Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Table of Contents

1. General information	S1
2. Experimental procedure	S2
3. Characterization data of the products	S 8
4. X-ray Crystal Structure for 3m and 5o	S36
5 References	S38
6. ¹ H, ¹⁹ F and ¹³ C NMR spectra of products	S37

1. General information

All experiments were carried out under an atmosphere of air. Flash column chromatography was performed over silica gel 48-75 μ m. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded on Bruker-AV (500 MHz, 471 MHZ and 126 MHz, respectively) instrument internally referenced to SiMe₄ or chloroform signals. HRMS was recorded using waters G2-Xs qtof mass spectrometer. The new compounds were characterized by ¹H NMR, ¹⁹F NMR, ¹³C NMR, MS and HRMS. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹⁹F NMR, ¹³C NMR data and MS data with those of literature. The Substrates 1¹, 2²and 4³ was synthesized according to the reported methods.

Trichloromethane (CHCl₃), dichloromethane, dichloroethane and ethyl acetate were freshly distilled from CaH₂; tetrahydrofuran (THF), toluene and ether were dried with sodium benzophenone and distilled before use.

Reactions were monitored by thin layer chromatography (TLC) using silicycle precoated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. All reagents and solvents were used as received from commercial sources (*Energy Chemical, J&K*[®], *Adamas-beta*[®], *Bidepharm*) without further purification.

2. Experimental procedure

2.1 Phosphine-Catalyzed Dearomative [3+2] Cycloaddition of 4-Nitroisoxazoles with Allenoates

In a 10 mL of sealed tube, a mixture of 4-nitroisoxazoles 1 (0.2 mmol), allenoates 2 (0.24 mmol), DPEphos (0.02 mmol) and toluene (2 mL) was stirred at 30 °C for 12 h. After completion of the reaction (detected by TLC), the reaction mixture was

concentrated under reduced pressure. The residue was separated by column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford **3**.

2.2 Phosphine-Catalyzed Dearomative [3+2] Cycloaddition of 4-Nitroisoxazoles with Morita–Baylis–Hillman Carbonates

In a 10 mL of sealed tube, a mixture of 4-nitroisoxazoles 1 (0.2 mmol), MBH carbonates 4 (0.24 mmol), ${}^{n}Bu_{3}P$ (0.02 mmol) and toluene (2 mL) was stirred at 30 °C. After completion of the reaction (detected by TLC), the reaction mixture was concentrated under reduced pressure. The residue was separated by column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford 5.

2.2 Representative procedure for the synthesis of 4-nitoroisoxazoles.

The oxime chloride were prepared according to the reference

A 50 mL round-bottomed flask was charged with aldehyde (1.0 equiv), hydroxylamine hydrochloride (1.2 equiv), H₂O and methanol. Then, K_2CO_3 (1.5 equiv) was slowly added to the solution. The reaction was stirred at room temperature for overnight. Upon completion, methanol was removed, aqueous layers was extracted with ethyl acetate thrice. The combine organic layers were dried over anhydrous Na₂SO₄. After removal of the solvent, the crude aldoxime was used in the next step. A 50 mL round-bottomed flask was charged with the crude aldoxime

of the first step and *N*,*N*-dimethylformamide. Then, *N*-chlorosuccinimide (1.1 equiv) in *N*,*N*-dimethylformamide was added dropwise over a period of 10 minutes to the solution. The reaction was stirred for 4 hours at room temperature. Upon completion, the reaction mixture was poured into water, extracted with ethyl acetate thrice, the combine organic layers were washed with water and brine and dried over anhydrous Na_2SO_4 . After removal of the solvent, the residue purified onsilica gel (petroleum ether: ethyl acetate = 30:1-5:1) to afford desired oxime chloride. Oxime chloride, which were not stable enough, were directly used in the next step without purification by column chromatography.

To a mixture of oxime chloride (1.0 equiv.), (*E*)-*N*,*N*-dimethyl-2-nitroethen-1amine (1.2 equiv.) and sodium bicarbonate (2.0 equiv.), ethyl acetate (5 mL/mmol of oxime chloride) was added under an argon atmosphere. After being stirred for 2 h at 40 °C, the reaction mixture was filtered through a silica pad, the filtrate was concentrated and purified by silica gel column chromatography with *n*-hexane : diethyl ether (95 : 5) to afford 4-nitoroisoxazoles.

2.3 Scaled-Up version of 3a and 5a.

In a 10 mL of sealed tube, a mixture of 4-nitroisoxazoles **1a** (5.0 mmol), allenoates **2a** (6.0 mmol), DPEphos (0.5 mmol) and toluene (20 mL) was stirred at 30 °C for 12 h. After completion of the reaction (detected by TLC), the reaction mixture was concentrated under reduced pressure. The residue was separated by column

chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford **3** in 1.39 g, 92% yield.

In a 10 mL of sealed tube, a mixture of 4-nitroisoxazoles 1 (5.3 mmol), MBH carbonates 4 (6.4 mmol), ${}^{n}Bu_{3}P$ (0.53 mmol) and toluene (20 mL) was stirred at 30 °C. After completion of the reaction (detected by TLC), the reaction mixture was concentrated under reduced pressure. The residue was separated by column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford **5a** in 1.06 g, 66% yield.

2.4 The transformation of the Product 3a.

To compound **3a** (60.5 mg, 0.2 mmol) in 3 mL ethanol was added NaBH₄ (75.6 mg, 2.0 mmol) at 0 °C. Then the reaction was stirred for 1 h at 0 °C, and quenched with 20 mL saturated NH₄Cl solution. The aqueous solution was extracted with DCM three times. The combined organic layers were dried over Na₂SO₄. After evaporation of the solvent, the resulting crude mixture was purified by flash chromatography on silica gel to afford compound **6a** in 58% yield, 1:1 dr.

To compound **3a** (60.5 mg, 0.2 mmol) in 3 mL ethanol was added NaBH₄ (75.6 mg, 2.0 mmol) at 0 °C. After the reaction was stirred for 1 h at 0 °C, the resulting mixture was warmed to room temperature and stirred for 3 h. The resulting mixture was then

quenched with 20 mL saturated NH_4Cl solution and extracted with DCM three times. The combined organic layers were dried over Na_2SO_4 . After evaporation of solvent, the resulting crude mixture was purified by flash chromatography on silica gel to afford compound **6b** in 65% yield, >20:1 dr.

To a stirred solution of **3a** (60.5 mg, 0.2 mmol) and tributyltin hydride (107.6 μ l, 0.4 mmol) in PhMe (2.0 mL), AIBN (39.4 mg, 0.24 mmol) were added at rt. After being stirred at 80 °C for 30 min, the reaction mixture was cooled to rt and 400 μ l CCl4 were added. After being stirred at rt for 20 min, sat. KF aq. solution (40 ml) was added to the reaction mixture and the organic layer was extracted with AcOEt. The combined organic layers were dried over anhydrous Na₂SO₄. After removal of Na₂SO₄ by a filtration, the solution was concentrated under reduced pressure. The resulting crude mixture was purified by silica gel column chromatographyto afford **6c** in 60% yield.

The reaction was carried out under following conditions: NaIO₄ (0.4 mmol) was dissolved in 0.2 mL distilled water, cooled with ice bath, then 4 drops of 2M H₂SO₄ and RuCl₃·3H₂O were subsequently added. After 5 min stirring, 0.4 mL MeCN was added. The solution was stirred for additional 5 min, **3a** (0.2 mmol, 60.5 mg) in 0.4 mL ethyl acetate was then added in one portion. The mixture was further stirred 60 min in ice bath, and then it was transferred into a solution of 10% NaHCO₃ (1.2 mL) and saturated Na₂SO₃ (2.0 mL), which was stirred for 60 min. After extraction with dichloromethane, dried over MgSO₄, it was subjected to chromatographic purification on silica gel, afforded **6d** in 75% yield.

