Electronic Supplementary Information

Insights into dynamic structural evolution and its sodium storage mechanisms of P2/P3 composite cathode materials for sodium-ion batteries

Yi-Feng Liu,[‡]^a Hai-Yan Hu,[‡]^{b, c} Yan-Fang Zhu,^{*b, c} Dan-Ni Peng,^a Jia-Yang Li,^c Yan-Jiang Li,^c Yu Su,^c Rui-Ren Tang,^{*a} Shu-Lei Chou^{*b,c} and Yao Xiao^{*b, c}

^a College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China. Email: trr@csu.edu.cn
^b College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P.R. China
Email: yanfangzhu@wzu.edu.cn; chou@wzu.edu.cn; xiaoyao@wzu.edu.cn.
^c Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, 325035, P.R. China.

‡ These authors contributed equally to this work.

Experimental section

Material synthesis. The cathode materials Na_{0.44}Mn_{0.7}Co_{0.3}O₂ (referred to as NaMC-0.3) and Na_{0.44}Mn_{0.5}Co_{0.5}O₂ (NaMC-0.5) were synthesized via a method combining thermal polymerization with solid-state high-temperature steering. Initially, sodium acetate (CH₃COONa, Sigma-Aldrich, 99.00%), cobalt acetate (CoCH₃COO)₂·4H₂O, Sigma-Aldrich, 99.90%), and manganese acetate (Mn(CH₃COO)₂·4H₂O, Sigma-Aldrich, purity 99.99%) were dissolved in deionized water to create 0.4 M solution precursors. Stoichiometric amounts of acrylic acid (AA) and a specific quantity of nitric acid (HNO₃) were added to the mixture, resulting in AA-H₂O solutions with a 1:2 volume ratio. The solutions were heated at 180°C for 10 hours to promote the polymerization reaction, resulting in the formation of fluffy xerogels. The xerogels were ground for 10 minutes and then calcined at 550°C for 6 hours to remove organic components. Finally, the samples were sintered at 900°C for 12 hours to produce the final powder products.

Material Characterizations. X-ray diffraction (XRD) patterns were obtained using a D8 Advance Diffractometer (Bruker, Germany) equipped with a Cu K α radiation source ($\lambda 1 = 1.54056$ Å, $\lambda 2 = 1.54439$ Å) over a 2 θ range of 10°–70°. *In situ* XRD analysis was conducted using a specialized Swagelok cell with an aluminum foil window for X-rays. Morphological and structural characteristics were examined using field-emission scanning electron microscopy (SEM, SU-8020, Hitachi Limited, Japan).

Electrochemical tests. During half-cell assembly, the working electrode consisted of a homogeneous mixture comprising 70% active substance by weight, 20% Super P carbon, and 10% polyvinylidene difluoride (PVDF) binder, all mixed in N-methyl-2-pyrrolidone (NMP). The mixture was subsequently coated onto clean aluminium foil and dried under vacuum at 80°C overnight.

CR2032 coin cells were constructed within an argon-filled glove box, utilizing sodium foil and a porous glass fiber as the counter electrode and the separator, respectively. The selected electrolyte was a 1 M NaClO₄ solution in propylene carbonate (PC), supplemented with a 5% volume concentration of fluoroethylene carbonate (FEC) as an additive. Electrochemical assessments were performed using a Neware battery test system (CT-4008, Shenzhen, China) for battery analysis (1C = 120 mA g⁻¹ in 2.0-4.0 V and 1C = 200 mA g⁻¹ in 1.5-4.3 V). CV measurements were conducted using a Princeton instrument testing system. In the full-cell system, an anodic material was prepared from a blend of hard carbon, Super P carbon, and PVDF in a weight ratio of 8:1:1, and pre-sodiated via electrochemical methods (1C = 300 mA g⁻¹). The balancing of the mass between the anode and cathode was adjusted based on their respective reversible capacities. Current density was calculated based on the cathode mass (1C = 120 mA g⁻¹), with testing performed in the voltage range of 1.9–3.9 V at room temperature.

Figure S1. SEM images of (a, c) NaMC-0.3 and (b, d) NaMC-0.5 cathode materials at various magnifications.

Figure S2. Initial galvanostatic charge/discharge curves for (a, b) NaMC-0.3 and (c, d) NaMC-0.5 electrodes in the voltage range of 2.0–4.0 V.

