Supporting Information

CO₂ Cleavage by Tantalum/M (M = Iridium, Osmium) Heterobimetallic Complexes

Abdelhak Lachguar,^a Christopher Z. Ye,^{b,c} Sheridon N. Kelly,^{b,c} Erwann Jeanneau,^d Iker Del Rosal,^e Laurent Maron,^e Laurent Veyre,^a Chloé Thieuleux,^a John Arnold,^{*b,c} and Clément Camp^{*a}

a. Laboratory of Catalysis, Polymerization, Processes & Materials (CP2M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France. E-mail: clement.camp@univ-lyon1.fr

b. Department of Chemistry, University of California, Berkeley, California 94720, USA. E-mail: arnold@berkeley.edu

c. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

d. Centre de Diffractométrie Henri Longchambon, Universite Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France.

e. Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France.

Authors Contributions

A. Lachguar and C. Z. Ye conducted the synthetic experimental work, with C. Z. Ye focusing on the synthesis of the starting materials $[Cp*ReH_6]$ and $[Cp*OsH_5]$, and A. Lachguar handling the remaining aspects. S. N. Kelly and E. Jeanneau recorded and interpreted the XRD data. A. Lachguar drafted the original version of the manuscript. I. Del Rosal and L. Maron carried out the computational work. J. Arnold, C. Camp conceptualized the research by securing funding and administered the project. J. Arnold, C. Camp, L. Veyre and C. Thieuleux supervised the work, interpreted the data, revised and edited subsequently the manuscript. All authors have read and agreed to the published version of the manuscript.

Content

A. Experimental section	2
B. NMR, DRIFT and HRMS spectra	4
C. X-ray crystallography	16
D. Computational data	17
E. References	57

A. Experimental section

General Considerations. Unless otherwise noted, all reactions were performed either using standard Schlenk line techniques or in an MBRAUN glovebox under an atmosphere of purified argon or nitrogen (<1 ppm of O_2/H_2O). Glassware and cannulas were stored in an oven at ~100 °C for at least 16 h prior to use. THF and *n*-pentane were purified by passage through a column of activated alumina, dried over Na/benzophenone, vacuum-transferred to a storage flask, and freeze–pump–thaw degassed prior to use. Deuterated solvents (toluene-d₈, THF-d₈ and C₆D₆) were dried over Na/benzophenone, vacuum-transferred to a storage flask, and freeze–pump–thaw degassed prior to use. Tansferred to a storage flask, and freeze-pump–thaw degassed prior to use. Compounds [Cp*OsH₅],¹ [Ta(CH*t*Bu)(CH₂*t*Bu)₃]² and [Ta(CH₂*t*Bu)₃(H)₂IrCp*]³ were prepared according to the literature procedures. All other reagents were acquired from commercial sources and used as received.

IR Spectroscopy. The samples were prepared in a glovebox (diluted in dry KBr), sealed under argon in a DRIFT cell fitted with KBr windows, then analyzed using a Nicolet 670 FT-IR spectrometer.

Elemental Analyses. Elemental analyses were performed under an inert atmosphere at either Mikroanalytisches Labor Pascher (Germany) or the Microanalytical Facility at the College of Chemistry, University of California, Berkeley (USA).

Mass Spectroscopy. High-resolution mass spectrometry (HRMS) was performed at the Centre Commun de Spectrométrie de Masse (CCSM) in Villeurbanne (France), using the Bruker QTOF Impact II spectrometer, with the APCI source and direct introduction *via* Solid Probe.

NMR Spectroscopy. Solution NMR spectra were recorded on Bruker AV-300, AV-500 and AV-600 spectrometers. ¹H and ¹³C chemical shifts were measured relative to residual solvent peaks, which were assigned relative to an external TMS standard set at 0.00 ppm. ¹H and ¹³C NMR assignments were confirmed by ¹H–¹H COSY, ¹H–¹³C HSQC and HMBC experiments. NMR data recorded as follows: chemical shift (δ) [multiplicity, coupling constant(s) J (Hz), relative integral].

Synthesis of $[Ta(CH_2tBu)_3(\mu-H)_3Os(Cp^*)]$ (2). A colourless pentane solution (5 mL) of Cp*OsH₅ (143 mg, 0.431 mmol, 1 equiv.) was added dropwise to a dark-brown pentane solution (5 mL) of Ta(CHtBu)(CH₂tBu)₃ (200 mg, 0.431 mmol, 1 equiv.). The reaction mixture turned red and was stirred at room temperature for 2 h. Volatiles were removed under vacuum affording pure **2** as a red powder (305 mg, 0.422 mmol, 98%). Single crystals of **2** suitable for X-ray diffraction were obtained through recrystallization in a minimal amount of pentane at -35 °C. ¹H-NMR (600 MHz, toluene-d₈, 302 K) δ ppm 2.20 (s, 15 H, 5 C $\underline{H_3}^{Cp^*}$), 1.29 (s, 27 H, 3 C(C $\underline{H_3}$)₃), 0.32 (s, 6 H, 3 C $\underline{H_2}$ C(CH₃)₃), -6.90 (s, 3 H, Os $\underline{H_3}$). ¹H-NMR (300 MHz, C₆D₆, 298 K) δ ppm 2.21 (s, 15 H, 5 C $\underline{H_3}^{Cp^*}$), 1.32 (s, 27 H, 3 C(C $\underline{H_3}$)₃), S

0.34 (s, 6 H, 3 C<u>*H*</u>₂C(CH₃)₃), -6.80 (s, 3 H, Os<u>*H*</u>₃). ¹³C{¹H}-NMR (151 MHz, toluene-d₈, 302 K) δ ppm 120.12 (s, 3 C, 3 Ta<u>C</u>H₂C(CH₃)₃), 86.76 (s, 5 C, <u>C</u>₅(CH₃)₅), 35.21 (s, 3 C, 3 TaCH<u>C</u>(CH₃)₃), 34.86 (s, 9 C, 3 TaCHC(<u>C</u>H₃)₃), 11.71 (s, 5 C, C₅(<u>C</u>H₃)₅). FTIR (293 K, cm⁻¹) v = 2924 (br s, v_{C-H}), 2856 (s, v_{C-H}), 2735 (s, v_{C-H}), 2670 (s, v_{C-H}), 1957 (s, v_{Os-H}), 1339 (s), 1230 (s), 1071 (s), 1033 (s), 933(s), 913 (s), 754 (s), 547 (s), 488 (s). Anal. Calcd for C₂₅H₅₁OsTa: C, 41.54; H, 7.11 Found: C, 42.34; H, 7.05.

Reactivity of compound 1 (or 2) with CO₂.

In a J-Young NMR tube, a solution of complex **1** (or **2**) (10 mg, 0.014 mmol) in THF-d₈ (1 mL) was freeze-pumped and subsequently exposed to a CO₂ atmosphere (1 atm, ca. 2 mL headspace, ca. 0.08 mmol). The solution turned colourless within a few minutes (ca. 10 min), indicating the complete consumption of complex **1** (or **2**). Note that diffusion of CO₂ gas in the solution is more limiting (slower) than the chemical kinetics with both complexes, preventing the accurate measurement of kinetics. The quantitative and clean formation of compounds **3** (or **4**) and **5** was determined by ¹H NMR analysis of the crude reaction (refer to Figures 7 and 8). The volatiles were evaporated under vacuum. The resulting crude product was then washed with pentane (3x1 mL) and dried under vacuum to yield $[Ta(O)(CH_2tBu)_3]_x$ **5** as a white powder with a yield of 94% (5.3 mg) and 95% (5.4 mg) respectively from compound **1** and **2**. The solutions resulting from the pentane washings of the residue were combined, and the pentane was evaporated to yield: complex **3** as a light yellow solid with a yield of 96% (4.7 mg), and complex **4** as a white solid with a yield of 45% (2.2 mg). A similar yield was also obtained from similar procedure starting with 100 mg (0.14 mmol) of compound **1** (or **2**) dissolved in 5 mL of THF and exposed to CO₂ (1 atm, 70.5 mL headspace, 2.84 mmol).

Characterization of compound 3: ¹H-NMR (500 MHz, C₆D₆, 298 K) δ ppm 1.88 (s, 15 H, 5 C<u>H₃</u>^{Cp*}), -15.75 (s, 2 H, Ir<u>H₂</u>). ¹³C{¹H}-NMR (126 MHz, C₆D₆, 298 K) δ ppm 97.16 (s, 5 C, <u>C₅</u>(CH₃)₅), 10.69 (s, 5 C, C₅(<u>C</u>H₃)₅). These data agree with the previously published ones.^{4,5}

Characterization of compound 4: ¹H-NMR (500 MHz, THF-d₈, 298 K) δ ppm 2.26 (s, 15 H, 5 C<u>H₃</u>^{Cp*}), -10.47 (s*, 1 H, trans Os<u>H</u>), -12.50 (s*, 2 H, cis Os<u>H</u>). ¹³C{¹H}-NMR (126 MHz, THF-d8, 298 K) δ ppm 184.63 (s, 1 C, <u>C</u>O), 98.46 (s, 5 C, <u>C₅</u>(CH₃)₅), 11.64 (s, 5 C, C₅(<u>C</u>H₃)₅). These data agree with the previously published ones.⁶ *Note that in the original publication the NMR data was recorded at -50°C in CD₂Cl₂ and the hydride signals appeared as a doublet and a triplet due to mutual coupling. However, under our experimental conditions (500 MHz, THF-d₈, 298 K) the fine structure is not visible and thus these ¹H hydride signals appear as pseudo-singlets. (see Figure S13).

Characterization of compound 5: ¹H-NMR (500 MHz, THF-d₈, 298 K) δ ppm 1.12 (s, 27 H, 3 C(C<u>H_3)_3</u>), 0.55 (s, 6 H, 3 C<u>H_2</u>C(CH_3)_3). ¹³C{¹H}-NMR (126 MHz, THF-d_8, 298 K) δ ppm 104.44 (s, 3 C, 3 Ta(O)<u>C</u>H₂C(CH_3)_3), 35.13 (s, 3 C, 3 Ta(O)CH₂<u>C</u>(CH_3)_3), 34.40 (s, 9 C, 3 Ta(O)CH₂C(<u>C</u>H_3)_3). HRMS (APCI-SP⁺)) Calcd for C₁₅H₃₄OTa [M+H]⁺: 411.2084 Found: 411.2086. Anal. Calcd for C₁₅H₃₃OTa: C, 43.90; H, 8.11; Found: C, 43.45; H, 7.95.

B. NMR, DRIFT and HRMS spectra

Figure S1. ¹H-NMR spectrum (600 MHz, toluene-d₈, 302 K) of compound 2.

Figure S3. ¹H-¹H COSY NMR spectrum (600 MHz, toluene-d₈, 302 K) of compound 2.

Figure S4. ¹H-¹³C HSQC NMR spectrum (600 MHz, toluene-d₈, 302 K) of compound 2.

Figure S5. ¹H-¹³C HMBC NMR spectrum (600 MHz, toluene-d₈, 302 K) of compound **2**.

Figure S6. DRIFT (293 K, cm^{-1}) spectra of compounds 1 (in red) and 2 (in blue).

Figure S7. ¹H-NMR spectrum (300 MHz, C₆D₆, 298 K) of the crude reaction mixture of **2** with Cp*OsH₅ after 6 days in C₆D₆. We observe the slow formation of a new trinuclear species by protonolysis and formation of neopentane (δ ¹H = 0.91 ppm). A similar iridium analogue was isolated previously in our group (S. Lassalle et al., *J. Catal.*, 2020, **392**, 287–301). Attempts to heat the reaction mixture to speed up the process lead instead to the decomposition of the starting materials.