Zinc powder (65.41 mg, 1.0 mmol, 10.0 equiv) was slowly added to a solution of **3a** (30.21 mg, 0.1 mmol,) and HCl(0.2 mL) in methanol at 0°C. After stirring the reaction suspension at 0°C for 20 min, the suspension was filtered and washed with dichloromethane. Then the filtrate was washed with saturated NaHCO₃, extracted with dichloromethane. The combined organic fractions were dried over Na₂SO₄, filtered and concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatography to afford the desired product **6e** in 65% yield.

A stirred solution of 3a (0.2 mmol, 60.5 mg) in DCM (2 mL) was added ptoluenethiol (0.40 mmol), DABCO (0.20 mmol). The mixture was stirred at r.t. for 12 h. After completion of the reaction, the reaction mixture was directly applied to a silica gel chromatography column to afford the desired **6f** in 99% yield.

A sealed tube was charged with 3a (0.2 mmol, 60.5 mg), Fe powder (107.52 mg, 1.92 mmol, 9.6 equiv.) and NH₄Cl (107.0 mg, 2.0 mmol, 10 equiv.), followed by the addition of ethanol / water (1 : 1.4). The reaction mixture was stirred for 1 h at room temperature. The reaction mixture was filtered through a silica pad. The filtratewas concentrated in vacuo. The residue was purified by silica gel chromatography column to afford a desire product **6g** in 43.8 mg, 76% yield.

Fe powder (2.0 mmol, 112 mg) was added to isoxazoline **3a** (0.2 mmol, 60.5 mg) and NH₄Cl (2.0 mmol, 107 mg) in ethanol and water (1:1, 4 mL). The mixture was stirred in an 80 °C oil bath for 10 hours. After the reaction was completed by TLC monitoring, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through a silica pad. The filtrate was washed with brine and the organic layer was separated, dried over Na₂SO₄, and evaporated in vacuo. The residue was then purified by flash chromatography on silica gel to give product **6h** in 45 mg, 78% yield.

3. Characterization data of the products

Ethyl (3aR,6aS)-3a-nitro-3-phenyl-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6carboxylate (3a)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3a** as a yellow solid (62 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.58 (m, 2H), 7.46 – 7.41 (m, 3H), 6.86 (s, 1H), 6.34 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 4.12 (dd, *J* = 19.8, 2.1 Hz, 1H), 3.37 (dd, *J* = 19.8, 1.4 Hz, 1H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.82, 152.88, 142.31, 133.36, 130.97, 129.28, 126.72, 125.82, 104.49, 96.24, 61.46, 40.15, 14.17; HRMS (ESI) m/z calcd. for C₁₅H₁₅N₂O₅⁺ [M+H]⁺ = 303.0975, found 303.0970.

Ethyl (3aR,6aS)-3a-nitro-3-(p-tolyl)-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6carboxylate (3b)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3b** as a colorless viscous liquid (63.2 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.3 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.85 (t, *J* = 2.4 Hz, 1H), 6.31 (s, 1H), 4.32 – 4.27 (m, 2H), 4.13 – 4.08 (m, 1H), 3.38-3.33 (m, 1H), 2.38 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.88, 152.87, 142.34, 141.50, 133.32, 129.98, 126.64, 122.88, 104.61, 96.02, 61.45, 40.17, 21.46, 14.19; HRMS (ESI) m/z calcd. for C₁₆H₁₇N₂O₅⁺ [M+H]⁺ = 317.1132, found 317.1137.

Ethyl (3aR,6aS)-3-(4-isopropylphenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3c)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3c** as a yellow solid (52.0 mg, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 6.85 (s, 1H), 6.31 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 4.11 (dd, *J* = 19.8, 2.1 Hz, 1H), 3.37 (dd, *J* = 19.8, 1.3 Hz, 1H), 2.97 – 2.88 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H), 1.25 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 161.89, 152.86, 152.29, 142.33, 133.34, 127.42, 126.79, 123.20, 104.63, 96.02, 61.45, 40.15, 34.10, 23.68, 14.19; HRMS (ESI) m/z calcd. for C₁₈H₂₁N₂O₅⁺ [M+H]⁺ = 345.1445, found 345.1440.

Ethyl (3aR,6aS)-3-(4-methoxyphenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3d)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3d** as a white powder (50.7 mg, 78% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.52 (m, 2H), 6.94 – 6.91 (m, 2H), 6.85 (t, *J* = 2.3 Hz, 1H), 6.30 (s, 1H), 4.30 (tt, *J* = 7.2, 3.6 Hz, 2H), 4.10 (dd, *J* = 19.8, 2.3 Hz, 1H), 3.84 (s, 3H), 3.38 – 3.34 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.90, 161.64, 152.51, 142.17, 133.40, 128.37, 118.05, 114.75, 104.76, 95.86, 61.46, 55.45, 40.14, 14.20; HRMS (ESI) m/z calcd. for C₁₆H₁₆ N₂NaO₆⁺ [M+Na]⁺=355.0901, found 355.0897.

Ethyl (3aR,6aS)-3-(4-fluorophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3e)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3e** as a white powder (48.5 mg, 76% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, J = 8.6, 5.2 Hz, 2H), 7.13 (t, J = 8.5 Hz, 2H), 6.86 (s, 1H), 6.35 (s, 1H), 4.31 (q, J = 7.0 Hz, 2H), 4.10 (d, J = 19.4 Hz, 1H), 3.34 (dd, J = 19.8, 0.9 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.11 (d, J = 253.2 Hz), 161.77, 151.96, 142.21, 133.34, 128.89 (d, J = 8.6 Hz), 122.06, 116.60 (d, J = 22.1 Hz), 104.42, 96.30, 61.52, 40.10, 14.17; ¹⁹F NMR (471 MHz, CDCl₃) δ -107.83; HRMS (ESI) m/z calcd. for C₁₅H₁₃FN₂NaO₅⁺ [M+Na]⁺ = 343.0701, found 343.0706.

Ethyl (3aR,6aS)-3-(4-chlorophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3f)

O₂N¹,H CO₂Et

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3f** as a white solid(46.6 mg, 71% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.6 Hz, 2H), 7.40 (d, *J* = 8.7 Hz, 2H), 6.86 (s, 1H), 6.36 (s, 1H), 4.38 – 4.28 (m, 2H), 4.09 (dd, *J* = 19.8, 2.2 Hz, 1H), 3.36 – 3.31 (m, 1H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.74, 152.04, 142.30, 137.16, 133.29, 129.61, 127.97, 124.30, 104.24, 96.47, 61.53, 40.15, 14.18; HRMS (ESI) m/z calcd. for C₁₅H₁₃ClN₂NaO₅⁺ [M+Na]⁺ = 359.0405, found 359.0408.

Ethyl (3aR,6aS)-3-(4-bromophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3g)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3g** as a white powder (57.2 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.6 Hz, 2H), 7.46 (d, *J* = 8.6 Hz, 2H), 6.86 (s, 1H), 6.36 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 4.09 (dd, *J* = 19.8, 2.2 Hz, 1H), 3.33 (dd, *J* = 19.7, 1.5 Hz, 1H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.73, 152.15, 142.30, 133.30, 132.58, 128.12, 125.54, 124.75, 104.19, 96.49, 61.55, 40.15, 14.19; HRMS (ESI) m/z calcd. for C₁₅H₁₃BrN₂NaO₅⁺ [M+Na]⁺ =402.9900, found 402.9904.

