, 1H), 7.74 (s, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.14 (s, 1H), 7.13-7.11 (m, 1H), 6.67 (s, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 159.8, 159.1, 139.1, 136.8, 131.5, 130.7, 128.6, 123.9, 122.7 (q, ¹*J*_{C-F} = 285.5 Hz), 121.2, 120.8, 116.4, 113.6, 105.3, 90.3 (q, ²*J*_{C-F} = 33.9 Hz), 63.1, 55.7, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.30 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₇F₃N₂NaO₆ 449.0931; Found 449.0932.

Methyl 1-(3-fluorophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3aj)

Eluent: petroleum ether/ethyl acetate (20:1). White solid (41.7 mg, 50%), mp 171.4-172.2 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.36 (br s, 1H), 9.19 (br s, 1H), 7.75 (s, 1H), 7.62-7.58 (m, 1H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.41-7.39 (m, 2H), 6.73 (s, 1H), 3.75 (s, 3H), 3.56 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 162.5 (d, ¹*J*_{C-F} = 242.9 Hz), 158.8, 138.2, 136.3, 132.3 (d, ³*J*_{C-F} = 8.7 Hz), 131.7 (d, ³*J*_{C-F} = 7.7 Hz), 129.3, 124.8, 124.1, 122.6 (q, ¹*J*_{C-F} = 284.4 Hz), 121.3, 117.7 (d, ²*J*_{C-F} = 20.7 Hz), 115.1 (d, ²*J*_{C-F} = 23.0 Hz), 105.6, 90.4 (q, ²*J*_{C-F} = 33.9 Hz), 63.1, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.31 (s), -112.14 – -112.15 (m). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄F₄N₂NaO₅ 437.0731; Found 437.0726.

Methyl 1-(3-chlorophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6carboxylate (3ak)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (45.2 mg, 52%), mp 181.4-182.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.38 (br s, 1H), 9.19 (br s, 1H), 7.76 (s, 1H), 7.64-7.57 (m, 4H), 6.71 (s, 1H), 3.75 (s, 3H), 3.56 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 158.7, 138.0, 136.2, 134.0, 132.2, 131.5, 130.7, 129.4, 127.9, 127.3, 124.2, 122.6 (q, ¹*J*_{C-F} = 284.4 Hz), 121.3, 105.5, 90.4 (q, ²*J*_{C-F} = 32.9 Hz), 63.0, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.29 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄ClF₃N₂NaO₅ 453.0436; Found 453.0424.

Methyl 1-(3-bromophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6carboxylate (3al)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (48.3 mg, 51%), mp 181.2-182.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.38 (br s, 1H), 9.18 (br s, 1H), 7.76-7.73 (m, 3H), 6.68 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 6.70 (s, 1H), 3.75 (s, 3H), 3.56 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 158.7, 137.9, 136.2, 133.6, 132.4, 131.8, 130.7, 129.4, 127.7, 124.2, 122.6 (q, ¹*J*_{C-F} = 284.4 Hz), 122.4, 121.3, 105.5, 90.4 (q, ²*J*_{C-F} = 32.9 Hz), 63.1, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.28 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄BrF₃N₂NaO₅ 496.9930; Found 496.9922.

Methyl 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3am)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (64.5 mg, 71%), mp 198.2-199.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.27 (s, 1H), 9.02 (s, 1H), 7.72 (s, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.15 (s, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 6.71 (s, 1H), 3.83 (s, 3H), 3.80 (s, 3H), 3.75 (s, 3H), 3.59 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.1, 159.6, 151.1, 149.1, 139.0, 137.0, 126.7, 123.7, 122.7 (q, ¹*J*_{C-F} = 281.1 Hz), 122.6, 121.8, 121.1, 112.3, 111.5, 105.3, 90.2 (q, ²*J*_{C-F} = 32.9 Hz), 63.3, 56.1, 56.0, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.26 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉F₃N₂NaO₇ 479.1037; Found 479.1035.

Methyl 1-(3,5-dichlorophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6carboxylate (3an)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (52.0 mg, 56%), mp 198.8-199.4 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.40 (br s, 1H), 9.30 (br s, 1H), 7.83 (s, 1H), 7.76 (s, 1H), 7.57 (s, 2H), 6.74 (s, 1H), 3.76 (s, 3H), 3.56 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 163.9, 158.4, 137.1, 135.7, 135.2, 133.5, 130.4, 130.3, 126.9, 124.4, 122.6 (q, ¹*J*_{C-F} = 285.5 Hz), 121.4, 105.7, 90.4 (q, ²*J*_{C-F} = 32.9 Hz), 63.0, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.32 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₃Cl₂F₃N₂NaO₅ 487.0046; Found 487.0047.

