Supporting Information

for

Ratiometric Sandwich-type assays for RNAs with a point mutation using benzo[a]pyrene-modified probes.

Yu Watari, Kaito Nakatani, Kentaro Kobata, Kazuya Matsuo, Tomonori Waku and Akio Kobori*

Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585.

E-mail: akobori@kit.ac.jp

CONTENTS:

Ex	perimental procedures	S3-6
1.	Materials and Instrumentation	S3
2.	Fluorescence spectroscopy	S3
3.	UV-vis spectroscopy	S3
4.	Sandwich-type assay	S3-4
5.	Synthesis	S4-6
NN	AR analyses	S7-11
Fig	gures S	9,S12-17
Fig	gure S1. ¹ H ¹ H COSY spectra of 3	S9
Fig	gure S2. Reversed-phase HPLC profiles of benzo[a]pyrene-modified probes.	S12
Fig	gure S3. Melting profiles of the duplexes between the benzo[a]pyrene-modifi	ed probes
and	d complementary RNAs and DNAs.	S13
Fig	gure S4. Fluorescence and absorption spectra of Probe3 in the presence of R	NAs with
a p	oint mutation.	S14
Fig	gure S5. Fluorescent titration of Probe 3 with ORN(A) and ORN(G)	S14
Fig	gure S6 Reversed-phase HPLC profiles of amounts of ODN12 in the reaction	ion buffer
bet	fore (blue) and after (red) NHS coupling.	S15
Fig	gure S7. Ratiometric sandwich-type assays of various concentrations of ORM	\4(A) and
Oł	RN4(C).	S16
Та	bles	S17-18
Ta	ble S1. Sequences of target RNAs and DNAs.	S17
Ta	ble S2. The T_m values of the probe-RNA duplexes and the probe-DNA dup	lexes.S17
Ta	ble S3 Photophysical and thermodynamic properties of Probe3 in the abs	sence and
pre	esence of complementary strands	S18
Ta	ble S4 Photophysical and thermodynamic properties of Probe3 and ODN12	in the
abs	sence and presence of complementary strands.	S18

Materials and Instrumentation

Materials and instrumentation Reagents, solvents, and oligonucleotides were purchased from commercial sources. Flush column chromatography was performed using silica gel (200 mesh and 300 mesh).¹H NMR spectra were recorded on a 300 MHz NMR spectrometer. All benzo[a]pyrene-modified probes were purified with a reversed-phase HPLC system with a C18 reversed-phase column (HPLC conditions: 0.8 mL/min; solvent A = 0.1 M triethylammonium acetate (TEAA); solvent B = 50% acetonitrile/0.1 M TEAA linear gradient, monitored at 260, 342, and 400 nm). A UV-Vis spectrometer (Shimadzu: UV-1800) was used to measure the absorption spectra of benzo[a]pyrene-modified probes. A fluorescence spectrometer (HITACHI: F2700) was used to measure the fluorescence spectra and the fluorescence quantum yields.

Fluorescence spectroscopy

Fluorescence spectra were measured using a fluorescence spectrometer (HITACHI: F2700) and 10 mm quartz cuvettes in phosphate buffer (pH 7.0) containing 2 mM MgCl₂ and 150 mM NaCl. The final concentrations of the oligonucleotides were adjusted to 1 μ M. The fluorescence quantum yield was determined using perylene in dichloromethane as a reference with a known $\Phi_{\rm em}$ value of 0.97. The quantum yield was calculated according to the following equation: $\Phi_{\rm em(S)}/\Phi_{\rm em(R)} = (E_{\rm (S)}/E_{\rm (R)}) \times$ $(A_{\rm (R)}/A_{\rm (S)}) \times (n_{\rm (S)}^2/n_{\rm (R)}^2)$. Here, Φ is fluorescence quantum yield of fluorescence emission, A is the magnitude of absorbance, E is the integrated fluorescence intensity and *n* is the refractive index of the solvent. R and S denote values for the reference and sample, respectively.