Ethyl (3aR,6aS)-3-(4-iodophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3h)

CO₂Et

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford 3h as a yellow solid

(71.0 mg, 71% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.78 – 7.76 (m, 2H), 7.33 – 7.30 (m, 2H), 6.86 (t, J = 2.2 Hz, 1H), 6.35 (s, 1H), 4.32 – 4.28 (m, 2H), 4.09 (dd, J = 19.8, 2.3 Hz, 1H), 3.35 – 3.30 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.72, 152.31, 142.28, 138.52, 133.33, 128.08, 125.29, 104.14, 97.58, 96.50, 61.56, 40.16, 14.20; HRMS (ESI) m/z calcd. for C₁₅H₁₄IN₂O₅⁺ [M+H]⁺ =428.9942, found 428.9936.

Ethyl (3aR,6aS)-3a-nitro-3-(4-nitrophenyl)-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3i)

∠CO₂Et O_2N

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3i** as a white solid (43.4 mg, 68% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.30 – 8.28 (m, 2H), 7.81 (d, *J* = 9.0 Hz, 2H), 6.90 (s, 1H), 6.45 (s, 1H), 4.32 (q, *J* = 7.0 Hz, 2H), 4.13 (dd, *J* = 19.7, 2.3 Hz, 1H), 3.38 – 3.34 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.54, 151.46, 148.87, 142.28, 133.36, 131.93, 127.60, 124.48, 103.68, 97.30, 61.70, 40.32, 14.19; HRMS (ESI) m/z calcd. for C₁₅H₁₄N₃O₇⁺ [M+H]⁺ = 348.0826, found 348.0821.

Ethyl (3aR,6aS)-3-(4-cyanophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3j)

CO₂Et NC

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3j** as a white solid (53.0 mg, 81% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (s, 4H), 6.89 (s, 1H), 6.43

(s, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.11 (dd, J = 19.7, 1.7 Hz, 1H), 3.34 (d, J = 19.7 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.57, 151.67, 142.31, 133.31, 132.97, 130.19, 127.20, 117.86, 114.41, 103.70, 97.16, 61.66, 40.26, 14.19; HRMS (ESI) m/z calcd. for C₁₆H₁₃N₃NaO₅⁺ [M+Na]⁺ =350.0747, found 350.0742.

Ethyl (3aR,6aS)-3a-nitro-3-(4-(trifluoromethyl)phenyl)-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3k)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3k** as a white solid (62.7 mg, 85% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 8.6 Hz, 2H), 6.88 (t, *J* = 2.3 Hz, 1H), 6.40 (s, 1H), 4.31 (q, *J* = 7.1 Hz, 2H), 4.12 (dd, *J* = 19.7, 2.3 Hz, 1H), 3.37 – 3.33 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.65, 151.91, 142.30, 133.34, 132.60 (q, *J* = 33.0 Hz), 129.35, 127.05, 126.27 (q, *J* = 3.7 Hz), 123.51 (d, *J* = 272.4 Hz), 103.98, 96.84, 61.60, 40.19, 14.17; HRMS (ESI) m/z calcd. for C₁₆H₁₄F₃N₂O₅⁺ [M+H]⁺ =371.0849, found 371.0845.

Ethyl (3aR,6aS)-3-(naphthalen-1-yl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3l)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **31** as a white liquid(72.8 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.31 (dd, J = 7.9, 6.5 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.89 – 7.87 (m, 1H), 7.58 – 7.44 (m, 2H), 7.46 (t, J =

7.8 Hz, 1H), 7.30 (d, J = 7.2 Hz, 1H), 6.88 (t, J = 2.3 Hz, 1H), 6.41 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 3.87 (dd, J = 20.0, 2.2 Hz, 1H), 3.19 – 3.14 (m, 1H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.96, 152.52, 142.42, 134.05, 133.37, 131.82, 131.65, 128.78, 128.03, 127.16, 126.79, 125.40, 124.86, 122.63, 106.52, 94.41, 61.53, 39.51, 14.22; HRMS (ESI) m/z calcd. for C₁₉H₁₆N₂NaO₅⁺ [M+Na]⁺ = 375.0951, found 375.0959.

Ethyl (3aR,6aS)-3-(anthracen-9-yl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3m)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3m** as a white powder (77.7 mg, 97% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.52 (s, 1H), 7.96 (d, *J* = 5.8 Hz, 2H), 7.56 – 7.41 (m, 6H), 6.80 (d, *J* = 48.6 Hz, 2H), 4.33 (q, *J* = 7.0 Hz, 2H), 3.14 (s, 1H), 1.37 (dd, *J* = 7.1, 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.16, 150.75, 141.55, 134.84, 131.85, 131.12, 130.51, 128.87, 127.58, 125.75, 123.82, 118.59, 106.99, 92.43, 61.66, 39.42, 14.27; HRMS (ESI) m/z calcd. for C₂₂H₁₈N₂O₅⁺ [M+H]⁺ =390.1210, found 390.1214.

Ethyl (3aR,6aS)-3a-nitro-3-(o-tolyl)-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6carboxylate (3n)

Me N-O H O₂N CO₂Et

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3n** as a red solid (37.7 mg, 60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.23 (dd, *J* =

10.5, 4.1 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 6.88 (d, J = 2.0 Hz, 1H), 6.31 (s, 1H), 4.33 – 4.29 (m, 2H), 3.95 (dd, J = 19.9, 2.0 Hz, 1H), 3.21 – 3.17 (m, 1H), 2.43 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.92, 153.04, 142.19, 139.47, 133.34, 132.16, 130.36, 127.79, 126.20, 124.74, 16.04, 94.43, 61.50, 39.60, 22.31, 14.19; HRMS (ESI) m/z calcd. for C₁₆H₁₆N₂NaO₅⁺ [M+Na]⁺ =339.0951, found 339.0966.

Ethyl (3aR,6aS)-3a-nitro-3-(m-tolyl)-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6carboxylate (30)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **30** as a yellow solid (62.8 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.36 (s, 1H), 7.24 – 7.17 (m, 3H), 6.77 (d, *J* = 2.3 Hz, 1H), 6.23 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 4.05 – 4.01 (m, 1H), 3.27 (dd, *J* = 19.8, 1.4 Hz, 1H), 2.28 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.84, 153.01, 142.34, 139.20, 133.34, 131.82, 129.11, 127.31, 125.68, 123.77, 104.54, 96.16, 61.44, 40.19, 21.40, 14.17; HRMS (ESI) m/z calcd. for C₁₆H₁₆N₂NaO₅⁺ [M+Na]⁺ =339.0951, found 339.0957.

Ethyl (3aR,6aS)-3-(2-chloro-5-(trifluoromethyl)phenyl)-3a-nitro-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6-carboxylate (3p)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3p** as a white solid (69.3 mg, 88% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 1.6 Hz, 1H), 7.71 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.65 (d, *J* = 8.5 Hz, 1H), 6.93 (t, *J* = 2.1 Hz, 1H), 6.48 (s,

1H), 4.33 (q, J = 7.1 Hz, 2H), 3.72 (dd, J = 19.7, 2.1 Hz, 1H), 3.27 – 3.22 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.73, 150.08, 142.33, 137.92, 133.22, 131.36, 130.08 (q, J = 33.8 Hz), 128.77, 128.73 (t, J = 3.5 Hz), 126.46, 123.04 (d, J = 272.7 Hz), 104.94, 95.02, 61.63, 39.71, 14.19; HRMS (ESI) m/z calcd. for C₁₆H₁₃ClF₃N₂O₅⁺ [M+H]⁺ =405.0460, found 405.0454.

