Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Metal-free negative linear compressibility (NLC) material the cocrystal of 1,2-bis(4-pyridyl)ethane and fumaric acid

Ewa Patyk-Kaźmierczak,* Michał Kaźmierczak

Adam Mickiewicz University in Poznań, Uniwerystetu Poznańskiego 8, 61-614 Poznań, Poland ewapatyk@amu.edu.pl

Table of Contents

Expo	erime	ntal details	3
1.	Co	crystal synthesis	3
	1.1.	Slow evaporation	3
	1.2.	Solvent-assisted ball milling	3
2.	X-1	ray diffraction experiments	3
	2.1.	Single crystal X-ray diffraction (SCXRD)	3
	2.2.	Powder X-ray diffraction (PXRD)	4
3.	Cr	ystal structure solution	4
4.	Pri	ncipal axis strain calculations	4
5.	Co	mpressibility capacity calculations	5
6.	CS	D data-mining	5
7.	NL	.C comparison	5
8.	Th	eoretical calculations	7
Tabl	es		8
1.	Ex	perimental tables	8
2.	Pri	ncipal axis strain calculations for ETYFUM	12
3.	De	tails on Negative Linear Compressibility (NLC) in selected materials	14
	3.1.	Lists of NLC materials selected from literature and found in CSD	14
	3.2.	Principal axis strain calculation for selected NLC materials	16
4.	Co	mpressibility capacity values for selected NLC materials	41
5.	Wi	ne rack motif geometry	42
6.	H-	bond energy	43
Figu	res		44
1.	Sar	nple crystals	44
2.	РХ	RD patterns	46
3.	Pri	ncipal axis strain of ETYFUM	46
4.	Mo	blecular aggregation and wine rack motif geometry	47
5.	Ne	gative Linear Compressibility	48
6.	Со	mpressibility capacity	49
Refe	rence	S	52

Experimental details

1. Cocrystal synthesis

1.1. Slow evaporation

18.4 mg of 1,2-bis(4,4'-pyridyl)ethane (ETY) and 11.6 mg of fumaric acid (FUM) (1:1 mol. ratio) were dissolved in hot methanol and then left for slow evaporation. The good quality crystals emerged after couple of days (Figures S1-S3)

1.2. Solvent-assisted ball milling

61 mg of 1,2-bis(4,4'-pyridyl)ethane (ETY) and 38.9 mg of fumaric acid (FUM), ensuring 1:1 mol. ratio, were mixed and placed in a 6 ml in-house made Teflon milling cup alongside Teflon ball (5 mm in diameter) and 3 μ l of 99.8% methanol (analytically pure). Sample was then milled for 15 minutes (at 30 Hz frequency) using 400 MM ball mill from Retsch. After completion of the milling sample was measured using powder X-ray diffraction.

2. X-ray diffraction experiments

- 2.1. Single crystal X-ray diffraction (SCXRD)
- 2.1.1. Ambient conditions

A single crystal (0.46x0.17x0.09 mm) suitable for SCXRD experiment was mounted on a MiTeGen loop and measured with SuperNova four-circle single crystal diffractometer from Rigaku Oxford Diffraction, equipped in mirror monochromator, micro-focus sealed X-ray tube (Cu K_{α} =1.54184 Å) and Atlas detector. Data were collected using CrysAlisPro¹ program at 298 K

2.1.2. High-pressure

In total three sample crystals of ETYFUM (herein labelled A, B, C; see Figures S1-S3) were selected for three series of high-pressure experiments. Each crystal was loaded in a specially prepared modified Merrill-Bassett² diamond anvil cell (DAC). To prepare the DAC an opening of 0.4-0.5 mm in diameter was drilled in a steel gasket (0.3 mm thick) using spark eroding machine. It was then placed in DAC and preindentation was performed to provide tight fitting of the gasket to the diamond culets and to harden the steel. A ruby chip was place in an opening (to allow pressure measurement) alongside cellulose fibres used to prevent crystal movement during the experiment (for crystals A and B). For crystal C a drop of epoxy glue was used to hold crystal in place and to allow its tilted positioning enabling collection of additional X-ray diffraction data. After sample crystal was placed in DAC the opening was covered with Daphne 7575 oil (ensuring hydrostatic conditions up to c.a. 4 GPa³), used as pressure-transmitting medium (PTM). The following experimental series were performed:

- Sample crystal A: ETYFUM was compressed up to 3.00(2) GPa and then DAC was gradually decompressed to 2.44(2), 1.85(2), 1.25(2), 0.79(2), 0.35(2) GPa with XRD measurement at each stage (Figure S1, Table S1). Sample was then compressed rapidly to 3.78(2) GPa when destruction of sample crystal was observed (Figure S1).
- (ii) Sample crystal B: ETYFUM was compressed rapidly to 3.58(2) GPa directly after DAC loading, and then measured (Figure S2, Table S1).

(iii) Sample crystal C: ETYFUM was initially gradually compressed from ambient pressure and measured at 0.29(2), 0.53(2), 0.88(2), 1.33(2) GPa. After 1.33(2) GPa measurement sample was decompressed to ambient pressure and then compressed and measured at 0.08(2) and 0.15(2) GPa (Figure S3, Table S1)

Pressure was measured based on the shift of ruby fluorescence line⁴ using Photon Control Inc. spectrometer (affording accuracy of about 0.02 GPa). All data were collected with four-circle single crystal Xcalibur X-ray diffractometer from Rigaku Oxford diffraction, equipped in graphite monochromator, fine-focus sealed X-ray tube (Mo K_{α} =0.71073 Å) and EOS CCD detector. DAC was centred using gasket shadowing method.⁵ For data collection program CrysAlisPro¹ was used.

2.2. Powder X-ray diffraction (PXRD)

A sample obtained after solvent-assisted ball milling was measure using Bruker D8 Advanced diffractometer equipped in copper X-ray tube ($K_{\alpha 1}$ =1.5406 Å), Johnsson monochromator and LynxEye strip detector. The scan was performed for 5-50° 2 ϑ angle range. Data was processed using program Kdif (from Kalvados software package⁶), and were plotted using OriginPro 2022b⁷ in comparison with PXRD pattern calculated based on crystal structure of ETYFUM at 298 K/0.1 MPa using program Mercury⁸ (Figure S4).

3. Crystal structure solution

Program CrysAlisPro¹ was used for *UB*-matrix determination, data reduction and absorption corrections. All crystal structures were solved either by intrinsic phasing (with ShelXT⁹) or direct methods (with ShelXS¹⁰). High-pressure structural models were refined with least-squares method with ShelXL¹¹. For all ShelX programs Olex2¹² was used as an interface. Structure (including hydrogen atoms) at 0.1 MPa/298 K was non-spherically refined with NoSpherA2¹³ implemented in Olex2,^{12,14} using Orca¹⁵ (method: PBE, basis set: cc-pVTZ, multiplicity: 2). For high-pressure structures, the hydrogen atoms were located at idealized positions based on the molecular geometry and assigned isotropic thermal parameters depending on the equivalent displacement parameters of their carriers. Due to the low number of collected data (affecting data/parameter ratio) anisotropic refinement of high-pressure structures was not possible and structures were refined isotropically. All crystal structures were deposited with the Cambridge Crystallographic Data Centre (CCDC: 2340674-2340687) and can be accessed free of charge by filling out an online form at https://www.ccdc.cam.ac.uk/structures/. Crystallographic details for all structures are listed in Table S1.

4. Principal axis strain calculations

Principal axis strain calculations for ETYFUM were performed using PASCal program^{16,17} available at https://www.pascalapp.co.uk/. The ESDs on pressure values were used as weights for each data point. For the best quality data (ambient pressure crystal structure and data collected for sample crystal A) ESDs of 1 and 2 were assigned, respectively. Remaining data of poorer quality were assigned weight equal 3. All data points used for the calculations, as well as the results obtained from PASCal are collected in Tables S2-S6. An indicatrix plot showing principal axis strain is shown in Figure S5.

Where data was available, i.e., structures were deposited in Cambridge Structural Database (CSD)¹⁸ and/or unit-cell parameters were listed in original paper, program PASCal^{16,17} was used to calculate principal axis strain for other materials referenced in this work for comparison. It was done to ensure comparability of the results, by performing calculations in the same manner. Input data and the results can be found in Tables S9-S28. Our results and compressibility values reported in original publications are listed in Table S7.

In all cases a finite Eulerian strain was calculated and an empirical equation-of-state $\epsilon(p) = \epsilon_0 + \lambda (p - p_c)^{\nu}$ was fitted to the strain eigenvalues. The compressibility vs. pressure plots for all NLC materials compared in this work are shown in graph in Figure S8.

5. Compressibility capacity calculations

To calculate compressibility capacity (χ_K), functions fitted by PASCal to negative strain eigenvalues for each NLC material were exported and plotted in function of pressure. Functions were then integrated for selected minimum and maximum pressure values (for Δp of 0.15, 0.9, 2.0, 3.0 GPa range, and for the total pressure range each material was investigated in) using program OriginPro⁷ (the results are shown graphically in Figures S9 and

$$\chi_K = -\int_{-\infty}^{p_{max}} K(p) dp$$

S10). According to the definition of compressibility capacity: p_{min} , the area values obtained after integration need to be multiplied by -1, and discrepancy in pressure units should be taken into account (compressibility expressed in TPa⁻¹ plotted in function of pressure expressed in GPa). Therefore, to express χ_K in [%], values obtained from integration were multiplied by 10⁻³ (to allow nit conversion), and by 100 to express it in [%]. All calculated values of compressibility capacity calculated in this work are listed in Table S31.

In case of $InH(BDC)_2^{19}$ and $MIL-53(AI)^{20}$ no information on the unit-cell parameters was provided in the original papers, and structures were not deposited in CSD. Therefore, it was not possible to calculate principal axis strain and to access the function fitted to the strain eigenvalues. However, since, both materials exhibit significant NLC it was advisable to use them as reference. Therefore, graphs from the original papers representing compressibility values were used to read the values using an online program Graph Reader (http://www.graphreader.com/). Data (listed in Tables S29 and S30) were plotted using OriginPro⁷. Function $y = a + bx^c$ was fitted to MIL-53(AI) data, and function $y = a(x - b)^c$ was fitted InH(BDC)₂ data, to enable integral evaluation (the exact functions are listed below Tables S29 and S30). The compressibility capacity values for all NLC materials used in comparison are shown graphically in Figure 4 in the manuscript and Figure S11.

6. CSD data-mining

The Cambridge Structural Database (version 5.45) was data-mined by original scripts using CSD Python API¹⁸ to extract high-pressure refcode families in specific crystallographic systems (triclinic, trigonal and hexagonal; all orthogonal crystal systems, i.e. orthorhombic, tetragonal and cubic were data-mined jointly). Only families containing at least 5 refcodes of unique pressure value of measurement were taken into consideration.

7. NLC comparison

General remarks on NLC reporting and analysis: To properly asses the NLC behaviour of ETYFUM (or any other crystal) in comparison to other materials, several aspects of the manner in which data were reported in the literature need to be considered. It needs to be established and clearly disclosed whether maximal (most negative) value was given or the median (the most commonly reported value and the value produced by PASCal, a widely used principal axis strain calculator^{16,17}). This will allow to avoid comparison of two values of a different meaning. Additionally, the number of experimental points, the intervals between them, and pressure range used for calculation of eigenvectors can affect the median value of compressibility. Therefore, it is important to state the pressure range the calculations were performed for, as well as the complete list of data points used, as omission or limitation of the data can shift the median to lower- or higher-pressure values, affecting reported median compressibility.

Compound used for comparison of compressibility were selected according to the following rules:

- 1) The results of CSD data-mining were used to create graphs representing relative changes in the unit-cell parameters to visually select crystal structures exhibiting NLC and NAC (see Table S8).
- 2) In case of inconclusive graphs, we have investigated whether one refcode family included more than one polymorph of given compound. In such cases data were analyzed individually for each crystal form, and only if at least 4 data points were reported for the NLC/NAC-exhibiting phase it was selected for further consideration and was included in Table S8.
- 3) When the same REFCODE was assigned to a crystal investigated with different PTM (eg. penetrating and non-penetrating) data were analyzed individually for each experimental series, and only if at least 4 data points were reported for the NLC/NAC-exhibiting phase it was selected for further consideration and was included in Table S8.
- 4) Out of the deposits found in CSD (selected according to the above-mentioned criteria) the organic crystals, crystals of organic-inorganic salts and metal complexes exhibiting NLC were selected for detailed analysis and calculation of compressibility with PASCAal^{16,17} (to show how ETYFUM performs in comparison to crystals pf the similar nature).
- 5) Additionally, crystals described in the literature as exhibiting "giant", "colossal", "large" etc. NLC were selected for detailed analysis and calculation of compressibility capacity (if lattice constants were provided and at least 4 data points were reported either in CSD or original papers, with some exceptions described below). In some cases these structures overlapped with the structures found by data mining of CSD, but were not selected for analysis in previous steps due to the nature of the crystal.
- 6) If a literature source referenced an example of organic crystal exhibiting NLC of magnitude -10 TPa⁻¹ and higher (i.e. more negative) it was also included in comparison, provided at least 4 data points were reported and lattice constants were provided either in CSD or original papers).
- 7) If structures used in analysis were deposited in CSD they are referenced by their REFCODES (Table S8). In other cases they were referenced by formulas or acronyms given in original reports.
- 8) In some cases (LUKWAS/LUKWOG, BIUREA I, OTELEH, YIHHON, VOFAN, LOCCAI), due to the low number of experimental points, compressibility calculations yielded highly uncertain results (strongly negative *K* values accompanied by no or extremely high ESDs). For this reason, although compressibility was initially calculated for these materials they were excluded from further analysis (including calculation of compressibility capacity) and comparison. If calculated compressibility value for the lowest pressure given material was investigated in was close to 0, but accompanied by high ESD it was included in the analysis. The exception was made for Ag₃[Co(CN)₆] Phase I, CPOS-1 and water@CPOS-1, where low number of experimental data yielded results without ESDs. Still effects reported for these materials were so exceptional it was decided they should be analyzed in context of NLC in ETYFUM.
- 9) In total, NLC effects in 17 materials (including ETYFUM and treating each polymorph exhibiting NLC as an individual material) were used for comparison and compressibility capacity calculations.
- 10) For compressibility capacity comparison, the literature data reported by Cairns and Goodwin in their review²¹ for some of the materials referenced by us were also included in discussion (Figures 4 and S11).
- 11) The following widths of pressure range were selected for compressibility capacity calculation:
- 0.15 GPa (to allow comparison to Ag₃[Co(CN)₆] Phase I)
- 0.90 GPa (to allow comparison to MAGVOG I, and at the same time as 0.9 GPa is close to 1 GPa, one of the pressure limits considered relevant industrially if 0.1 MPa is considered the lower pressure limit)

- 2 GPa (the higher limit considered as industrially relevant if 0.1 MPa is considered the lower pressure limit)
- 3 GPa
- The entire pressure range each material was investigated in (according to data provided in literature)

Note these bins do not apply to all NLC materials analyzed herein, as some compounds were investigated in a pressure ranges more narrow that the ones selected.

8. Theoretical calculations

In order to assess the H-bond energy of the two types of hydrogen bonds (O-H…N and C-H…O) that play role in the molecular aggregation of the ETY and FUM molecules in ETYFUM crystal, the complexation energy was calculated (using counterpoise method) for two aggregates of the coformers (generated based on crystal structure at 298 K/0.1 MPa and shown in Table S34). Program GaussView 6.1.1,²² Gaussian 16,²³ and hf/3-21g basis set was used for calculations. The results are listed in Table S34.

Tables

1. Experimental tables

Table S1. Experimental and crystallographic details for ETYFUM. For all structures: C ₁₂ H ₁₂ N ₂ ·C ₄ H ₄ O ₄ , <i>M</i> _r = 300.31
monoclinic, <i>I2/a, Z</i> = 4, <i>F</i> (000) = 632. Experiments were carried out at 298 K.