Figure S8. ¹H-NMR spectrum (300 MHz, C_6D_6 , 298 K) of the trinuclear TaOs₂ complex isolated in 10% yield as a black precipitate upon taking the reaction mixture from Figure S7 to dryness, extraction in pentane and cooling to -40°C for 1 night.

Figure S9. ¹H-NMR spectrum (300 MHz, THF-d₈, 298 K) of the crude reaction mixture of **1** with 1 atm of CO₂ after 60 min in THF-d₈. We observe the complete consumption of complex **1** and the quantitative formation of Cp*Ir(CO)H₂ **3** and $[Ta(O)(CH_2tBu)_3]_x$ **5**.

Figure S10. ¹H-NMR spectrum (300 MHz, THF-d₈, 298 K) of the crude reaction mixture of **2** with 1 atm of CO₂ after 90 min in THF-d₈. We observe the complete consumption of complex **2** and the quantitative formation of Cp*Os(CO)H₃ **4** and $[Ta(O)(CH_2tBu)_3]_x$ **5**.

(* = trace amounts of pentane)

Figure S13. ¹H-NMR spectrum (500 MHz, THF-d₈, 298 K) of compound 4.

Figure S15.¹H-¹H COSY NMR spectrum (400 MHz, THF-d₈, 302 K) of compound **4**, showing clear coupling of the two hydride signals. (* = Impurity resulting from the decomposition of**4**in the timeframe of the experiment)

Figure S16. DRIFT (293 K, cm^{-1}) spectrum of compound 4.

Figure S18. ${}^{13}C{}^{1}H$ -NMR spectrum (126 MHz, THF-d₈, 298 K) of compound 5. (* = THF)

Figure S19. ¹H-¹H COSY NMR spectrum (500 MHz, THF-d₈, 298 K) of compound 5.

Figure S20. ¹H-¹³C HSQC NMR spectrum (500 MHz, THF-d₈, 298 K) of compound 5.

Figure S21. ¹H-¹³C HMBC NMR spectrum (500 MHz, THF-d₈, 298 K) of compound 5.

Figure S22. HRMS (APCI-SP⁺) spectrum of complex [Ta(O)(CH₂*t*Bu)₃]_x, **5.**

C. X-ray crystallography

Samples of single crystals for compound **1** were coated in Paratone-N oil for transport to the Advanced Light Source (ALS, Berkeley, CA, USA). Crystals were mounted on a MiTeGen 10 μ m aperture Dual-Thickness MicroMount loop. X-ray diffraction data was collected at the ALS, Lawrence Berkeley National Lab, Berkeley, CA, station 12.2.1 using a silicon monochromated beam of 17 keV ($\lambda = 0.7288$ Å) synchrotron radiation. Data was collected at 100 K, with the crystals cooled by a stream of dry nitrogen. Bruker APEX3 software was used for the data collections, Bruker SAINT v8.37A or V8.38A software was used to conduct the cell refinement and data reduction procedures,⁷ and absorption corrections were carried out by a multi-scan method utilizing the SADABS program.⁷ Initial structure solutions were found using direct methods (SHELXT),⁸ and refinements were carried out using SHELXL-2014,⁹ as implemented by Olex2.¹⁰ Thermal parameters for all non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and refined isotropically. Thermal ellipsoid plots were made using Mercury.¹¹

A suitable crystal of compound **2** was selected and mlouted on a MiTeGen Dual-Thickness MicroMount loop coated in Fomblin oil. The X-ray diffraction data was collected at 100 K on a Rigaku-Oxford Diffraction XtaLAB Synergy diffractometer equipped with an HyPix-Arc 100 detector and a Molybdenum microsource ($\lambda = 0.71073$ Å). Data collection, unit-cell refinement, data reduction and absorption correction¹² were carried out with the CrysalisPro software.¹³ The resulting set of *hkl* reflections were used to solve the structure with the ShelXT⁸ structure solution program using the intrinsic phasing solution method and by using Olex2¹⁰ as the graphical interface. Displacement parameters for all non-hydrogen atoms were refined anisotropically with version 2018/3 of ShelXL⁹ using least-square minimization. Hydrogen atoms were place geometrically and their position was refined using riding restraints.

CCDC 2351192 and 2351850 contain supplementary crystallographic data for this article. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

D. Computational data

Methods.

All DFT calculations were carried out with the Gaussian 09 suite of programs.^[i] Geometries were fully optimized in gas phase without symmetry constraints, employing the B3PW91 functional.^[ii] The nature of the extrema was verified by analytical frequency calculations. The calculation of electronic energies and enthalpies of the extrema of the potential energy surface (minima and transition states) were performed at the same level of theory as the geometry optimizations. IRC calculations were performed to confirm the connections of the optimized transition states. Iridium, Osmium, Rhenium and Tantalum atoms were treated with a small-core effective core potential (60 MWB), associated with its adapted basis set ^[iii] augmented with a polarization function ($\zeta_f = 0.938$, 0.886, 0.869 and 0.790 respectively for Ir, Os, Re and Ta).^[iv] For the other elements (H, C and O), Pople's double- ζ basis set 6-31G(d,p) was used. ^[v] The electronic charges (at the DFT level) were computed using the natural population analysis (NPA) technique.^[vi]

[i] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[ii] (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; (b) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.
 Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 1992, 46, 6671-6687.

[iii] (a) D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theoretica chimica acta 1990, 77, 123-141; (b) X. Cao and M. Dolg, Journal of Molecular Structure: THEOCHEM, 2004, 673, 203–209; (c) X. Cao, M. Dolg and H. Stoll, J. Chem. Phys., 2003, 118, 487–496.

[iv] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp and G. Frenking, Chemical Physics Letters, 1993, 208, 111–114.

[v] (a) J. A. Pople, J. Chem. Phys. 1971, 54, 724-728; (b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261; (c) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213-222; (d) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654-3665.

[vi] A. E. Reed, L. A. Curtiss, Chem. Rev. 1988, 88, 899 - 926.

Figure S-DFT.1. Calculated enthalpy energy (Gibbs free energy) of the formation of $Ta(CH_2tBu)_3IrH_2Cp^*$, $Ta(CH_2tBu)_3(\mu-H)_3OsCp^*$ and $Ta(CH_2tBu)_3(\mu-H)_2Re(\eta-H)_2Cp^*$. The energies are given in kcal/mol.

Figure S-DFT.2 Wiberg Bond Indexes and Natural Charges for $Ta(CH_2tBu)_3IrH_2Cp^*$, $Ta(CH_2tBu)_3(\mu-H)_3OsCp^*$ and $Ta(CH_2tBu)_3(\mu-H)_2Re(\eta-H)_2Cp^*$.

Table S-DFT.1 NBO Analysis of $Ta(CH_2tBu)_3IrH_2Cp^*$, $Ta(CH_2tBu)_3(\mu-H)_3OsCp^*$ and $Ta(CH_2tBu)_3(\mu-H)_2Re(\eta-H)_2Cp^*$.

Bonding

(1.84086)	BD	Ta - Ir
(39.02%)	Та	2 s(27.03%) p 0.15(4.16%) d 2.54(68.74%) f 0.00(0.06%)
(60.98%)	Ir	4 s(30.11%) p 0.26(7.69%) d 2.07(62.19%) f 0.00(0.01%)

2nd or	der pertubation	analysis			$\mathbf{M} = \mathbf{Ir}$	M = Os	M = Re
BD	C _{CH2-neo} -Ta	\rightarrow	LP*	М	~404	~101	~501
BD	C _{CH2-neo} -Ta	\rightarrow	BD*	Ta - M	~265	-	-
BD	C _{CH2-neo} -Ta	\rightarrow	BD*	M - H	~405	~70	~205
BD	C _{CH2-neo} -Ta	\rightarrow	BD*	$M \text{-} \ C_{Cp^*}$	-	~80	~49
BD	M - C _{Cp*}	\rightarrow	BD*	Та	-	~1621	-
BD	M - C_{Cp*}	\rightarrow	BD*	Ta - C _{CH2-neo}	-	~4070	~80
BD	Ta - M	\rightarrow	LP*	Та	~2071	-	-
BD	Ta - M	\rightarrow	LP*	М	~295	-	-
BD	Ta - M	\rightarrow	BD*	C _{CH2-neo} -Ta	~80	-	-
BD	Ta - M	\rightarrow	BD*	C _{CH2-neo} - H	~4	-	-
BD	Ta - M	\rightarrow	BD*	M - H	~510	-	-
BD	M - H	\rightarrow	LP*	Та	~9637	~6000	~6400
BD	M - H	\rightarrow	BD*	C _{CH2-neo} -Ta	~1800	-	-
BD	M - H	\rightarrow	BD*	Ta - M	~1950	-	-
CR	Та	\rightarrow	LP*	М	~286	~201	~225
CR	Та	\rightarrow	BD*	Ta - M	~265	-	-
CR	Та	\rightarrow	BD*	M - H	~130	~260	~240
CR	Та	\rightarrow	BD*	$M \text{-} \ C_{Cp^*}$	-	~120	~2
CR	М	\rightarrow	LP*	Та	~513	~665	~1110
CR	М	\rightarrow	BD*	C _{CH2-neo} -Ta	~50	~75	~116
CR	Μ	\rightarrow	BD*	Ta - M	~214	-	-
LP	М		LP*	Та	~26	~488	~1475
LP	Μ		BD*	C _{CH2-neo} -Ta	~10	~796	~1285

Figure S-DFT.3 Calculated enthalpy energy (*Gibbs-free* energy) for the Cp^{*}IrH₄, Cp^{*}OsH₅ and Cp^{*}ReH₆ deprotonation. The energies are given in kcal/mol.

Figure S-DFT.4 Wiberg Bond Indexes and Natural Charges for Cp^{*}IrH₄, Cp^{*}OsH₅ and Cp^{*}ReH₆ and relative stability of the different isomers of Cp^{*}OsH₅ and Cp^{*}ReH₆. The energies are given in kcal/mol.

Discussion regarding the lack of reactivity between Cp*ReH₆ and Ta(CHtBu)(CH₂tBu)₃

According to the DFT calculations, the formation of the Ta/Re analogue should be thermodynamically favorable (see Figure DFT SI.1). The formation of this complex would even be the most favorable of the three. The bonding within the Ta/Re and the Ta/Os complexes is also similar both regarding the Wiberg Bond Indexes (see Figure S-DFT.2) and the second-order perturbation natural bond order (NBO) analysis (see Table S-DFT.1). Therefore, the observed lack of reactivity is surprising.

To assess if the reactivity difference is due to the precursors, we studied the deprotonation reaction of Cp^{*}IrH₄, Cp^{*}OsH₅ and Cp^{*}ReH₆ (see Figure S-DFT.3) and obtained similar energy values (enthalpy and/or *Gibbs-free* energy) for the three complexes. However, it is interesting to note that for Cp^{*}OsH₅ and Cp^{*}ReH₆ two isomers were obtained (see Figure S-DFT.4). In both cases, the pseudo-C_{4v} or -C_{5v} isomers with four or five equatorial hydrides and one axial hydride are the most stable ones for Cp^{*}OsH₅ and Cp^{*}ReH₆ respectively. For Cp^{*}OsH₅, although less stable, the C_{5v} "piano stool" isomer, less sterically hindered, is close in energy (Δ H = 2.1 kcal/mol) and could easily be formed to allow the interaction with the Ta complex. For Cp^{*}ReH₆, the stability difference between both isomers is higher (Δ H = 14.3 kcal/mol) which could indicate that this complex is less fluxional and therefore less likely to react with the Ta complex due to the lack of a coordination site.