UV-vis spectroscopy

Absorption spectra were measured using the UV-vis spectrometer and 10 mm quartz cuvettes in phosphate buffer (pH 7.0) containing 2 mM MgCl₂ and 150 mM NaCl. The final concentration of the oligonucleotides was adjusted to 1–10 μ M. Melting temperatures were measured using the UV-vis spectrometer and 10 mm quartz cuvettes in phosphate buffer (pH 7.0) containing 2 mM MgCl₂ and 150 mM NaCl. The final concentrations of the oligonucleotides were adjusted to 2 μ M. Absorbance at 260 nm was monitored during a thermal cycle. Melting temperatures were the average values of triplicate measurements.

Sandwich-type assay

Preparation of capture beads.

500 μ L of NHS-activated Sepharose 4Fast flow (GE healthcare) was added to the 1.5 mL tube. After centrifugating at 8,000 rpm at room temperature for 2 min, the supernatant was removed. The residue was washed with distilled water three times, 2 M NaOH aq. (500 μ L) and EtOH (500 μ L) was added. After stirring at room temperature for 24 h, the residue was washed with distilled water and suspended in 1 mL of Dulbecco's PBS (pH 7.4) (carboxylic modified beads). the carboxylic modified beads solution (200 μ L) was added to 1.5 mL tube. After centrifugating at 8,000 rpm at room temperature for 90 sec, the supernatant was removed, and the residue was washed with anhydrous DMF (800 μ L) three times. To the residue, DMF (600 μ L) containing 200 mM *N*-hydroxyl succinimide (NHS) and 80 mM 1-ethyl-3-(3-dimethylamiinopropyl)carbodiimide (EDC) was added. After stirring at 65 °C for 2 h, the supernatant was removed. The residue was washed with 100 mM HCl (600 μ L) once and 10 mM phosphate buffer (pH 7.0, 600 μ L) once and the resulting residue was added to reaction buffer (30 μ L) containing 50 μ M **ODN12**, 20 mM phosphate buffer (pH 7.0), and 0.2 mM thymidine. The mixture was stirred at 25 °C for 30 min and the supernatant was collected for the analysis of the amount of **ODN12** immobilized on the agarose beads. The residues were washed with 10 mM phosphate buffer (pH 7.0) three times to yield capture beads solution. Reverse-phased HPLC analysis of the supernatant of the reaction solution revealed that **ODN12** of 22 fmol was immobilized on one agarose bead (**Figure S6**).

Sandwich-type detection of RNAs with a point mutation.

To a solution (90 μ L) of capture beads (10 particles), 1 μ M benzo[a]pyrene-modified in phosphate buffer containing 2 mM MgCl₂ and 300 mM NaCl, 10 pM–1 nM target RNAs (10 μ L) was added. After stirring at room temperature for 24 h, the solution was transferred to glass bottom dish and covered with cover slip. Then, the fluorescence images of capture beads were obtained with confocal laser microscopy (Nikon; A1R HD25). The microscope setting as follows: excitation, 405 nm; observed range: 415-607 nm (Δ =6 nm); objective lens, 60×3; DM, 405/488 . Fluorescence intensities were quantified using Image J software (NIH: version 1.53p) and NIS-elements AR (Nikon).

Synthesis

Synthesis of 2'/3'-O-[1-(benzo[a]pyrenyl)methyl]uridine (2a and 2b).

To a solution of uridine (1.71 g, 7 mmol) in anhydrous methanol (350 mL), dibutyltin oxide (1.79 g, 7.2 mmol) was added at room temperature. After refluxing at 110 °C for 30 min, the solution was cooled to room temperature and concentrated under reduced pressure. The residue was co-evaporated with anhydrous DMF (15 mL) three times. The resulting residue was dissolved in DMF (35 mL) and then was added 6-chloromethylbenzo[a]pyrene (601.5 mg, 2 mmol). After stirring at 90 °C for 2 h, the mixture was cooled to room temperature. After the addition of ice, the solution was concentrated to near dryness under reduced pressure. The insoluble solid was suspended in EtOAc and filtrated, washed with EtOAc, and dried *in vacuo*. The residue was purified by chromatography on a column of silica gel (C200) with DCM:MeOH (100:0–19:1, v/v) to give **2a** and **2b** (849.0 mg, 84%). HRMS (ESI-TOF) m/z: $[M+Na]^+$ calcd for C₃₀H₂₄N₂NaO₆ 531.1527; found 531.1555.