	-	_	-	-
	etyfum	etyfum_008	etyfum_015	etyfum_029
Crystal data	Γ	1	1	1
Sample crystal	N.A	С	С	С
Pressure (GPa)	0.0001(2)	0.08(2)	0.15(2)	0.29(2)
Type of experiment	N.A	Compression	Compression	Compression
a, b, c (Å)	16.6937 (2), 4.8165 (1), 19.6871 (3)	16.68 (4), 4.7884 (10), 19.65 (5)	16.72 (3), 4.7728 (7), 19.70 (4)	16.70 (3), 4.7020 (6), 19.65 (4)
в (°)	109.083 (2)	109.1 (3)	110.1 (2)	110.1 (3)
V (Å ³)	1495.96 (5)	1483 (6)	1476 (4)	1449 (5)
Radiation type	Cu <i>Κ</i> α	Μο <i>Κ</i> α	Μο Κα	Μο <i>Κ</i> α
μ (mm⁻¹)	0.81	0.10	0.10	0.10
Crystal size (mm)	0.46 × 0.17 × 0.09	0.33 × 0.22 × 0.03	0.33 × 0.22 × 0.03	0.31 × 0.2 × 0.03
Data collection				
Diffractometer	SuperNova, Atlas	Xcalibur, Eos	Xcalibur, Eos	Xcalibur, Eos
Absorption corr.	Analytical ^a	Gaussian ^b	Gaussian ^b	Gaussian ^b
T _{min} , T _{max}	0.799, 0.936	0.403, 0.453	0.403, 0.453	0.406, 0.452
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	12205, 1548, 1421	1576, 328, 135	1360, 315, 123	2621, 361, 171
R _{int}	0.027	0.094	0.068	0.098
(sin θ/λ) _{max} (Å ⁻¹)	0.630	0.639	0.678	0.635
Refinement		·		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.019, 0.052, 1.08	0.068, 0.168, 1.02	0.068, 0.169, 1.02	0.067, 0.184, 1.07
No. of reflections	1548	328	315	361
No. of parameters	173	45	45	45
No. of restraints	0	1	3	2
H-atom treatment	All H-atom parameters refined	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0264P)^{2} + 0.1012P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0481P)^{2} + 2.6463P] \text{ where } P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0716P)^{2}] \text{ where } P$ $= (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0606P)^{2} + 3.1946P]$ where P = (F_{o}^{2} + 2F_{c}^{2})/3
$\Delta \rho_{max}, \Delta \rho_{min}$ (e A ⁻³)	0.12, -0.10	0.17, -0.12	0.13, -0.18	0.13, -0.18

Table S1. Experimental and crystallographic details for ETYFUM. For all structures: $C_{12}H_{12}N_2 \cdot C_4H_4O_4$, $M_r = 300.31$, monoclinic, I2/a, Z = 4, F(000) = 632. Experiments were carried out at 298 K- *continuation*.

etyfum_035 etyfum_053	etyfum_079
-----------------------	------------

Crystal data			
Sample crystal	A	С	A
Pressure (GPa)	0.35(2)	0.53(2)	0.79(2)
Type of experiment	Decompression	Compression	Decompression
a, b, c (Å)	16.686 (12), 4.6593 (13), 19.75 (3)	16.73 (3), 4.5924 (6), 19.74 (4)	16.758 (12), 4.5205 (17), 19.83 (2)
β (°)	110.45 (12)	110.9 (3)	111.80 (11)
V (ų)	1439 (2)	1417 (5)	1394 (2)
Radiation type	Μο Κα	Μο Κα	Μο Κα
μ (mm⁻¹)	0.10	0.10	0.10
Crystal size (mm)	0.22 × 0.19 × 0.04	0.31 × 0.2 × 0.03	0.22 × 0.19 × 0.04
Data collection			
Diffractometer	Xcalibur, Eos	Xcalibur, Eos	Xcalibur, Eos
Absorption corr.	Gaussian ^b	Analytical ^a	Gaussian ^b
T _{min} , T _{max}	0.996, 0.997	0.997, 0.998	0.995, 0.996
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	1080, 329, 180	3104, 401, 200	937, 308, 185
R _{int}	0.075	0.085	0.079
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)	0.622	0.639	0.604
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.089, 0.267, 1.00	0.076, 0.180, 1.03	0.085, 0.264, 1.04
No. of reflections	329	401	308
No. of parameters	46	45	46
No. of restraints	0	2	0
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (0.1591P)^2]$ where P = (F_o^2 + 2F_c^2)/3	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.061P)^{2} + 3.5496P]$ where P = $(F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^2(F_o^2) + (0.166P)^2]$ where P = (F_o^2 + 2F_c^2)/3
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.21, -0.17	0.16, -0.20	0.20, -0.17

	etyfum_088	etyfum_125	etyfum_133	etyfum_185
Crystal data				
Sample crystal	С	A	С	A
Pressure (GPa)	0.88(2)	1.25(2)	1.33(2)	1.85(2)
Type of experiment	Compression	Decompression	Compression	Decompression
a, b, c (Å)	16.72 (2), 4.4815 (7), 19.84 (3)	16.758 (8), 4.3755 (10), 19.955 (11)	16.79 (9), 4.3174 (13), 19.94 (9)	16.808 (6), 4.2460 (8), 20.027 (8)
β (°)	111.79 (18)	113.05 (6)	113.2 (6)	114.38 (5)
V (ų)	1380 (3)	1346.4 (11)	1329 (11)	1301.8 (8)
μ (mm⁻¹)	0.11	0.11	0.11	0.11
Crystal size (mm)	$0.31 \times 0.2 \times 0.03$	$0.22 \times 0.19 \times 0.04$	$0.31 \times 0.2 \times 0.03$	$0.24 \times 0.20 \times 0.04$
Data collection				
Absorption corr.	Gaussian ^b	Gaussian ^b	Gaussian⁵	Gaussian ^b
T _{min} , T _{max}	0.397, 0.452	0.995, 0.996	0.403, 0.452	0.995, 0.996
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	2493, 420, 192	2212, 347, 228	2369, 356, 158	2475, 351, 218
R _{int}	0.102	0.083	0.142	0.088
(sin θ/λ) _{max} (Å ⁻¹)	0.637	0.610	0.633	0.609
Refinement	·			
R[F ² > 2σ(F ²)], wR(F ²), S	0.086, 0.228, 1.06	0.066, 0.192, 1.06	0.067, 0.183, 1.00	0.059, 0.198, 1.13
No. of reflections	420	347	356	351
No. of parameters	45	46	45	46
No. of restraints	2	0	1	0
Weighting scheme	$w = \frac{1}{[\sigma^{2}(F_{o}^{2}) + (0.0829P)^{2} + 1.6991P]}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1124P)^{2} + 1.7845P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = \frac{1}{[\sigma^{2}(F_{o}^{2}) + (0.0654P)^{2}]}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0998P)^{2} + 1.2687P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	0.15, -0.18	0.18, -0.23	0.12, -0.13	0.20, -0.21

Table S1. Experimental and crystallographic details for ETYFUM. For all structures: $C_{12}H_{12}N_2 \cdot C_4H_4O_4$, $M_r = 300.31$, monoclinic, I2/a, Z = 4, F(000) = 632. Experiments were carried out at 298 K- *continuation*.

	etyfum_244	etyfum_300	etyfum_358
Crystal data			
Sample crystal	A	Α	В
Pressure (GPa)	2.44(2)	3.00(2)	3.58(2)
Type of experiment	Decompression	Compression	Compression
a, b, c (Å)	16.836 (10), 4.1496 (11), 20.120 (14)	16.874 (16), 4.0560 (16), 20.17 (2)	16.89 (5), 3.9930 (4), 20.19 (5)
β (°)	115.18 (8)	116.14 (13)	115.9 (4)
V (Å ³)	1272.0 (14)	1239 (2)	1225 (6)
μ (mm⁻¹)	0.11	0.12	0.12
Crystal size (mm)	0.22 × 0.19 × 0.04	0.22 × 0.19 × 0.04	0.34 × 0.26 × 0.05
Data collection			
Absorption corr.	Analytical ^a	Gaussian ^b	Gaussian ^b
T _{min} , T _{max}	0.995, 0.996	0.995, 0.996	0.396, 0.450
No. of measured, independent and observed [/ > 2σ(/)] reflections	1394, 327, 173	688, 269, 158	1236, 205, 98
R _{int}	0.091	0.089	0.083
(sin θ/λ) _{max} (Å ⁻¹)	0.612	0.604	0.663
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.070, 0.236, 1.07	0.061, 0.157, 1.08	0.083, 0.279, 1.10
No. of reflections	327	269	205
No. of parameters	46	46	34
No. of restraints	0	0	3
Weighting scheme	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1175P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2]$ where P = (F_o^2 + 2F_c^2)/3	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1618P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	0.23, -0.31	0.14, -0.15	0.16, -0.14

Table S1. Experimental and crystallographic details for ETYFUM. For all structures: $C_{12}H_{12}N_2 \cdot C_4H_4O_4$, $M_r = 300.31$, monoclinic, I2/a, Z = 4, F(000) = 632. Experiments were carried out at 298 K- *continuation*.

^a CrysAlis PRO 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

^b CrysAlis PRO 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Numerical absorption correction based on gaussian integration over a multifaceted crystal model (Absorb Angel (2004) J. Appl. Cryst. 37:486-492)

Computer programs: *CrysAlis PRO* 1.171.41.93a (Rigaku OD, 2020), SHELXT 2014/4 (Sheldrick, 2014), SHELXT (Sheldrick, 2015), *SHELXS* (Sheldrick, 2008), *SHELXL* 2014/7 (Sheldrick, 2015), Olex2 1.5 (Dolomanov *et al.*, 2009), olex2.refine 1.5 (Bourhis et al., 2015).

2. Principal axis strain calculations for ETYFUM

				Direction		Empirical parameters			
Axes	<i>К</i> (ТРа ⁻¹)	<i>σK</i> (TPa ⁻¹)	а	b	С	ε	λ	p _c	V
X ₁	68.013	2.2443	-0.0	1.0	-0.0	152.8631	-152.8235	-1.3111	0.0009
X ₂	27.8274	1.8883	0.7788	0.0	0.6273	73.4964	-73.5008	-0.9098	0.0006
X ₃	-24.3616	0.9754	0.7292	0.0	-0.6843	-75.3736	75.3449	-1.6144	0.0008
V	54.0133	4.1208							

Table S2. Principal axis strain calculation output for ETYFUM (0.1 MPa-3.58 GPa pressure range).

Table S3. Birch-Murnaghan coefficients for ETYFUM all data (0.1 MPa-3.58 GPa pressure range).

	B ₀ (GPa)	σB_0 (GPa)	V ₀ (ų)	σV ₀ (ų)	Β'	σΒ'	p _c (GPa)
2nd	11.2529	0.4323	1487.528	5.3724	4.0	n/a	0.0
3rd	7.3076	0.8266	1498.1606	5.3212	9.1543	1.4172	0.0

Table S4. Compressibility K (TPa⁻¹) for ETYFUM (0.1 MPa-3.58 GPa pressure range).

<i>p</i> (GPa)	<i>K</i> ₁ (TPa ⁻¹)	<i>K</i> ₂ (TPa ⁻¹)	<i>K</i> ₃ (TPa⁻¹)	<i>σK</i> ₁ (TPa ⁻¹)	<i>σK</i> ₂ (TPa⁻¹)	<i>σK</i> ₃ (TPa ⁻¹)
0.0001	108.9387	51.9632	-36.2692	9.7938	11.1588	5.9181
0.08	102.6872	47.7713	-34.5602	6.8996	7.3013	4.5406
0.15	97.7719	44.618	-33.1902	5.0508	4.987	3.5899
0.29	89.2302	39.415	-30.7521	2.8531	2.4037	2.2456
0.35	86.01	37.539	-29.8136	2.4141	1.9347	1.8529
0.53	77.6084	32.8489	-27.3129	2.1512	1.7655	1.1769
0.79	68.013	27.8274	-24.3616	2.2443	1.8883	0.9754
0.88	65.2219	26.429	-23.4833	2.1957	1.8422	0.9686
1.25	55.8073	21.9041	-20.4522	1.6967	1.4246	0.9118
1.33	54.1184	21.1222	-19.8969	1.57	1.3254	0.8936
1.85	45.2235	17.1447	-16.9126	1.2383	0.9978	0.8976
2.44	38.1164	14.1268	-14.4533	2.0496	1.3592	1.2517
3.0	33.1695	12.1047	-12.7005	2.9582	1.83	1.6958
3.58	29.2396	10.5419	-11.2834	3.7424	2.2297	2.1213

Table S5. The percentage change in the length of principal axes on compression (for experimental and calculated values)

	Exp	eriment	al	Calculated			
p (Graj	X1 (%)	X ₂ (%)	X ₃ (%)	X _{1,calc} (%)	X _{2,calc} (%)	X _{3,calc} (%)	
0.0001	-0.0	0.0	0.0	0.0921	0.0008	-0.0591	
0.08	-0.5851	-0.199	-0.082	-0.7528	-0.3972	0.2237	
0.15	-0.9114	-1.1396	0.7471	-1.4542	-0.7203	0.4608	
0.29	-2.4055	-1.3324	0.5671	-2.7614	-1.3071	0.9079	
0.35	-3.317	-1.562	1.003	-3.287	-1.5378	1.0896	
0.53	-4.7607	-1.997	1.3788	-4.7569	-2.1694	1.6031	
0.79	-6.3336	-2.8143	2.2615	-6.6445	-2.9546	2.2734	
0.88	-7.1958	-2.9072	2.1795	-7.2439	-3.1987	2.4886	
1.25	-9.5709	-4.1065	3.3915	-9.4739	-4.0876	3.2989	
1.33	-10.892	-4.2173	3.5308	-9.9135	-4.2597	3.4602	
1.85	-12.5335	-5.4633	4.5663	-12.4826	-5.2474	4.4131	
2.44	-14.78	-6.1948	5.4055	-14.9292	-6.1642	5.3346	
3.0	-16.9922	-7.1966	6.2631	-16.9188	-6.8958	6.0928	
3.58	-18.4969	-6.7909	6.2034	-18.7238	-7.5504	6.7867	

Table S6. Input data for calculations for ETYFUM all data (0.1 MPa-3.58 GPa pressure range).

p (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å)	c (Å)	α (º)	<i>в</i> (⁰)	γ (º)
0.0001	1.0	16.6937	4.8165	19.6871	90.0	109.083	90.0
0.08	3.0	16.68	4.7884	19.65	90.0	109.1	90.0
0.15	3.0	16.72	4.7728	19.7	90.0	110.1	90.0
0.29	3.0	16.7	4.702	19.65	90.0	110.1	90.0
0.35	2.0	16.686	4.6593	19.75	90.0	110.45	90.0
0.53	3.0	16.73	4.5924	19.74	90.0	110.9	90.0
0.79	2.0	16.758	4.5205	19.83	90.0	111.8	90.0
0.88	3.0	16.72	4.4815	19.84	90.0	111.79	90.0
1.25	2.0	16.758	4.3755	19.955	90.0	113.05	90.0
1.33	3.0	16.79	4.3174	19.94	90.0	113.2	90.0
1.85	2.0	16.808	4.246	20.027	90.0	114.38	90.0
2.44	2.0	16.836	4.1496	20.12	90.0	115.18	90.0
3.0	2.0	16.874	4.056	20.17	90.0	116.14	90.0
3.58	3.0	16.89	3.993	20.19	90.0	115.9	90.0

3. Details on Negative Linear Compressibility (NLC) in selected materials

3.1. Lists of NLC materials selected from literature and found in CSD

Table S7. Reported and calculated NLC values for selected NLC materials.

Crystal	Median compress	ibility
(REFCODE)	Reported	Calculated in this work

	<i>K</i> (TPa⁻¹)	Δ <i>p</i> (GPa)	ref	<i>К</i> (ТРа ⁻¹)	Δ <i>p</i> (GPa)
ETYFYM				-24.36(98)	0.0001-3.58
Ag ₃ [Co(CN) ₆] Phase I	-76(9)	0.0001-0.157	24	-72	0.0001-0.15
Ag ₃ [Co(CN) ₆] Phase II	-5.3(3)	0.19-7.65	24	-11.91(64)	0.19-7.65
[Ag(en)]NO ₃ -I (MAGVOG)	-28.4(18)	0.0001-0.92	25	-28.3(22)	0.0001-0.92
Lithium L-tartrate	-16(2)	2.01-5.52	26	-15.4(15)	2.01-5.52
(UNIRUF)					
BTCP·dItFB	-30	0.0001-0.7	27	-4.5(15)	0.0001-2.5
(LUKWAS/LUKWOG)					
(C ₆ F ₅ Au) ₂ (μ-1,4-	-12.6(25)	0.0001-2.42	28	-18.8(24)	0.0001-4.39
diisocyanobenzene)					
(JOHGIX)					
Zn[Au(CN) ₂] ₂ Phase I	-42(5)	0.35-1.78	29	-37.1(42)	0.35-1.78
Zn[Au(CN) ₂] ₂ Phase II	-6(3)	2.04-14.22	29	-4.5(10)	2.04-14.22
SULBAC	Not	0.91-2.83	30	-5.9(11)	0.91-2.83
	reported				
BIUREA I	-2.7(5)	0.0001-0.5	31	-5(30)	0.0001-0.5
BIUREA II ^c	-0.856(2)	0.62-3.89	31	-4.6(5)	0.62-2.81
POWSID	-41	0.0001-0.48	32	-16.4(35)	0.0001-2.48
QAXMEH	-5.5(8)	0.54-2.84	33	-5.4(15)	0.54-2.84
CPOS-1	~ -20ª	1.02-2.32	34	-22.7	1.02-2.32
	(-90.7)	(At 2.32)			
WATER@CPOS-1 ^b	-13.3	0.58-2.53	34	-8.0	0.58-2.53
InH(BDC) ₂	-62.4	0-0.53	19		
MIL-53(AI) I	-7.7	0-1.8	20		

^a value not listed, value read form the Graph in Figure 2 of the original paper [ref]

^bThe pressure range used for calculation in original work yielded highly biased values (very high ESD for all values), probably due to the same length of the unit-cell parameter *c* (i.e. direction exhibiting NLC) for the last two pressure points; therefore for calculations in this work the data point at 1.96 GPa was omitted from calculations (omitting the last point i.e. at 2.53 GPa led to software crash and principal axes could not be calculated)

^c The tendency in the pressure-dependence of the length of parameter c (lying close to the principal axis exhibiting NLC) changed above 2.81, therefore data points above that pressure were omitted (including them led to function yielding biased values of compressibility)

Table S8. List of RFCODE families for crystal structures deposited in CSD, where NLC or NAC was observed found by datamining. Crystals were divided based on the type of the crystal: organic, organic-inorganic salts, metal complexes, coordination polymers (including MOFs- refcodes in bold font). The crystal system is denoted by the first letter of the appropriate system: m-monoclinic, o-orthorhombic, t-tetragonal, hexagonal.