Cartesian Coordinates :

17

C(CH3)4

С	-0.00009	-0.00000	-0.00031
С	-0.00026	0.00000	1.53482
С	1.44766	-0.00000	-0.51137
С	-0.72376	-1.25352	-0.51180
С	-0.72376	1.25352	-0.51180
Η	-0.74119	1.28121	-1.60745
Η	-1.76176	1.28175	-0.16055
Н	-0.22800	2.16652	-0.16231
Н	1.48075	0.00000	-1.60704
Н	1.99091	0.88523	-0.16081
Η	1.99091	-0.88523	-0.16081
Η	-0.74119	-1.28121	-1.60745
Н	-0.22800	-2.16652	-0.16231
Н	-1.76176	-1.28175	-0.16055
Η	-1.02270	0.00000	1.92994
Η	0.51113	-0.88537	1.92991
Η	0.51113	0.88537	1.92991
3			
CO2	2		
С	-0.26743	-2.29440	-0.31006
0	0.84053	-2.13018	-0.56225
0	-1.37540	-2.45840	-0.05771
64			
Ta(CHtBu)(CH2	2tBu)3	
С	1.54007	6.80730	-9.25112
Та	-0.37778	6.32889	-10.13378
С	-0.07018	6.31711	-12.27971
С	-1.96878	7.60874	-9.36277
Η	-2.60414	7.14190	-8.59881
Η	-2.56576	7.53378	-10.30248
С	-1.78442	9.10582	-9.01291
С	2.57561	5.97841	-8.46630
Η	1.23277	7.67279	-8.62458
Η	2.05388	7.28491	-10.11320
Η	0.75015	7.05457	-12.39479
С	-1.06340	6.49437	-13.44966
Η	0.43209	5.33362	-12.37872
С	3.79732	6.85688	-8.13999
С	3.03456	4.78646	-9.31588
С	1.96736	5.47344	-7.15200

С	-2.21073	5.48060	-13.33630
С	-0.32698	6.26515	-14.78214
С	-1.64282	7.91574	-13.45265
Η	2.70022	4.89063	-6.58157
Η	1.09838	4.83621	-7.34058
Η	1.64578	6.31036	-6.51977
Η	4.55503	6.29210	-7.58320
Η	3.51133	7.72219	-7.53053
Η	4.26887	7.23350	-9.05539
Η	2.18443	4.14228	-9.56094
Η	3.78266	4.18668	-8.78397
Η	3.48732	5.12452	-10.25631
Η	-2.91187	5.58765	-14.17275
Η	-2.77232	5.61486	-12.40492
Η	-1.83120	4.45324	-13.34976
Η	0.49673	6.97781	-14.90474
Η	-1.00468	6.38574	-15.63610
Η	0.09567	5.25516	-14.82943
Η	-2.30033	8.06672	-14.31665
Η	-0.84735	8.66846	-13.50487
Η	-2.23501	8.10991	-12.55176
С	-3.14382	9.82171	-9.10783
С	-0.80336	9.78807	-9.97947
С	-1.26337	9.23936	-7.57470
Η	0.20552	9.36172	-9.90664
Η	-0.71160	10.85766	-9.75702
Η	-1.13872	9.69644	-11.01856
Η	-3.05752	10.87900	-8.82801
Η	-3.87847	9.35651	-8.44120
Η	-3.54273	9.77717	-10.12786
Η	-1.13961	10.29323	-7.29963
Η	-0.29409	8.74573	-7.44662
Η	-1.96267	8.78743	-6.86206
С	-0.83392	4.56065	-9.59155
Η	-1.19800	5.04569	-8.63822
С	-1.08084	3.07222	-9.64122
С	-2.59850	2.80493	-9.68558
С	-0.48917	2.38477	-8.39645
С	-0.42768	2.48167	-10.90023
Η	-0.60343	1.40106	-10.95536
Η	0.65437	2.64992	-10.89767
Η	-0.84014	2.93901	-11.80486
Η	0.59257	2.53856	-8.33890

Η	-0.67899	1.30480	-8.42371
Η	-0.93662	2.77990	-7.47732
Η	-2.80295	1.72763	-9.72442
Н	-3.04951	3.27287	-10.56585
Η	-3.09508	3.20931	-8.79646
30			
IrCl	p*H4		
Ir	-7.07526	2.85516	-7.52772
С	-7.37592	1.10550	-8.91313
С	-8.54617	1.17841	-8.07524
С	-8.13761	0.96179	-6.71647
С	-6.71581	0.75769	-6.70240
С	-6.23761	0.84395	-8.06120
С	-9.95865	1.32714	-8.55113
С	-9.04892	0.86362	-5.53204
С	-5.89687	0.37940	-5.50639
С	-4.84567	0.53740	-8.52407
С	-7.36723	1.12886	-10.41136
Η	-4.10242	0.83099	-7.77914
Η	-4.60814	1.06642	-9.44984
Η	-4.72554	-0.53732	-8.71218
Η	-6.41443	1.49648	-10.79892
Η	-7.52843	0.12196	-10.81751
Η	-8.15329	1.77746	-10.80511
Η	-10.40714	0.34349	-8.74086
Η	-10.01007	1.90045	-9.47938
Η	-10.57978	1.83874	-7.81226
Η	-9.93030	1.49801	-5.64986
Η	-8.54420	1.16605	-4.61175
Η	-9.39626	-0.16894	-5.39832
Η	-5.89698	-0.70927	-5.36656
Η	-4.85868	0.70074	-5.61557
Η	-6.28793	0.83230	-4.59232
Η	-7.94152	4.03319	-8.13033
Η	-7.60641	3.83830	-6.40417
Η	-6.21754	3.76761	-8.48589
Η	-5.89413	3.55634	-6.74696
29			
IrCl	р*Н3 -		
Ir	-7.07375	2.83918	-7.59210
С	-7.37035	1.04394	-8.95770
С	-8.52370	1.18437	-8.11966
С	-8.12537	0.99570	-6.74394

С	-6.69955	0.77789	-6.74641
С	-6.22890	0.78650	-8.10100
С	-9.93615	1.35636	-8.59206
С	-9.04073	0.87719	-5.56458
С	-5.87427	0.45218	-5.53768
С	-4.84799	0.43996	-8.56724
С	-7.35822	1.01823	-10.45575
Η	-4.09921	0.69105	-7.80973
Η	-4.58520	0.99553	-9.47297
Η	-4.74037	-0.63392	-8.79627
Η	-6.42388	1.42919	-10.85070
Η	-7.46556	-0.00378	-10.85611
Η	-8.17271	1.62143	-10.86812
Η	-10.44382	0.38853	-8.73050
Η	-9.97132	1.89101	-9.54571
Η	-10.52159	1.93911	-7.87466
Η	-9.92382	1.51316	-5.68218
Η	-8.54254	1.19218	-4.64232
Η	-9.39856	-0.15557	-5.40823
Η	-5.87469	-0.62749	-5.31975
Η	-4.83521	0.76536	-5.67424
Η	-6.25334	0.97079	-4.65214
Η	-8.03212	4.11390	-7.59263
Η	-6.24595	3.87769	-8.47347
Η	-6.39991	3.75642	-6.47482
31			
Os	Cp*H5		
Os	-7.16759	2.85552	-7.50676
С	-7.42094	1.11638	-8.90894
С	-8.59615	1.12684	-8.07932
С	-8.18990	0.93195	-6.72078
С	-6.75837	0.79799	-6.69106
С	-6.27251	0.90623	-8.05126
С	-10.00986	1.22537	-8.56244
С	-9.10746	0.79101	-5.54600
С	-5.93954	0.43976	-5.48880
С	-4.87004	0.64432	-8.50888
С	-7.40900	1.14229	-10.40690
Η	-4.14217	0.94983	-7.75420
Η	-4.64177	1.19551	-9.42360
Η	-4.72072	-0.42415	-8.71082
Η	-6.46208	1.52755	-10.79022
Η	-7.55063	0.13145	-10.81032

Н	-8.20531	1.77703	-10.80192
Η	-10.41783	0.22369	-8.74814
Η	-10.07507	1.79195	-9.49339
Η	-10.65099	1.71792	-7.82836
Η	-10.00811	1.39688	-5.66520
Η	-8.62026	1.09906	-4.61884
Η	-9.41808	-0.25531	-5.43158
Η	-5.93193	-0.64734	-5.33802
Η	-4.90514	0.77059	-5.60082
Η	-6.33589	0.90311	-4.58262
Η	-8.34210	3.79299	-8.12473
Η	-7.76036	3.51318	-6.14382
Η	-6.37256	3.57485	-8.71969
Η	-5.79890	3.30102	-6.76505
Η	-6.95961	4.43291	-7.34639
31			
OsC	Cp*H5 less st	table isomer	•
С	-6.26826	0.80927	-8.08159
С	-7.42060	1.05202	-8.90866
С	-8.56564	1.18378	-8.04724
С	-8.12149	1.02046	-6.68832
С	-6.70152	0.78883	-6.70970
Os	-7.10336	2.87955	-7.55999
С	-7.44843	1.01855	-10.40690
С	-9.99084	1.31192	-8.49385
С	-9.00433	0.94587	-5.47914
С	-5.85168	0.43247	-5.52744
С	-4.89076	0.47834	-8.57173
Η	-4.12610	0.78245	-7.85324
Η	-4.67177	0.97854	-9.51778
Η	-4.78758	-0.60251	-8.73296
Η	-6.50747	1.37436	-10.83257
Η	-7.61326	-0.00506	-10.76734
Η	-8.24911	1.64520	-10.80621
Η	-10.44014	0.32149	-8.64182
Η	-10.06707	1.85718	-9.43726
Η	-10.59433	1.84505	-7.75579
Η	-9.89156	1.57296	-5.59185
Η	-8.47940	1.27596	-4.57993
Η	-9.34204	-0.08481	-5.31038
Η	-5.84431	-0.65390	-5.37061
Η	-4.81765	0.75623	-5.66602
Η	-6.22330	0.89873	-4.61218

Η	-6.95460	3.85606	-8.83965
Η	-7.73944	3.82093	-6.41034
Η	-6.18380	3.56252	-6.41991
Η	-8.22302	3.99195	-7.90663
Η	-5.69488	3.58323	-7.92576
30			
OsC	Cp*H4 -		
Os	-7.05512	2.87785	-7.50019
С	-7.35848	1.18838	-8.90056
С	-8.53503	1.21317	-8.06144
С	-8.13798	0.95438	-6.71337
С	-6.71655	0.78331	-6.68822
С	-6.21659	0.91723	-8.04265
С	-9.94676	1.36263	-8.54441
С	-9.05659	0.82577	-5.53626
С	-5.90622	0.37630	-5.49384
С	-4.83135	0.57632	-8.50640
С	-7.34991	1.19635	-10.40037
Η	-4.08610	0.84494	-7.75149
Η	-4.57786	1.13015	-9.41521
Η	-4.71400	-0.49858	-8.72514
Η	-6.40682	1.59807	-10.78217
Η	-7.48218	0.18749	-10.82637
Η	-8.14940	1.83083	-10.79503
Η	-10.39706	0.38973	-8.79912
Η	-9.99109	1.99269	-9.43713
Η	-10.57967	1.83348	-7.78632
Η	-9.93982	1.46050	-5.65120
Η	-8.55823	1.13001	-4.61145
Η	-9.40488	-0.21082	-5.40278
Η	-5.87175	-0.71877	-5.37307
Η	-4.87619	0.73324	-5.58055
Η	-6.31674	0.80017	-4.57244
Η	-7.98092	4.04827	-8.16134
Η	-7.59365	3.90193	-6.33739
Η	-5.80126	3.50595	-6.67229
Η	-6.16106	3.83061	-8.46108
32			
ReC	p*H6		
С	-6.26175	0.85723	-8.07757
С	-7.41269	1.09982	-8.90344
С	-8.55664	1.23042	-8.04345
С	-8.11301	1.06703	-6.68634