Synthesis of 5'-O-(4,4'-dimethoxyltrityl)-2'-O-[1-(benzo[a]pyrenyl)methyl]uridine (3).

To a solution of **2a** (509.0 mg, 1 mmol) in anhydrous pyridine (20 mL), DMTrCl (508.4 mg, 1.5 mmol) was added at room temperature. After stirring at room temperature for 3 h, the mixture was diluted with EtOAc, washed 5% NaHCO₃ aq., and dried with anhydrous Na₂SO₄. The mixture was filtrated and concentrated under reduced pressure. The residue was purified by chromatography on a column of silica gel (C300) with Hexane:EtOAc (4:1–1:1, v/v) containing 0.5% pyridine to give **3** (520.6 mg, 64%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.38 (s, 1H), 9.30–9.27 (m, 2H), 8.77 (d, *J* = 8.1 Hz, 1H), 8.57 (d, *J* = 9.6 Hz, 1H), 8.48 (d, *J* = 9.0 Hz, 1H), 8.38 (d, *J* = 7.8 Hz, 1H), 8.23 (d, *J* = 7.5 Hz, 1H), 8.12–8.07 (m, 2H), 7.92–7.81 (m, 2H), 7.63 (d, *J* = 8.1, Hz), 7.32–7.16 (m, 9H), 6.84 (t, *J* = 6 Hz, 1H), 5.18 (d, *J* = 7.8 Hz, 1H), 5.86 (d, *J* = 11.4 Hz, 1H), 5.75 (d, *J* = 11.4 Hz, 1H), 5.61 (d, *J* = 6 Hz, 1H), 5.18 (d, *J* = 7.8 Hz, 1H), 4.46–4.37 (m, 2H), 4.03 (d, *J* = 3.0 Hz, 1H), 3.73 (d, *J* = 3.6 Hz, 6H), 3.32–3.23 (m, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 162.9, 158.1, 150.4, 144.5, 140.0, 135.4, 135.0, 130.9, 130.3, 130.2, 129.7, 129.7, 128.7, 128.6, 128.2, 127.8, 127.7, 127.6, 127.6, 126.9, 126.7, 126.4, 126.2, 126.1, 125.3, 124.4, 124.2, 123.6, 122.5, 122.4, 113.2, 101.5, 87.3, 85.9, 83.2, 80.8, 68.9, 64.8, 62.9, 55.0. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₅₁H₄₂N₂NaO₈ 833.2833; found 833.2866.

Synthesis of 5'-O-(4,4'-dimethyltrityl)-2'-O-[1-(benzo[a]pyrenyl)methyl]uridine-3'-(2-cyanoethyl-N,N-diisopropylphophoramidite) (4).