Refcode	Crystal system	Ref.	Additional information	Formula	Compound name
				ORGA	NIC
BIUREA	m	31	NLC in Phase I and II	$C_2D_6N_4O_2$	perdeuterohydrazine-1,2-dicarboxamide
EGEWEV	0	35	NLC ^a	C ₇ H₅NO,x(He)	4-hydroxybenzonitrile helium
KOWYEA	0	36	NAC in $\boldsymbol{\beta}$ polymorph	C ₈ H ₈ N ₂	2-methyl-1H-benzimidazole
LOCCAI	m	37	NLC in H1 polymorph	$C_{12}H_{17}N_2S^+, CI^-, H_2O$	2-((2,6-dimethylphenyl)amino)-5,6-dihydro-4H-1,3-thiazin-3-ium chloride monohydrate
QAXMEH	m	33	NLC in yellow polymorph	$C_{12}H_9N_3O_2S$	5-Methyl-2-((2-nitrophenyl)amino)-3-thiophenecarbonitrile
VOFVAN	m	38	NLC above 1GPa	C ₁₃ H ₁₁ NO	4-Aminobenzophenone
YIHHON	0	39	NLC above 2.5 GPa	C ₃ H ₇ NO ₂	2-(Methylamino)acetic acid
				ORGANIC-INOR	GANIC SALTS
IZIYOI	m	40	NLC in high-pressure phase	C ₆ H ₁₃ N ₂ ⁺ ,H ₂ NO ₃ S ⁻ ,H ₂ O	1,4-diazabicyclo[2.2.2]octan-1-ium sulfamate monohydrate
OTELEH	m	41	NLC	$C_2H_6NO_2^+,H_2O_3P^-$	glycinium hydrogen phosphite
				METAL COM	ЛРLEXES
JOHGIX	m	28	NLC	$C_{20}H_4Au_2F_{10}N_2$	$(\mu_2$ -1,4-Di-isocyanobenzene)-bis(pentafluorophenyl)-di-gold
POWSID	m	32	NLC	$C_{38}H_{20}FeN_{10}S_2,C_5H_5N$	bis(Dipyrido(3,2-a:2',3'-c)phenazine)-di-isothiocyanato-iron(ii) pyridine solvate
SULBAC	t	30	NLC	C ₅₆ H ₈₄ O ₄ Th	tetrakis(2,6-di-t-butylphenolato)-thorium(iv)
				COORDINATION POLYM	ERS (including MOFs)
CEGFEA	m	42	NLC in phase I and II	(C ₈ H ₁₀ Ag ₂ N ₄) _n	catena-((µ ₂ -2-Methylimidazole-N,N')-silver(i))
FUVDEH ^b	t	43	NAC	(C ₁₈ H ₁₂ N ₂ O ₃ Zn) _n ,n(H ₂ O)	catena-[(µ ₂ -4-(1H-Naphtho[2,3-d]imidazol-1-yl)benzoato)-(µ ₂ -hydroxo)-zinc(ii) monohydrate]
IFEPUG ^b	t	43	NAC	(C ₁₈ H ₁₂ N ₂ O ₃ Zn) _n ,n(CH ₄ O)	catena-[(µ ₂ -Hydroxo)-(µ ₂ -4-(1H-naphtho[2,3-d]imidazol-1-yl)benzoato)-zinc methanol solvate]
JEXWOZ	m	44	NLC in AMnF-II	(C₃H₃MnO₅⁻)n,n(H₄N⁺)	catena-(ammonium tris(μ ₂ -formato)-manganese(ii))
JEXXAM	h	45	NLC	(C ₃ H ₃ NiO ₆ ⁻) _n ,H ₄ N ⁺	catena-[ammonium tris(μ-formato)-nickel]
MAGVOG	m	25	NLC in Phase I	(C ₂ H ₈ AgN ₂ ⁺) _n ,n(NO ₃ ⁻)	[Ag(en)]NO₃-I (catena-((m2-Ethylene-1,2-diamine-N,N')-silver(i) nitrate))
NEVSUE	+	46	NLC		catena-[tetrakis(µ-hydroxo)-(µ-3,3',5,5'-tetrakis(4-carboxylatophenyl)-2,2',4,4',6,6'-
	٠ ـ		NEC	(C461142O16Z13)n	hexamethyl-1,1'-biphenyl)-tetrakis(hydroxy)-tri-zirconium unknown solvate]
NEVTIU	t	46	NLC	(C ₄₆ H ₄₂ Hf ₃ O ₁₆) _n	catena-[tetrakis(μ-hydroxo)-(μ-3,3',5,5'-tetrakis(4-carboxylatophenyl)-2,2',4,4',6,6'- hexamethyl-1 1'-binbenyl)-tetrakis(hydroxy)-tri-bafnium(iv) unknown solvate]
OVUFAP	m	47	compressed in		catena-[(µ-terephthalato)-(µ-4,4'-diazenediyldipyridine)-cadmium(ii) N,N-dimethylformamide
			methanol:ethanol:water	(018: 1202: 40 4/1) 03: 1/:00	solvate]
UNIRUF	m	26	NLC in phase II	$(C_8H_8Li_4O_{12})_0$	catena-[bis(µ-dihydrogen-L-tartrato)-tetra-lithium]
			NLC when non-penetrating		catena-[(µ2-4,4'-((3,3,4,4,5,5-hexafluorocyclopent-1-ene-1,2-diyl)bis(5-methylthiene-4,2-
YOLKOB	0	48	medium is used (glicerin and	$(C_{39}H_{24}F_6N_2O_4S_2Zn)_n$	diyl))dipyridine)-(μ_2 -biphenyl-4,4'-dicarboxylato)-zinc N,N-dimethylformamide solvate
			daphne oil 7474)	$2n(C_3H_7NO), n(H_2O)$	monohydrate]

3.2. Principal axis strain calculation for selected NLC materials

p (GPa)) σ <i>p</i> (GPa) a	(Å)		b (Å)		c (Å)			α (º)		в	(º)		γ (º)
1.02	1.0	23	3.48		23.48		7.1			90.0		9	0.0		90.0
1.4	1.0	23	3.37		23.37		7.12			90.0		9	0.0		90.0
1.82	1.0	2	3.2		23.2		7.24			90.0		9	0.0		90.0
2.32	1.0	22	2.81		22.81		7.49			90.0		9	0.0		90.0
				Prin	cipal	axis st	rain ca	lcula	ntic	on out	put				
					Di	rectio	n				Em	pirical	paran	neters	S
Axes	<i>К</i> (ТРа ⁻¹)	<i>σK</i> (TI	Pa⁻¹)	а	,	b	С			$\boldsymbol{\varepsilon}_0$		λ	p	c	V
X ₁	14.0516	na	n	1.	0	0.0	-0.	0	0	.0065		-0.0	-63.5	6481	83.8857
X ₂	14.0516	na	n	0.	0	1.0	0.0)	0	.0065		-0.0	-63.5	6481	83.8857
X ₃ -22.6971 nan -0.0 -0.0 1.0 -0.0005 0.0312 1.02 2.0913										2.0913					
V	2.3821	1.94	41												
					Birch	-Murn	aghan	coef	fic	ients					
	B ₀ (GPa)	σB_0	(GPa)	V ₀	(ų)	σV_0	(ų)		В	s'		σΒ'		<i>p</i> _c (GPa)
2nd	90.4	371	125.	6994	94 3968.0243		0243 94.2			4.	.0		n/a		0.0
3rd	835.	0298	237.	3798	8 3919.8593		.8593 3.1			-194.08		0821 3!		1	0.0
3rd with	n P _c 604.	2267	205.	0766	3914	1.3087	2.2	661		-270.	9185	4	0.017		1.02
			_			Com	pressil	oility	/						
p (GPa	$K_1 ($	'Pa⁻¹)	ĸ	ζ₂ (TPa	1 ⁻¹)	K₃ (TPa⁻¹)	σΚ	1 (1	Pa⁻¹)	σ	K ₂ (TPa ^{-:}	1)	σΙ	K₃ (TPa⁻¹)
1.02	8.6	397		8.639	7	-(0.0		na	in		nan			nan
1.4	14.)516	-	14.051	L6	-22.	6971		na	in		nan			nan
1.82	23.	9749		23.974	19	-51.	1449		na	in		nan			nan
2.32	45.	0868	4	45.086	58	-86.	8783		na	in		nan			nan
						Co	ommer	nts							
An unusua	al behaviour	of unit-	cell vo	lume c	of dry C	CPOS-1	can be r	otice	ed k	betwee	n 1.4 a	nd 2.3 G	Pa, wh	nere a	slight increase

Table S9. Principal axis strain calculation details for CPOS-1.³⁴

An unusual behaviour of unit-cell volume of dry CPOS-1 can be noticed between 1.4 and 2.3 GPa, where a slight increase and then stabilization of its value is observed, an occurrence not addressed by the authors of original report. Noteworthy, provided crystal structures were simulated with Density Functional Theory calculations rather than solved based on experimental data. This, alongside the lack of the ESDs on the reported volume values and no access to experimental data that would enable revision of the reported structures, make it hard to explain this very unusual behaviour. There are examples in the literature where porous crystals increased their volume at high pressure, but it was due to the adsorption of the molecules of pressure transmitting medium (PTM).⁴⁹ In case of the CPOS-1 silicon oil was used as PTM, which is considered non-penetrating medium, but it is not unheard of for fragments of the framework destroyed by pressure to be forced in the pores, expanding the crystal structure.⁵⁰ It is also possible for the PTM to be contaminated with compounds of smaller molecules, such as water.²⁷ In such case the composition of the crystal changes, and it is hard to consider expansion as NLC.

					In	put da	ta							
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a	(Å)	b (Å)		c (Å)		α (º)		в	(º)		γ (º)	
0.58	1.0	23	.83	23.83		7.12		90.0		9	0.0		90.0	
0.98	1.0	23	.68	23.68		7.13		90.0		9	0.0		90.0	
1.32	1.0	23	.57	23.57		7.16		90.0		9	0.0		90.0	
2.53	1.0	22	.02	22.02		7.27		90.0		9	0.0		90.0	
			Pi	incipal	axis str	ain ca	lculati	ion out	out					
				D	irectior	ו			Em	pirical	param	eters	5	
Axes	<i>K</i> (TPa⁻¹)	σΚ(ΤϜ	Pa⁻¹)	а	b	c		$\boldsymbol{\varepsilon}_0$		λ	p _c	;	V	
X ₁	14.882	na	n	1.0	0.0	-0.	0 0	0.0061	-	0.0	-62.8	572	84.0623	
X ₂	14.882	na	n	-0.0	1.0	-0.	0 0	0.0061	-	0.0	-62.8	572	84.0623	
X ₃	-8.0039	na	n	0.0	0.0	1.0) -(0.0002	0.	0083	0.5	8	1.4066	
V	68.8689	6.92	51											
				Birch	-Murna	aghan	coeffi	cients						
	<i>B</i> ₀ (G	Pa)	σB_0 (GP	a) <i>V</i> o	(ų)	σV_0	(ų)	В	,		σΒ'		<i>p</i> _c (GPa)	
2nd	6.34	87	2.3015	4508	3.5645	214.	4516	4.	0		n/a		0.0	
3rd	49.39	978	8.5151	4090).7561	15.	518	18 -5.51		74 0.			0.0	
3rd with	P _c 45.8	784	8.1177	404	1.288	7.7	744	-6.6	775	0	.6811		0.58	
					Com	pressil	oility							
p (GPa) K ₁ (TI	Pa⁻¹)	<i>K</i> ₂ (T	Pa⁻¹)	<i>K</i> ₃ (1	'Pa⁻¹)	σK1 ((TPa ⁻¹)	σk	K₂ (TPa⁻	1)	σŀ	κ₃ (TPa⁻¹)	
0.58	8.82	91	8.8	8.8291 -0.0 Nan					nan			nan		
0.98	14.8	82	14.882 -8.0039 Nan nan nan						nan					
1.32	23.1	356	23.1	23.1356 -10.2784 Nan nan nan						nan				
2.53	109.1	642	109.	1642	-15.	2409	N	lan		nan			nan	

Table S10.	Principal	axis strain	calculation	details fo	r water@CPOS-	1. ³⁴

	Input data													
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å))		c (Å)		α (º)		в ((º)		γ (º)
0.0001	1.0	9.33	308	4.641	.5	11	1.472	1	90.0		82.0	069		90.0
0.02	1.0	9.3	37	4.605	3	11	1.418	4	90.0		82.1	134		90.0
0.026	1.0	9.3	38	4.593	8	11	1.403	4	90.0		82.1	154		90.0
0.36	1.0	9.33	394	4.576	5	11	1.381	6	90.0		82.	16		90.0
0.5	1.0	9.34	129	4.55	4.555 11.3567 90.0 82.183					183		90.0		
			Principal axis strain calculation output											
					Direc	tior	า				Empirica	al para	me	ters
Axes	<i>K</i> (TPa⁻¹)	σK(TF	Pa⁻¹)	а	b		C	;	ε		λ	p _c		V
X ₁	75.9714	271.8	308	0.0	1.0	C	-0	.0	0.0002		-0.0202	0.000	1	0.2112
X ₂	39.1429	134.9	569	0.0484	0.0	2	0.99	988	0.0002		-0.0108	0.000	1	0.1823
X ₃	-5.28	28.16	564	0.9899	0.0	2	-0.1	.42	-0.0001	-	0.0017	0.000	1	0.1362
V	37.2064	8.40	8.4055											
				Birc	h-Mւ	urna	aghar	n coe	efficients					
	B ₀ (GPa	a) σB_0	(GPa) V ₀ (4	V_0 (Å ³) σV_0 (Å ³) B'		σΒ'				<i>p</i> _c (GPa)			
2 nd	18.923	8 6.	6524	489.2	232		2.231	9	4.0		n,	/a		0.0
3 rd	11.057	7 12	.2762	487.3	255		2.597	8	190.94	48	203.	8862		0.0
					С	om	press	ibilit	y					
<i>p</i> (GPa)	<i>К</i> 1 (ТІ	Pa⁻¹)	<i>K</i> ₂	(TPa⁻¹)	K ₃	(TP	a⁻¹)	<i>σK</i> ₁	(TPa⁻¹)		σK ₂ (TPa	a ⁻¹)		<i>σK</i> ₃ (TPa⁻¹)
0.0001	454*	10 ⁶	33	4*10 ⁶	-1	L8*1	L0 ⁶	33	3*10 ¹²		15*10 ¹	12		156*10 ⁹
0.02	0.02 93.5252 48.5555				-6	5.62	97	39	2.8542		196.965	53		41.7619
0.026 75.9714 39.1429 -5.28						8	27	1.8308	134.9569				28.1664	
0.36 9.5305 4.5509 -0.5438 25.8439 12.298 2.3988							2.3988							
0.5	7.35	544	3.	.4786	-0).40	94	25	5.6359		12.034	6		2.2978