Ethyl (3aR,6aS)-3-(4-chloro-2,5-difluorophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3q)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3q** as a white powder (63.6 mg, 84% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, *J* = 9.3, 6.3 Hz, 1H), 7.25 (dd, *J* = 10.6, 5.9 Hz, 1H), 6.94 (dd, *J* = 2.4, 1.9 Hz, 1H), 6.27 (s, 1H), 4.33 – 4.28 (m, 2H), 4.05 (d, *J* = 20.2 Hz, 1H), 3.18 – 3.13 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.64, 155.66 (dd, *J* = 85.8, 2.6 Hz), 153.68 (dd, *J* = 86.7, 2.5 Hz), 148.37 (t, *J* = 2.4 Hz), 143.37 (d, *J* = 2.3 Hz), 132.90, 125.27 (dd, *J* = 20.6, 11.7 Hz), 118.99 (d, *J* = 28.6 Hz), 115.99 (dd, *J* = 25.9, 4.4 Hz), 114.14 (dd, *J* = 13.8, 7.4 Hz), 103.47, 97.18, 61.58, 41.30 (d, *J* = 7.6 Hz), 14.18; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.82; HRMS (ESI) m/z calcd. for C₁₅H₁₁ClF₂N₂NaO₅⁺ [M+Na]⁺ =395.0217, found 395.0214.

(4-(perfluoroethyl)-1,2-diphenyl-4,5-dihydro-1H-imidazol-5-

yl)(phenyl)methanone (3ra)

CO₂Et

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3r** as a Colorless viscous liquid (61.3 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.93 (d, J = 2.1 Hz, 1H), 6.43 (s, 1H), 4.32 (d, J = 7.1 Hz, 2H), 3.83 (dd, J = 20.0, 1.8 Hz, 1H), 3.19 (d, J = 19.9 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.50, 146.29 (t, J = 13.6 Hz), 142.48, 141.63 (t, J = 13.4 Hz), 139.16 (t, J = 17.4 Hz), 137.14 (t, J = 16.9 Hz), 133.02, 104.17, 102.44 (dd, J = 17.3, 13.1 Hz), 95.33, 61.66, 40.69, 14.13; ¹⁹F NMR (471 MHz, CDCl₃) δ -134.93 – 135.02, -144.12 – -151.36, - 159.11 – -159.24; HRMS (ESI) m/z calcd. for C₁₅H₉F₅N₂NaO₅⁺ [M+Na]⁺ =415.0324, found 415.0327.

Ethyl (3aR,6aS)-3-(benzo[c][1,2,5]thiadiazol-4-yl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (3s)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3s** as a white solid (64.7 mg, 90% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.43 (d, *J* = 7.0 Hz, 1H), 8.14 (d, *J* = 8.7 Hz, 1H), 7.72 (t, *J* = 7.8 Hz, 1H), 6.94 (s, 1H), 6.34 (s, 1H), 4.34 – 4.31 (m, 2H), 4.26 (s, 1H), 3.22 (d, *J* = 20.4 Hz, 1H), 1.36 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.94, 155.09, 151.00, 144.02, 132.87, 129.55, 124.10, 119.62, 104.16, 96.93, 61.48, 42.47, 14.22; HRMS (ESI) m/z calcd. for C₁₅H₁₂N₄NaO₅S⁺ [M+Na]⁺=383.0421, found 383.0423.

Ethyl (3aR,6aS)-3-(2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl)-3a-nitro-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6-carboxylate (3t)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3t** as a white powder (94 mg, 96% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 1H), 7.71 – 7.68 (m, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.31 (s, 1H), 7.17 (t, *J* = 6.9 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.44 (s, 1H), 4.32 – 4.27 (m, 2H), 1.80 (dd, *J* = 10.0, 6.0 Hz, 1H), 1.42 (s, 2H), 1.35 (t, *J* = 7.1 H z, 3H), 1.03 (dd, *J* = 11.8, 4.6 Hz, 2H), 0.89 – 0.78 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 162.7 (d, *J* = 246.9 Hz), 162.0, 161.8, 161.0, 151.2, 148.9, 148.2, 134.1 (d, *J* = 8.3 Hz), 131.7, 129.1, 127.2, 126.8, 126.7, 124.92, 118.1, 116.1, 115.8, 115.4 (d, *J* = 21.5 Hz), 105.6, 105.6, 92.2, 92.0, 61.1, 14.4; ¹⁹F NMR (471 MHz, CDCl₃) δ -111.99; HRMS (ESI) m/z calcd. for C₂₄H₂₀FN₃NaO₃⁺ [M+Na]⁺ =440.1381, found 440.1377.

Ethyl (3aR,6aS)-3-benzyl-3a-nitro-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6carboxylate (3u)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3u** as a white solid(36.5 mg, 58% yield,dr > 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.24 (m, 1H), 6.61 (t, *J* = 2.2 Hz, 5H), 6.31 (s, 1H), 4.27 (q, *J* = 7.1 Hz, 1H), 4.04 (d, *J* = 15.6 Hz, 1H), 3.71 (d, *J* = 15.6 Hz, 1H), 3.34 (dd, *J* = 19.8, 2.2 Hz, 1H), 2.80 – 2.75 (m, 1H), 1.33 (t, *J* = 7.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.96, 152.08, 141.42, 134.19, 133.76, 129.08, 128.88, 127.75, 105.36, 93.25, 61.42, 39.95, 31.46, 14.16; HRMS (ESI) m/z calcd. for C₁₆H₁₇N₂O₅⁺ [M+H]⁺=317.1132, found 317.1136.

tert-Butyl

cyclopenta[d]isoxazole-6-carboxylate (3v)

∠CO2^tBu O₂N

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:5) to afford **3v** as a white powder(53.7 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.58 (m, 2H), 7.46 – 7.42 (m, 3H), 6.76 (d, *J* = 2.4 Hz, 1H), 6.28 (s, 1H), 4.09 (dd, *J* = 19.7, 2.3 Hz, 1H), 3.35 – 3.31 (m, 1H), 1.58 (s, 1H), 1.54 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 161.06, 152.82, 141.28, 134.84, 130.93, 129.28, 126.70, 125.88, 104.47, 96.48, 82.48, 39.99, 28.09; HRMS (ESI) m/z calcd. for C₁₆H₁₃N₂O₅⁺ [M+H]⁺ =331.1288, found 331.1288.

Ethyl (3aS,6aR)-3a-nitro-3-phenyl-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5carboxylate (5a)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:15) to afford **5a** as a yellow oil 3gf(51.4 mg, 85% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.63 (t, J = 11.0 Hz, 2H), 7.52 – 7.38 (m, 3H), 6.61 (d, J = 2.6 Hz, 1H), 6.19 (s, 1H), 4.27 – 4.21 (m, 2H), 4.15 (d, J = 18.3 Hz, 1H), 3.50 (d, J = 18.3 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.61, 153.16, 137.56, 134.05, 131.08, 129.31, 126.84, 125.71, 104.07, 97.09, 61.64, 39.40, 14.13; HRMS calcd. for: C₁₅H₁₅N₂O₅⁺ [M+H]⁺ = 303.0975, found 303.0973.