To a solution of 3 (182.8 mg, 0.23 mmol) in anhydrous DCM (2 mL), N,N-diisopropylethylamine (52 μL, 0.3 mmol) was added under N₂ atmosphere. Then, 2-cyanoethyl-N,Ndiisopropylchlorophosphoramidite (53 µL, 0.24 mmol) was added to the solution. After stirring at room temperature for 2 h, the mixture was washed with saturated NaHCO₃ aq. and brine, and dried with anhydrous Na₂SO₄. The mixture was filtrated and concentrated under reduced pressure. The residue was purified by chromatography on a column of silica gel (C200) with hexane:EtOAc (2:1-1:4,v/v) containing 1% triethylamine to give 4 (162.2 mg, 70%). ¹H NMR (300 MHz, CDCl₃) δ 9.06– 9.03 (m, 2H), 8.77–8.71 (m, 1H), 8.513 (dd, *J* = 4.2, 9.6 Hz, 1H), 8.34 (dd, *J* = 3.0, 9.3 Hz, 1H), 8.24 (d, *J* = 7.5 Hz, 1H), 8.06 (d, *J* = 7.5, 1H), 7.98–7.91 (m, 2H), 7.82 (dd, *J* = 3.6, 6.3 Hz, 2H), 7.58 (dd, J = 8.1, 13.5 Hz, 1H), 7.25–7.11 (m, 8H), 6.75 (ddd, J = 3.6, 8.3 Hz, 4H), 6.26–6.15 (dd, J = 3.3, 28.5 Hz, 1H), 5.98-5.83 (m, 2H), 4.94 (dd, J = 8.1, 9.3 Hz, 1H), 4.70-4.51 (m, 1H), 4.36-4.21 (m, 2H), 3.75 (d, *J* = 1.2 Hz, 3H), 3.74 (s, 3H), 3.71–3.30 (m, 7H), 2.43 (t, *J* = 6.3 Hz, 1H), 2.32–2.07 (m, 1H), 1.15–1.05 (m, 9H), 0.96 (d, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.0, 158.6, 150.3, 150.3, 144.3, 144.2, 139.6, 135.3, 135.2, 135.1, 134.9, 131.2, 130.7, 130.7, 130.6, 130.5, 130.2, 130.1, 129.4, 129.3, 128.9, 128.2, 128.2, 128.1, 128.0, 127.8, 127.8, 127.0, 126.6, 126.5, 126.2, 126.2, 126.1, 125.8, 125.8, 125.4, 125.3, 125.2, 125.1, 124.0, 123.3, 123.3, 123.2, 122.0, 117.7, 117.5, 113.2, 102.1, 101.9, 88.3, 87.9, 87.1, 86.9, 82.9, 82.7, 81.4, 80.7, 70.4, 70.2, 70.0, 65.3, 61.9, 61.3, 58.6, 58.4, 58.1, 55.2,

43.4, 43.2, 43.2, 43.0, 24.8, 24.7, 24.6, 24.5, 24.4, 20.3, 20.2, 20.1, 20.1. ³¹P NMR (121 MHz CDCl₃) δ 149.7, 149.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₆₀H₅₉N₄NaO₉P 1033.3912; found 1033.3905.

Synthesis of the benzo[a]pyrene-modified probes.

All the benzo[a]pyrene-modified probes were synthesized by the standard solid-phase synthesis method. The coupling time for the Ubpy phosphoramidite unit **4** was extended to 15 min. All the benzo[a]pyrene-modified probed were deprotected by 28% NH₃ aqueous solution at 55 °C for 16 h and purified with reversed-phase HPLC (**Figure S2**). All the benzo[a]pyrene-modified probes were characterized with ESI-TOF-MS spectrometry. ESI-TOF-MS m/z: [M-5H]⁵⁻ calcd for **Probe1** 1063.88 found for 1063.89; [M-5H]⁵⁻ calcd for **Probe2** 1397.26 found for 1397.25; [M-5H]⁵⁻ calcd for **Probe3** 1064.80 found for 1064.80; [M-5H]⁵⁻ calcd for **Probe4** 1413.25 found for 1413.27; [M-5H]⁵⁻ calcd for **Probe5** 1411.04 found for 1411.02; [M-5H]⁵⁻ calcd for **Probe6** 1347.75 found for 1347.70; [M-6H]⁶⁻ calcd for **Probe7** 1114.71 found for 1114.63; [M-4H]⁴⁻ calcd for **Probe8** 1586.85 found for 1586.79; [M-5H]⁵⁻ calcd for **Probe9** 1255.93 found for 1255.93; [M-5H]⁵⁻ calcd for **Probe10** 1272.63 found for 1272.60; [M-5H]⁵⁻ calcd for **Probe11** 1280.60 found for 1280.60.

¹H, ¹³C, and ³¹P NMR spectra

¹H NMR spectra of **2a** and **2b**

¹H NMR spectra of **3**

Figure S1. ¹H-¹H COSY spectra of 3

S10

³¹ P NMR spectra of 4	
bYW144 31	V 100,000
Mandon Local Jan Kan July a Mana Jawa Mana Jawa Kang Kana Jan Kang Kana Jawa Kang	ان و منه المراجع و منه المراجع و المراجع و المراجع و المراجع و منه و منه و منه و المراجع و المراجع و المراجع و منه و منه و منه و المراجع و منه و المراجع و المراجع و المراجع و منه و منه و منه و منه و منه و المراجع و منه و م
190 180 170 160	150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

Reversed-phase HPLC profiles of benzo[a]pyrene-modified probes.