С	-6.69479	0.83621	-6.70762
Re	-7.09150	2.95414	-7.55435
С	-7.44199	1.05872	-10.40136
С	-9.98178	1.35159	-8.49117
С	-8.99634	0.98656	-5.47813
С	-5.84621	0.47261	-5.52690
С	-4.88630	0.51935	-8.56797
Η	-4.12020	0.82186	-7.85118
Η	-4.66657	1.01572	-9.51530
Η	-4.79511	-0.56297	-8.72411
Н	-6.50097	1.40893	-10.83029
Н	-7.61034	0.03148	-10.74861
Η	-8.24118	1.68491	-10.80295
Η	-10.42002	0.35611	-8.63582
Η	-10.05864	1.89451	-9.43528
Η	-10.58791	1.88314	-7.75488
Η	-9.88517	1.61056	-5.59030
Η	-8.47335	1.31621	-4.57824
Η	-9.32663	-0.04757	-5.31823
Η	-5.84484	-0.61512	-5.38216
Η	-4.81220	0.79548	-5.66361
Η	-6.21759	0.93377	-4.60953
Η	-6.99011	3.65299	-9.05220
Η	-7.89349	3.61114	-6.26309
Н	-6.82625	4.57305	-7.44425
Η	-6.10271	3.31592	-6.27635
Η	-8.44141	3.81382	-7.97860
Н	-5.54628	3.34307	-8.00376
32			
ReC	Cp*H6 less st	able isomer	•
Re	-7.08967	2.93065	-7.51944
С	-7.37308	1.09119	-8.91800
С	-8.55137	1.17431	-8.08312
С	-8.14862	0.98524	-6.73171
С	-6.71618	0.77832	-6.71595
С	-6.25677	0.78733	-8.07206
С	-9.96219	1.29333	-8.57385
С	-9.06013	0.86711	-5.54815
С	-5.90201	0.40882	-5.51201
С	-4.87571	0.43633	-8.53429
С	-7.36385	1.11037	-10.41752
Η	-4.12065	0.70789	-7.79350
Η	-4.62338	0.93990	-9.46990

Η	-4.80428	-0.64513	-8.70552
Η	-6.40643	1.46344	-10.80751
Η	-7.54140	0.10581	-10.82243
Η	-8.13884	1.77197	-10.81118
Η	-10.38596	0.29729	-8.75441
Η	-10.01575	1.85459	-9.50915
Η	-10.59967	1.80102	-7.84668
Η	-9.95089	1.48856	-5.66295
Η	-8.56138	1.17221	-4.62580
Η	-9.38950	-0.17243	-5.42479
Η	-5.91896	-0.67625	-5.34783
Η	-4.85892	0.71318	-5.62540
Η	-6.28478	0.89010	-4.60923
Η	-8.22167	3.59653	-8.49778
Η	-7.41831	3.22754	-5.94264
Η	-6.63925	4.14173	-8.57167
Η	-6.03357	3.86879	-6.63609
Η	-7.84769	4.34063	-7.07828
Η	-5.53370	3.10403	-7.98124
31			
ReC	Ср*Н5 -		
С	-6.25765	0.81921	-8.05560
С	-7.40783	1.11081	-8.89937
С	-8.56559	1.23577	-8.01496
С	-8.10720	1.00688	-6.66514
С	-6.70826	0.74866	-6.69843
Re	-7.12045	2.86874	-7.63792
С	-7.44903	1.00747	-10.39344
С	-9.99766	1.32727	-8.44661
С	-8.97656	0.96380	-5.44538
С	-5.85071	0.42498	-5.51323
С	-4.88234	0.47326	-8.53982
Η	-4.11975	0.77023	-7.81387
Η	-4.65685	0.99675	-9.47243
Η	-4.77301	-0.60809	-8.72250
Η	-6.50871	1.35059	-10.83468
Η	-7.62761	-0.02553	-10.73681
Η	-8.24126	1.64020	-10.80338
Η	-10.45163	0.33290	-8.59201
Η	-10.08384	1.87729	-9.38752
Η	-10.59747	1.86630	-7.70737
Η	-9.83134	1.63638	-5.55160
Η	-8.42624	1.27945	-4.55466

Η	-9.36295	-0.05117	-5.26355
Η	-5.81945	-0.66003	-5.33165
Η	-4.82524	0.77188	-5.66375
Н	-6.22735	0.90781	-4.60756
Н	-6.86530	4.50234	-7.59221
Н	-8.18091	3.68190	-6.60392
Н	-5.98916	3.33334	-6.46543
Η	-8.01556	3.72269	-8.77298
Η	-5.89083	3.38558	-8.66503
77			
Cor	nplex 1		
С	-4.12684	4.09326	-6.99414
Та	-6.08270	4.82313	-7.58346
С	-5.78299	5.58100	-9.57118
Ir	-7.62451	3.00166	-7.42176
С	-8.12494	1.21964	-8.78789
С	-9.28439	1.31839	-7.92669
С	-8.86901	1.11929	-6.59191
С	-7.43611	0.89639	-6.59117
С	-6.98945	0.90686	-7.95881
С	-10.68341	1.56733	-8.39853
С	-9.74200	1.10805	-5.37528
С	-6.63492	0.45216	-5.40539
С	-5.64370	0.46183	-8.44447
С	-8.17228	1.14295	-10.28276
С	-6.81907	6.41234	-6.30056
Η	-4.85534	0.68997	-7.72275
Η	-5.37535	0.93711	-9.39100
Η	-5.63520	-0.62455	-8.60707
Η	-7.21308	1.40648	-10.73356
Η	-8.42432	0.12507	-10.61084
Η	-8.92596	1.81653	-10.69866
Η	-11.16858	0.62932	-8.69856
Η	-10.70027	2.23701	-9.26227
Η	-11.29770	2.02151	-7.61698
Η	-10.63730	1.71890	-5.51604
Η	-9.21337	1.49512	-4.50032
Η	-10.07061	0.08785	-5.13735
Η	-6.75881	-0.62542	-5.23130
Η	-5.56845	0.64055	-5.54942
Η	-6.94094	0.97120	-4.49329
Η	-8.41728	4.26824	-8.02327
Η	-7.71646	3.82065	-6.05155

Η	-6.07715	6.22024	-5.49031
Η	-7.78207	6.09948	-5.87525
С	-6.87236	7.93668	-6.56420
С	-3.34817	4.22379	-5.66418
Н	-3.50328	4.51891	-7.80596
Н	-4.22643	3.02289	-7.24602
Η	-6.44773	6.46507	-9.45727
С	-5.91137	5.04578	-11.00847
Η	-4.76112	5.99446	-9.43310
С	-2.06020	3.38445	-5.75154
С	-4.19358	3.70866	-4.49138
С	-2.95502	5.68568	-5.41043
С	-5.05152	3.78483	-11.16792
С	-5.41400	6.11237	-12.00127
С	-7.37863	4.72586	-11.31682
Η	-2.36779	5.77741	-4.48921
Η	-3.83571	6.32736	-5.30467
Η	-2.34800	6.08081	-6.23366
Η	-1.47263	3.46290	-4.82860
Η	-1.42717	3.71828	-6.58179
Η	-2.29147	2.32537	-5.91279
Η	-5.10238	4.30537	-4.35639
Η	-3.62484	3.74690	-3.55449
Η	-4.50389	2.67191	-4.65564
Η	-5.10294	3.40034	-12.19359
Η	-5.38993	2.99596	-10.48901
Η	-3.99824	3.99357	-10.94413
Η	-5.99331	7.03812	-11.90807
Η	-5.50791	5.76178	-13.03627
Η	-4.35967	6.35706	-11.82571
Η	-7.48380	4.30990	-12.32587
Η	-7.99370	5.63231	-11.26432
Η	-7.77805	4.00974	-10.59434
С	-7.14668	8.65921	-5.23171
С	-8.02286	8.25379	-7.53108
С	-5.55038	8.46641	-7.13869
Η	-7.87727	7.77822	-8.50682
Η	-8.10724	9.33423	-7.69709
Η	-8.97903	7.89903	-7.13048
Η	-7.22273	9.74388	-5.37775
Η	-6.34320	8.47381	-4.50948
Η	-8.08509	8.31336	-4.78412
Η	-5.59342	9.55362	-7.27396

Η	-5.32282	8.02542	-8.11493			
Η	-4.71150	8.25096	-6.46714			
78						
Complex 2						
С	-4.47954	5.18226	-6.30847			
Та	-5.97107	4.81434	-7.83124			
С	-4.81416	5.07204	-9.63982			
Os	-7.30579	2.67635	-7.62305			
С	-9.08155	1.52507	-8.32121			
С	-9.18030	1.72984	-6.88934			
С	-8.06236	1.08309	-6.26798			
С	-7.25694	0.47037	-7.30358			
С	-7.89493	0.75017	-8.56417			
С	-10.31899	2.39714	-6.18153			
С	-7.82346	0.95531	-4.79536			
С	-6.07545	-0.42340	-7.08561			
С	-7.45524	0.22653	-9.89640			
С	-10.10768	1.91706	-9.33868			
С	-7.10211	6.66129	-7.78634			
Н	-6.37124	0.09548	-9.93705			
Η	-7.73961	0.90233	-10.70676			
Η	-7.91722	-0.74885	-10.09648			
Η	-9.65481	2.07520	-10.32082			
Η	-10.87563	1.13882	-9.44645			
Η	-10.61427	2.84447	-9.05903			
Η	-11.12231	1.67877	-5.97079			
Η	-10.74535	3.20372	-6.78323			
Η	-9.99928	2.83022	-5.23054			
Η	-8.25420	1.79527	-4.24491			
Η	-6.75542	0.92238	-4.56527			
Η	-8.27646	0.03327	-4.40788			
Η	-6.38915	-1.46627	-6.93962			
Η	-5.39257	-0.39925	-7.93877			
Η	-5.50479	-0.12330	-6.20277			
Η	-7.91263	4.25224	-7.66583			
Η	-6.11868	3.23855	-6.55896			
Η	-6.31351	7.32085	-8.21083			
Η	-7.10161	6.89116	-6.70312			
С	-8.45946	7.07372	-8.39715			
С	-4.42246	4.91086	-4.78989			
Η	-4.38032	6.27804	-6.47215			
Η	-3.58168	4.74954	-6.79240			
Η	-5.54737	5.60171	-10.27905			

С	-3.97117	4.11582	-10.51007
Η	-4.14714	5.87651	-9.25781
С	-3.29059	5.74975	-4.16890
С	-4.13447	3.42833	-4.51894
С	-5.75370	5.30792	-4.13494
С	-3.09948	3.22243	-9.61515
С	-3.05799	4.94591	-11.43062
С	-4.87900	3.24087	-11.38386
Н	-5.71423	5.16484	-3.04843
Η	-6.57878	4.70355	-4.52769
Н	-5.98401	6.36445	-4.31995
Η	-3.20947	5.56614	-3.09061
Η	-3.46802	6.82227	-4.31232
Н	-2.32354	5.50577	-4.62365
Η	-4.90754	2.78721	-4.95186
Η	-4.09276	3.23644	-3.44032
Н	-3.17030	3.13162	-4.94883
Н	-2.46472	2.56252	-10.21860
Η	-3.71985	2.59558	-8.96469
Η	-2.43783	3.82479	-8.98032
Η	-3.64671	5.60571	-12.07850
Η	-2.45153	4.29787	-12.07474
Η	-2.37276	5.57302	-10.84791
Η	-4.27871	2.57237	-12.01224
Η	-5.49690	3.85674	-12.04812
Η	-5.54824	2.62767	-10.77419
С	-8.55960	8.60994	-8.41612
С	-9.61792	6.52058	-7.55713
С	-8.57033	6.55014	-9.83703
Η	-9.58530	5.42879	-7.50452
Η	-10.58106	6.81540	-7.99012
Η	-9.57975	6.90881	-6.53231
Η	-9.51994	8.93732	-8.83259
Η	-7.76309	9.05064	-9.02748
Η	-8.47419	9.02360	-7.40469
Η	-9.51695	6.86142	-10.29473
Η	-8.52513	5.45546	-9.86094
Η	-7.75841	6.94101	-10.46270
Η	-6.27331	3.10410	-8.89156
79			
Din	ner complex	with Re	
С	-7.73388	0.59657	-6.72206
С	-8.62889	0.93546	-7.81153