Table S11. Principal axis strain calculation details for BIUREA $\rm I.^{31}$

						In	put da	ata						
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å)		c (Å)		α (º)		в (₽)		γ (º)
0.62	1	9.4	872	3.814	02	1	2.8589	9	90.0		77.9	936		90.0
0.9	1	9.4	.85	3.704	68	1	2.988	9	90.0		77.6	532		90.0
1.31	1	9.4	768	3.611	25	1	3.067	7	90.0		77.4	163		90.0
1.63	1	9.4	644	3.550)3	1	3.101	7	90.0		77.3	388		90.0
1.87	1	9.4	568	3.517	79	1	3.1178	8	90.0		77.3	346		90.0
2.02	1	9.4	526	3.497	78	1	3.1229	9	90.0		77.3	341		90.0
2.25	1	9.4	444	3.469	02	1	3.131	5	90.0		77.3	318		90.0
2.53	1	9.4	344	3.440	07	1	3.134	5	90.0		77.3	317		90.0
2.81	1	9.4	251	3.414	38	1	3.1382	2	90.0		77.3	309		90.0
				Principa	l axis	s str	rain ca	alcu	lation ou	tpu	ıt			
				[Direct	ection					Empirica	l paran	net	ers
Axes	<i>К</i> (ТРа ⁻¹)	<i>σK</i> (TI	Pa⁻¹)	а	b		С		ε		λ	p _c		v
X ₁	38.2921	0.39	44	0.0	1.0)	-0.0)	0.1962		-0.251	0.297	6'	0.2174
X ₂	3.9343	0.07	21	0.9748	0.0)	-0.22	29	0.0001		-0.0047 0.		97	0.8679
X ₃	-4.6498	0.45	62	0.1447	-0.	-0.0		95	5 -35.658		35.6765	0.568	35	0.0002
V	41.9047	2.7	64											
				Birc	։h-Mւ	urna	aghan	co	efficients					
	B ₀ (GPa	a) σB_0	, (GPa	V_0 (ų)	6	σ <i>V</i> ₀ (Å	3)	Β'		σ	В'		<i>р</i> _с (GPa)
2 nd	16.397	6 0.	7431	468.8	3453		1.732	1	4.0		n,	n/a		0.0
3 rd	0.0541	l 11	2.807	507.0)226	7	02.00	38	1495.13	78	310023	31.2846	5	0.0
3rd with	P _c 12.712	7 0.	4962	454.9	202		0.358	3	12.707	'1	0.8	918		0.62
					C	om	pressi	bili	ty					
p (GPa) <i>K</i> ₁ (T	Pa⁻¹)	K ₂	(TPa⁻¹)	K ₃	(TP	Pa⁻¹)	σΚ	′ ₁ (TPa⁻¹)		σK ₂ (TPa	1 ⁻¹)		<i>оК</i> ₃ (ТРа⁻¹)
0.62	132.3	306	7	.4259	-11	17.3	8541		8.804		12.311	5		83.4761
0.9	81.1	335	4	.7764	-1	8.24	496	1	l.0188		0.2933	3		3.4628
1.31	54.0	445	4	.2519	-8	3.16	505	().8198		0.1392	2		1.0576
1.63	43.5	914	4	.0456	-5	5.70	800	().4621		0.0753	3		0.5672
1.87	38.2	921	3	.9343	-4	1.64	98	().3944		0.0721	L		0.4562
2.02	35.6	567	3	.8763	-4	1.16	694	().4471		0.0844	1		0.4356
2.25	32.3	251	3	.7997	-3	3.59	92	().5781		0.1099	•		0.4327
2.53	29.1	065	3	.7214	-3	8.08	855	().7391		0.1414	1		0.4426
2.81	26.5	356	3	.6551	-2	2.70	001	(0.8759		0.1703	3		0.4521

Table S12. Principal axis strain calculation details for BIUREA II.³¹

							Inpu	ut data	а						
<i>p</i> (GPa)	σ <i>p</i> (G	Pa)	a (Ì	Å)	b (Å)		(c (Å)		α (º)		в	(º)		γ (º)
0.54	1		8.33	37	15.802	7	8.	.4626		90.0		91	.44		90.0
0.99	1		8.20	31	15.423	5	8.	.4569		90.0		90.	851		90.0
1.49	1		8.11	16	15.12	1	8.	.4699		90.0		90	.38		90.0
1.89	1		8.07	'55	14.874	1	8.	.4734		90.0		89	.76		90.0
2.84	1		8.00	25	14.448	3	8.	.4923		90.0		89	.15		90.0
				Р	rincipal	axis	kis strain calculation output								
					D	irecti	ion				Em	pirical _l	parar	neters	1
Axes	<i>К</i> (ТРа ⁻¹) σ/	К(ТРа	a ⁻¹)	а	b)	С		$\boldsymbol{\varepsilon}_0$		λ	F	\mathbf{D}_{c}	V
X ₁	38.781	7 2	2.220	1	0.0 1.0 -0.0 0.0782 -0.0975 -0.105					0.0 1.		.051	0.5018		
X ₂	19.457	3	0.624	4 C	0.9611 0.0 -0.276 49.				9.4556	-49	9.4741	0.0	179	0.0006	
X ₃	-5.3689) 1	1.515	8	0.304 0.0 0.9			0.952	27 - (0.0003	0.	0048	0.	54	1.138
V	50.277	5 5	5.356	4											
					Birch	-Mu	rnag	shan c	oeffi	cients					
	B ₀ (GPa)	σB_0	(GPa)	Pa) V_0 (Å ³) σV_0 (Å ³) B' $\sigma B'$		σΒ'		<i>р</i> _с (GPa)						
2nd	12.	5247	1.2	2031	1150.7	838		10.31	48	4.	0		n/a		0.0
3rd	0.0	126	576	6.9656	1263.2	294	14	1753.7	7505	3899.	8433	17753	4163	.3117	0.0
3rd with	n P _c 8.7	955	0.6	6861	1114.2	898		2.137	74	13.0	842	1	.4655	5	0.54
						Со	ompr	ressibi	ility						
p (GPa	n) <i>K</i> ₁	(TPa ⁻	⁻¹)	K ₂ (TPa⁻¹)	K ₃	3 (TP	a⁻¹)	<i>σ</i> K ₁ (TPa⁻¹)	σΙ	K₂ (TPa ^{-:}	¹)	σk	∡₃ (TPa⁻¹)
0.54	60).882	6	54.	8297	-(0.03	39	13.9	939		6.338		4	0*1012
0.99	46	5.773	2	29.	9.4583 -4.84			28	2.3	386		1.0441			3.3248
1.49	38	3.781	7	19.	19.4573 -5.3689 2.				2.2	201		0.624		-	1.5158
1.89	34	1.690	8	15.	5.3021 -5.6357 1.2206					206		0.5081		(0.8538
2.84	28	3.572	8	10.	10.1533 -6.0658 3.229 0.9028 2.3		2.387								

Table S13. Principal axis strain calculation details for QAXMEH. ³³

	Input data													
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å)	c ((Å)	α (≌)	B (9	2)	γ (º)				
1.36	1	5.2002	14.79	8 12.	423	90	.0	96.1	12	90.0				
1.51	1	5.1961	14.80	5 12.	343	90	.0	96.	0	90.0				
1.65	1	5.1914	14.81	2 12.	293	90	.0	95.9	93	90.0				
1.73	1	5.1869	14.83	9 12.	236	90	.0	95.7	73	90.0				
1.8	1	5.1893	14.83	2 12.	199	90	.0	95.7	76	90.0				
1.91	1	5.1806	14.84	1 12.	152	90	.0	95.5	59	90.0				
1.99	1	5.1721	14.85	12.	073	90	.0	95.2	42	90.0				
2.06	1	5.1718	14.90	4 12.	041	90	.0	95.1	L4	90.0				
2.16	1	5.1626	14.91	6 11.	963	90	.0	94.7	79	90.0				
2.36	1	5.1551	14.95	11.	879	90	.0	94.2	01	90.0				
2.39	1	5.1535	14.94	2 11.	869	90	.0	94.3	35	90.0				
			Princi	pal axis st	rain ca	Iculation or	utput							
				Direc	tion		Ei	mpirical p	aramete	rs				
Axes	<i>К</i> (ТРа ⁻¹)	σ <i>K</i> (TPa⁻¹)	а	b		С	ε_{o}	λ	p _c	v				
X ₁	52.1402	1.8325	-0.404	-0.0	0	.9147	-0.0	-0.0494	1.36	1.1629				
X ₂	0.7752	1.9348	0.9929	0.0	C	.1188	2.6275	-2.6292	1.3425	0.0002				
X ₃	-11.2915	1.6455	-0.0	1.0		-0.0	-0.0001	0.0101	1.36	1.5651				
V	40.6353	0.7868												

Table S14. Principal axis strain calculation details for IZIYOI hp.40

Birch-Murnaghan coefficients													
	B ₀ (GPa)	σB_0 (GPa)	V ₀	(ų)	σν	′₀ (ų)	E	3'	σΒ	,	<i>р</i> _с (GPa)		
2nd	16.6013	0.77	1021.662 3 1009.829		3.	8216	4	.0	n/a	à	0.0		
3rd	21.831	8.8713	713 1009.82		17	.3511	1.4	355	3.89	19	0.0		
$3rd$ with P_c	23.4368	2.9822	822 951.062		1.	2425	0.9	148	4.98	18	1.36		
	·				Com	pressibi	lity		·				
<i>p</i> (GPa)	<i>К</i> 1 (ТРа	⁻¹) K ₂ (TI	Pa⁻¹)	<i>K</i> ₃ (TI	Pa⁻¹)	<i>σK</i> ₁	(TPa⁻¹)	<i>σK</i> ₂ (Τ	'Pa⁻¹)	σΚ₃	(TPa ⁻¹)		
1.36	1.161	1 25.0	92	-0.	0	447796	520.0008	233.0)249	9444	309.5287		
1.51	42.193	8 2.62	57	-5.41	L87	6.9	9021	5.95	519	2	.4897		
1.65	46.977	5 1.43	.4305 -7.8		547	4.6	5939	1.31	L73	2	.7166		
1.73	48.879	4 1.13	52	-9.02	254	3.5	5419	1.32	203	2	.5454		
1.8	50.278	8 0.96	16	-9.95	538	2.6877		877 1.6		2	2.239		
1.91	52.140	2 0.77	52	-11.2	915	1.8	3325	1.93	348	1	.6455		
1.99	53.306	5 0.67	'95	-12.1	922	1.8	3102	2.06	586	1	.3403		
2.06	54.229	4 0.61	.32	-12.9	401	2.1	L692	2.13	381	1	.3859		
2.16	55.422	2 0.53	82	-13.9	543	2.9	9538	2.18	373	2	.0067		
2.36	57.473	7 0.43	-324 -15.8		296	6 4.6976		2.18	387	4	.0715		
2.39	57.751	.1 0.42 -16		-16.0	.0962 4.		9548	2.18	326	4.4191			
1.36	1.161	1 25.0	92	-0.	0	447796	520.0008	233.0)249	9444	309.5287		

Table S14. Principal axis strain calculation details for IZIYOI hp.⁴⁰ -continuation

					l.	nput da	ata					
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å)	c (Å))	α (º)	в	(º)	γ (º)	
0.91	1	13.4	289	13.42	89	13.55	51	90.0	90).0	90.0	
1.37	1	13.2	089	13.20	89	13.558	81	90.0	90).0	90.0	
1.77	1	13.0	469	13.04	69	13.579	93	90.0	90).0	90.0	
2.04	1	12.9	516	12.95	16	13.596	65	90.0	90).0	90.0	
2.41	1	12.7	'987	12.79	87	13.650	09	90.0	90).0	90.0	
2.44	1	12.8	099	12.80	99	13.662	21	90.0	90).0	90.0	
2.62	1	12.7	617	12.76	17	13.658	88	90.0	90).0	90.0	
2.83	1	12.6	948	12.69	48	13.664	44	90.0	90).0	90.0	
			Pr	incipal	axis s	train ca	alcul	ation out	out			
				0	Directi	ion			Empirica	al para	meters	
Axes	<i>К</i> (ТРа ⁻¹)	σΚ(ΤΕ	Pa⁻¹)	а	b		с	ε	λ	p_c	v	
X ₁	27.4329	1.09	29	1.0	0.0	-0	0.0	21.3118	-21.2111	-1.740	02 0.0049	
X ₂	27.4329	1.16	28	0.0	1.0	-0	0.0	21.3112	-21.2105	-1.740	02 0.0049	
X ₃	-5.8586	1.07	28	-0.0	0.0	1	.0	-0.0004	0.0038	0.91	1.4513	
V	50.4396	2.71	.05									
				Birch	-Murı	naghan	n coe	efficients				
	<i>B</i> ₀ (GPa)	σB_0	, (GPa)	V ₀ (ų)		σV ₀ (.	ų)	Β'	0	'В'	<i>p</i> _c (GPa)	
2 nd	11.9026	0.	4783	2605.	0118	11.35	594	4.0	n/a		0.0	
3 rd	4.8001	4.	5193	2724.	1058	120.1	665	11.1313	3 8.7787		0.0	
3rd with P	c 12.6794	1.	3138	2443.	3952	5.95	12	7.4621	1.9	106	0.91	
					Con	npressi	ibilit	y				
<i>p</i> (GPa)	<i>К</i> ₁ (ТР	a⁻¹)	K ₂ (*	ГРа⁻¹)	K₃ (TPa⁻¹)	σΚ	1 (TPa ⁻¹)	<i>σK</i> ₂ (TPa	a ⁻¹)	<i>σK</i> ₃ (TPa⁻¹)	
0.91	39.06	24	39.	0622	-	0.0	5	.9379	6.5249	Ð	1627083954.7939	
1.37	33.31	09	33.	3109	-3.	9051	1	.2894	1.356	1	2.6836	
1.77	29.53	23	29.	5323	-5.	1793	1	.5166	1.6909	9	1.8083	
2.04	27.43	29	27.4	7.4329		8586	1	.0929	1.1628	3	1.0728	
2.41	24.99	85	24.	9985	-6.	6575	1	.2628	1.333	3	1.6657	
2.44	24.81	99	24	.82	-6.	7173	1	.3626	1.454		1.7829	
2.62	23.80	02	23.	8003	-7.	0631		2.09	2.313	Э	2.5518	
2.83	22.71	18	22.	7118	-7.	4422	3	.0794	3.4623		3.5196	

Table S15. Principal axis strain calculation details for SULBAC. ³⁰

	Input data																	
<i>p</i> (GPa)	σp (Θ	GPa)	а	(Å)		b (Å)			c (Å)		α (º)		в ((⁰)		γ (º)		
0.0001	1	-	13.	3756		8.6951	-	1	6.324	7	90.0		104.	261		90.0		
0.2	1	-	13	3.44		8.548		1	6.272	8	90.0		103	3.8		90.0		
0.3	1	-	13	.511		b (Å) c b (Å) c 8.6951 16. 8.548 16. 8.349 16. 8.349 16. 8.736 16. 8.736 16. 8.736 16. 8.736 16. 8.736 16. 8.736 16. 8.7741 16. 7.741 16. 7.741 16. 7.741 16. 7.541 15. Principal axis strain 0.0 0.03518 -0.0 0. 0.9213 0.0 0. Birch-Murnagh 0.0 0. V_0 (Å3) σ N 1834.9542 6. 1835.5423 9. Compression Compression (TPa ⁻¹) K_3 (TPa		16.23		90.0		103.	663		90.0			
0.48	1	-	13	.585		8.548 16.2 8.349 16.3 8.236 16.3 8.07 16.3 8.07 16.3 8.07 16.3 8.07 16.3 8.07 16.3 7.741 16.0 7.541 15.8 Direction Direction Direction 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		.6.306	5	90.0		103	3.3		90.0			
0.85	1	-	13	3.59		8.07 16.2 7.741 16.05 7.541 15.87 Principal axis strain call Direction		16.21		90.0		103	.33		90.0			
1.82	1	-	13	.614		8.07 16.21 7.741 16.059 7.541 15.878 Principal axis strain call Direction a b c 0.0 1.0 -0.0 -0.3518 -0.0 0.936)	90.0		102	.55		90.0				
2.48	1	-	13	.562		8.236 16.306 8.07 16.21 7.741 16.059 7.541 15.878 Principal axis strain calco Direction a b 0.0 1.0 -0.3518 -0.0 0.9365 0.9213 0.0 0.3885		3	90.0		101	57		90.0				
					Pr	7.541 15.878 Principal axis strain calc Direction a b c 0.0 1.0 -0.0 -0.3518 -0.0 0.936		cula	ation outp	out								
						7.741 16.059 7.541 15.878 Direction a b c 0.0 1.0 -0.4 -0.3518 -0.0 0.93 0.9213 0.0 0.38					Em	pirica	l param	ete	rs			
Axes	<i>К</i> (ТР	Pa⁻¹)	σΚ(Τ	'Pa⁻¹)		8.236 16.30 8.07 16.2 7.741 16.05 7.741 15.87 Principal axis strain cr Direction a b 0.0 1.0 -0 -0.3518 -0.0 0.9 0.9213 0.0 0.3 Birch-Murnaghar) V_0 (Å ³) σV_0 (1834.9542 6.31 1835.5423 9.51 Compress (TPa ⁻¹) K_3 (TPa ⁻¹)		С		ε		λ	p _c		V			
X ₁	77.6	169	12.	336		8.349 16.2726 96 8.349 16.23 96 8.236 16.306 96 8.07 16.21 96 8.07 16.21 96 7.741 16.059 96 7.541 15.878 96 7.541 15.878 96 7.541 15.878 96 7.541 15.878 96 7.541 15.878 96 7.541 15.878 96 7.541 15.878 96 7.541 15.878 96 7.541 15.878 96 0.0 1.0 -0.0 0.22 0.3518 -0.0 0.9361 0.0 0.9213 0.0 0.3889 -47.0 0.9213 0.0 0.3889 -47.0 Birch-Muraghan coefficien V_0 (Å ³) σV_0 (Å ³) 4.335 1834.9542 6.3165 4.335 9		0.2243	-0.	2906	-0.29	95	0.2199					
X ₂	6.72	262	0.3	145	-0	.3518	-0.	0	0.93	61	0.005	-	0.0	-107.8	934	74.6563		
X ₃	-16.4	071	3.5	153	0.	9213	0.	0	0.38	89	-47.0636	47.	.0859	-0.08	72	0.0002		
V	52.2	003	2.0	625			ch-Murnaghan co											
						Birch	-Mu	rna	ghan	coet	fficients							
	E	B₀ (GP	'a) σ	B ₀ (GP	a)	V ₀ (Å	3)	6	σV₀ (Å	3)	[;]) B'		σ		σΒ'			<i>p_c</i> (GPa)
2nd		13.26	2	0.6301	_	1834.9	542		6.316	5	4.0		n	/a		0.0		
3rd	1	13.026	57	2.5573	3	1835.5	423		9.515	5	4.2254		2.3	825		0.0		
							Со	omp	ressik	oility	/							
p (GPa	a)	<i>K</i> ₁ (TI	Pa⁻¹)	К	2 (T	'Pa⁻¹)	K ₃	3 (TF	Pa⁻¹)	σΚ	′₁ (TPa⁻¹)	σ	K₂ (TPa	a ⁻¹)	σ	<i>K</i> ₃ (TPa⁻¹)		
0.000	1	163.6	5414		4.85	507	-1	06.5	5924	90	0.1611		0.2268	3	-	107.2128		
0.2		109.8	3316		5.5	593 -32.4002		002	1	4.331		0.2599	Э		9.1837			
0.3		95.2	587		5.9	511 -24.0331		331	1	3.3055		0.2782	2		6.5576			
0.48		77.6	169		6.72	262	-16.4071		1	2.336		0.3145	5		3.5153			
0.85		57.3	276		8.64	457	-9.9304		6	5.5367		0.4042	2		1.9627			
1.82		35.5	696	1	6.6	5293	-9.9304 293 -4.8804		6	5.8447		0.7775		2.5094				
2.48		28.7	897	2	5.8	8661	-:	3.62	259	9	9.9656		1.2093		2.5173			