Figure S2. Reversed-phase HPLC profiles of benzo[a]pyrene-modified probes. (a) **Probe1**, (b) **Probe2**, (c) **Probe3**, (d) **Probe4**, (e) **Probe5**, (f) **Probe6**, (g) **Probe7**, (h) **Probe8**, (i) **Probe9**, (j) **Probe10**, (k) **Probe11**. HPLC Conditions: Solvent A = 0.1 M TEAA; Solvent B = 50% CH₃CN/0.1 M TEAA linear gradient from 0% to 100% over 50 min, monitored at 260, 342, and 400 nm; Temp 40 °C.

Melting profiles of the probe-RNA duplexes and the probe-DNA duplexes.

Figure S3. Melting profiles of the duplexes between the benzo[a]pyrene-modified probes and complementary RNAs and DNAs. (a) **Probe1**, (b) **Probe2**, (c) **Probe3**, (d) **Probe4**, (e) **Probe5**, (f) **Probe6**, (g) **Probe7**, (h) **Probe8**, (i) **Probe9**, (j) **Probe10**, (k) **Probe11**. Conditions: 2.0 μM oligonucleotides, 150 mM NaCl, 2 mM MgCl₂, 10 mM phosphate buffer (pH 7.0).

Figure S4. (a) Fluorescence and (b) absorption spectra of **Probe3** in the absence (gray) and presence of **ORN3(A)** (red), **ORN3(U)** (blue), **ORN3(G)** (orange), **ORN3(C)** (green), and **ODN3** (black). Conditions for the fluorescence measurement: Ex, 405 nm; Temp., 25 °C; band width, 5 nm; slit width, 5 nm; [Probe] = [ODN] = [ORN] = 1 μ M. Conditions for the UV-bis measurement: Temp., 25 °C, [Probe] = [ODN] = [ORN] = 1 μ M.

Figure S5. Fluorescent titration spectra of **Probe 3** with (a)**ORN(A)** and (b)**ORN(G)**. Concentration of **Probe 3** was 1000 nM, and that of **RNA(A)** and **RNA(G)** was gradually increased in 100 nM increments from 0 nM to 1000 nM. The ratios of the fluorescence intensities at 500 and 415 nm was used for the ratiometric approach.

Figure S6. Reversed-phase HPLC profiles of amounts of **ODN12** in the reaction buffer before (black) and after (red) NHS coupling. HPLC Conditions: Solvent A = 0.1 M TEAA; Solvent B = 50% CH₃CN/0.1 M TEAA linear gradient from 0% to 100% over 50 min, monitored at 260 nm; Temp 40 °C.

Figure S7. The ratiometric sandwich-type assay of various concentrations of **ORN4(A)** and **ORN4(C)**. (a) Fluorescence images of the capture beads. Conditions: $\lambda_{ex} = 410$ nm, [**Probe4**] = 100 nM, [**ORN4(N)**] = 1 nM, [Na₂HPO₄] = 10 mM, [NaCl] = 150 mM, [MgCl₂] = 2 mM, pH 7.0. Scale bar: 50 µm (b) Intensity at 434 nm of the capture beads. (c) The I₅₁₀/I₄₃₄ values of the capture beads.

Table S1 Sequences of target RNAs and DNAs. Captal and small letters denote RNA andDNA, respectively.