С	-9.52567	1.95559	-7.34756
С	-9.19587	2.26495	-5.99439
С	-8.09068	1.43857	-5.59171
Re	-7.29943	2.68976	-7.29254
Та	-5.49296	4.36232	-7.91112
С	-5.65223	6.36326	-7.10254
С	-6.85099	7.26383	-6.73150
С	-7.91576	7.21902	-7.83708
С	-8.72305	0.21657	-9.12363
С	-10.66036	2.54157	-8.13077
С	-9.92618	3.23192	-5.11301
С	-7.54267	1.32122	-4.20016
С	-6.80430	-0.57976	-6.68693
С	-3.46488	3.88308	-7.37399
С	-2.78656	2.96378	-6.33824
С	-3.29430	3.30868	-4.93052
С	-5.59336	4.69139	-10.06049
С	-4.45207	5.02491	-11.05138
С	-3.64320	3.75961	-11.37237
С	-6.35416	8.71318	-6.57532
С	-7.47105	6.81680	-5.40123
С	-1.26404	3.18915	-6.38790
С	-3.07296	1.48984	-6.65175
С	-3.51857	6.11022	-10.49579
С	-5.07446	5.54320	-12.36170
Η	-5.98539	-0.42134	-5.98046
Η	-6.35783	-0.76295	-7.66761
Η	-7.33326	-1.49294	-6.38189
Η	-7.75004	-0.17336	-9.43191
Η	-9.41924	-0.63011	-9.05746
Η	-9.07602	0.87904	-9.91803
Η	-11.57698	1.95885	-7.97194
Η	-10.44670	2.54175	-9.20211
Η	-10.86486	3.57324	-7.83457
Η	-10.36775	4.04963	-5.68806
Η	-9.26324	3.67189	-4.36381
Η	-10.73899	2.72401	-4.57771
Η	-8.11655	0.59338	-3.61075
Η	-6.50099	0.99093	-4.20926
Η	-7.57774	2.27865	-3.67381
Η	-7.80263	3.70445	-8.53307
Η	-7.08951	4.28345	-6.64268
Η	-5.05487	6.87554	-7.88718

Η	-4.96780	6.29898	-6.23485	
Η	-3.05703	4.90724	-7.25718	
Η	-3.14842	3.57639	-8.39524	
Н	-6.22549	3.90422	-10.49018	
Н	-6.26837	5.57330	-9.98894	
Н	-2.79671	2.69028	-4.17411	
Η	-4.37395	3.14425	-4.85021	
Η	-3.09183	4.35862	-4.68516	
Η	-0.74715	2.54682	-5.66484	
Η	-1.00872	4.22928	-6.15327	
Η	-0.86430	2.96129	-7.38288	
Η	-4.14702	1.28406	-6.64878	
Η	-2.59314	0.83891	-5.91149	
Η	-2.68145	1.21583	-7.63882	
Η	-2.73985	6.36607	-11.22388	
Η	-3.01414	5.78318	-9.57948	
Η	-4.07233	7.02913	-10.26913	
Η	-5.74835	4.79751	-12.79795	
Η	-4.30021	5.77342	-13.10418	
Η	-5.65418	6.45709	-12.18834	
Η	-2.86325	3.97379	-12.11256	
Η	-4.28944	2.97551	-11.78258	
Η	-3.15023	3.35193	-10.48362	
Η	-7.84790	5.79183	-5.46306	
Η	-8.30624	7.47184	-5.12665	
Н	-6.73371	6.85877	-4.59043	
Η	-7.17575	9.38362	-6.29556	
Н	-5.92277	9.08663	-7.51164	
Н	-5.58364	8.78500	-5.79896	
Η	-8.74954	7.89213	-7.60384	
Н	-8.31731	6.20668	-7.95459	
Н	-7.49817	7.53523	-8.80097	
Η	-6.36393	2.23341	-8.61104	
Η	-5.67738	2.73874	-6.70679	
80				
CO	2 reaction - 0	Complex 1 -	- nucleophilic	attack adduct
Та	-0.67822	0.90491	0.77723	
С	0.57893	2.38443	1.70401	
Ir	0.53507	-0.98277	-0.11634	
С	-2.15539	0.31223	2.24056	
С	-1.83631	2.07999	-0.62616	
Η	1.20971	0.45586	-0.41579	
Н	0.80904	-0.70282	1.45270	

0	1.39248	3.62959	-3.67102
С	2.18743	2.78158	-3.78219
0	2.98488	1.93639	-3.90050
С	-2.76156	1.69450	-1.79593
С	-3.56200	2.92543	-2.25634
С	-2.06731	-0.41033	3.60339
С	-1.74636	-1.89335	3.39045
С	0.24978	-3.23736	-0.20270
С	-0.24250	-2.64243	-1.41765
С	0.87846	-2.04767	-2.09629
С	2.07323	-2.35188	-1.33295
С	1.68914	-3.07561	-0.18291
С	-0.53218	-4.12881	0.71182
С	-1.62571	-2.80341	-1.96814
С	0.88066	-1.48726	-3.48581
С	3.46694	-1.98092	-1.73370
С	2.60029	-3.60723	0.87955
С	2.07704	2.75160	1.66967
С	2.93754	1.57605	2.15080
С	2.48567	3.13881	0.24098
С	2.32135	3.95790	2.59511
С	-3.74427	0.60363	-1.34774
С	-1.91386	1.18396	-2.96579
С	-0.98069	0.22319	4.48365
С	-3.41989	-0.29258	4.32929
Η	-0.01076	3.29983	1.48751
Η	3.89973	-2.74199	-2.39638
Η	4.12463	-1.88763	-0.86560
Η	3.48954	-1.02894	-2.26993
Η	2.11509	-3.60755	1.85892
Η	3.51217	-3.01047	0.96271
Η	2.89747	-4.64042	0.65785
Η	-1.58584	-3.84345	0.74896
Η	-0.14848	-4.10135	1.73456
Η	-0.48214	-5.17151	0.36938
Η	-1.70002	-3.73225	-2.55019
Η	-1.89789	-1.97740	-2.62828
Η	-2.37274	-2.85309	-1.17199
Η	1.59111	-0.66357	-3.59083
Η	-0.10426	-1.11598	-3.77512
Η	1.16504	-2.26220	-4.21043
Η	-2.43332	2.64709	0.12211
Η	-1.08594	2.81266	-0.98253

1.17010	5.50672	-1.44904
-4.21189	2.67879	-3.10494
-2.89338	3.73507	-2.56982
-1.26746	1.97949	-3.35422
-2.54600	0.83387	-3.79086
-1.27023	0.36443	-2.63363
-4.43778	0.34168	-2.15583
-3.21214	-0.30700	-1.05128
-4.34348	0.94040	-0.49307
-2.61926	1.30858	2.40863
-2.87252	-0.22973	1.59371
-1.65871	-2.41431	4.35140
-2.53962	-2.38460	2.81516
-0.81049	-2.01229	2.83793
-0.97112	-0.23431	5.48009
0.01450	0.08604	4.04584
-1.15194	1.29856	4.61655
-3.40035	-0.82320	5.28913
-3.67146	0.75532	4.53196
-4.22869	-0.72052	3.72597
0.29582	2.12625	2.74890
3.37915	4.24829	2.59331
1.73503	4.82796	2.27615
2.04067	3.72513	3.62896
3.53378	3.45969	0.20994
2.37158	2.28939	-0.44043
1.87209	3.96675	-0.13475
3.99961	1.84926	2.14405
2.67486	1.29207	3.17718
2.79930	0.69913	1.51254
reaction -	Complex 1 -	nucleophilic attack TS
-0.22497	12.99215	8.67763
1.05056	14.45935	9.63125
0.87845	10.90625	7.88234
-1.42674	12.62039	10.47636
-1.95277	13.86721	7.64605
1.77985	12.07055	8.58468
-0.14274	11.02831	9.15214
0.73670	14.14601	6.65356
1.02141	13.29360	5.87452
1.34942	12.76990	4.88071
	-4.21189 -2.89338 -1.26746 -2.54600 -1.27023 -4.43778 -3.21214 -4.34348 -2.61926 -2.87252 -1.65871 -2.53962 -0.81049 -0.97112 0.01450 -1.15194 -3.40035 -3.67146 -4.22869 0.29582 3.37915 1.73503 2.04067 3.53378 2.37158 1.87209 3.99961 2.67486 2.79930 2.67486 2.79930 2.67486 2.79930 2.67486 2.79930 2.67486 2.79930 2.67486 2.79930 2.67486 2.79930	-4.21189 2.67879 -2.89338 3.73507 -1.26746 1.97949 -2.54600 0.83387 -1.27023 0.36443 -4.43778 0.34168 -3.21214 -0.30700 -4.34348 0.94040 -2.61926 1.30858 -2.87252 -0.22973 -1.65871 -2.41431 -2.53962 -2.38460 -0.81049 -2.01229 -0.97112 -0.23431 0.01450 0.08604 -1.15194 1.29856 -3.40035 -0.82320 -3.67146 0.75532 -4.22869 -0.72052 0.29582 2.12625 3.37915 4.24829 1.73503 4.82796 2.04067 3.72513 3.53378 3.45969 2.37158 2.28939 1.87209 3.96675 3.99961 1.84926 2.67486 1.29207 2.79930 0.69913 Preaction - Complex 1 - -0.22497 12.99215 1.05056 14.45935 0.87845 10.90625 -1.42674 12.62039 -1.95277 13.86721 1.77985 12.07055 -0.14274 11.02831 0.73670 14.14601 1.02141 13.29360 1.34942 12.76990