Table S16. Principal axis strain calculation details for $\ensuremath{\mathsf{POWSID}}^{32}$

	Input data											
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a	(Å)	b ()	Å)	с (Å	.)	α (º)		в ((⁰)	γ (º)
0.0001	1	5.4	158	9.75	54	18.8	38	90.0		91.6	532	90.0
0.28	1	5.5	274	9.48	38	18.4	1	90.0		92.	32	90.0
0.73	1	5.5	924	9.26	65	17.9	85	90.0		92.	91	90.0
1.38	1	5.6	422	9.04	62	17.618		90.0		93.	39	90.0
2.42	1	5.6	829	8.76	11	17.1	76	90.0		94.	06	90.0
			Princ	<mark>ipal axis stra</mark>		rain calculation output						
					Direct	ion			Emj	pirical p	aramet	ers
Axes	<i>К</i> (ТРа⁻¹)	σ <i>K</i> (Tl	Pa ⁻¹)	а	b		с	ε		λ	p _c	V
X ₁	43.1152	0.51	.59	0.0	1.0) (0.0	-0.0	-	0.0619	0.0002	L 0.618
X ₂	41.8096	1.48	347	0.5004	-0.0	0.8	8658	0.0588	-	0.1107	-0.165	1 0.3516
X ₃	-18.7636	2.42	261	0.9992	0.0	-0.	0404	-64.0328	6	4.0589	-0.235	3 0.0003
V	58.3481	5.61	.38									
			E	Birch-Mu	rnagh	an coe	fficie	nts				
	<i>B</i> ₀ (GPa)	σΒ	₀ (GPa)	Vo	(ų)	σV_0	(ų)	Β'		σ	Β'	<i>р</i> _с (GPa)
2nd	11.5677	0	.8577	991.	5983	6.10	046	4.0		n	/a	0.0
3rd	7.6442	1	.4803	999.	0525	5.85	83	9.631		2.6	898	0.0
				Co	mpre	ssibilit	y					
<i>p</i> (GPa)	<i>К</i> 1 (ТРа	⁻¹)	K ₂	(TPa⁻¹)	<i>K</i> ₃	(TPa⁻¹)	σΚ	ו (TPa⁻¹)		<i>σK</i> ₂ (TPa	a ⁻¹)	<i>σK</i> ₃ (TPa⁻¹)
0.0001	148914480	0.3671	125	5.0652	-76	.9085	1.6	57*10 ²⁴		23.905	8	37.3112
0.28	62.181	.6	65	.7691	-35	.1427	2	.0985		2.6017	7	3.4775
0.73	43.115	52	41	.8096	-18	.7636	0	.5159		1.4847	7	2.4261
1.38	33.803	85	29	.3454	-11	.2148	0	.3377		0.7358	3	0.6155
2.42	27.274	17	21	.0184	-6	8233	0	0.5925		1.5078		1.3118

Table S17. Principal axis strain calculation details for JOHGIX ((C_6F_5Au)₂(μ -1,4-diisocyanobenzene)).²⁸

	Input data												
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å	i)	С	(Å)	a	(₽)		в	(º)		γ (º)
0.0001	2.0	10.4305	10.52	272	6.2	2956	9	0.0		115	5.16		90.0
0.12	1.0	10.451	10.5272 10.51 10.426 10.345 10.295 10.219 rincipal axis str Direction a b		6.	.268	9	0.0		115	5.08		90.0
0.41	1.0	10.521	10.4	26	6.	.202	9	90.0		115.0			90.0
0.6	1.0	10.574	10.3	45	6.166		9	90.0		114.85			90.0
0.74	1.0	10.596	10.2	10.295		6.141		90.0		114	.67		90.0
0.92	1.0	10.632	10.2	10.219 6		6.115 90.0			114	.46		90.0	
			Principal	rincipal axis st		n calcul	ation	outpu	ıt				
				Directio					Er	mpirical p	aramet	ers	
Axes	<i>К</i> (ТРа ⁻¹)	<i>σK</i> (TPa⁻¹)	а	a b 0.0983 0.0		С		ε		λ	p _c		V
X ₁	32.9122	3.5933	0.0983	0.0983 0.0		0.9952	26.	0501	-	26.0555	-0.865	1	0.0016
X ₂	33.5475	1.2502	-0.0	1	.0	-0.0	0.0	0004		-0.0337	0.0002	1	1.3066
X ₃	-28.2978	2.1506	0.9066	0	.0	0.422	-0.4	4871		0.0877	-11.808	33	0.694
V	37.2247	0.4634											
			Bircl	n-Mu	rnagł	han coe	fficier	nts					
	<i>B</i> ₀ (GPa)	σB_0 (GPa	a) V_0	ų)	σ١	V₀ (ų)	(ų) <i>B'</i>		6		в'		<i>p_c</i> (GPa)
2nd	24.3308	0.371	626.	5322	0.	.2193		4.0		n	/a		0.0
3rd	26.038	1.2732	626.	2721	0.	.2567	0	.583		2.3	618		0.0
				Со	mpre	essibilit	у						
<i>p</i> (GPa)	<i>К</i> 1 (ТРа	a ⁻¹) K ₂ (TPa⁻¹)	K₃ (TPa ⁻¹) σk	ζ ₁ (ΤΡa	⁻¹)		<i>σK</i> ₂ (TPa	1 ⁻¹)	σ	<i>K</i> ₃ (TPa⁻¹)
0.0001	48.47	39 0.0	0001	001 -28.59		3 1	1.906	1 7	' 40	23633456	527.261		9.3392
0.12	42.58	31 23.	0126 -28.		.5065	5 2	2.1993	3		2.7243	3		4.6603
0.41	32.91	22 33.	5475	5475 -28.29		3	3.5933	;		1.2502	2		2.1506
0.6	28.65	05 37.	7031	7031 -28.16		5 ().8549)		1.1361	L		2.0364
0.74	26.15	55 40	2077	-28	3.068		3.565			1.8237	7		1.8189
0.92	23.52	21 42	9839	-27	7.946		7.7735	7735		2.8903			5.9064

Table S18. Principal axis strain calculation details for MAGVOG I ([Ag(en)]NO $_3$ -I).²⁵

						Inpu	t data	a							
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a	(Å)	b ((Å)	C	: (Å)		α	(º)		в	(º)		γ (º)
2.01	1.0	14	4.67	4.9	b (Å) Input 4.946 1 4.9393 1 4.9393 1 4.9154 1 4.8946 1 4.8946 1 4.851 1 4.8351 1 4.8107 1 4.789 1 incipal axis stra Direction a b 0.7554 -0.0 -0.0 1.0 0.0668 -0.0).365		90	0.0		131	97		90.0
2.29	1.0	14	.639	4.9	Input b (Å) a 4.946 10 4.9393 10 4.9393 10 4.9393 10 4.9393 10 4.9393 10 4.9393 10 4.9393 10 4.9393 10 4.8351 10 4.8351 10 4.8107 10 4.8107 10 4.789 10 554 -0.0 0.0 1.0 668 -0.0 0.0 1.0 668 -0.0 0.0 1.0 6615.5756 601.8454 561.7441 Compr V_0 (Å3) K_3 (TPa ⁻¹) -0.1024 -0.1024).379		90	0.0		132	.027		90.0
2.95	1.0	14	.477	4.9	Impute b (Å) a 4.946 10 4.9393 10 4.9393 10 4.9154 10 4.8946 10 4.8351 10 4.8351 10 4.8107 10 4.8107 10 4.789 10 Direction a b 554 -0.0 0.0 1.0 668 -0.0 Birch-Murnag Vo (Å3) 615.5756 601.8454).425		90	0.0		132	2.46		90.0
3.43	1.0	14	.342	4.8	4.946 10 4.9393 10 4.9154 10 4.8946 10 4.8946 10 4.8946 10 4.8946 10 4.8946 10 4.8946 10 4.8946 10 4.8351 10 4.8218 10 4.8107 10 4.789 10 ncipal axis strain Direction a b .7554 -0.0 -0.0 1.0 .0668 -0.0).487		90	0.0		133	3.01		90.0
4.03	1.0	14	.231	4.8	4.856 10 4.8351 10 4.8218 10 4.8107 10 4.789 10).642		90	0.0		134	.235		90.0
4.41	1.0	14	.168	4.8	351	10).715		90	0.0	134.82		.825		90.0
4.66	1.0	14	.126	4.8	4.8351 10 4.8218 10 4.8107 10 4.789 10 a b 7554 -0.0 0 10).753		90	0.0		135	.162		90.0
4.82	1.0	14	.095	4.8	4.8351 10. 4.8218 10. 4.8107 10. 4.789 10. cipal axis strain Direction a b 7554 -0.0 0.0 1.0 0668 -0.0).788		90	0.0		135	.458		90.0
5.52	1.0	14	.024	4.7	4.8107 10.7 4.8107 10.7 4.789 10.8 cipal axis strain Direction a b 554 -0.0 0 0.0 1.0 0 668 -0.0 0).837		90	0.0		135	.927		90.0
			F	Principa	incipal axis strain Direction a b		n calc	ula	tion o	outpu	put				
					Direction a b c 0.7554 -0.0 0.65						Empiri	cal p	aramet	ers	
Axes	<i>K</i> (TPa⁻¹)	σ <i>K</i> (1	ΓPa⁻¹)	а	4.789 10.85 rincipal axis strain constrained axis strain constrained a b 0.7554 -0.0 00.0 1.0 - 0.0668 -0.0 0. Birch-Murnaghar Pa) V₀ (ų)		С		ε	То	λ		p _c		V
X ₁	35.7141	2.4	393	0.7554	al axis strain Direction b 54 -0.0 58 -0.0 58 -0.0 58 -0.0 58 -0.0 58 -0.0 58 -0.0 58 -0.0 58 -0.0 58 -0.0		0.65	52	0.0	036	-0.0326		2.01		1.0535
X ₂	10.3729	0.5	5793	-0.0	b 4 -0.0 1.0 3 -0.0 b-Murnagh γ _c (Å ³)		-0.0	0	0.0	006	-0.0084		2.01		1.1298
X ₃	-15.3463	1.4	685	0.066	8 -0	0.0	0.99	78	-0.0	015	0.01	19	2.01		1.157
V	29.1418	0.9	977			h-Murnagha									
				Bird	ch-Mu	rnag	han c	oef	ficien	ts					
	<i>B</i> ₀ (GP	'a)	<i>σ</i> B ₀ (GPa)	V ₀ (.	ų)	σ	σV_0 (Å			Β'		σΒ'		<i>p</i> _c (GPa)
2nd	18.85	57	1.10	036	615.5	5756	4	4.289		4	4.0		n/a		0.0
3rd	27.496	66	7.72	217	601.8	3454	10	0.04	91	1.	1.831		.6631		0.0
3rd with	P _c 30.703	33	4.09	963	561.7	7441	1	.71	44	1.3	3565	2	.0553		2.01
			1		Co	ompr	essibi	lity							
<i>p</i> (GPa)	<i>К</i> ₁ (ТР	a⁻¹)	K ₂ (*	TPa⁻¹)	K ₃ (TPa ⁻¹	^L) (σK_1	(TPa ⁻	1)	σK ₂	(TPa	1 ⁻¹)	σ	<i>K</i> ₃ (TPa⁻¹)
2.01	5.192	24	0.0	963	-0.	1024	۱ 	382	2*10 ¹	2	10	*10 ¹	.2	0	.381*10 ¹²
2.29	32.13	21	8.0	0261	-12	1.253	6	10	.1794		2.	0783	3		4.9618
2.95	34.28	23	9.3	3924	-13	-13.6096		4.	4526		1.	1051	L		2.8384
3.43	35.04	72	9.	909	-14.5202		2	2.	4536		0.	6354	1		1.6622
4.03	35.71	41	10.	3729	-15.3463		3	2.	4393		0.	5793	3		1.4685
4.41	36.04	49	10.	6076	-15.7672		2	3.	2611		0.	7843	3		1.993
4.66	36.23	64	10.	7449	-16	-16.0145		3.	8572		0.	9437	7		2.4131
4.82	36.35	02	10.	8269	-16	.162	5	4.	2365		1.	0475	5		2.689
5.52	36.78	53	11.	1441	-16	.736	9	5.	7949		1.4869				3.8705

Table S19. Principal axis strain calculation details for UNIRUF II (lithium L-tartrate II). ²⁶

Table S20. Principal axis strain calculation details for $Ag_3[Co(CN)_6] I^{24}$

	Input data										
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å)	c (Å)	α (º)	<i>₿</i> (º)	γ (º)				
0.0001	1	7.0309	7.0309	7.1172	90.0	90.0	90.0				
0.06	1	6.9913	6.9913	7.14	90.0	90.0	90.0				

0.157	1	6.9065	6.90)65	7.200)6	90.0	90	.0		90.0
		Prin	cipal axi	s strair	n calcula	ation	output				
				Direc	tion		E	mpirical	param	eter	S
Axes	<i>К</i> (ТРа⁻¹)	σK(TPa⁻¹)	а	b	,	с	ε	λ		;	V
X ₁	112.525	nan	1.0	0.	0 .	-0.0	0.0	-0.1639	-0.00	03	1.1982
X ₂	112.525	nan	0.0	1.	0	-0.0	0.0	-0.1639	-0.00)03	1.1982
X ₃	-71.656	nan	-0.0	-0.	.0	1.0	-0.0	0.1401	0.0)	1.3431
V	152.4697	2.9733									
	Birch-Murnaghan coefficients										
B_0 (GPa) σB_0 (GPa) V_0 (Å3) σV_0 (Å3) B' $\sigma B'$ p_c (GPa)											
2nd	6.124	0.4014	352.	.0508	0.34	87	4.0	n,	/a		0.0
3rd	7.8138	inf	351	.833	in	f	-12.846	4 ir	۱f		0.0
			(Compre	essibility	y					
<i>p</i> (GPa)	<i>К</i> ₁ (ТРа	⁻¹) K ₂ (T	Pa ⁻¹)	<i>K</i> ₃ (T	ſPa⁻¹)	σΚ1	(TPa ⁻¹)	<i>σK</i> ₂ (TPa	a⁻¹)	σK₃	, (TPa⁻¹)
0.0001	41.36	j 41	.36	-6.4	1507		nan	nan			nan
0.06	112.52	5 112	.525	-71	.656		nan	nan			nan
0.157	136.08	37 136.	0837	-99.	6889		nan	nan			nan
				Com	ments						
At least as n	t least as many data points as parameters are needed for a fit to be carried out (e.g. 3 for 3rd order										

Birch-Murnaghan, 4 for empirical pressure fitting). As PASCal calculates errors from derivatives, more data points than parameters are needed for error estimates.