Ethyl (3aS,6aR)-3a-nitro-3-(p-tolyl)-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5carboxylate (5b)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5b** as a yellow solid (51.2 mg, 81% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.50 (m, 2H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.60 (d, *J* = 2.1 Hz, 1H), 6.17 (t, *J* = 1.9 Hz, 1H), 4.24 – 4.21 (m, 2H), 4.14 (dd, *J* = 18.3, 2.3 Hz, 1H), 3.49 (d, *J* = 18.3 Hz, 1H), 2.38 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.64, 153.15, 141.60, 137.47, 134.13, 130.00, 126.77, 122.81, 104.21, 96.88, 61.60, 39.41, 21.49, 14.13; HRMS calcd. for: C₁₆H₁₇N₂O₅⁺ [M+H]⁺ = 317.1132, found 317.1136.

Ethyl (3aS,6aR)-3-(4-isopropylphenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5c)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5c** as a colorless oil (54.4 mg, 79% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.3 Hz, 2H), 6.60 (dd, *J* = 4.1, 2.0 Hz, 1H), 6.17 (s, 1H), 4.26 – 4.12 (m, 2H), 4.14 (dd, *J* = 18.3, 2.0 Hz, 1H), 2.96 – 2.91 (m, 1H), 2.93 (dt, *J* = 13.8, 6.9 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.25 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 162.65, 153.14, 152.39, 137.46, 134.12, 127.43, 126.91, 123.13, 104.21, 96.87, 61.61, 39.39, 34.12, 23.69, 14.14; HRMS calcd. for: C₁₈H₂₁N₂O₅⁺ [M+H]⁺ = 345.1445, found 345.1449.

Ethyl (3aS,6aR)-3-(4-methoxyphenyl)-3a-nitro-3a,6a-dihydro-4H-

cyclopenta[d]isoxazole-5-carboxylate (5d)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5d** as a yellow oil (36.8 mg, 52% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.56 (m, 2H), 6.95 – 6.93 (m, 2H), 6.60 (d, *J* = 2.1 Hz, 1H), 6.16 (d, *J* = 1.7 Hz, 1H), 4.31 – 4.19 (m, 2H), 4.13 (dd, *J* = 18.2, 1.8 Hz, 1H), 3.84 (s, 3H), 3.51 – 3.47 (m, 1H), 1.34 – 1.28 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.66, 161.72, 152.79, 137.34, 134.21, 128.50, 117.97, 114.76, 104.35, 96.72, 61.60, 55.46, 39.40, 14.13; HRMS calcd. for: C₁₆H₁₆N₂NaO₆⁺ [M+Na]⁺ = 355.0901, found 355.0900.

Ethyl (3aS,6aR)-3-(2,3-dihydrobenzofuran-5-yl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5e)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5e** as a colorless oil (51.6 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 6.60 (d, *J* = 2.0 Hz, 1H), 6.14 (s, 1H), 4.63 (t, *J* = 8.8 Hz, 2H), 4.28 – 4.20 (m, 2H), 4.13 (dd, *J* = 18.2, 2.0 Hz, 1H), 3.49 (d, *J* = 18.2 Hz, 1H), 3.24 (t, *J* = 8.6 Hz, 2H), 1.34 – 1.26 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.70, 162.58, 153.09, 137.30, 134.22, 128.74, 127.60, 123.77, 117.82, 109.99, 104.42, 96.69, 71.96, 61.60, 39.41, 29.29, 14.14; HRMS calcd. for: C₁₇H₁₇N₂O₆⁺ [M+H]⁺ = 345.1081, found 345.1084.

Ethyl (3aS,6aR)-3-(4-(hexyloxy)phenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5f)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:30) to afford **5f** as a yellow solid (73.2 mg, 91% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.54 (m, 2H), 6.93 – 6.91 (m, 2H), 6.60 (q, J = 2.0 Hz, 1H), 6.16 (d, J = 1.5 Hz, 1H), 4.26 – 4.20 (m, 2H), 4.13 (dd, J = 18.2, 2.1 Hz, 1H), 3.98 (t, J = 6.6 Hz, 2H), 3.49 (d, J = 18.2 Hz, 1H), 1.81 – 1.76 (m, 2H), 1.48 – 1.42 (m, 2H), 1.36 – 1.32 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.65, 161.31, 152.82, 137.30, 134.21, 128.45, 117.65, 115.22, 104.37, 96.68, 68.23, 61.57, 39.39, 31.53, 29.03, 25.65, 22.59, 14.13, 14.04; HRMS calcd. for: C₂₁H₂₇N₂O₆⁺ [M+H]⁺ = 403.1864, found 403.1866.

Ethyl (3aS,6aR)-3-(4-(4-bromophenoxy)phenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5g)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5g** as a yellow solid (78.3 mg, 83% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.7 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.61 (d, *J* = 1.8 Hz, 1H), 6.19 (s, 1H), 4.27 – 4.21 (m, 2H), 4.14 – 4.10 (m, 1H), 3.49 (d, *J* = 18.2 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.58, 159.49, 154.95, 152.48, 137.38, 134.09, 133.03, 128.71, 121.53, 120.56, 118.72, 117.07, 104.13, 97.00, 61.63, 39.41, 14.13; HRMS calcd. for: C₂₁H₁₈BrN₂O₆⁺ [M+H]⁺ = 473.0343, found 473.0346.

cyclopenta[d]isoxazole-5-carboxylate (5h)

CO₂Et

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5h** as a colorless oil (52.5 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.63 (m, 2H), 7.16 – 7.11 (m, 2H), 6.62 (dd, J = 4.2, 2.1 Hz, 1H), 6.22 – 6.21 (m, 1H), 4.27 – 4.21 (m, 2H), 4.12 (dd, J = 18.2, 1.8 Hz, 1H), 3.49 – 3.44 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.16 (d, J = 253.1 Hz), 162.55, 152.23, 137.44, 134.04, 129.01 (d, J = 8.6 Hz), 121.97 (d, J = 3.5 Hz), 116.60 (d, J = 22.2 Hz) 104.01, 97.15, 61.68, 39.37, 14.11; ¹⁹F NMR (471 MHz, CDCl₃) δ -107.71; HRMS calcd. for: C₁₅H₁₃FKN₂O₅⁺ [M+K]⁺ = 359.0446, found 359.0442.

Ethyl (3aS,6aR)-3-(4-chlorophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5i)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5i** as a white solid (36.9 mg, 55% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.56 (m, 2H), 7.43 – 7.40 (m, 2H), 6.62 (dd, J = 4.2, 2.1 Hz, 1H), 6.22 (s, 1H), 4.28 – 4.20 (m, 2H), 4.12 (dd, J = 18.2, 2.2 Hz, 1H), 3.48 – 3.43 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.49, 152.30, 137.51, 137.27, 133.97, 129.62, 128.08, 124.22, 103.84, 97.30, 61.70, 39.42, 14.12; HRMS calcd. for: C₁₅H₁₄ClN₂O₅⁺ [M+H]⁺ = 337.0586, found 337.0590.

Ethyl

(3aS,6aR)-3-(4-bromophenyl)-3a-nitro-3a,6a-dihydro-4H-

cyclopenta[d]isoxazole-5-carboxylate (5j)

Ethyl

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5j** as a yellow solid (52.4 mg, 69% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 6.62 (dd, *J* = 4.0, 2.0 Hz, 1H), 6.22 (s, 1H), 4.26 – 4.21 (m, 2H), 4.11 (dd, *J* = 18.2, 2.1 Hz, 1H), 3.47 – 3.43 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.47, 152.41, 137.53, 133.95, 132.57, 128.23, 125.64, 124.67, 103.77, 97.32, 61.70, 39.42, 14.13; HRMS calcd. for: C₁₅H₁₃BrKN₂O₅⁺ [M+K]⁺ = 418.9639, found 418.9635.