С	-4.11339	14.17818	6.39090
С	-1.21477	11.70975	11.71366
С	-1.58955	10.25916	11.38056
С	0.29479	8.86280	7.15987
С	0.90581	9.56118	6.06612
С	2.27298	9.84560	6.43863
С	2.51708	9.23886	7.72672
С	1.31144	8.64327	8.17265
С	-1.07804	8.26396	7.17127
С	0.30000	9.74808	4.71154
С	3.34879	10.38539	5.54687
С	3.83396	9.21829	8.43721
С	1.12550	7.85534	9.43072
С	2.39193	15.20157	9.43285
С	3.49998	14.25330	8.95803
С	2.22863	16.35192	8.42769
С	2.81803	15.80836	10.78470
С	-3.60846	11.96438	7.43635
С	-2.33010	12.71774	5.42607
С	0.23722	11.75847	12.20870
С	-2.13798	12.19482	12.84687
Η	0.27118	15.22422	9.83966
Η	4.44588	8.37343	8.09523
Η	3.70683	9.11860	9.51809
Η	4.40298	10.13261	8.25215
Η	0.09969	7.92033	9.80097
Η	1.78874	8.20217	10.22703
Η	1.34286	6.79393	9.25416
Η	-1.76330	8.82584	6.53296
Η	-1.50209	8.25292	8.17871
Η	-1.05579	7.22778	6.80811
Η	0.51611	8.87174	4.08539
Η	0.69726	10.62763	4.20573
Η	-0.78588	9.85280	4.76685
Η	4.07037	10.98552	6.10826
Η	2.94240	11.01011	4.75192
Η	3.90131	9.56018	5.07788
Η	-2.49251	14.26793	8.52714
Η	-1.56269	14.75996	7.12919
Η	-4.62484	14.52095	7.29803
Η	-4.86544	13.72270	5.73457
Η	-3.71324	15.06086	5.87897
Η	-1.88577	13.56321	4.88683

```
Η
     -3.06569
                12.25290
                            4.75814
Η
     -1.54139
                11.98594
                            5.63175
Η
     -4.35305
                11.47681
                            6.79537
Η
     -2.83944
                11.22488
                            7.68635
Η
     -4.11363
                12.25813
                            8.36424
Η
     -1.52826
                13.66500
                            10.83387
Η
     -2.41875
                12.38525
                           10.05495
Η
     -1.45769
                9.61434
                           12.25764
Η
     -2.63716
                10.18699
                           11.06496
Η
                           10.57366
     -0.96628
                9.86300
Η
     0.36649
                11.12955
                           13.09802
Η
     0.92999
                11.40235
                           11.43816
Η
     0.52681
                12.77922
                           12.48562
Η
     -2.04635
                11.55624
                           13.73420
Η
     -1.88995
                13.21996
                           13.14623
Η
     -3.18782
                12.18280
                           12.53178
Η
     1.11815
                13.88118
                           10.57659
Η
     3.74516
                16.38551
                           10.68241
Η
     2.04636
                16.48144
                           11.17635
Η
     2.99164
                15.02583
                           11.53267
Η
     3.16773
                16.90925
                            8.32900
Η
     1.94502
                15.98869
                            7.43791
Η
      1.45917
                17.05821
                            8.76232
Η
     4.45795
                14.78372
                            8.89454
Η
     3.62615
                13.41399
                            9.65112
Η
     3.27405
                13.83742
                            7.97240
80
CO2 reaction - Complex 1 - nucleophilic attack product
     -0.71761
Ta
                 0.91530
                            0.32955
С
     0.67666
                2.20947
                           1.35362
Ir
     0.69904
               -1.31919
                          -0.51991
С
     -2.09630
                0.30577
                           1.91350
С
     -2.13559
                2.54996
                           -0.08568
Η
     1.24044
                0.04678
                           0.17755
Η
     -0.75375
                -1.11978
                           0.25051
0
     -0.82153
                0.82831
                           -1.65736
С
     -0.00229
                -0.17891
                           -2.05255
0
     0.25697
                -0.31808
                           -3.23351
С
     -3.37213
                2.60310
                           -1.02474
С
     -4.30662
                3.72928
                           -0.54494
С
     -1.97275
                           2.96831
                -0.82012
С
     -2.37420
                -2.17092
                           2.36488
С
     0.70347
                -3.59901
                           -0.52821
```

С	1.15529	-3.13596	-1.80461
С	2.35319	-2.35906	-1.59276
С	2.65334	-2.40144	-0.17715
С	1.64797	-3.17338	0.48475
С	-0.45621	-4.51635	-0.29825
С	0.55954	-3.44597	-3.13928
С	3.18899	-1.76300	-2.68039
С	3.87233	-1.81524	0.46294
С	1.65384	-3.60715	1.91694
С	1.83101	3.08560	0.81099
С	2.96581	2.21852	0.25048
С	1.32500	4.02569	-0.29226
С	2.38627	3.93370	1.96983
С	-4.15549	1.28135	-1.00961
С	-2.94524	2.91616	-2.46718
С	-0.54261	-0.89358	3.52107
С	-2.93361	-0.50548	4.13028
Η	-0.04920	2.87187	1.86604
Η	4.70399	-2.52924	0.41480
Η	3.69813	-1.57513	1.51428
Η	4.18802	-0.90078	-0.04330
Η	0.64096	-3.71904	2.31138
Η	2.17643	-2.88902	2.55378
Η	2.15969	-4.57547	2.02835
Η	-1.25945	-4.33753	-1.01625
Η	-0.87070	-4.40217	0.70549
Η	-0.13621	-5.56046	-0.40685
Η	1.17942	-4.18049	-3.66838
Η	0.49508	-2.53899	-3.74617
Η	-0.44531	-3.86378	-3.04304
Η	3.90287	-1.03599	-2.28559
Η	2.54950	-1.25229	-3.40505
Η	3.75889	-2.54116	-3.20391
Η	-2.45667	2.84407	0.92984
Η	-1.44239	3.35176	-0.39768
Η	-4.67564	3.53574	0.46989
Η	-5.17744	3.82600	-1.20524
Η	-3.78605	4.69404	-0.53473
Η	-2.42795	3.88219	-2.51695
Η	-3.82534	2.97869	-3.11892
Η	-2.27312	2.15095	-2.85870
Η	-5.02928	1.34344	-1.66952
Η	-3.53316	0.45097	-1.35917

Н	-4.52415	1.04383	-0.00471	
Η	-2.04220	1.27006	2.46160	
Η	-3.11036	0.29333	1.49045	
Η	-2.31640	-2.96423	3.12003	
Η	-3.40402	-2.14233	1.99020	
Η	-1.72237	-2.44255	1.53046	
Η	-0.46140	-1.65833	4.30277	
Η	0.17353	-1.14192	2.72950	
Η	-0.24538	0.06376	3.96707	
Η	-2.89458	-1.29081	4.89512	
Η	-2.67495	0.44423	4.61308	
Η	-3.96864	-0.43147	3.77799	
Η	1.06455	1.54436	2.14889	
Η	3.20963	4.57232	1.62859	
Η	1.61114	4.58431	2.39107	
Η	2.76773	3.29933	2.77838	
Η	2.13535	4.67509	-0.64280	
Η	0.94955	3.46697	-1.15657	
Η	0.51845	4.67180	0.07301	
Η	3.80562	2.84917	-0.06372	
Η	3.33863	1.51782	1.00668	
Η	2.63789	1.63733	-0.61645	
80				
CO2	2 reaction -	Complex 1 -	C - O activation	ГS
Та	0.36336	13.22613	8.92100	
С	-1.74552	13.56059	8.47902	
С	0.59660	15.30224	9.63109	
С	0.65639	12.73174	11.05820	
Ir	0.95988	10.49674	7.50528	
Η	-0.23393	11.58334	7.37983	
Η	1.07465	11.09783	9.01948	
С	2.17686	8.63803	7.06952	
С	3.66178	8.48511	7.18335	
С	1.19888	8.29099	8.05962	
С	-0.11366	8.49815	7.50919	
С	0.05938	8.95285	6.14378	
С	1.46368	9.03856	5.87390	
С	-1.03978	9.16407	5.15039	
С	2.10377	9.37575	4.56365	
С	1.48901	7.69219	9.39848	
С	-1.40701	8.08548	8.14170	
С	2.18469	11.91793	6.94897	
0	3.12361	12.10903	6.26407	

0	1.72246	13.37088	7.72398
С	-2.74010	13.13542	7.37472
С	-3.13375	11.66285	7.54642
С	0.44477	11.42523	11.86215
С	1.67779	10.52151	11.73986
С	0.97127	16.51176	8.72918
С	0.11577	16.56431	7.45543
С	-2.13063	13.36107	5.98384
С	-4.01487	13.99133	7.49857
С	0.26297	11.78761	13.34807
С	-0.81313	10.68502	11.38556
С	0.73799	17.80569	9.52982
С	2.45403	16.43891	8.33747
Η	1.50499	6.59781	9.31733
Η	0.72995	7.95975	10.13610
Н	2.45962	8.00986	9.78479
Н	-2.24594	8.67326	7.76253
Н	-1.38240	8.20984	9.22690
Н	-1.62258	7.02925	7.93307
Η	-0.75045	9.88157	4.37960
Н	-1.94752	9.53844	5.62793
Η	-1.28885	8.21803	4.65310
Η	2.42086	8.46031	4.04902
Η	2.98132	10.01134	4.70206
Η	1.41266	9.90684	3.90560
Η	3.99283	8.55906	8.22190
Η	4.18405	9.25869	6.61522
Η	3.98384	7.50949	6.79704
Η	-2.15110	13.24315	9.46566
Η	-1.76014	14.66177	8.53149
Η	-4.47011	13.88194	8.48986
Η	-4.76228	13.69561	6.75220
Η	-3.79347	15.05404	7.34653
Η	-1.83811	14.40834	5.84971
Η	-2.85515	13.11497	5.19808
Η	-1.24156	12.74003	5.83275
Η	-3.82786	11.35252	6.75602
Η	-2.25366	11.01494	7.51033
Η	-3.63325	11.50129	8.50938
Η	1.64921	13.13402	11.31610
Η	-0.05390	13.47999	11.46119
Η	-0.99365	9.78529	11.98701
Η	-1.70069	11.32328	11.47912

Н	-0.72214	10.38117	10.33694
Η	1.53492	9.58857	12.29840
Η	1.88868	10.26969	10.69712
Η	2.56375	11.02155	12.14878
Η	0.14758	10.88674	13.96370
Н	1.12857	12.34349	13.72565
Η	-0.62658	12.41071	13.49780
Η	-0.33425	15.53806	10.17678
Η	1.36606	15.23670	10.41749
Н	1.02785	18.68864	8.94654
Η	-0.31790	17.91745	9.80497
Н	1.32688	17.80726	10.45441
Η	0.37032	17.44668	6.85597
Η	0.28179	15.68102	6.82923
Н	-0.95327	16.62800	7.69154
Н	2.72777	17.29479	7.70874
Η	3.09273	16.46425	9.22895
Η	2.67460	15.52133	7.78664
80			
CO2	reaction -	Complex 1 -	C - O activation product
Та	-2.76707	5.50946	3.61092
С	-4.82622	6.12644	3.36198
С	-1.44400	7.09246	2.95498
С	-2.37919	5.03020	5.68496
Ir	3.60150	-7.07974	-5.36843
Н	2.38882	-6.07638	-5.55278
Η	3.78253	-6.07532	-4.15612
С	4.66422	-9.13785	-5.40332
С	6.11975	-9.40804	-5.63079
С	4.02597	-8.95320	-4.14013
С	2.60380	-8.80485	-4.37037
С	2.37453	-8.95423	-5.79256
С	3.63820	-9.13849	-6.42998
С	1.03373	-9.00242	-6.45796
С	3.86671	-9.40948	-7.88520
С	4.69058	-9.00032	-2.79889
С	1.54410	-8.75080	-3.31138
С	4.57600	-5.85496	-6.34179
0	5.18342	-5.07367	-6.94847
0	-2.47717	4.10705	2.65273
С	-5.74357	5.72934	2.18384
С	-6.00574	4.21735	2.20502
С	-2.37170	3.60698	6.28577