				Input	t dat	ta					
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å)	(c (Å)	α (º)	6	(º)		γ (º)
0.19	1.0	6.6985	11.57	82	6	.5554	90.0	78.	522		90.0
0.226	1.0	6.6934	11.53	91	6	.5661	90.0	78.	521		90.0
0.29	2.0	6.68	11.46	8	e	5.577	90.0	78	.47		90.0
0.294	1.0	6.6745	11.49	7	6	.5707	90.0	78.	473		90.0
0.395	1.0	6.6415	11.42	51	6	.5959	90.0	78.	284		90.0
0.55	2.0	6.605	11.29	5	6	5.629	90.0	78	.21		90.0
0.78	2.0	6.553	11.19	6	6	5.646	90.0	77.	967		90.0
0.9	2.0	6.539	11.15	6	6	5.654	90.0	77.	871		90.0
0.92	2.0	6.5333	11.15	4	6	.6507	90.0	77	.91		90.0
1.08	2.0	6.505	11.11	.6	6	5.663	90.0	77	.73		90.0
1.87	2.0	6.4172	10.92	2	6	5.696	90.0	77.	584		90.0
3.02	2.0	6.2904	10.73	9	6	5.747	90.0	77	.39		90.0
5.13	2.0	6.0657	10.49	3	6	5.833	90.0	77	.09		90.0
6.92	2.0	5.91	10.33	3	6	5.891	90.0	77	.01		90.0
7.65	2.0	5.8657	10.2	7	6	5.908	90.0	76.	921		90.0
		Prin	cipal axis	strair	n cal	culation o	output				
				Direc	tion		E	mpirical	param	etei	s
Axes	<i>К</i> (ТРа⁻¹)	σK(TPa⁻¹)	а	b)	с	ε	λ	p _c		V
X ₁	31.7957	1.008	0.0	1.0	0	0.0	0.0782	-0.1162	-0.02	15	0.2575
X ₂	27.49	0.9349	0.9718	0.0	0	-0.236	0.0061	-0.0376	0.13	83	0.6671
X ₃	-11.906	0.6378	0.0397	0.0	0	0.9992	-0.004	0.0206	0.15	61	0.4994
V	25.2773	1.4075									
			Birch-Mu	rnagh	nan	coefficien	ts				
	<i>B</i> ₀ (GPa)	σB_0 (GPa)	V ₀ (2	Å3)	σ	<i>'</i> V₀ (ų)	Β'	0	В'	ľ	o _c (GPa)
2nd	23.2904	0.8843	498.2	556	1	L.5382	4.0	n	/a		0.0
3rd	10.741	1.3371	505.3	077	1	L.6002	13.2503	3 1.3	808		0.0
3rd with P_c	13.1187	1.0592	497.3	116	0).8894	11.8886	5 1.2	382		0.19

Table S21. I	Principal axis	s strain	calculation	details f	or Ag ₃ [Co	(CN) ₆] II. ²⁴
					- 031	1 101

Compressibility												
<i>p</i> (GPa)	<i>K</i> ₁ (TPa ⁻¹)	<i>K</i> ₂ (TPa ⁻¹)	<i>К</i> ₃ (ТРа⁻¹)	<i>σK</i> ₁ (TPa ⁻¹)	<i>σK</i> ₂ (TPa ⁻¹)	<i>σK</i> ₃ (TPa⁻¹)						
0.19	94.8203	67.2893	-55.8581	12.3528	25.1915	32.8753						
0.226	84.3772	56.4415	-38.8899	7.9521	9.9985	7.9964						
0.29	71.1337	47.0339	-28.0899	3.9257	3.4292	2.2128						
0.294	70.463	46.6283	-27.6791	3.7678	3.2571	2.1208						
0.395	57.3346	39.481	-21.0231	1.6294	1.5211	1.4045						
0.55 45.3323 33.7372 -16.3678 1.2027 1.2457 1.0921												
0.78	0.78 35.2658 29.1042 -13.002 1.103 1.0406 0.7612											
0.9	0.9 31.7957 27.49 -11.906 1.008 0.9349 0.6378											
0.92	31.2928	27.2539	-11.7489	0.9911	0.918	0.6198						
1.08	27.8507	25.616	-10.6821	0.8551	0.7915	0.4967						
1.87	18.642	20.9148	-7.84	0.3773	0.3819	0.2096						
3.02	13.1019	17.6537	-6.0631	0.2327	0.2295	0.1899						
5.13	8.8598	14.7033	-4.5992	0.3598	0.3988	0.2694						
6.92	7.1	13.2775	-3.9433	0.4116	0.5099	0.3031						
7.65	7.65 6.592 12.8333 -3.746 0.4227 0.5437 0.3117											
	Comments											
For input data	σp=2 set for ne	eutron powder	data.									

Table S21. Principal axis strain calculation details for $Ag_3[Co(CN)_6]$ II. ²⁴- continuation

				Input	data				
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å	Å)	c (Å)	α (º)	6	(º)	γ (º)
0.35	1.0	8.2549	8.25	49	21.1181	90.0	90	0.0	90.0
0.79	2.0	8.0921	8.09	21	21.438	90.0	90	0.0	90.0
0.95	1.0	8.0278	8.02	78	21.6073	90.0	90	0.0	90.0
1.02	2.0	8.0051	8.00	51	21.612	90.0	90	0.0	90.0
1.17	2.0	7.949	7.94	19	21.7	90.0	90	0.0	90.0
1.3	1.0	7.8537	7.85	37	21.9417	90.0	90	0.0	90.0
1.36	2.0	7.793	7.79	93	22.048	90.0	90	0.0	90.0
1.5	1.0	7.8066	7.80	66	22.0406	90.0	90	0.0	90.0
1.56	2.0	7.7208	7.72	08	22.147	90.0	90).0	90.0
1.78	1.0	7.6743	7.67	43	22.2592	90.0	90	0.0	90.0
		Princip	bal axis	strain	calculatior	output			
				Directi	on	E	mpirical p	aramete	rs
Axes	<i>K</i> (TPa⁻¹)	σ <i>K</i> (TPa⁻¹)	а	b	С	ε	λ	p _c	v
X ₁	53.1254	4.7515	1.0	0.0	-0.0	0.0003	-0.0504	0.35	1.0687
X ₂	53.1254	4.7515	0.0	1.0	-0.0	0.0003	-0.0504	0.35	1.0687
X ₃	-37.0697	4.2737	-0.0	-0.0	1.0	-12.7036	12.0285	-7.7778	0.026
V	64.0214	2.2508							
		Bi	rch-Mu	rnagha	n coefficie	ents			
	<i>B</i> ₀ (GPa)	σB_0 (GPa)	V ₀	(ų)	σV₀ (ų)	B'	σ	'B'	<i>р</i> _с (GPa)
2nd	10.6608	0.8634	1495	.3125	10.0139	4.0	n	/a	0.0
3rd	18.2885	2.1614	1468	.4336	6.2722	-1.5656	1.2	311	0.0
3rd with	P _c 17.6345	1.715	1440	.1221	3.5827	-2.1964	1.4	451	0.35

Table S22. Principal axis strain calculation details for $Zn[Au(CN)_2]_2 I.^{29}$

	Compressibility											
<i>p</i> (GPa)	<i>К</i> 1 (ТРа ⁻¹)	<i>K</i> ₂ (TPa ⁻¹)	<i>K</i> ₃ (TPa ⁻¹)	<i>σK</i> ₁ (TPa ⁻¹)	<i>σK</i> ₂ (TPa⁻¹)	<i>σK</i> ₃ (TPa ⁻¹)						
0.35	4.1105	4.1105	-40.7076	2.86*10 ¹⁵	2.86*10 ¹⁵	14.773						
0.79	50.9001	50.9001	-38.6701	16.0506	16.0506	3.2399						
0.95	51.9968	51.9968	-37.9795	10.3785	10.3785	4.425						
1.02	52.3927	52.3927	-37.6852	8.3	8.3	4.6268						
1.17	1.17 53.1254 53.1254 -37.0697 4.7515 4.7515 4.2737											
1.3	53.6654	53.6654	-36.5526	3.4508	3.4508	3.3753						
1.36	53.8918	53.8918	-36.3188	3.7184	3.7184	3.0259						
1.5	54.3748	54.3748	-35.7849	5.5891	5.5891	3.7155						
1.56	54.5652	54.5652	-35.561	6.5775	6.5775	4.7959						
1.78	55.1954	55.1954	-34.7635	10.2397	10.2397	10.9939						
		(`omments									

Table S22. Principa	al axis strain calculation	details for Zn[Au	$(CN)_2]_2 I.^{29}$ -	continuation
---------------------	----------------------------	-------------------	-----------------------	--------------

For input data $\sigma p=2$ set for powder data.

The lower limit not equal 0.1 MPa does not mean the NLC is not present starting from ambient conditions, but the compressibility value lack a physical sense.

Compressibility reported in original paper ²⁹								
<i>p</i> (GPa)	<i>К_а</i> (ТРа ⁻¹)	<i>К</i> _с (ТРа ⁻¹)						
0.35	55(16)	-48(14)						
0.79	53(5)	-44(4)						
0.95	53(4)	-43.6(29)						
1.02	53(3)	-43.3(29)						
1.17	53(4)	-43(3)						
1.3	53(5)	-42(4)						
1.36	52(6)	-42(5)						
1.47	52(6)	-42(5)						
1.5	52(7)	-42(5)						
1.56	52(7)	-42(6)						
1.78	52(9)	-41(7)						

	Input data										
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)	b (Å	i)	c (Å)	α (º)	6	(º)	γ (º)		
2.04	1	15.227	15.2	27	44.64	90.0	90	90.0			
2.23	1	15.165	15.1	65	44.75	90.0	90	0.0	90.0		
2.37	1	15.101	15.1	01	44.85	90.0	90	0.0	90.0		
3.46	1	14.71	14.7	'1	45.27	90.0	90	0.0	90.0		
3.88	1	14.57	14.5	57	45.43	90.0	90	0.0	90.0		
4.69	1	14.452	14.4	52	45.66	90.0	90	0.0	90.0		
6.13	1	14.117	14.1	17	45.67	90.0	90	0.0	90.0		
7.62	1	14.005	14.0	05	46.19	90.0	90	0.0	90.0		
10.66	1	13.73	13.7	'3	46.2	90.0	90	0.0	90.0		
14.22	1	13.342	13.3	42	45.93	90.0	90	0.0	90.0		
		Princi	oal axis	strain	calculation	output					
				Directio	on	E	mpirical p	aramete	rs		
Axes	<i>K</i> (TPa ⁻¹)	σ <i>K</i> (TPa⁻¹)	а	b	С	ε	λ	p _c	v		
X ₁	16.1133	1.2338	0.0	1.0	-0.0	0.0833	-0.0936	1.3862	0.3204		
X ₂	16.1133	1.2338	1.0	0.0	-0.0	0.0833	-0.0936	1.3862	0.3204		
X ₃	-4.4942	0.9505	-0.0	-0.0	1.0	-79.7413	79.7518	1.7485	0.0001		
V	16.7411	1.2388									
		Bi	rch-Mu	rnagha	n coefficie	ents					
	<i>B</i> ₀ (GPa)	σB_0 (GPa)	V ₀ ((ų)	σV ₀ (ų)	Β'	σ	B'	<i>р</i> _с (GPa)		
2nd	27.2682	2.3456	10932	.6306	129.011	4.0	n	/a	0.0		
3rd	16.0205	12.1261	11314	.2102	592.4585	6.5229	3.7	3.7073			
3rd with	P. 28.2314	6.9697	10299	.1811	114.1907	5.617	1.9	951	2.04		

Table S23. Principal axis strain calculation details for $Zn[Au(CN)_2]_2$ II.²⁹

		Со	mpressibility	1					
<i>p</i> (GPa)	<i>К</i> ₁ (ТРа ⁻¹)	<i>K</i> ₂ (TPa⁻¹)	<i>K</i> ₃ (TPa⁻¹)	<i>σK</i> 1 (TPa	⁻¹) σK ₂ (TPa ⁻¹) σK ₃ (TPa ⁻¹				
2.04	40.0247	40.0247	-32.8527	16.251	9 16.2519 43.2239				
2.23	33.6533	33.6533	-19.8907	7.7344	7.7344 10.2256				
2.37	30.3193	30.3193	-15.4107	4.6499	4.6499 4.5118				
3.46	18.2649	18.2649	-5.5969	1.2997	1.2997 1.1827				
3.88	16.1133	16.1133	-4.4942	1.2338	1.2338 0.9505				
4.69	13.3097	13.3097	-3.2568	0.9579	0.9579 0.6623				
6.13	10.4086	10.4086	-2.1865	0.5249	0.5249 0.4609				
7.62	8.6452	8.6452	-1.6317	0.3683	0.3683 0.406				
10.66	6.5999	6.5999	-1.0751	0.5677	0.5677 0.3762				
14.22	5.2924	5.2924	-0.7683	0.7701	0.7701 0.3517				
	С	Der ²⁹							
	<i>p</i> (GPa)		<i>K_a</i> (TPa ⁻¹)		<i>К_с</i> (ТРа ⁻¹)				
	2.04		75(5)		-51(3)				
	2.2		51(5)		-31(3)				
	2.2335		48(5)		-30(3)				
	2.368		39(5)		-23(3)				
	2.4		38(5)		-21(3)				
	3.1		22(5)		-10(3)				
	3.4575		18(5)		-8(3)				
	3.6		18(5)		-7(3)				
	3.8755		16(5)		-6(3)				
	4.6905		13(5)		-4(3)				
	4.89		13(5)		-3(3)				
	6.128		10(5)		-2(3)				
	7.1		9(5)		-1(3)				
	7.6165		8(5)		-1(3)				
	9.54		7(5)		0(3)				
	10.66		6(5)		0(3)				
	12		6(5)		0(3)				
	14.223		5(5)		0(3)				

Table S23. Principal axis strain calculation details for $Zn[Au(CN)_2]_2 II.^{29}$ - continuation

						In	put da	ta						
<i>p</i> (GPa)	σр (С	GPa)	a (Å)	b (Å)		<i>c</i> (Å)		α (º)		в (₽)		γ (º)
0.12	1	1	13.	47	8.649		13.025	5	90.0	.0		9.3		90.0
0.19	1	1	13.4	491	8.626		12.8826		90.0	109		.63		90.0
0.23	1	1	13.	52	8.6272	2	12.882	2	90.0		110	.29		90.0
0.34	1	1	13.	522	8.6312	2	12.88		90.0		110	.04		90.0
Principal axis strain calculation output														
Direction									Emp	oirical	param	ete	rs	
Axes	<i>к</i> (тғ	Pa⁻¹)	σΚ(ΤϜ	Pa⁻¹)	а	b	C		$\boldsymbol{\varepsilon}_{0}$		٦	p _c		V
X ₁	34.6	693	na	n	0.3398	-0.0	0.94	05	8.2668	-8.2	288	0.119	8	0.0003
X ₂	1.92	224	na	n	0.0	1.0	-0.	0	0.1518	-0.1	545	0.12		0.0009
X ₃	-24.8	3607	na	n	0.9987	0.0	-0.05	508	-5.3334	5.3	342	0.088	4	0.0005
V	55.4	472	28.25	567										
					Birch	-Murn	aghan	coe	fficients					
	E	B₀ (GP	'a) σB	₿₀ (GPa	ı) <i>V</i> ₀ (Å	V_0 (Å ³) σV_0 (Å ³)		Å3)	Β' σΒ'		В'		<i>p</i> _c (GPa)	
2nd		7.802	1 6	6.4171	1454.6	702	31.292	22	4.0		n	/a		0.0
3rd	4	46.483	34 6	7.2252	1436.	32	7.869)1	-74.85	8	60.2	2275		0.0
3rd with	n P _c	36.29	3 6	0.2917	1432.1	634	4.138	32	-97.894	7	56.4	451		0.12
						Com	pressit	oility	/					
<i>р</i> (GPa	a)	<i>K</i> ₁ (T	Pa⁻¹)	K ₂	(TPa⁻¹)	K ₃ (1	ſPa⁻¹)	σΚ	′₁ (TPa⁻¹)	σΚ	2 (TPa	1 ⁻¹)	o	σ <i>K</i> ₃ (TPa⁻¹)
0.12	1	15061	.4126	88758	3178.6212	-79.	9052		nan		nan			nan
0.19		34.6	693	1	.9224	-24.	8607		nan		nan			nan
0.23		22.0	837	1	.2238	-17.	8402		nan		nan			nan
0.34		11.0	522	0	.6123	-10.	0429		nan	nan			nan	