Ethyl (3aS,6aR)-3-(4-iodophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5k)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5k** as a yellow solid (55.6 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.79 – 7.78 (m, 2H), 7.36 – 7.27 (m, 2H), 6.61 (q, *J* = 2.0 Hz, 1H), 6.21 (s, 1H), 4.27 – 4.09 (m, 2H), 4.11 (dd, *J* = 18.3, 2.1 Hz, 1H), 3.47 – 3.42 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CD₃CN) δ 157.16, 147.27, 133.20, 132.24, 128.64, 122.88, 119.90, 98.41, 92.39, 92.01, 56.41, 34.11, 8.83; HRMS calcd. for: C₁₅H₁₃IN₂NaO₅⁺ [M+Na]⁺ = 450.9761, found 450.9760.

Ethyl (3aS,6aR)-3-(4-cyanophenyl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5l)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:20) to afford **51** as a yellow oil (22.9 mg, 35% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.77 – 7.73 (m, 4H), 6.64 (d, *J* = 2.1 Hz, 1H), 6.29 (t, *J* = 2.0 Hz, 1H), 4.28 – 4.22 (m, 2H), 4.13 (dd, *J* = 18.2, 2.1 Hz, 1H), 3.47 – 3.43 (m, 1H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.34, 151.91, 137.70, 133.75, 132.95, 130.12, 127.32, 117.86, 114.50, 103.29, 97.97, 61.82, 39.56, 14.12; HRMS calcd. for: C₁₆H₁₄N₃O₅⁺ [M+H]⁺ = 328.0928, found 328.0926.

Ethyl (3aS,6aR)-3a-nitro-3-(o-tolyl)-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5carboxylate (5m)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5m** as a yellow oil (48.0 mg, 76% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.32 (m, 2H), 7.26 – 7.23 (m, 1H), 7.07 (d, *J* = 7.8 Hz, 1H), 6.62 (dd, *J* = 4.0, 2.0 Hz, 1H), 6.17 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.97 (dd, *J* = 18.3, 2.1 Hz, 1H), 3.35 – 3.31 (m, 1H), 2.42 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.64, 153.41, 139.43, 137.35, 134.27, 132.13, 130.40, 128.02, 126.24, 124.69, 105.62, 95.20, 61.64, 38.82, 22.21, 14.14; HRMS calcd. for: C₁₃H₁₆N₂NaO₅⁺ [M+Na]⁺ = 339.0951, found 339.0953.

Ethyl (3aS,6aR)-3a-nitro-3-(m-tolyl)-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5carboxylate (5n)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5n** as a yellow oil (47.4 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.46 (s, 1H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 8.1 Hz, 1H), 6.61 (dd, *J* = 4.2, 2.1 Hz, 1H), 6.18 – 6.17 (m, 1H), 4.27 – 4.20 (m, 2H), 4.15 (dd, *J* = 18.2, 1.9 Hz, 1H), 3.51 – 3.47 (m, 1H), 2.38 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.64, 153.29, 139.21, 137.55, 134.06, 131.94, 129.15, 127.38, 125.58, 123.92, 104.11, 97.02, 61.63, 39.40, 21.45, 14.14; HRMS calcd. for: C₁₆H₁₇N₂O₅⁺ [M+H]⁺ = 317.1132, found 317.1133.

Ethyl (3aS,6aR)-3-(benzo[c][1,2,5]thiadiazol-5-yl)-3a-nitro-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (50)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **50** as a yellow solid (46.8 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.39 (dd, *J* = 7.2, 0.8 Hz, 1H), 8.16 (dd, *J* = 8.7, 0.8 Hz, 1H), 7.71 (dd, *J* = 8.7, 7.2 Hz, 1H), 6.64 (q, *J* = 2.0 Hz, 1H), 6.21 (d, *J* = 1.4 Hz, 1H), 4.31 (dd, *J* = 18.8, 2.0 Hz, 1H), 4.24 – 4.19 (m, 2H), 3.31 – 3.30 (m, 1H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.79, 155.08, 151.42, 151.00, 138.71, 133.61, 129.57, 129.42, 124.25, 119.50, 103.80, 97.70, 61.58, 41.35, 14.13; HRMS calcd. for: C₁₅H₁₃N₄O₅S⁺ [M+H]⁺ = 361.0601, found 361.0598. Ethyl (3aS,6aR)-3-(naphthalen-2-yl)-3a-nitro-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5-carboxylate (5p)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5p** as a yellow solid (61.9 mg, 88% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.37 – 8.35 (m, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.91 – 7.89 (m, 1H), 7.56 (dd, *J* = 9.5, 5.0 Hz, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.35 (dd, *J* = 7.2, 0.6 Hz, 1H), 6.69 (d, *J* = 1.9 Hz, 1H), 6.26 (s, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.96 (dd, *J* = 18.4, 1.5 Hz, 1H), 3.35 (d, *J* = 18.4 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.54, 153.00, 137.60, 134.31, 134.07, 131.76, 128.81, 127.98, 127.38, 126.78, 125.48, 124.87, 122.53, 106.04, 95.21, 61.62, 38.84, 14.13; HRMS calcd. for: C₁₉H₁₇N₂O₅⁺ [M+H]⁺ = 353.1132, found 353.1137.

Ethyl (3aS,6aR)-3-(2-chloro-5-(trifluoromethyl)phenyl)-3a-nitro-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5-carboxylate (5q)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5q** as a yellow oil (28.2 mg, 35% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 1.7 Hz, 1H), 7.71 (dd, J = 8.5, 2.0 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 6.65 (dd, J = 3.9, 2.0 Hz, 1H), 6.34 (s, 1H), 4.30 – 4.24 (m, 2H), 3.79 – 3.68 (m, 1H), 3.37 – 3.33 (m, 1H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.36, 149.58, 136.98, 136.66, 132.88, 130.35, 129.00 (q, J = 33.7 Hz), 127.67 (q, J = 3.0 Hz), 125.34, 122.01 (q, J = 272.6 Hz), 103.39, 94.70, 60.68, 37.89, 25.88, 13.08; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.79; HRMS calcd. for: C₁₆H₁₃ClF₃N₂O₅⁺ [M+H]⁺ = 405.0460, found 405.0463.

Ethyl (3aS,6aR)-3-(4-bromo-2,5-dimethoxyphenyl)-3a-nitro-3a,6a-dihydro-4H-

cyclopenta[d]isoxazole-5-carboxylate (5r)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5r** as a colorless oil (66.0 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.52 (s, 1H), 7.17 (s, 1H), 6.54 (d, *J* = 2.0 Hz, 1H), 6.02 (s, 1H), 4.23 (qd, *J* = 7.1, 1.7 Hz, 2H), 4.10 (dd, *J* = 18.7, 1.9 Hz, 1H), 3.89 (s, 3H), 3.71 (s, 3H), 3.13 – 3.09 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.88, 151.90, 150.73, 150.10, 138.31, 133.56, 117.60, 116.19, 114.31, 111.75, 103.81, 96.76, 61.54, 56.77, 55.54, 39.78, 14.15; HRMS calcd. for: C₁₇H₁₇BrN₂NaO₇⁺ [M+Na]⁺ = 4663.0111, found 463.0108.