Methyl 1-(2-fluorophenyl)-3-hydroxy-2-(methoxycarbamoyl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6carboxylate (3ao)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (44.8 mg, 54%), mp 89.1-90.4 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.13 (s, 1H), 9.25 (br s, 1H), 7.74 (s, 1H), 7.62-7.56 (m, 2H), 7.39-7.35 (m, 2H), 6.51 (s, 1H), 3.74 (s, 3H), 3.52 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 159.8 (d, ¹*J*_{C-F} = 249.5 Hz), 158.7, 136.7, 135.3, 132.8 (d, ³*J*_{C-F} = 7.7 Hz), 130.9, 130.4, 125.3, 123.9, 122.7 (q, ¹*J*_{C-F} = 284.4 Hz), 121.2, 118.4 (d, ²*J*_{C-F} = 14.3 Hz), 116.7 (d, ²*J*_{C-F} = 20.9 Hz), 105.5, 90.4 (q, ²*J*_{C-F} = 32.9 Hz), 63.0, 51.7. ¹⁹F NMR (367 MHz, CD₃OD): δ -82.87 (s), -111.51 – -111.57 (m). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄F₄N₂NaO₅ 437.0731; Found 437.0722.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-(naphthalen-2-yl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6carboxylate (3ap)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (46.9 mg, 53%), mp 180.2-181.9 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.31 (br s, 1H), 9.15 (br s, 1H), 8.30 (s, 1H), 8.13 (d, *J* = 7.2 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 7.2 Hz, 1H), 7.78 (s, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.64-7.60 (m, 2H), 6.85 (s, 1H), 3.77 (s, 3H), 3.55 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.1, 159.2, 139.4, 136.8, 134.0, 133.1, 129.2, 128.9, 128.5, 128.4, 128.1, 128.0, 127.8, 127.4, 125.5, 123.9, 122.8 (q, ¹*J*_{C-F} = 284.4 Hz), 121.2, 105.8, 90.4 (q, ²*J*_{C-F} = 32.8 Hz), 63.1, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.24 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₇F₃N₂NaO₅ 469.0982; Found 469.0973.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-(thiophen-3-yl)-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3aq)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (47.9 mg, 60%), mp 182.0-183.0 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.38 (br s, 1H), 9.05 (br s, 1H), 8.24 (s, 1H), 7.73-7.70 (m, 2H), 7.38 (d, *J* = 4.2 Hz, 1H), 6.90 (s, 1H), 3.76 (s, 3H), 3.64 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.1, 159.4, 136.6, 133.4, 130.7, 129.2, 128.1, 127.1, 126.6, 123.6, 122.7 (q, ¹*J*_{C-F} = 285.5 Hz), 121.1, 105.5, 90.2 (q, ²*J*_{C-F} = 31.7 Hz), 63.2, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.28 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₃F₃N₂NaO₅S 425.0389; Found 425.0393.

Methyl 3-hydroxy-2-(methoxycarbamoyl)-1-phenethyl-3-(trifluoromethyl)-3*H*-pyrrolizine-6-carboxylate (3ar)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (46.3 mg, 55%), mp 161.1-162.4 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 10.92 (s, 1H), 9.11 (s, 1H), 7.66 (s, 1H), 7.30-7.28 (m, 4H), 7.23-7.19 (m, 1H), 6.72 (s, 1H), 3.75 (s, 3H), 3.67 (s, 3H), 2.96-2.86 (m, 4H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.1, 159.3, 145.0, 141.3, 138.1, 128.83, 128.79, 127.9, 126.6, 123.6, 122.8 (q, ¹*J*_{C-F} = 285.5 Hz), 121.1, 105.2, 90.0 (q, ²*J*_{C-F} = 32.9 Hz), 63.7, 51.6, 34.5, 28.8. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -80.70 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₉F₃N₂NaO₅ 447.1138; Found 447.1147.