Name	Sequences (5' \rightarrow 3')
ORN1	GAGGAGAAACACAUC
ORN2	AUGGUGUUAAAGGUUUUAAU
ORN3	GGAGCUGAUGGCGUA
ORN4	GCCGGUAGCAAACCUUGUAA
ORN5	GGAGGGCAAGUCUGGU
ORN6	AUCAACACUGGAUGU
ORN7	UGGUAUCGUGGAAGGACUC
ORN8	GGUGCAAGCGUUAAUCGG
ORN9	GCGAAAGCGUGGGGAGCA
ORN10	AGUACGGCCGCAAGGUUA
ORN11	UAAGUCGACCGCCUGGGG
ODN1	gaggagaaacacauc
ODN2	atggtgttaaaggttttaat
ODN3	ggagctgatggcgta
ODN4	gccggtagcaaaccttgtaa
ODN5	ggagggcaagtctggt
ODN6	atcaacactggatgt
ODN7	tggtatcgtggaaggactc
ODN8	ggtgcaagcgttaatcgg
ODN9	gcgaaagcgtgggggggagca
ODN10	agtacggccgcaaggtta
ODN11	taagtcgaccgcctgggg

News		Tm (℃)		
Name	Sequences $(5 \rightarrow 3^{\circ})$	with ORN	with ODN	
Probe1	GAUGUGUU _{bpy} U _{py} CUCCUC	71.8 ± 0.3	50.6 ± 0.3	
Probe2	AUUAAAACCUU _{bpy} U _{py} AACACCAU	66.2 ± 0.4	56.7 ± 0.3	
Probe3	UACGCCAU _{bpy} C _{py} AGCUCC	77.5±0.1	61.4 ± 0.8	
Probe4	UUACAAGGUUbpyUpyGCUACCGGC	85.5 ± 0.3	63.5 ± 0.2	
Probe5	ACCAGACU _{bpy} U _{py} GCCCUCC	83.4 ± 0.7	65.4 ± 0.5	
Probe6	ACAU _{bpy} C _{py} CAGUGUUGAU	66.4 ± 0.4	52.6 ± 0.2	
Probe7	GAGUCCU _{bpy} U _{py} CCACGAUACCA	82.2 ± 0.3	66.2 ± 0.2	
Probe8	CCGAUUAACGCU _{bpy} U _{py} GCACC	74.2 ± 0.2	61.8 ± 0.2	
Probe9	UGCUCCCCACGCUUU _{bpy} C _{py} GC	85<	68.1 ± 0.8	
Probe10	UAACCU _{bpy} U _{py} GCGGCCGUACU	82.6 ± 0.5	70.1 ± 0.3	
Probe11	CCCCAGGCGGU _{bpy} C _{py} GACUUA	85<	72.8 ± 0.2	

Table S2 The $T_{\rm m}$ values of the probe–RNA duplexes and the probe–DNA duplexes.

Oligonucleotides	$oldsymbol{arPhi}_{em}$	l/l ₀ at 500 nm	I/I_0 at 415 nm	I ₅₀₀ /I ₄₁₅	λ_{max}	T _m (°C)
Probe3	0.14	1.0	1.0	1.0	349, 401	-
with ORN3(A)	0.51	12	0.41	30	347, 399	77.5±0.1
with ORN3(U)	0.44	2.6	4.2	0.61	345, 403	71.9±0.4
with ORN3(G)	0.31	2.0	2.8	0.72	347, 402	73.1±0.9
with ORN3(C)	0.51	1.4	5.7	0.25	345, 403	71.5±0.6
with ODN3	0.27	1.5	2.7	0.55	353, 405	61.4 ± 0.8

 Table S3 Photophysical and thermodynamic properties of Probe3 in the absence and presence of complementary strands.

Table S4 Photophysical and thermodynamic properties of **Probe3** and **ODN12** in theabsence and presence of complementary strands.

Oligonucleotides	$oldsymbol{arPhi}_{em}$	I/I₀ at 500 nm	I/I₀ at 415 nm	I ₅₀₀ /I ₄₁₅	λ_{max}	T _m (°C)
Probe4	0.67	1.0	1.0	1.0	345, 401	-
with ORN4(A)	0.63	6.6	0.28	24	347, 400	85.5 ± 0.3
with ORN4(C)	0.42	0.93	0.63	1.5	346, 403	84.0 ± 0.2
with ODN4	0.76	2.0	1.2	1.7	350, 403	-
ODN12	-	-	-	-	-	-
with ORN4(A)	-	-	-	-	-	54.6 ± 0.3
with ORN4(C)	-	-	-	-	-	54.8 ± 0.1