Table S24. Principal axis strain calculation details for LOCCAI.³⁷

	Input data													
<i>p</i> (GPa)	σ <i>p</i> (GPa)		מ (Å)	b (Å)		С	: (Å)		α (º)		6 (9	2)		γ (º)
0.0001	1.0	17	.2451	27. 242	15	7.	9554	4	90.0		90.	0		90.0
0.4	1.0	1	7.475	26.52	2 7.66		.662		90.0		90.0			90.0
0.7	1.0	1	7.449	26.51	1	7	.536	;	90.0		90.	0		90.0
1.09	1.0	1	7.559	26.31	5	7	.259		90.0		90.	0		90.0
1.59	1.0	1	7.604	25.83	3	7	7.13		90.0		90.	0		90.0
1.95	1.0	1	7.564	25.64	L	7	7.07		90.0		90.	0		90.0
2.5	1.0	1	7.606	25.58	3	6	.944		90.0		90.	0		90.0
Principal axis strain calculation output														
				irecti	on				En	npirical pa	ramete	ers	;	
Axes	<i>К</i> (ТРа ⁻¹)	σK(TPa⁻¹)	а	k	6		с	ε		λ	p _c		V
X ₁	51.2214	5.	0105	-0.0	0.	.0	1	.0	135.4479) -:	135.4741	-0.746	54	0.0007
X ₂	21.7061	3.	6015	-0.0 1		.0	-0	0.0	-0.0004		-0.0375 0.000		1	0.5984
X ₃	-4.4524	1.4	4573	1.0	0.0 -0.0		-0.0178		0.034	-0.010)4	0.1422		
V	64.5713	6.	8323											
				Birch-N	/lurna	agha	n co	effi	cients					
	<i>B</i> ₀ (GPa)	σ	B₀ (GPa)	V_0 (A	3)	σ	V₀ (Å	Å3)	Β'		σΕ	3'		<i>p</i> _c (GPa)
2nd	9.8343		0.7679	3701.	682	28	3.39	32	4.0		n/	a		0.0
3rd	5.431		2.424	3757.7	'874	57	7.55	02	10.9432	L	5.59	951		0.0
					Comp	ores	sibil	ity						
<i>p</i> (GPa)	<i>К</i> 1 (ТР	a⁻¹)	K ₂ (ΓPa⁻¹)	K₃ (TPa ^{-:}	1)	σKı	(TPa⁻¹)		<i>σK</i> ₂ (TPa ⁻	¹)	σ	<i>K</i> ₃ (TPa⁻¹)
0.0001	125.9	29	233331	633.7819	-241	.624	16	52	2.8922		2.21*102	22	2	644.8513
0.4	82.02	45	32.	4672	-10.	.376	4	8	.9627		22.5723	3		11.9302
0.7	65.02	19	25.	9314	-6.4	4807	7	7	.9179		9.4603			3.9019
1.09	51.22	14	21.	7061	-4.4	4524	1	5	.0105		3.6015			1.4573
1.59	40.26	64	18.	6521	-3.2	2289)	5	.0434		4.4674			1.966
1.95	34.89	38	17.	1843	-2.7	7131	L	7	.2163		5.9388			2.3042
2.5	28.98	58	15.	5523	-2.2	1945	5	10).2558		7.5955			2.5567

Table S25. Principal axis strain calculation details for LUKWAS/LUKWOG (BTCP·dItFB). ²⁷

	Input data														
<i>p</i> (GPa)	σ <i>p</i> (GPa)) a (Å)	b (Å)		c (Å)	α (º)	<i>₿</i> (º)	γ (º)						
0.000101	1	9.7872	8.486	8	7.407	90.0	100.4	43	90.0						
0.1	1	9.7823	8.492	9	7.412	90.0	100.4	14	90.0						
0.36	1	9.7272	8.496	3	7.332	90.0	100.4	45	90.0						
0.51	1	9.6758	8.490	5	7.306	90.0	100.4	43	90.0						
0.88	1	9.6118	8.492	1	7.251	90.0	100.	4	90.0						
1.21	1	9.5551	8.501	-	7.182	90.0	100.3	35	90.0						
1.63	1	9.4961	8.502	8	7.127	90.0	100.3	38	90.0						
1.94	1	9.4462	8.507	5	7.057	90.0	100.4	46	90.0						
2.46	1	9.3869	8.511	5	6.98	90.0	100.	5	90.0						
3.08	1	9.3265	8.5118		6.889	9 90.0 100.68		58	90.0						
3.6	1	9.2779	8.503	1	6.835	90.0	100.7	76	90.0						
4.06	1	9.2492	8.5144		6.769	90.0	100.9	94	90.0						
4.54	1	9.2008	8.5014		8.5014		8.5014		8.5014		6.745	90.0	100.9	94	90.0
5.0	1	9.1703	8.498	7	6.695	90.0	101.0	01	90.0						
5.52	1	9.1302	8.497	2	6.657	90.0	101.	0	90.0						
6.0	1	9.1044	8.495	9	6.628	90.0	100.9	98	90.0						
6.52	1	9.07	8.485	6	6.61	90.0	100.9	98	90.0						
			Principal	axis s	train calcul	ation outp	ut								
			D	irectio	on		Empirical	parame	ters						
Axes	<i>K</i> (TPa⁻¹)	σ <i>K</i> (TPa⁻¹)	а	b	С	ε0	λ	p _c	v						
X ₁	11.8879	0.2057	0.9971	0.0	0.0758	29.463	-29.4245	-2.019	0.0018						
X ₂	19.4528	0.378	0.0941	-0.0	0.9956	142.4574	-142.3235	-3.255	0.0008						
X ₃	-0.0929	0.1068	0.0	1.0	-0.0	-2.9759	2.9773	-0.001	.8 0.0001						
V	27.6807	1.3696													

Table S26. Principal axis strain calculation details for OTELEH.⁴¹

Birch-Murnaghan coefficients											
	<i>B</i> ₀ (GPa)	σB_0 (GPa)	V ₀ (Å ³	[;])	<i>σV</i> ₀ (Å	3)	Β'		σΒ΄		<i>р_с</i> (GPa)
2nd	22.4253	0.5695	603.07	37 1.586		6	4.0		n/a		0.0
3rd	15.7656	1.183	608.85	99	1.723	3	7.508	5	0.7596		0.0
				Com	npressib	oility					
<i>p</i> (GPa)	<i>K</i> ₁ (TPa ⁻	¹) K ₂ (1	ſPa⁻¹)	K₃ (TPa ⁻¹)	σK ₁	(TPa ⁻¹)		σK ₂ (TPa ⁻¹)		σK₃ (TPa⁻¹)
0.0001	26.331	7 34.	1371	-119	9.1266	1	.9326		3.127		1646.6524
0.1	25.0926	5 33.	1214	-2.2	2453	1	527		2.7207		4.4466
0.36	22.3552	2 30.	7412	-0.0	6319	0	.8132		1.9077		0.8388
0.51	21.031	7 29.	5175	-0.4	4467	C).562		1.5644		0.5187
0.88	18.3522	1 26.	26.8784		2593	0).2783		0.9912		0.2559
1.21	16.4799	9 24.8	24.8935		1887	0	.2572		0.7023		0.1818
1.63	14.5864	4 22.	22.755		1401	0.2659		0.5081			0.1408
1.94	13.4463	3 21.	3982	-0.1).1178		.2527		0.4336		0.1242
2.46	11.8879	9 19.4	4528	-0.0	0929	0	.2057		0.378		0.1068
3.08	10.4449	9 17.	5504	-0.0	0742	0	.1467		0.3908		0.0937
3.6	9.48	16.	2202	-0.0	0635	0	.1274		0.4516		0.0858
4.06	8.7639	15	201	-0.0	0563	0	.1439		0.5278		0.0802
4.54	8.1237	14.	2657	-0.0	0503	0	.1808		0.6175		0.0753
5.0	7.5923	13.4	4714	-0.0	0457	0	.2216		0.7062		0.0712
5.52	7.0695	12.	5737	-0.0	0414	0	.2672		0.8046		0.0673
6.0	6.6471	12.	12.0169		0381	0.3062		0.3062 0.8911			0.0641
6.52	6.243	11.	3782	-0.0	0.0351 (.3445		0.9789		0.061

Table S26. Principal axis strain calculation details for OTELEH.⁴¹- continuation

					In	put data							
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (Å)		b (Å)		c (Å)	α (º)		6	8 (≌)	γ (º)		
1.0	1	8.953		3.865		13.081	90.0		9	0.47	90.0		
2.0	1	9.047	3	3.6626		12.7481 90.0			92.304		90.0		
3.5	1	9.0625	3	.5605		12.5539	90.0		92	.541	90.0		
6.2	1	9.0721	3	.4383		12.285	90.0		92	2.72	90.0		
Principal axis strain calculation output													
				Di	rectio	n		E	mpirical	parameter	S		
Axes	<i>К</i> (ТРа ⁻¹)	σ <i>K</i> (TPa⁻¹)	a		b	С	$\boldsymbol{\varepsilon}_{0}$		λ	p _c	V		
X ₁	25.1819	nan	0.	0	1.0	-0.0	-0.0	-().0534	1.0	0.4715		
X ₂	14.4966	nan	0.48	0.4874		874 0.0		0.8732 -0.0001		1 -().0312	1.0	0.465
X ₃	-0.9325	nan	0.96	0.9686		-0.2486	-0.151	0	.1675	1.0	0.0056		
V	27.4607	4.033											
				Birch-	Murn	aghan coe	fficients						
	<i>B</i> ₀ (GP	σa) σB_0 (GPa)	V ₀ (ų)	σV ₀ (ų)	B	1		σΒ'	<i>p</i> _c (GPa)		
2nd	20.34	78 4.2	182	465.4	1972	10.8783	4.	0		n/a	0.0		
3rd	0.022	.7 3970	.9403	513.9	9342	28749.739	2 3124.	4678	54515	1911.6272	0.0		
3rd with	P _c 8.503	9 4.8	936	451.4	1284	6.2087	23.1	314	13	3.2673	1.0		
					Com	pressibility	y	_					
<i>p</i> (GPa)) K ₁ (TPa⁻¹)	K ₂	(TPa ⁻	1)	<i>K</i> ₃ (TF	Pa⁻¹)	σΚ1	(TPa ⁻¹)	<i>σK</i> ₂ (TPa ⁻¹)	<i>σK</i> ₃ (TPa ⁻¹)		
1.0	6799334	4161.5735	49812	41947	.5033	-1047463	332.035		nan	nan	nan		
2.0	25.	1819	1	4.4966	6	-0.93	325		nan	nan	nan		
3.5	15.	5165	8	8.8789		-0.37	749		nan	nan	nan		
6.2	10.	5368	E	6.0005		-0.1	81		nan nan		nan		

Table S27. Principal axis strain calculation details for VOFVAN	. 38
---	------

						Input	data						
<i>p</i> (GPa)	σ <i>p</i> (GPa)	a (1	Å)	b (Å))	<i>c</i> (Å)	α (º)		в (₽)		γ (º)
2.48	0.02	5.92	18	7.750	7.7502		55	90.0		90.0			90.0
2.9	0.02	5.95	22	7.681	7.6818		37	90.0		90	.0		90.0
3.35	0.02	5.98	323	7.636	7	7.982	23	90.0		90	.0		90.0
3.68	0.02	6.00	949	7.590	8	7.88	8	90.0		90	.0		90.0
Principal axis strain calculation output													
Direction								Empirica	al para	me	ters		
Axes	<i>К</i> (ТРа ⁻¹)	<i>σK</i> (TP	a⁻¹)	а	b		с	ε		λ	\boldsymbol{p}_{c}		V
X ₁	39.3254	nar	า 🛛	-0.0	-0.0) :	1.0	-0.0		-0.041	2.48	5	0.8246
X ₂	16.8161	nar	า 🛛	-0.0	1.0) (0.0	-0.0001	L .	-0.0174	2.48		0.8461
X ₃	-12.0829	nar	ו ו	1.0	0.0) –	0.0	0.0		0.0123	2.48		0.8915
V	43.0708	1.804	44										
				Birc	h-Mu	ırnagha	n coe	efficients					
	B ₀ (GPa) <i>σB</i> ₀	(GPa)	V ₀ (4	V_0 (Å ³) σV_0 (Å ³)		ų)	Β' σΒ'		В'		<i>р</i> _с (GPa)	
2 nd	11.296	5 1.0	0597	444.6	265	5.74	96	4.0		n,	/a		0.0
3 rd	0.0442	1808	8.1917	546.6	209	62548.	3065	355.08	33	142464	17.680	7	0.0
3rd with	P _c 17.315	5 4.0	0431	379.4	074	1.00	25	10.206	8	9.0	454		2.48
					Co	ompres	sibilit	:y					
<i>p</i> (GPa)	<i>K</i> ₁ (TF	Pa⁻¹)	K ₂ (1	TPa⁻¹)	K ₃	(TPa⁻¹)	σΚ	L (TPa⁻¹)		<i>σK</i> ₂ (TPa	⁻¹)		<i>σK</i> ₃ (TPa ⁻¹)
2.48	16677.	7332	2284	1.0323	-50	9.9918		nan		nan			nan
2.9	39.32	254	16.8	8161	-12	2.0829		nan		nan			nan
3.35	34.60	086	15.0	0335	-11	1.1646		nan		nan		nan	
3.68	32.7	71	14.3	.3077 -1		0.7817 nan		nan	nan			nan	

Table 520. Fillicipal axis strain calculation details for fillinon.	Table S28. Princip	al axis strain	calculation	details for YIHHON. ³⁹
---	--------------------	----------------	-------------	-----------------------------------

<i>p</i> (GPa)	<i>K</i> (TPa⁻¹)
0.0001	-117.183
0.04	-97.042
0.099	-80.563
0.216	-68.357
0.323	-62.254
0.442	-57.981
0.534	-55.54

Table S29. Compressibility K (TPa⁻¹) for $InH(BDC)_2$ from Figure 2 of the original paper¹⁹.

Function fitted to the *K* values: $K = -47.10638 \times (p + 0.03608)^{-0.27525}$ ($R^2 = 0.99878$).

Table S30. Compressibility K (TPa⁻¹) for MIL-53(AI) from Figure 2 of the original paper²⁰.

<i>p</i> (GPa)	<i>К</i> (ТРа ⁻¹)
0.0001	-39.273
0.292	-22.909
0.901	-12.545
1.807	-7.091

Function fitted to the *K* values: $K = -40.5622 + 27.83138 \times p^{0.33953}$ ($R^2 = 0.99652$)

4. Compressibility capacity values for selected NLC materials

Table S31. Compressibility capacity values calculated for selected NLC materials.

NLC material	χ_K (%) for selected Δp (GPa)				
	0.15 GPa	0.90 GPa	2.00 GPa	3.00 GPa	Complete pressure range (given in
					brackets)
ETYFUM	0.52	2.595	4.721	6.152	6.846 (0.1 MPa-3.58 GPa)
CPOS-1	0.059	2.503	-	-	5.401 (1.02-2.32 GPa)
water@CPOS-1	0.057	0.712	-	-	2.113 (0.58-2.53 GPa)
BIUREA II	0.827	1.766	2.231	-	2.285 (0.62-2.81 GPa)
QAXMEH yellow	0.054	0.42	1.044	-	1.225 (0.54-2.84 GPa)
IZIYOI hp	0.052	0.858	-	-	1.059 (1.36-2.39 GPa)
SULBAC	0.024	0.328	-	-	0.984 (0.91-2.83 GPa)
POWSID	0.391	1.321	1.931	-	2.039 (0.1MPa-2.28 GPa)
JOHGIX	0.892	2.85	4.077	-	4.389 (0.1MPa-2.42 GPa)
MAGVOG I	0.428	2.544	-	-	2.544 (0.1MPa-0.9 GPa)
UNIRUF II	0.128	1.047	2.644	4.229	5.056 (2.01-5.51 GPa)
Ag ₃ [Co(CN) ₆] I	1.096	-	-	-	1.164 (0.1 MPa-0.157 GPa)-
Ag ₃ [Co(CN) ₆] II	0.512	1.617	2.56	3.208	5.251 (0.19-7.65 GPa)
Zn[Au(CN) ₂] ₂ I	0.605	3.479	-	-	5.374 (0.35-1.75 GPa)
Zn[Au(CN) ₂] ₂ II	0.4	1.352	1.978	2.325	3.602 (2.04-14.44 GPa)
InH(DBC) ₂	1.34	-	-	-	3.72 (0.1 MPa-0.53 GPa)
MIL-53(AI)	0.45	1.85	-	-	2.740.1 MPa-1.8 GPa)

5. Wine rack motif geometry.

p (GPa)	d ₁ (Å)	d ₂ (Å)	h (Å)	φ (°)
0.0001	3.896	4.817	3.06	76.36
0.08	3.896	4.788	3.07	75.84
0.15	3.904	4.773	3.09	75.36
0.29	3.877	4.702	3.08	74.66
0.35	3.883	4.659	3.11	73.74
0.53	3.865	4.592	3.11	72.9
0.79	3.882	4.521	3.16	71.22
0.88	3.853	4.482	3.13	71.12
1.25	3.839	4.376	3.15	69.48
1.33	3.837	4.317	3.17	68.48
1.85	3.84	4.246	3.2	67.14
2.44	3.852	4.15	3.25	65.18
3	3.841	4.056	3.26	63.74
3.58	3.884	3.993	3.35	61.86

Table S32. parameters of a triangle formed by centroids acting as hinge points in structure of ETYFUM for pressure in 0.1 MPa-3.58 GPa range.