Ethyl (3aS,6aR)-3a-nitro-3-(2,4,5-trifluorophenyl)-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5s)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5s** as a yellow solid (39.8 mg, 56% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.92 – 7.87 m, 1H), 7.06 – 7.01 (m, 1H), 6.59 (d, J = 2.0 Hz, 1H), 6.13 – 6.12 (m, 1H), 4.28 – 4.23 (m, 2H), 4.11 – 4.07 (m, 1H), 3.27 – 3.22 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.54, 155.60 (d, J = 6.9 Hz), 153.63 (d, J = 9.5 Hz), 153.19 (d, J = 13.4 Hz), 151.13 (d, J = 13.4 Hz), 146.61 (dd, J = 13.0, 3.1 Hz), 138.35 (d, J = 2.2 Hz), 133.40, 117.03 (dd, J = 22.2, 4.2 Hz), 106.85 (dd, J = 29.3, 21.3 Hz), 103.22, 97.81, 61.71, 40.31 (d, J = 7.3 Hz), 14.11; ¹⁹F NMR (471 MHz, CDCl₃) δ -112.86 (dd, J =

14.6, 6.0 Hz), -126.59 (dd, J = 21.6, 6.1 Hz), -139.12 (dd, J = 21.6, 14.5 Hz); HRMS calcd. for: $C_{15}H_{12}F_3N_2O_5^+$ [M+H]⁺ = 357.0693, found 357.0692.

Ethyl (3aS,6aR)-3a-nitro-3-(2,3,4-trifluorophenyl)-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-5-carboxylate (5t)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5t** as a yellow solid (39.2 mg, 55% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 – 7.79 (m, 1H), 6.99 – 6.93 (m, 1H), 6.52 (d, J = 1.9 Hz, 1H), 6.05 (d, J = 1.5 Hz, 1H), 4.21 – 4.15 (m, 2H), 4.04 – 4.00 (m, 1H), 3.20 – 3.15 (m, 1H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.52, 155.61 (d, J = 9.5 Hz), 153.18 (d, J = 13.4 Hz), 148.65 (d, J = 2.4 Hz), 148.52 (d, J = 3.1 Hz), 146.60 (dd, J = 13.0, 3.1 Hz), 138.35 (d, J = 2.2 Hz), 133.39, 117.03 (dd, J = 21.1, 4.1 Hz), 106.85 (dd, J = 29.2, 21.4 Hz), 103.21, 97.81, 61.71, 40.30 (d, J = 7.3 Hz), 14.11; ¹⁹F NMR (471 MHz, CDCl₃) δ -112.86 (dd, J = 14.4, 6.0 Hz), -126.60 (dd, J = 21.6, 6.0 Hz), -139.14 (dd, J = 21.6, 14.5 Hz); HRMS calcd. for: C₁₅H₁₂F₃N₂O₅⁺ [M+H]⁺ = 357.0693, found 357.0698.

Ethyl (3aS,6aR)-3-(2-cyclopropyl-4-fluoroquinolin-3-yl)-3a-nitro-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5-carboxylate (5u)

The general procedure was followed and then purified by silica column chromatograkphy (ethyl acetate/petroleum ether = 1:10) to afford **5u** as a white solid (32.9 mg, 40% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 1H), 7.73 –

7.70 (m, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.47 – 7.37 (m, 2H), 7.32 (s, 1H), 7.10 (s, 2H), 6.33 (d, J = 3.8 Hz, 1H), 4.22 (dd, J = 13.2, 6.4 Hz, 2H), 1.78 (s, 1H), 1.62 (d, J = 4.1Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.03 (s, 1H), 0.91 – 0.83 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 162.26, 150.80, 148.65, 133.75 (d, J = 26.4 Hz), 130.75, 129.26, 126.39, 126.17, 124.85, 117.53, 115.22 (d, J = 21.7 Hz), 105.57, 92.92, 61.54, 38.31, 35.44, 26.93, 14.86, 14.06; ¹⁹F NMR (471 MHz, CDCl₃) δ -112.29; HRMS calcd. for: C₂₁H₁₉FN₃O₅⁺ [M+H]⁺ = 412.1303, found 412.1302.

Ethyl (3aS,6aR)-3-benzyl-3a-nitro-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5carboxylate (5v)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5v** as a white solid (44.3 mg, 70% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.24 (m, 5H), 6.54 (d, *J* = 1.8 Hz, 1H), 6.17 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 4.00 (d, *J* = 15.8 Hz, 1H), 3.77 (d, *J* = 15.8 Hz, 1H), 3.42 (dd, *J* = 18.0, 1.8 Hz, 1H), 3.03 (d, *J* = 18.0 Hz, 1H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.33, 152.76, 136.63, 134.76, 134.05, 128.96, 128.83, 127.70, 104.44, 93.65, 61.45, 38.85, 31.53, 14.10; HRMS calcd. for: C₁₆H₁₇N₂O₅⁺ [M+H]⁺ = 317.1132, found 317.1133.

Methyl (3aS,6aR)-3a-nitro-3-phenyl-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5carboxylate (5w)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford **5w** as a colorless oil (51.8 mg, 90% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 7.3 Hz, 2H), 7.48 –

7.42 (m, 3H), 6.62 (d, J = 1.7 Hz, 1H), 6.20 (s, 1H), 4.15 (dd, J = 18.2, 1.7 Hz, 1H), 3.78 (s, 3H), 3.50 (d, J = 18.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 163.00, 153.14, 137.15, 134.34, 131.09, 129.30, 126.83, 125.66, 104.02, 97.02, 52.47, 39.39; HRMS calcd. for: C₁₄H₁₂N₂NaO₅⁺ [M+Na]⁺ = 311.0638, found 311.0636.

Methyl (3aS,6aR)-3-(4-fluorophenyl)-3a-nitro-4-phenyl-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-5-carboxylate (5x)

The general procedure was followed and then purified by silica column chromatography (ethyl acetate/petroleum ether = 1:10) to afford mixture **5x** as a colorless oil (30.6 mg, 40% yield, 3:1 dr), and the diastereoisomers cannot be separated. ¹H NMR (500 MHz, CDCl₃) δ 8.11 – 8.08 (m, 1H), 7.39 – 7.34 (m, 2H), 7.25 – 7.20 (m, 3H), 7.04 – 7.01 (m, 7H), 6.91 – 6.90 (m, 1H), 6.80 – 6.79 (m, 1H), 6.74 – 6.69 (m, 3H), 6.20 (d, *J* = 2.5 Hz, 1H), 5.71 (d, *J* = 1.7 Hz, 1H), 5.02 (s, 0.35H), 3.63 (s, 3H), 3.62 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.26, 163.39 (d, *J* = 210.3 Hz), 163.24, 162.24 (d, *J* = 1.8 Hz), 152.56, 151.73, 141.43, 139.23, 134.75, 134.63, 133.82, 133.28, 130.89 (d, *J* = 8.5 Hz), 129.16, 128.71 (d, *J* = 8.9 Hz), 128.48, 122.46 (d, *J* = 3.6 Hz), 122.21 (d, *J* = 3.2 Hz), 116.31 (d, *J* = 22.0 Hz), 115.19 (d, *J* = 22.1 Hz), 110.40, 107.59, 97.98, 92.75, 56.85, 56.24, 52.42, 52.33; ¹⁹F NMR (471 MHz, CDCl₃) δ -108.12, -109.39; HRMS calcd. for: C₂₀H₁₆FN₂O₅⁺ [M+H]⁺ = 383.1038, found 383.1047.

Ethyl (3aR,6aS)-3a-nitro-3-phenyl-3a,5,6,6a-tetrahydro-4Hcyclopenta[d]isoxazole-6-carboxylate (6a)

,CO₂Et

6a, a colorless oil (38.1 mg, 58% yield, dr = 1:1); ¹H NMR (500 MHz, CDCl₃) δ 7.61 (dd, J = 5.3, 3.3 Hz, 2H), 7.45 – 7.39 (m, 3H), 5.79 (d, J = 3.8 Hz, 1H), 4.23 (dd, J = 7.2, 4.1 Hz, 2H), 3.29 – 3.23 (m, 1H), 3.19 – 3.15 (m, 1H), 2.52 – 2.46 (m, 1H), 2.35 – 2.28 (m, 1H), 2.20 – 2.13 (m, 1H), 1.30 (t, J = 7.1 Hz, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 168.55, 152.88, 130.91, 129.15, 126.71, 125.76, 106.90, 93.23, 61.44, 50.85, 33.28, 25.93, 14.16; HRMS calcd. for: C₁₅H₁₇N₂O₅⁺ [M+H]⁺ = 305.1132, found 305.1143.