O₂C Ph HF₂C OH Sas

Methyl 3-(difluoromethyl)-3-hydroxy-2-(methoxycarbamoyl)-1-phenyl-3H-pyrrolizine-6-carboxylate

(**3as**)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (55.0 mg, 73%), mp 163.9-164.2 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.16 (s, 1H), 8.41 (s, 1H), 7.71 (s, 1H), 7.61-7.60 (m, 2H), 7.53-7.52 (m, 3H), 6.64-6.46 (m, 2H), 3.75 (s, 3H), 3.57 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.3, 160.1, 138.3, 137.4, 130.5, 129.8, 129.3, 128.8, 124.6, 120.3, 115.2, 113.6 (t, ¹*J*_{C-F} = 237.5 Hz), 104.7, 91.0 (t, ²*J*_{C-F} = 20.7 Hz), 63.1, 51.6. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -129.57 (dd, *J*₁ = 276.3 Hz, *J*₂ = 53.1 Hz, 1F), -137.35 (dd, *J*₁ = 275.7 Hz, *J*₂ = 55.4 Hz, 1F). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₆F₂N₂NaO₅ 401.0919; Found 401.0910. ^{MeO₂C}

Methyl 3-hydroxy-2-(methoxycarbamoyl)-3-(perfluoroethyl)-1-phenyl-3*H*-pyrrolizine-6-carboxylate (3at)

Eluent: petroleum ether/ethyl acetate (2:1). White solid (51.4 mg, 58%), mp 202.9-203.3 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.13 (s, 1H), 9.23 (s, 1H), 7.72 (s, 1H), 7.65-7.64 (m, 2H), 7.56-7.53 (m, 3H), 6.65 (s, 1H), 3.75 (s, 3H), 3.55 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 159.1, 139.9, 137.0, 130.7, 130.4, 129.4, 128.6, 128.5, 124.7, 121.1, 118.7 (qt, ¹*J*_{C-F} = 286.5 Hz, ²*J*_{C-F} = 35.0 Hz), 112.5 (tq, ¹*J*_{C-F} = 263.7 Hz, ²*J*_{C-F} = 36.2 Hz), 105.5, 91.0 (t, ²*J*_{C-F} = 25.2 Hz), 62.9, 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -78.67 (s, 3F), -120.94 (d, *J* = 276.3 Hz, 1F), -123.50 (d, *J* = 276.3 Hz, 1F), HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₅F₅N₂NaO₅ 469.0793; Found 469.0789.

2. Structural elaborations

2.1 Synthesis of 4^[4]

To a reaction tube equipped with a stir bar were added **3aa** (79.3 mg, 0.2 mmol), *tert*-butyl nitrite (28.5 μ L, 0.24 mmol), H₂O (18 μ L) and DCE (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 2 h. Upon completion, it was concentrated under reduced pressure. The residue was

purified by column chromatography on silica gel with petroleum ether/ethyl acetate/acetic acid (30:6:1) as the eluent to give **4**.

3-Hydroxy-6-(methoxycarbonyl)-1-phenyl-3-(trifluoromethyl)-3H-pyrrolizine-2-carboxylic acid (4)

Eluent: petroleum ether/ethyl acetate/acetic acid (30:6:1). Yellow solid (45.8 mg, 62%), mp 188.5-189.7 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.81 (s, 1H), 7.61-7.60 (m, 2H), 7.52-7.51 (m, 3H), 6.57 (s, 1H), 3.75 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 163.9, 163.7, 145.2, 137.2, 131.1, 130.6, 128.99, 128.97, 126.9, 124.6, 122.9 (q, ¹*J*_{C-F} = 285.5 Hz), 121.5, 106.5, 90.9 (q, ²*J*_{C-F} = 32.7 Hz), 51.7. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -79.90 (s). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₃F₃NO₅ 368.0740; Found 368.0744.

2.2 Synthesis of 5

To a reaction tube equipped with a stir bar were added **4** (36.7 mg, 0.1 mmol) and methanesulfonic acid (1 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 2 h. Upon completion, it was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (5:1) as the eluent to give **5**.

Methyl 3-hydroxy-1-phenyl-3-(trifluoromethyl)-3H-pyrrolizine-6-carboxylate (5)

Eluent: petroleum ether/ethyl acetate (5:1). Yellow solid (18.1 mg, 56%), mp 157.9-158.8 °C. ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.79 (s, 1H), 7.91-7.89 (m, 2H), 7.72 (s, 1H), 7.53-7.49 (m, 3H), 7.85 (d, *J* = 1.2 Hz, 1H), 6.83 (s, 1H), 3.76 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.3, 139.8, 137.6, 130.7, 130.5, 129.6, 127.4, 123.7, 123.23, 123.21 (q, ¹*J*_{C-F} = 283.4 Hz), 120.8, 104.2, 89.6 (q, ²*J*_{C-F} = 32.7 Hz), 51.6. ¹⁹F NMR (565 MHz, DMSO-*d*₆): δ -81.11 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₂F₃NNaO₃ 346.0661; Found

346.0659.