Table S33. Functions fitted to parameters of a the triangle formed by centroids acting as hinge points.

Parameter (y)	Fitted function ($y = a - bc^x$)	R ²
<i>d</i> ₁	$d_1 = 3.8498 + 0.05528 * 0.13452^p$	0.63888
<i>d</i> ₂	$d_2 = 3.81982 + 1.00592 * 0.6191^p$	0.99751
h	$h = 44.62773 - 41.5565 * 0.99826^p$	0.96756
φ	$\varphi = 56.70518 + 19.60681 * 0.70146^p$	0.99713

6. H-bond energy.

Table S34. Complexation energy calculated for selected aggregates of ETY and FUM. Short O-H…N hydrogen bond is shown in yellow and longer C-H…O hydrogen bond is shown in purple in the figures representing two types of ETY and FUM aggregates.

Aggregate		Jet Here	Hr Hr	
H-bond		O-H…N	C-H…O	
Counterpoise corrected energy (Ha)		-1029.726279065285	-1029.701476005206	
BSSE ener	gy (Ha)	0.001869589899	0.001331073901	
Sum of fragments (Ha)		-1029.702232724450	-1029.702236872457	
Complexation	Raw	-16.26	-0.36	
energy (kcal/mol)	Corrected	-15.09	0.48	

Figures

1. Sample crystals

Figure S1. Sample crystal A at 298 K and (a) 3.00(2) GPa, gradually decompressed to (b) 2.44(2) GPa, (c) 1.85(2) GPa, (d) 1.25(2) GPa and (e) 0.35(2) GPa. Sample was then compressed from 0.35 GPa to (f) 2.02(2) GPa, (g) 2.06(2) GPa and (h) 3.75(2) GPa, when sample crystal was destroyed. Scale for all segments is included in lower left corner of segment (a). Cellulose fibers used to hold sample crystal in place is visible in the upper part of the chamber, while ruby chip used for pressure measurement is visible in the lower right part of the chamber next to the gasket edge.

Figure S2. Sample crystal B at 298 K and (a) 0.1 MPa (just after loading sample into DAC), compressed rapidly to (f) 3.58 GPa. Pictures were taken on compression at (b) 0.64(2) GPa, (c) 1.50(2) GPa, (d) 2.49(2) GPa and (e) 3.22(2) GPa. Scale for all segments is included in lower left corner of segment (a). Cellulose fibers used to hold sample crystal in place is visible around sample crystal, while ruby chip used for pressure measurement is visible in the upper right part of the chamber next to the sample crystal.

Figure S3. Sample crystal C at 298 K and at 298 K and (a) 0.1 MPa (just after loading sample into DAC), gradually compressed to (b,c) 0.29(2) GPa, (d) 0.53(2) GPa, (e) 0.88(2) GPa and (f) 1.33(2) GPa. Sample was then decompressed down to ambient pressure and compressed to (g) 0.08(2) GPa and subsequently to (h) 0.15(2) GPa. Scale for all segments is included in lower left corner of segment (a). A drop of glue used to hold sample crystal in place, and to assure its tilted position is visible "under" the sample crystal. Ruby chip used for pressure measurement is visible in the upper part of the chamber, next to the left upper corner of the sample crystal.

2. PXRD patterns

Figure S4. PXRD patterns of ETYFUM: calculated based on crystal structure (black) and experimental pattern measured for powder sample of ETYFUM received after solvent-assisted ball milling (red).

3. Principal axis strain of ETYFUM

Figure S5. Relative change in length of the principal axes in function of pressure (a), and compressibility indicatrix plots (b,c) representing compressibility tensors for ETYFUM all data (0.1 MPa-3.58 GPa pressure range). The indicatrix plots are shown along crystallographic axis b (b), and along direction [101] (c). Positive and negative linear compressibility is marked in red and blue, respectively, in the indicatrix plots.

4. Molecular aggregation and wine rack motif geometry

Figure S6. The respective positioning of ETY and FUM molecules at 298K/0.1 MPa, showing oxygen atom O1 interlocked between carbon atoms C4 and C5. Molecules are shown in spacefill and ellipsoid styles in program Mercury. An orange sphere represents centroid calculated for atoms O1, C4 and C5. The symmetry code for each molecule is listed next to it.

Figure S7. Pressure dependence of parameters d_1 , d_2 , h and φ of the triangle formed by centroids acting as hinge points (a) and fragment of ETYFUM structure (at 0.1 MPa/298 K) with the 'triangle' marked (orange centroids marking corners, red and green dashed lines marking sides and base of the triangle, respectively, height marked with blue dashed line and angle between triangle sides marked by purple arc).

Solid lines in graph in pane (a) show functions $y = a - bc^x$ (where x is pressure in GPa, see Table S26) fitted to data measured from experimentally determined structures.

5. Negative Linear Compressibility

Figure S8. Pressure dependence of negative linear compressibility for selected NLC materials. The insert magnifies the 0.1 MPa-2.4 GPa pressure range for compressibility down to -46 TPa⁻¹ for clearer presentation of data. Where possible materials are referenced by their REFCODES from Cambridge Structure Database (CSD)¹⁸. The names of the compounds are followed by information about polymorph (where applicable): yellow - yellow polymorph; hp - high-pressure polymorph; I- Phase I; II- Phase II. In case two polymorphs exhibit NLC, both are plotted in the same color but phases from higher pressure is

represented with dashed lines. Symbol shape corresponds to the type of the crystal: circle – ETYFUM; triangle - organic crystals, diamond – metal complexes, right-side triangle - inorganic-organic frameworks and coordination polymers selected from CSD datamining results; upside-down triangle – other framework materials selected from previous reports.

Compressibility capacity

Figure S9. Evolution of compressibility with pressure for selected NLC materials (Part 1). Names of the compounds are included above the respective graphs. The names of the compounds are followed by information about polymorph (where applicable): yellow - yellow polymorph; hp - high-pressure polymorph; I- Phase I; II- Phase II. The arrows mark the Δp widths for which integration was done, with the results of the integration also included in the figure (the color of the arrow corresponds to the color

of the area between function and top axis). For each compound, same p_{min} was selected for integration and only p_{max} progressively increases (the areas for different integrations overlap, with the area for wider Δp being partially covered by areas marking preceding integrations). As compressibility *K* is expressed in TPa⁻¹ and pressure in GPa, the values included in the graphs should be multiplied by 10⁻³ to allow for unit conversion. Those corrected values can be multiplied by 10² to express them in %.

Figure S10. Evolution of compressibility with pressure for selected NLC materials (Part 2). Names of the compounds are included above the respective graphs. The names of the compounds are followed by information about polymorph (where applicable): yellow - yellow polymorph; hp - high-pressure polymorph; I- Phase I; II- Phase II. The arrows mark the Δp widths for which integration was done, with the results of the integration also included in the figure (the color of the arrow corresponds to the color of the area between function and top axis). For each compound, same p_{min} was selected for integration

and only p_{max} progressively increases (the areas for different integrations overlap, with the area for wider Δp being partially covered by areas marking preceding integrations). As compressibility *K* is expressed in TPa⁻¹ and pressure in GPa, the values included in the graphs should be multiplied by 10⁻³ to allow for unit conversion. Those corrected values can be multiplied by 10² to express them in %.

Figure S11. Evolution of compressibility capacity (χ_k) with pressure for selected NLC materials. Literature data where χ_k was listed for the complete investigated pressure range are marked with star symbols at the Δp corresponding to the width of the investigated pressure range, and are labelled with the name of the compound in corresponding color. Where possible materials are referenced by their REFCODES from Cambridge Structure Database (CSD)¹⁸. The names of the compounds are followed by information about polymorph (where applicable): yellow - yellow polymorph; hp - high-pressure polymorph; I- Phase I; II-Phase II. In case two polymorphs exhibit NLC, both are plotted in the same color but phases from higher pressure is represented with dashed lines. Symbol shape corresponds to the type of the crystal: circle – ETYFUM; triangle - organic crystals, diamond – metal complexes, right-side triangle - inorganic-organic frameworks and coordination polymers selected from CSD datamining results; upside-down triangle – other framework materials selected from previous reports.

References

- 1 CrysAlisPro, Rigaku Oxford Diffraction (version 1.171.41.93a) Rigaku Oxford Diffraction, Rigaku Oxford Diffraction 2020.
- 2 L. Merrill and W. A. Bassett, Review of Scientific Instruments, 1974, 45, 290-294.
- 3 Daphne Oil 7575 Data sheet, .
- 4 G. J. Piermarini, S. Block, J. D. Barnett and R. A. Forman, *Journal of Applied Physics*, 1975, **46**, 2774–2780.
- 5 A. Budzianowski and A. Katrusiak, in *High-Pressure Crystallography*, eds. A. Katrusiak and P. McMillan, Springer Netherlands, Dordrecht, 2004, pp. 101–112.
- 6 K. Knížek, Kalvados https://www.fzu.cz/~knizek/kalvados/index.html.
- 7 OriginPro (version Version 2022b) OriginLab Corporation, Northampton, MA, USA.
- 8 C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J Appl Cryst*, 2020, 53, 226–235.
- 9 G. M. Sheldrick, *Acta Cryst A*, 2015, **71**, 3–8.
- 10 G. M. Sheldrick, Acta Cryst A, 2008, 64, 112–122.
- 11 G. M. Sheldrick, Acta Cryst C, 2015, 71, 3-8.
- 12 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Journal of Applied Crystallography*, 2009, **42**, 339–341.
- 13 F. Kleemiss, O. V. Dolomanov, M. Bodensteiner, N. Peyerimhoff, L. Midgley, L. J. Bourhis, A. Genoni, L. A. Malaspina, D. Jayatilaka, J. L. Spencer, F. White, B. Grundkötter-Stock, S. Steinhauer, D. Lentz, H. Puschmann and S. Grabowsky, *Chem. Sci.*, 2021, **12**, 1675–1692.
- 14 L. Midgley, L. J. Bourhis, O. V. Dolomanov, S. Grabowsky, F. Kleemiss, H. Puschmann and N. Peyerimhoff, *Acta Cryst A*, 2021, 77, 519–533.
- 15 F. Neese, F. Wennmohs, U. Becker and C. Riplinger, *The Journal of Chemical Physics*, 2020, **152**, 224108.
- 16 M. J. Cliffe and A. L. Goodwin, J Appl Cryst, 2012, 45, 1321–1329.
- 17 M. Lertkiattrakul, M. L. Evans and M. J. Cliffe, Journal of Open Source Software, 2023, 8, 5556.
- 18 C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta Cryst B, 2016, 72, 171–179.
- 19 Q. Zeng, K. Wang and B. Zou, J. Am. Chem. Soc., 2017, 139, 15648-15651.
- 20 D. Jiang, T. Wen, Y. Guo, J. Liang, Z. Jiang, C. Li, K. Liu, W. Yang and Y. Wang, *Chem. Mater.*, 2022, **34**, 2764–2770.
- 21 A. B. Cairns and A. L. Goodwin, Phys. Chem. Chem. Phys., 2015, 17, 20449-20465.
- 22 R. Dennington, T. A. Keith and ohn M. Millam, GaussView (version 6) Semichem Inc., Shawnee Mission, KS 2016.
- 23 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian (version 16 C.01) Gaussian, Inc., Wallingford CT 2016.
- 24 A. L. Goodwin, D. A. Keen and M. G. Tucker, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 18708–18713.
- 25 W. Cai and A. Katrusiak, Nat Commun, 2014, 5, 4337.
- 26 H. H.-M. Yeung, R. Kilmurray, C. L. Hobday, S. C. McKellar, A. K. Cheetham, D. R. Allan and S. A. Moggach, *Phys. Chem. Chem. Phys.*, 2017, **19**, 3544–3549.

- 27 S. Sobczak, A. Półrolniczak, P. Ratajczyk, W. Cai, A. Gładysiak, V. I. Nikolayenko, D. C. Castell, L. J. Barbour and A. Katrusiak, *Chem. Commun.*, 2020, 56, 4324–4327.
- 28 C. H. Woodall, C. M. Beavers, J. Christensen, L. E. Hatcher, M. Intissar, A. Parlett, S. J. Teat, C. Reber and P. R. Raithby, *Angew Chem Int Ed*, 2013, **52**, 9691–9694.
- 29 A. B. Cairns, J. Catafesta, C. Levelut, J. Rouquette, A. van der Lee, L. Peters, A. L. Thompson, V. Dmitriev, J. Haines and A. L. Goodwin, *Nature Materials*, 2013, **12**, 212–216.
- 30 J. J. Shephard, V. E. J. Berryman, T. Ochiai, O. Walter, A. N. Price, M. R. Warren, P. L. Arnold, N. Kaltsoyannis and S. Parsons, *Nat Commun*, 2022, **13**, 5923.
- 31 C. L. Bull, N. P. Funnell, C. J. Ridley, C. R. Pulham, P. L. Coster, J. P. Tellam and W. G. Marshall, *CrystEngComm*, 2019, **21**, 5872–5881.
- 32 H. J. Shepherd, T. Palamarciuc, P. Rosa, P. Guionneau, G. Molnár, J.-F. Létard and A. Bousseksou, *Angew. Chem. Int. Ed.*, 2012, **51**, 3910–3914.
- 33 E. L. Harty, A. R. Ha, M. R. Warren, A. L. Thompson, D. R. Allan, A. L. Goodwin and N. P. Funnell, *Chem. Commun.*, 2015, **51**, 10608–10611.
- 34 Y. Zhao, C. Fan, C. Pei, X. Geng, G. Xing, T. Ben and S. Qiu, J. Am. Chem. Soc., 2020, 142, 3593–3599.
- 35 I. E. Collings and M. Hanfland, Molecules, 2019, 24, 1759.
- 36 W. Zieliński and A. Katrusiak, Crystal Growth & Design, 2014, 14, 4247-4253.
- 37 A. Olejniczak, K. Krukle-Berzina and A. Katrusiak, Crystal Growth & Design, 2016, 16, 3756-3762.
- 38 E. Marelli, N. Casati, F. Gozzo, P. Macchi, P. Simoncic and A. Sironi, *CrystEngComm*, 2011, **13**, 6845–6849.
- 39 E. A. Kapustin, V. S. Minkov and E. V. Boldyreva, *Acta Crystallogr B Struct Sci Cryst Eng Mater*, 2014, **70**, 517–532.
- 40 M. Szafrański, J. Phys. Chem. C, 2020, 124, 11631-11638.
- 41 N. E. Bogdanov, D. V. Korabel'nikov, I. A. Fedorov, B. A. Zakharov and E. V. Boldyreva, *Acta Crystallogr B Struct Sci Cryst Eng Mater*, 2022, **78**, 756–762.
- 42 J. M. Ogborn, I. E. Collings, S. A. Moggach, A. L. Thompson and A. L. Goodwin, *Chem. Sci.*, 2012, 3, 3011.
- 43 W. Cai, A. Gładysiak, M. Anioła, V. J. Smith, L. J. Barbour and A. Katrusiak, *J. Am. Chem. Soc.*, 2015, **137**, 9296–9301.
- 44 I. E. Collings, R. S. Manna, A. A. Tsirlin, M. Bykov, E. Bykova, M. Hanfland, P. Gegenwart, S. Van Smaalen, L. Dubrovinsky and N. Dubrovinskaia, *Phys. Chem. Chem. Phys.*, 2018, **20**, 24465–24476.
- 45 I. E. Collings, M. Bykov, E. Bykova, M. G. Tucker, S. Petitgirard, M. Hanfland, K. Glazyrin, S. Van Smaalen, A. L. Goodwin, L. Dubrovinsky and N. Dubrovinskaia, *CrystEngComm*, 2016, 18, 8849– 8857.
- 46 Y. Yan, A. E. O'Connor, G. Kanthasamy, G. Atkinson, D. R. Allan, A. J. Blake and M. Schröder, J. Am. Chem. Soc., 2018, 140, 3952–3958.
- 47 A. Półrolniczak and A. Katrusiak, Mater. Adv., 2021, 2, 4677-4684.
- 48 A. Półrolniczak, S. Sobczak, V. I. Nikolayenko, L. J. Barbour and A. Katrusiak, *Dalton Trans.*, 2021, 50, 17478–17481.
- 49 S. A. Moggach, T. D. Bennett and A. K. Cheetham, *Angewandte Chemie International Edition*, 2009, **48**, 7087–7089.
- 50 S. Sobczak and A. Katrusiak, Crystal Growth & Design, 2018, 18, 1082–1089.