С	-1.23444	2.78039	5.67040
С	-0.10927	6.88552	2.20386
С	-0.36908	6.26621	0.82409
С	-5.07582	6.11495	0.85520
С	-7.08385	6.47419	2.30724
С	-2.16402	3.69572	7.80729
С	-3.71606	2.92017	6.00174
С	0.58867	8.24426	2.02308
С	0.80445	5.95649	3.01783
Η	4.69310	-10.02610	-2.40879
Н	4.17227	-8.36902	-2.07397
Η	5.72724	-8.66017	-2.85210
Η	0.65303	-8.22733	-3.66548
Η	1.89717	-8.22619	-2.42055
Η	1.24083	-9.76097	-3.00738
Η	1.08741	-8.66299	-7.49483
Η	0.30820	-8.37109	-5.94054
Η	0.64412	-10.02839	-6.45999
Η	3.87340	-10.48915	-8.08280
Η	4.82475	-9.00743	-8.22410
Η	3.08437	-8.96347	-8.50359
Η	6.73741	-8.96093	-4.84851
Η	6.45890	-9.00663	-6.58901
Η	6.31807	-10.48759	-5.63643
Η	-5.29952	5.81797	4.31547
Η	-4.77323	7.23258	3.42194
Η	-7.58842	6.22578	3.24814
Η	-7.75974	6.20907	1.48544
Η	-6.93765	7.56055	2.28185
Η	-4.84732	7.18745	0.82343
Η	-5.73383	5.89234	0.00729
Η	-4.14363	5.55836	0.70563
Η	-6.66401	3.92733	1.37803
Η	-5.07298	3.65260	2.11067
Η	-6.49573	3.91718	3.13913
Η	-1.39725	5.51140	5.86656
Η	-3.10558	5.65602	6.24176
Η	-3.75223	1.92579	6.46135
Η	-4.55245	3.50264	6.40742
Η	-3.87419	2.79261	4.92481
Η	-1.21795	1.76939	6.09355
Η	-1.35126	2.69406	4.58561
Η	-0.26019	3.24051	5.87492

```
Η
     -2.15140
                2.69844
                           8.26316
Η
     -1.21279
                4.18441
                           8.04790
Η
     -2.96661
                4.27091
                           8.28398
Η
     -2.10870
                7.73842
                           2.34761
Η
     -1.25313
                7.67724
                           3.87764
Η
     1.53901
                8.13242
                           1.48768
Η
     -0.03884
                8.93600
                           1.44929
Η
     0.80364
                8.71107
                           2.99160
Η
     0.57265
                6.11895
                           0.28282
Η
     -0.86563
                5.29515
                           0.91401
Η
     -1.00296
                6.92030
                           0.21338
Η
     1.77825
                5.83930
                           2.52851
Η
     0.98575
                6.35856
                           4.02233
Η
     0.36469
                4.95759
                           3.11984
81
CO2 reaction - Complex 2 - nucleophilic attack adduct
С
     -0.50377
                -3.38047
                           0.66813
С
     -1.86602
                -2.97679
                           0.45550
С
     -2.04596
                -2.66802
                           -0.94104
С
     -0.77361
                -2.88418
                           -1.59546
С
     0.17329
                -3.32217
                           -0.61297
Os
     -0.54078
                -1.27335
                           -0.06568
Та
     0.03607
                1.13315
                           0.43639
С
     2.04729
                1.46917
                           1.15250
С
     2.94567
                0.72300
                           2.16512
С
     2.13218
                0.31026
                           3.40039
С
     -2.94588
                -2.96867
                           1.49354
С
     -3.34342
                -2.34753
                           -1.61672
С
     -0.53188
                -2.78187
                           -3.06998
С
     1.57621
                -3.77584
                           -0.87451
               -3.91125
С
     0.07475
                           1.94319
С
     3.41495
                -0.23048
                          -2.93509
0
     3.60032
                0.80656
                          -2.43050
0
     3.24276
                -1.26468
                           -3.44847
С
     -1.23894
                1.89934
                           2.05214
     -1.49189
С
                3.37849
                           2.44959
С
     -2.07674
                3.40023
                           3.87514
С
     -0.05337
                2.51542
                           -1.21411
С
     -0.79390
                2.54685
                           -2.56712
С
     -2.26473
                2.14836
                          -2.37810
С
     -0.20725
                4.21869
                           2.44702
С
     -2.52022
                4.01008
                           1.50058
С
     -0.12130
                1.58939
                           -3.55984
```

С	-0.73133	3.97336	-3.14339
С	3.56506	-0.52402	1.52011
С	4.08504	1.65955	2.60748
Η	-0.03812	-5.00235	2.00351
Η	-0.41987	-3.47732	2.81604
Η	1.14096	-3.68418	2.02410
Η	-3.70787	-2.21797	1.26964
Η	-2.54399	-2.74742	2.48534
Η	-3.44222	-3.94648	1.54145
Η	-3.18996	-1.73346	-2.50804
Η	-4.01359	-1.79587	-0.95224
Η	-3.86402	-3.26290	-1.93040
Η	-0.79602	-3.72300	-3.56988
Η	0.51596	-2.56910	-3.29345
Η	-1.13560	-1.98845	-3.51803
Η	2.00610	-3.27476	-1.74461
Η	1.60556	-4.85728	-1.06382
Η	2.22767	-3.57370	-0.02010
Η	-0.42227	3.36274	-0.59168
Η	1.01634	2.74801	-1.38001
Η	-2.34846	1.12800	-1.98983
Η	-2.80636	2.20060	-3.33018
Η	-2.76833	2.82171	-1.67452
Η	-1.21984	4.69227	-2.47514
Η	-1.23454	4.02763	-4.11632
Η	0.30640	4.29779	-3.28390
Η	0.91142	-0.70430	0.57926
Η	-1.38012	-0.26966	0.97074
Η	-0.44590	-0.01383	-1.18368
Η	-0.63614	1.61290	-4.52746
Η	0.92296	1.87667	-3.73139
Η	-0.13731	0.56012	-3.18909
Η	2.60603	1.60647	0.20783
Η	1.87493	2.50097	1.52951
Η	2.77134	-0.18232	4.14293
Η	1.67831	1.18360	3.88447
Η	1.33145	-0.38627	3.12766
Η	4.21431	-1.04288	2.23508
Η	2.79346	-1.22423	1.18762
Η	4.17523	-0.25234	0.65089
Η	4.75591	1.15706	3.31482
Η	4.68431	1.98394	1.74895
Η	3.69212	2.55677	3.10010

Η	-2.20807	1.38430	2.05733
Η	-0.67222	1.40447	2.87121
Η	-2.75206	5.03777	1.80424
Η	-2.15610	4.04407	0.46888
Η	-3.45659	3.44063	1.50338
Η	-0.41092	5.23876	2.79352
Η	0.54922	3.78891	3.11376
Η	0.23019	4.30013	1.44481
Η	-2.31009	4.42416	4.19285
Η	-3.00035	2.81306	3.92893
Η	-1.36962	2.97741	4.59799
81			
CO2	2 reaction - (Complex 2 -	nucleophilic attack TS
С	-0.24293	8.25252	8.92950
С	-1.57441	8.72331	8.67943
С	-1.72738	8.94538	7.26861
С	-0.47201	8.60648	6.63491
С	0.44343	8.17917	7.65852
Os	-0.12544	10.32472	8.04301
Та	0.47867	12.75354	8.49958
С	2.32144	13.19187	9.55674
С	3.25991	12.36240	10.46049
С	2.45715	11.67171	11.57230
С	-2.65207	8.88314	9.70751
С	-2.99522	9.32087	6.56556
С	-0.24375	8.53210	5.15684
С	1.79185	7.56493	7.44349
С	0.29949	7.78649	10.24521
С	2.16336	11.18175	6.44294
0	2.31242	12.31239	6.81766
0	2.43473	10.24115	5.78831
С	-0.88915	13.51041	10.05695
С	-1.18723	14.95520	10.55643
С	-1.81703	14.85360	11.95919
С	0.17247	14.23919	6.96173
С	-0.64860	14.29722	5.65591
С	-2.10135	13.87166	5.91513
С	0.06324	15.83912	10.66025
С	-2.20779	15.63558	9.63196
С	-0.03401	13.38638	4.58447
С	-0.64194	15.74437	5.12809
С	4.02162	11.30926	9.64481
С	4.28683	13.31056	11.10820

Η	0.11164	6.71386	10.38718
Η	-0.16217	8.31735	11.08155
Η	1.37875	7.94440	10.31021
Η	-3.35713	9.67009	9.42941
Η	-2.23851	9.13632	10.68646
Η	-3.21738	7.94868	9.81336
Η	-2.79245	9.88098	5.64944
Η	-3.63357	9.94474	7.19642
Η	-3.57031	8.42716	6.28886
Η	-0.52348	7.53973	4.77939
Η	0.80153	8.71077	4.90222
Η	-0.84777	9.27015	4.62299
Η	2.25547	7.92663	6.52560
Η	1.70219	6.47279	7.37351
Η	2.47076	7.78853	8.27057
Η	-0.23441	15.00286	7.65625
Η	1.20811	14.56417	6.75289
Η	-2.15070	12.84092	6.28174
Η	-2.69228	13.93467	4.99359
Η	-2.57807	14.51896	6.65968
Η	-1.08538	16.43387	5.85604
Η	-1.21642	15.82669	4.19742
Η	0.37941	16.08503	4.92251
Η	1.25479	10.79999	8.85602
Η	-0.89495	11.36199	9.08540
Η	-0.34928	11.54592	6.92514
Η	-0.58362	13.48170	3.64052
Η	1.01188	13.64990	4.39161
Η	-0.06911	12.33572	4.88813
Η	2.92323	13.69102	8.77682
Η	1.90654	14.01453	10.17110
Η	3.12092	11.10483	12.23615
Η	1.92277	12.40534	12.18810
Η	1.72016	10.97787	11.15428
Η	4.72819	10.76656	10.28386
Η	3.33882	10.57875	9.20057
Η	4.59271	11.77522	8.83398
Η	4.97579	12.76022	11.76049
Η	4.88487	13.82352	10.34617
Η	3.79100	14.07606	11.71637
Η	-1.86493	13.02247	9.91581
Η	-0.43822	12.94012	10.89750
Η	-2.48263	16.62310	10.02115

```
Η
     -1.81749
                15.78029
                            8.62019
Η
     -3.12453
                15.03994
                            9.55367
Η
     -0.20297
                16.83667
                            11.02973
Η
     0.79446
                15.41905
                            11.36015
Η
     0.55733
                15.97299
                            9.69103
Η
     -2.08800
                15.84392
                            12.34583
Η
     -2.72585
                14.24155
                            11.93847
Η
     -1.12099
                14.39482
                            12.67104
81
CO2 reaction - Complex 2 - nucleophilic attack product
С
     -0.95650
                -3.18920
                           -1.33686
С
     -0.03179
                -3.58676
                           -0.30036
С
     -0.70840
                -3.44358
                            0.96886
С
     -2.04164
                -2.98194
                            0.71611
С
     -2.19451
                -2.80640
                           -0.69725
Os
     -0.51140
                -1.40475
                            -0.03838
Та
     0.19462
                 1.10428
                            0.26573
С
     -0.43796
                2.60701
                           -1.18683
С
     -0.21757
                2.72220
                           -2.71517
С
     1.26342
                2.93911
                           -3.05617
С
     1.31106
                -4.20371
                           -0.52974
С
     -0.16384
                -3.84794
                            2.30451
С
     -3.10952
                -2.77682
                            1.74596
С
     -3.46304
                -2.42698
                           -1.39749
С
     -0.71931
                -3.32616
                           -2.80704
С
     1.13960
                -0.75458
                           -1.25077
0
     1.70122
                -1.49978
                           -2.03458
0
     1.54146
                0.52136
                           -1.11916
С
                1.56172
     1.86256
                           1.59993
С
                1.17636
     3.36025
                            1.52817
С
     4.03737
                1.81955
                           0.30966
С
     -1.08776
                2.19254
                            1.69477
С
     -1.38981
                3.58944
                            2.28538
С
     -0.10135
                4.31903
                            2.68850
С
     4.04181
                1.71576
                           2.80166
С
                -0.34574
     3.55133
                            1.48928
С
     -2.15662
                4.45466
                            1.27416
С
     -2.27097
                3.42740
                            3.53919
С
     -1.00899
                3.95098
                           -3.20697
С
     -0.74822
                 1.48423
                           -3.45107
Η
     -0.40908
                -4.89710
                            2.51171
Η
     -0.58244
                -3.24151
                            3.11106
Η
     0.92240
                -3.74583
                            2.33989
```