Figure S3. Rate performance for half-cell system: (a, c) Galvanostatic charge/discharge curves of NaMC-0.3 and NaMC-0.5 electrodes versus specific energy at various rates in the voltage range of 2.0–4.0 V, respectively. (b, d) Corresponding Midpoint voltage as well as energy efficiency of NaMC-0.3 and NaMC-0.5 electrodes, respectively.

Figure S4. (a, b) Linear fitting of peak current versus square root of the scan rate of NaMC-0.3 and NaMC-0.5 electrodes, respectively.

Figure S5. (a, b) Galvanostatic charge/discharge curves of NaMC-0.3 electrode versus specific capacity and energy in 1st, 10th, 50th, 100th, 150th, and 200th cycles at 5C, respectively.

Figure S6. Cycling performance of NaMC-0.5 electrode during 200 cycles at 5C after various rates performance tests.

Figure S7. (a, b) The intensity contour maps (bird's eye view) and 3D counter graphs of NaMC-0.3 electrode during the first charge/discharge at 0.1 C in the voltage range of 2.0–4.0 V, respectively.

Figure S8. Detailed *in situ* XRD patterns of NaMC-0.3 electrode at different charge and discharge states.

Figure S9. Rate performance for full-cell system. (a) Galvanostatic charge/discharge curves of NaMC-0.3 electrode versus specific energy at various rates in the voltage range of 1.9–3.9 V. (b) Corresponding Midpoint voltage as well as energy efficiency.

Figure S10. Initial galvanostatic charge/discharge curves for (a, b) NaMC-0.3 and (c, d) NaMC-0.5 electrodes in the voltage range of 1.5–4.3 V.

Figure S11. Electrochemical performance of NaMC-0.5 electrode in half-cell system within 1.5-4.3 V. (a, b) Rate performance and galvanostatic charge/discharge curves versus specific capacity at various rates, respectively.

Figure S12. Rate performance for half-cell: Galvanostatic charge/discharge curves versus specific energy of (a) NaMC-0.3 and (c) NaMC-0.5 electrodes at various rates in the voltage range of 1.5-4.3 V, respectively. Corresponding midpoint voltage as well as energy efficiency of (b) NaMC-0.3 and (d) NaMC-0.5 electrodes.

Figure S13. Cyclic voltammetry of NaMC-0.5 electrode at different scan rates.

Figure S14. Linear fitting of log (*i*) versus log (*v*) plots and linear fitting of peak current versus square root of the scan rate of (a, b) NaMC-0.3, and (c, d). NaMC-0.5 electrodes, respectively.

Sample	0.2 C	0.3C	0.5C	1C	2C	3C	5C	10C
NaMC-0.3	146.6/	131.6/	124.7/	118.2/	110.2/	101.3/	96.4/	85.9/
	142.2	129.4	121.9	112.5	102.3	95.6	87.7	76.6
NaMC-0.5	71.2/	70.3/	66.0/	61.5/	61.2/	59.6/	57.6/	56.5/
	69.6	69.3	65.5	60.9	60.3	58.7	56.5	53.9

Table S1. Summary of charge and discharge specific capacity (mAh g^{-1}) at different rates for NaMC-0.3 and NaMC-0.5 electrodes in half-cell system within 2.0-4.0 V.

Sample	0.2 C	0.3C	0.5C	1C	2C	3C	5C	10C
NaMC-0.3	379.0/	352.0/	333.4/	314.8/	292.9/	279.2/	265.5/	246.6/
	369.8	342.0	324.5	301.8	276.4	261.0	244.5	213.2
NaMC-0.5	198.3/	195.2/	183/	170.8/	169.3/	166.0/	160.7/	154.6/
	188.3	188.2	177.4	165.0	162.9	158.9	153.2	146.0

Table S2. Summary of charge and discharge specific energy (Wh kg^{-1}) at different rates for NaMC-0.3 and NaMC-0.5 electrodes in half-cell system within 2.0-4.0 V.

Table S3. Comparison of structural features, chemical composition, synthesis methods, and electrochemical performance of reported similar cathode materials in half-cell systems.