2.3 Synthesis of 6^[5]

To a reaction tube equipped with a stir bar were added **3aa** (79.3 mg, 0.2 mmol), PIFA (103.2 mg, 0.24 mmol) and DCE (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 2 h. Upon completion, it was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (1:1) as the eluent to give **6**.

Methyl 7-hydroxy-5-methoxy-6-oxo-7-(trifluoromethyl)-5,7-dihydro-6*H*-pyrrolizino[2,1-*c*]quinoline-10carboxylate (6)

Eluent: petroleum ether/ethyl acetate (1:1). Yellow solid (63.2 mg, 80%), mp 278.4-278.6 °C. ¹H NMR (600 MHz, CDCl₃): δ 7.98 (d, *J* = 7.8 Hz, 1H), 7.92 (s, 1H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.21 (s, 1H), 6.96 (br s, 1H), 3.87 (s, 6H). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 164.3, 154.2, 142.7, 139.2, 133.3, 132.1, 126.3, 125.4, 123.9, 123.6, 122.5, 122.4 (q, ¹*J*_{C-F} = 284.4 Hz), 113.5, 112.8, 108.8, 89.4 (q, ²*J*_{C-F} = 36.2 Hz), 63.6, 51.6. ¹⁹F NMR (565 MHz, CDCl₃): δ -81.21 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₃F₃N₂NaO₅ 417.0669; Found 417.0665.

2.1 Synthesis of 7^[6]

To a reaction tube equipped with a stir bar were added 6 (39.4 mg, 0.1 mmol) and MeOH (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under 10 W blue LED irradiation and argon atmosphere for 6 h. Upon completion, it was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (1:2) as the eluent to give **7**.

Methyl 7-hydroxy-6-oxo-7-(trifluoromethyl)-5,7-dihydro-6*H*-pyrrolizino[2,1-*c*]quinoline-10-carboxylate
(7)

Eluent: petroleum ether/ethyl acetate (1:2). White solid (32.3 mg, 89%), mp 278.2-279.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.02 (s, 1H), 9.09 (s, 1H), 8.25 (d, *J* = 8.0 Hz, 1H), 7.89 (s, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.50 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 3.81 (s, 3H). ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆): δ 164.0, 157.3, 143.0, 141.6, 133.2, 132.7, 126.5, 125.1, 124.7, 123.2, 123.0 (q, ¹*J*_{C-F} = 285.5 Hz), 122.1, 116.3, 113.1, 108.5, 90.0 (q, ²*J*_{C-F} = 33.9 Hz), 51.8. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -79.46 (s). HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₁F₃N₂NaO₄ 387.0563; Found 387.0561.

3. Gram-Scale Synthesis of 3aa

To a reaction tube equipped with a stir bar were added **1a** (990.9 mg, 5.0 mmol), KOAc (98.14 mg, 1.0 mmol), [RhCp*Cl₂]₂ (77.3 mg, 0.125 mmol), **2a** (1089.8 mg, 5.5 mmol) and CH₃OH (20 mL). The tube was sealed, and the mixture was stirred at room temperature under air for 6 h. Upon completion, it was quenched with saturated aqueous solution of NH₄Cl, and then extracted with ethyl acetate (40 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (2:1) as eluent to afford **3aa** (1.54 g, 78%).

III. Mechanism studies

1. Studies on the reversibility of C-H bond activation

To a reaction tube equipped with a stir bar were charged with **1a** (39.6 mg, 0.2 mmol), KOAc (3.9 mg, 0.04 mmol), [RhCp*Cl₂]₂ (6.2 mg, 0.01 mmol) and CD₃OD (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 15 min. Afterwards, it was cooled to room temperature, filtered through a pad of celite and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate (5:1) as eluent to give a mixture of **1a** and **1a**- d_2 . Based on the ¹H NMR of the mixture, 91% deuteration at the *ortho*-position of the pyrrole moiety was observed. This result indicates the occurrence of a reversible *ortho*-C–H bond cleavage.