Η	-3.82135	-2.00658	1.44085
Η	-2.68980	-2.48173	2.71021
Η	-3.67037	-3.70759	1.89740
Н	-3.26082	-1.93934	-2.35300
Н	-4.06656	-1.74371	-0.79555
Н	-4.06699	-3.32081	-1.59743
Н	-0.84329	-4.37141	-3.11662
Η	0.29264	-3.00162	-3.05567
Η	-1.42150	-2.71959	-3.38350
Η	1.83866	-3.67244	-1.32431
Η	1.20058	-5.25619	-0.81916
Η	1.92725	-4.16620	0.37151
Η	-1.51697	2.71625	-0.99168
Η	0.01415	3.49741	-0.70434
Η	-0.17157	0.59020	-3.20167
Η	-0.68831	1.62661	-4.53677
Η	-1.79989	1.29865	-3.19894
Η	-2.08298	3.83615	-3.01673
Η	-0.87347	4.09881	-4.28537
Η	-0.67502	4.86440	-2.70072
Η	0.67324	-1.09186	1.05504
Η	-1.23308	-0.37466	1.02952
Η	-1.20271	-0.28351	-1.02393
Η	1.38876	3.08365	-4.13596
Η	1.64967	3.83681	-2.55717
Η	1.87264	2.08655	-2.75150
Η	1.79531	2.66452	1.61886
Η	1.47973	1.25295	2.58890
Η	4.61633	-0.60077	1.54759
Η	3.04910	-0.82671	2.33796
Η	3.15815	-0.77856	0.56626
Η	5.11052	1.59443	0.30510
Η	3.60718	1.45346	-0.62460
Η	3.93005	2.91121	0.33652
Η	5.11569	1.49259	2.79572
Η	3.92687	2.80314	2.88129
Η	3.61134	1.26606	3.70467
Η	-2.05044	1.78786	1.30857
Η	-0.85080	1.51240	2.54464
Η	-2.42619	5.41750	1.72418
Η	-1.56358	4.65921	0.37929
Η	-3.08596	3.96524	0.95846
Η	-0.33619	5.27988	3.16221

```
Η
     0.48723
                3.73168
                            3.40154
Η
     0.52817
                4.52437
                            1.81605
Η
     -2.52850
                 4.40160
                            3.97340
Η
     -3.20711
                 2.91040
                            3.29767
Η
     -1.75506
                            4.31053
                 2.84328
81
CO2 reaction - Complex 2 - C - O activation TS
С
     -0.89912
                8.42310
                           7.05791
С
     0.01584
                8.02898
                           8.11099
С
     -0.63314
                8.28270
                            9.37343
С
     -1.93652
                8.82812
                            9.10863
С
     -2.10252
                8.91301
                            7.68347
Os
     -0.33949
                10.24130
                            8.24938
Ta
     0.51600
                12.90206
                            8.46094
С
     -0.28966
                14.45375
                            7.12679
С
     -0.11079
                14.55944
                            5.59429
С
     1.34641
                            5.22525
                14.86753
С
     1.32508
                7.33063
                           7.91154
С
     -0.09919
                7.92464
                           10.72588
С
     -2.98424
                9.13523
                           10.13393
С
                9.32359
     -3.35788
                            6.97766
С
     -0.68912
                8.19919
                            5.59246
С
     1.20893
                10.67411
                            7.07861
0
     1.94698
                10.23068
                            6.28967
Ο
     1.79929
                12.53026
                            7.22894
С
     2.06837
                13.42174
                            9.93040
С
     3.55906
                13.01229
                            9.90694
С
     4.29484
                13.67338
                            8.73347
С
     -0.84682
                13.91833
                            9.97277
С
     -1.24639
                15.23286
                            10.67593
С
     -0.01326
                15.95155
                            11.24284
С
     4.20601
                13.49273
                            11.22097
С
     3.71909
                            9.82157
                11.48791
С
     -1.96293
                16.18009
                            9.70190
С
     -2.21061
                14.93249
                            11.84047
С
     -0.99697
                15.71436
                            5.08775
С
     -0.55675
                13.26744
                            4.89484
Η
     -0.42631
                 6.91466
                           11.00181
Η
     -0.45575
                 8.61418
                           11.49378
Η
     0.99196
                7.94027
                           10.74319
Η
     -3.66151
                 9.92138
                            9.79419
Η
     -2.54191
                 9.46187
                           11.07718
Η
     -3.58470
                 8.23988
                           10.33695
```

Η	-3.14756	9.72209	5.98353
Н	-3.90073	10.08866	7.53645
Η	-4.02107	8.45773	6.86109
Н	-0.95294	7.16915	5.32369
Н	0.35230	8.36712	5.30948
Н	-1.30713	8.87165	4.99391
Н	1.84630	7.70866	7.02984
Н	1.16435	6.25412	7.77728
Н	1.98541	7.46794	8.77031
Н	-1.36586	14.50342	7.35717
Н	0.12795	15.36636	7.59055
Η	0.09637	12.43339	5.16571
Η	-0.52275	13.37958	3.80401
Η	-1.58783	13.00793	5.16902
Η	-2.05675	15.52427	5.29759
Η	-0.88853	15.85186	4.00439
Η	-0.72575	16.65906	5.57337
Η	0.75661	10.56141	9.42011
Η	-1.00139	11.35232	9.24837
Η	-1.08534	11.35332	7.30877
Η	1.45916	14.96472	4.13823
Η	1.66777	15.81433	5.67716
Η	2.01185	14.07669	5.57746
Η	2.01095	14.52341	9.93669
Η	1.64394	13.12693	10.90508
Η	4.77395	11.19924	9.90850
Η	3.17181	10.98898	10.63224
Η	3.34764	11.10948	8.86566
Η	5.35940	13.40832	8.74413
Η	3.86564	13.36052	7.77908
Η	4.22564	14.76640	8.80053
Η	5.27563	13.24872	11.24843
Η	4.10744	14.57885	11.33300
Η	3.73249	13.02341	12.09224
Η	-1.77611	13.51045	9.50768
Η	-0.60959	13.18089	10.77418
Η	-2.28516	17.09207	10.21946
Η	-1.31343	16.47623	8.87413
Η	-2.85614	15.70783	9.27479
Η	-0.30839	16.85476	11.79153
Η	0.54358	15.30806	11.93275
Η	0.66944	16.25519	10.44250
Н	-2.52679	15.85180	12.35068

Η -3.11227 14.42362 11.47897 Η -1.73584 14.28278 12.58555 81 CO2 reaction - Complex 2 - C - O activation product С -0.61647 -4.55011 -0.34673 С -1.76758 -4.84521 0.47518 С -2.56851 -3.64984 0.54749 С -1.92232 -2.62004 -0.21754 С -0.71905 -3.17749 -0.76990 Os -0.53301 -3.25241 1.51921 Ta 0.59231 2.55140 -0.04692 С -0.39654 4.26551 -0.92793 С -0.92847 4.33268 -2.37740 4.02177 С 0.20871 -3.36191 С -2.14556 -6.19488 1.00677 С -3.91529 -3.53530 1.19452 С -2.46956 -1.25572 -0.50724 С 0.19558 -2.47926 -1.72967 С 0.40652 -5.54080 -0.81396 С 0.56971 -4.17533 2.69626 0 1.25665 -4.78022 3.41646 0 0.31441 1.18706 -1.06688 С 2.72249 2.91464 0.04525 С 3.82869 1.88580 -0.27793 С 3.76780 1.49485 -1.76054 С -0.11260 1.95012 1.91301 С -0.67472 2.94143 2.95809 С 0.16887 4.22620 2.98976 С 2.50774 5.20339 0.02186 С 0.63365 3.64407 0.59207 3.29065 С -2.13127 2.62006 С -0.63586 2.28871 4.35087 С -1.46743 5.74549 -2.65945 С -2.06176 3.31524 -2.56829 Η -4.70401 -3.77456 0.47009 Η -4.09709 -2.52405 1.56482 Η -4.01588 -4.22197 2.03767 Η -0.53309 -1.66980 -0.68454 Η -3.08013 -0.88709 0.32078 Η -3.10474 -1.28024 -1.40236 Η 1.20973 -2.88154 -1.67948 Η 0.24744 -1.40617 -1.53224 Η -0.16745 -2.61623 -2.75641

Η	0.08138	-6.02426	-1.74417
Η	0.57270	-6.32585	-0.07244
Η	1.36881	-5.06096	-1.00646
Η	-1.26203	-6.79214	1.24414
Η	-2.73707	-6.75231	0.26905
Η	-2.74088	-6.11360	1.91923
Η	-1.22807	4.47619	-0.22610
Η	0.31896	5.09663	-0.76645
Η	-1.70888	2.29586	-2.38296
Η	-2.45391	3.35920	-3.59087
Η	-2.89456	3.52133	-1.88482
Η	-2.27879	6.00382	-1.96910
Η	-1.86006	5.82164	-3.68047
Η	-0.67928	6.49936	-2.54762
Η	-1.40586	-3.05950	2.87040
Η	-0.41968	-1.79856	2.23341
Η	0.84233	-2.43877	1.25831
Η	-0.13724	4.10542	-4.39871
Η	1.04428	4.72118	-3.23511
Η	0.58557	3.00324	-3.21679
Η	2.84541	3.80178	-0.60775
Η	2.87405	3.30120	1.07271
Η	4.45223	-0.08607	0.41789
Η	3.65305	0.88646	1.65935
Η	2.69818	0.12812	0.36808
Η	4.54864	0.76371	-1.99975
Η	2.79844	1.05395	-2.01250
Η	3.92458	2.36908	-2.40409
Η	6.01280	1.80424	-0.20668
Η	5.36680	3.41131	-0.57691
Η	5.29051	2.78486	1.07896
Η	-0.75833	1.06482	1.84112
Η	0.85619	1.55096	2.28576
Η	-2.55329	3.97529	3.36476
Η	-2.21641	3.77431	1.64040
Η	-2.75478	2.38998	2.60138
Η	-0.19331	4.92129	3.75599
Η	1.21919	4.00603	3.21576
Η	0.12914	4.76478	2.03207
Η	-1.05387	2.95712	5.11363
Η	-1.21350	1.35828	4.36306
Η	0.39154	2.04494	4.64386

E. References

- 1 C. L. Gross and G. S. Girolami, Organometallics, 2007, 26, 160–166.
- 2 R. R. Schrock and J. D. Fellmann, J. Am. Chem. Soc., 1978, 100, 3359–3370.
- S. Lassalle, R. Jabbour, P. Schiltz, P. Berruyer, T. K. Todorova, L. Veyre, D. Gajan, A. Lesage,
 C. Thieuleux and C. Camp, J. Am. Chem. Soc., 2019, 141, 19321–19335.
- 4 D. M. Heinekey, D. A. Fine, T. G. P. Harper and S. T. Michel, *Can. J. Chem.*, 1995, **73**, 1116–1125.
- 5 L. Escomel, I. Del Rosal, L. Maron, E. Jeanneau, L. Veyre, C. Thieuleux and C. Camp, J. Am. Chem. Soc., 2021, **143**, 4844–4856.
- 6 J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3722–3723.
- 7 APEX2, APEX3, SADABS, TWINABS and SAINT. Bruker AXS. Madison, WI, USA.
- 8 G. M. Sheldrick, *Acta Crystallogr. Sect. Found. Adv.*, 2015, **71**, 3–8.
- 9 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 10 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Crystallogr.*, 2008, 41, 466–470.
- 12 Clark, R. C. & Reid, J. S., Acta Cryst. 1995, A51, 887-897.
- Rigaku Oxford Diffraction, CrysAlisPro Software system, 2019, version 1.171.40.67a, Rigaku
 Corporation, Oxford, UK.