Cathode materials	naterials Synthesis methods		Discharge capacity	Rate performance	Cycle performance	Reference
P2/P3- Na _{0.44} Mn _{0.7} Co _{0.3} O ₂	Thermal polymerization	1C=120 mA g ⁻¹	142.2 mAh g ⁻¹ (0.2C, 2.0-4.0 V)	65.7% (5C/0.2C)	84.7% (200, 5C)	This work
P2/Tunnel- Na _{0.44} Mn _{0.9} Co _{0.1} O ₂	Thermal polymerization	1C=120 mA g ⁻¹	173.0 mAh g ⁻¹ (0.2C, 2.0-4.0 V)	62.0% (5C/0.2C)	82.0% (100, 5C)	Angew. Chem., Int. Ed., 2020, 59, 1491-1495.
P2- Na _{0.44} Mn _{0.99} W _{0.01} O ₂	Solid-state reaction	1C=121 mA g ⁻¹	180.0 mAh g ⁻¹ (0.2C, 2.0-4.0 V)	41.6% (5C/0.2C)	80.0% (200, 5C)	Adv. Energy Mater., 2023, 13, 2203802.
Tunnel- Na _{0.44} Mn _{0.95} Mg _{0.05} O ₂	Solid-state reaction	1C=100 mA g ⁻¹	105.0 mAh g ⁻¹ (0.2C, 2.0-3.8 V)	80.9% (5C/0.2C)	72.0% (800, 5C)	Adv. Sci., 2021, 8, 2004448.
Tunnel- Na _{0.44} Mn _{0.98} Zr _{0.02} O ₂	oxalic acid solution	/	112.0 mAh g ⁻¹ (0.2C, 2.0-3.8 V)	89.2% (5C/0.2C)	80% (1000, 5C)	ChemElectroChem, 2020, 7, 2545-2552.
Tunnel- Na _{0.44} Mn _{0.97} Al _{0.01} Ti _{0.01} Co _{0.01} O ₂	Solid-state reaction	/	136.0 mAh g ⁻¹ (0.2C, 2.0-4.0 V)	72.7% (5C/0.2C)	80% (2000, 10C)	Inorg. Chem. Front., 2023, 10, 841-849.
P2/Tunnel- Na _{0.44} MnO _{1.93} F _{0.07}	oxalic acid solution	/	165.0 mAh g ⁻¹ (0.2C, 2.0-4.2 V)	61.8% (5C/0.2C)	79% (400, 5C)	J. Power Sources, 2019, 427, 129-137.
P2/Tunnel- Na _{0.44} Mn _{0.95} Ni _{0.05} O ₂	Solid-state reaction	$1C=121 \text{ mA g}^{-1}$	112.0 mAh g ⁻¹ (0.2C, 2.0-4.0 V)	46.4% (2C/0.2C)	77.3% (100, 0.3C)	J. Solid State Chem., 2023, 318, 123741.
P2- Na _{0.44} Mn _{0.89} Ni _{0.11} O ₂	Thermal polymerization	10-120 11	193.0 mAh g ⁻¹ (0.1C, 2.0-4.2 V)	47.0% (5C/0.1C)	74.0% (100, 0.1C)	J. Solid State Electro.,
P2/Tunnel- Na _{0.44} Mn _{0.89} Mg _{0.11} O ₂	Thermal polymerization	1C=120 MA g -	188.0 mAh g ⁻¹ (0.1C, 2.0-4.2 V)	51.0% (5C/0.1C)	81.0% (100, 0.1C)	2019, 23, 2979-2988.

Sample	0.2 C	0.3C	0.5C	1C	2C	3C	5C	10C
NaMC-0.3	168.7/	146.7/	138.0/	130.0/	122.1/	116.7/	111.0/	104.5/
	159.6	142.6	134.6	125.5	118.1	113.5	105.2	95.0
NaMC-0.5	126.5/	115.8/	107.8/	97.3/	88.2/	79.0/	71.4/	60.7/
	124.8	113.0	104.7	91.4	81.4	74.0	64.4	49.0

Table S4. Summary of charge and discharge specific capacity (mAh g^{-1}) at different rates for NaMC-0.3 and NaMC-0.5 electrodes in half-cell system within 1.5-4.3 V.

Sample	0.2 C	0.3C	0.5C	1C	2C	3C	5C	10C
NaMC-0.3	434.2/	390.0/	373.5/	358.2/	345.5/	336.7/	324.8/	301.8/
	407.9	364.1	347.3	325.6	306.5	290.0	270.6	229.0
NaMC-0.5	328.7/	300.3/	281.9/	254.2/	233.5/	216.3/	196.8/	154.9/
	302.5	273.7	250.1	218.7	193.0	175.1	152.9	115.3

Table S5. Summary of charge and discharge specific energy (Wh kg⁻¹) at different rates for NaMC-0.3 and NaMC-0.5 electrodes in half-cell system within 1.5-4.3 V.