S26

To a reaction tube equipped with a stir bar were added **1a** (39.6 mg, 0.2 mmol), KOAc (3.9 mg, 0.04 mmol), [RhCp*Cl₂]₂ (6.2 mg, 0.01 mmol), **2a** (43.6 mg, 0.22 mmol) and CD₃OD (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 15 min. Afterwards, it was quenched with saturated aqueous solution of NH₄Cl, and extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate (2:1) as eluent to afford a mixture of **3aa** and **3aa**-*d*₁. Based on the ¹H NMR of the resulting mixture, 30% deuteration at the unreacted *ortho*-position was observed. This result indicates that in the presence of **2a**, the *ortho*-C–H bond activation is still reversible.

2. Kinetic isotope effect study

To a reaction tube equipped with a stir bar were added $1a-d_2$ (44.4 mg, 0.222 mmol, 91% deuteration), 1a (35.3 mg, 0.178 mmol), KOAc (3.9 mg, 0.04 mmol), [RhCp*Cl₂]₂ (6.2 mg, 0.01 mmol), 2a (39.6 mg, 0.2 mmol) and DCE (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 15 min. Afterwards, it was quenched with saturated aqueous solution of NH₄Cl, and extracted with ethyl acetate (10 mL × 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate (2:1) as eluent to afford a mixture of **3aa** and **3aa**-*d*₁. Based on the ¹H NMR of the resulting mixture, a k_H/k_D value of 2.6 was observed. This result showed that the *ortho*-C–H cleavage step has an obvious influence on the over-all reaction rate of this cascade reaction.

3. Competitive experiment between 1a and 1q

To a reaction tube equipped with a stir bar were added **1a** (39.6 mg, 0.2 mmol), **1q** (30.8 mg, 0.2 mmol), KOAc (3.9 mg, 0.04 mmol), [RhCp*Cl₂]₂ (6.2 mg, 0.01 mmol), **2a** (43.6 mg, 0.22 mmol) and CH₃OH (2 mL). The tube was then sealed, and the mixture was stirred at room temperature under air for 1 h. Afterwards, it was quenched with saturated aqueous solution of NH₄Cl, and then extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/ethyl acetate (2:1) as eluent to afford **3aa** (26.9 mg, 34%). Meanwhile, **3qa** was formed only in trace amount. This means that the presence of an electron-withdrawing ester group on the pyrrole moiety can facilitate this reaction obviously, indicating that the C–H bond cleavage step might occur *via* concerted metalation-deprotonation (CMD) process.

IV. NMR spectra of 3aa-3ta and 3ab-3at

Ph OMe ő 3ba

11.061

¹H NMR (600M, DMSO-*d*₆)

S34

S36

S38

S40

 MeO_2C OMe 3ga ¹H NMR (600M, DMSO-d₆)

Me OMe Ö 3ha

¹H NMR (600 MHz, DMSO-*d*₆)

Br OMe 3ja ¹H NMR (600 MHz, DMSO-*d*₆)

3.01 3.01 3.00 1.01 1.00 1.02 0.98 1.00 1.01 1.00 2 12 10 8 6 4 0 PPM $\begin{array}{c} 139.837\\ 159.576\\ 137.642\\ 137.642\\ 136.993\\ 131.196\\ 130.583\\ 121.30.583\\ 123.533\\ 122.651\\ 122.869\\ 122.837\\ 122.869\\ 12$ Γ ٦ Γ в OMe **3ja** ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) 200 150 100 50 ò PPM

¹H NMR (600 MHz, DMSO-*d*₆)

OMe 3oa ¹H NMR (600 MHz, DMSO-*d*₆)

¹H NMR (600 MHz, DMSO-*d*₆)

Me Ph H OMe **3qa** ¹H NMR (400 MHz, DMSO-*d*₆)

H N OMe Ö 3ra ¹H NMR (600 MHz, DMSO-*d*₆)

MeO₂C Ph F₃C OH Ssa

¹H NMR (600 MHz, DMSO-*d*₆)

Ph F₃COH 3ta ¹H NMR (400 MHz , DMSO-*d*₆)

OMe ЮH Ċ 3ta

¹⁹F NMR (376 MHz, DMSO-*d*₆₎

Me MeO₂C NHOMe F₃C юн Ы 3ab ¹H NMR (600 MHz, DMSO-*d*₆)

S72

S82

S84

200 150 100 50 0 PPM

S94

MeO₂C F₃C H H NMR (600 MHz, DMSO-*d*₆)

S98

¹H NMR (600 MHz, DMSO-*d*₆)

- 11.158

MeO₂C `OMe HF₂C 3as ¹⁹F NMR (565 MHz, DMSO-*d*₆)

S106

V. NMR spectra of 4-7

0	-50	-100	-150	-200 PPM

MeO₂C Ph F₃C OH

¹H NMR (600 MHz, DMSO-*d*₆)

S112

S114

VI. X-ray crystal structure and data of 3ra

Fig. S1 X-ray crystal structure of 3ra with 50% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a methanol solution of **3ra**. Crystal data collection and refinement parameters of **3ra** are summarized in Table S1. Intensity data were collected at 293 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. Using Olex2, the structure was solved with the SHELXS structure solution program using Direct Methods and refined with the SHELXL refinement package using Least Squares minimisation. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{17}H_{15}F_3N_2O_3$
Formula weight	352.31
Temp, K	293(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
<i>a</i> , Å	10.9356(7)
b, Å	17.2071(9)
<i>c</i> , Å	9.5578(5)

Table S1 Crystallographic data and structure refinement results of 3ra

α (°)	90
β (°)	113.916(7)
γ (°)	90
Volume, Å ³	1644.07(18)
Ζ	4
$\rho_{\rm calc}, {\rm g \ cm^{-3}}$	1.423
λ, Å	1.54184
μ , mm ⁻¹	1.044
No. of data collected	6475
No. of unique data	3142
R _{int}	0.0326
Goodness-of-fit on F^2	1.104
R_1 , w R_2 ($I > 2\sigma(I)$)	0.0531, 0.1416
R_1 , w R_2 (all data)	0.0659, 0.1518

VII. X-ray crystal structure and data of 7

Fig. S2 X-ray crystal structure of 7 with 50% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a DMSO solution of compound 7. Crystal data collection and refinement parameters of 7 are summarized in Table S2. Intensity data were collected at 293 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. Using Olex2, the structure was solved with the SHELXS structure solution program using Direct Methods and refined with the SHELXL refinement package using Least Squares minimisation. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{17}H_{11}F_3N_2O_4$	
Formula weight	364.28	
Temp, K	293(2)	
Crystal system	triclinic	
Space group	P-1	
<i>a</i> , Å	9.7758(4)	
b, Å	10.5130(5)	
<i>c</i> , Å	11.2193(5)	
α (°)	90.001(4)	

 Table S2 Crystallographic data and structure refinement results of 7

β (°)	112.552(4)
γ (°)	105.120(4)
Volume, Å ³	1021.51(9)
Ζ	2
$\rho_{\rm calc}, {\rm g \ cm}^{-3}$	1.184
λ, Å	1.54184
μ , mm ⁻¹	0.899
No. of data collected	7312
No. of unique data	3851
R _{int}	0.0171
Goodness-of-fit on F^2	1.059
R_1 , w R_2 ($I > 2\sigma(I)$)	0.0680, 0.2064
R_1 , w R_2 (all data)	0.0803, 0.2177

VIII. References

- P. Prusty, S. Jambu and M. Jeganmohan, Rh(III)-Catalyzed Selective Olefination of *N*-Carboxamide Indoles with Unactivated Olefins at Room Temperature via an Internal Oxidation. *Org Lett.*, 2022, 24, 1121-1126.
- H. Li, M. Shen, B. Li, X. Zhang, and X. Fan, Solvent-Dependent Selective Synthesis of CF₃-Tethered
 Indazole Derivatives Based on Multiple Bond Activations. *Org. Lett.*, 2023, 25, 720-725.
- (3) K.-I. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Synthesis of Five-, Six-, and Seven-Membered Ring Lactams by Cp*Rh Complex-Catalyzed Oxidative *N*-Heterocyclization of Amino Alcohols. *Org. Lett.*, 2004, 6, 2785-2788.
- S.-L. Yedage and B.-M. Bhanage, *tert*-Butyl Nitrite-Mediated Synthesis of N-Nitrosoamides, Carboxylic Acids, Benzocoumarins, and Isocoumarins from Amides. J. Org. Chem., 2017, 82, 5769-5781.
- C. Hu, Z. Zhang, W. Gao, G. Zhang, T. Liu and Q. Liu, PIFA-Promoted Intramolecular Oxidative C(aryl)–H Amidation Reaction: Synthesis of Quinolino[3,4-*b*]quinoxalin-6(5*H*)-ones. *Tetrahedron*, 2018, 74, 665-671.
- S. Pimparkar and M. Jeganmohan, Palladium-Catalyzed Cyclization of Benzamides with Arynes:
 Application to the Synthesis of Phenaglydon and *N*-Methylcrinasiadine. *Chem. Commun.*, 2014, 50, 12116-12119.