((3aR,6aS)-3a-Nitro-3-phenyl-3a,5,6,6a-tetrahydro-4H-cyclopenta[d]isoxazol-6-yl)methanol (6b)

6b, a colorless oil (33.6 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.60 (m, 2H), 7.45 – 7.39 (m, 3H), 5.38 (d, J = 5.6 Hz, 1H), 3.86 (dd, J = 10.8, 5.5 Hz, 1H), 3.78 (dd, J = 10.8, 5.9 Hz, 1H), 3.30 – 3.25 (m, 1H), 2.41 – 2.35 (m, 2H), 2.01 – 1.96 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.60, 130.77, 129.14, 126.72, 126.12, 107.90, 96.44, 62.47, 50.49, 34.56, 27.97; HRMS calcd. for: C₁₃H₁₅N₂O4⁺ [M+H]⁺ = 263.1026, found 263.1031.

Ethyl (3aS,6aR)-3-phenyl-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6carboxylate (6c)

6c, a red solid (30.3 mg, 60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, *J* = 5.1, 2.7 Hz, 2H), 7.40 (d, *J* = 2.1 Hz, 3H), 6.89 (s, 1H), 6.02 (d, *J* = 9.5 Hz, 1H), 4.45 – 4.41 (m, 1H), 4.31 – 4.25 (m, 2H), 3.06 – 3.00 (m, 1H), 2.75 (dd, *J* = 19.3, 2.1 Hz, 1H), 1.35 – 1.32 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.43, 158.09, 144.27, 136.09, 129.99, 128.87, 128.80, 127.01, 89.07, 60.82, 49.61, 37.44, 14.27; HRMS calcd. for: C₁₅H₁₅NNaO₃⁺ [M+Na]⁺ = 28.0944, found 280.0949.

Ethyl (3aR,6aR)-5,6-dihydroxy-3a-nitro-3-phenyl-3a,5,6,6a-tetrahydro-4H-cyclopenta[d]isoxazole-6-carboxylate (6d)

6d, a colorless oil (30.3 mg, 60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 6.9 Hz, 2H), 7.45 – 7.41 (m, 3H), 6.85 (t, J = 2.0 Hz, 1H), 6.33 (s, 1H), 4.30 (q, J = 7.1 Hz, 2H), 4.11 (dd, J = 19.8, 2.1 Hz, 1H), 3.36 (d, J = 19.8 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H), 0.89 – 0.83 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.82, 152.89, 142.36, 133.31, 130.97, 129.28, 126.71, 125.80, 104.49, 96.24, 61.45, 40.15, 14.17; HRMS calcd. for: C₁₅H₁₇NNaO₅⁺ [M+Na]⁺ = 314.0999, found 314.1000.

Ethyl (3aR,6aS)-3a-amino-3-phenyl-3a,6a-dihydro-4H-cyclopenta[d]isoxazole-6-carboxylate (6e)

6e, a colorless oil (35.4 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.1, 2.3 Hz, 2H), 7.39 (dd, J = 5.2, 1.5 Hz, 3H), 6.81 (s, 1H), 6.01 (s, 1H), 5.35 (s, 1H), 5.10 (s, 1H), 4.30 – 4.26 (m, 2H), 3.07 (d, J = 19.4 Hz, 1H), 2.77 (dd, J = 19.5, 1.9 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.36, 155.69, 143.07, 135.21, 130.04, 128.79, 128.10, 127.22, 90.39, 85.50, 60.96, 39.90, 14.22; HRMS calcd. for: C₁₅H₁₆N₂NaO₃⁺ [M+Na]⁺ = 295.1053, found 295.1053.

ethyl (3aR,6aS)-3a-nitro-3-phenyl-5-(p-tolylthio)-3a,5,6,6a-tetrahydro-4Hcyclopenta[d]isoxazole-6-carboxylate (6f)

6f, a white solid (84.4 mg, 99% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.52 (m, 2H), 7.44 (d, *J* = 7.2 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 2H), 7.27 (t, *J* = 8.2 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 5.67 (d, *J* = 6.9 Hz, 1H), 4.20 (dd, *J* = 7.1, 1.7 Hz, 2H), 3.95 (dd, *J* = 10.3, 3.4 Hz, 1H), 3.58 (dd, *J* = 14.9, 6.8 Hz, 1H), 2.94 (dd, *J* = 10.4, 6.9 Hz, 1H),

2.33 – 2.33 (m, 1H), 2.31 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.04, 153.84, 139.04, 134.21, 131.13, 130.12, 129.27, 127.26, 126.77, 125.42, 105.58, 95.15, 62.11, 57.77, 49.54, 41.29, 21.17, 14.13; HRMS calcd. for: $C_{22}H_{23}N_2O_5^+$ [M+H]⁺ = 427.1322, found 427.1324.

Ethyl (3aR,6aS)-3a-(hydroxyamino)-3-phenyl-3a,6a-dihydro-4Hcyclopenta[d]isoxazole-6-carboxylate (6g)

6g, a yellow liquid (43.8 mg, 76% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.92 (dd, J = 6.6, 3.1 Hz, 2H), 7.41 – 7.38 (m, 3H), 6.80 (t, J = 2.4 Hz, 1H), 5.52 (s, 1H), 4.29 – 4.23 (m, 2H), 3.29 – 3.24 (m, 1H), 2.80 – 2.76 (m, 1H), 1.94 (s, 2H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.35, 159.05, 143.67, 134.62, 129.96, 128.77, 127.95, 127.39, 96.50, 76.88, 60.86, 44.80, 14.24; HRMS calcd. for: C₁₅H₁₇N₂O₄⁺ [M+H]⁺ = 289.1183, found 289.1177.

Ethyl (5S)-4-benzoyl-5-hydroxy-4-nitrocyclopent-1-ene-1-carboxylate (6h)

6h, a yellow liquid (45 mg, 78% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.94 – 7.91 (m, 2H), 7.41 – 7.40 (m, 3H), 6.81 (t, J = 2.4 Hz, 1H), 5.52 (d, J = 0.7 Hz, 1H), 4.30 – 4.25 (m, 2H), 3.28 (d, J = 19.4 Hz, 1H), 2.80 (d, J = 2.2 Hz, 1H), 1.83 (s, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.33, 159.02, 143.63, 134.65, 129.96, 128.77, 127.93, 127.38, 96.52, 7.68, 60.87, 44.79, 14.24; HRMS calcd. for: C₁₅H₁₆NO₅⁺ [M+H]⁺ = 306.0972, found 306.0969.

4. X-ray Crystal Structure for 3m and 5o

Suitable crystals of compound **3m** and **5o** were obtained by slowly evaporating a mixture of dichloromethane and hexane solution at ambient temperature. A colorless crystal of **3m** and **5o** was mounted on a glass fiber at a random orientation.

A Single colourless needle-shaped crystals of **3m** and **5o** were used as supplied. A suitable crystal with dimensions $0.40 \times 0.15 \times 0.05$ mm3 was selected and mounted on a Bruker D8 Venture diffractometer. The crystal was kept at a steady T = 170.00 K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2018) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2019/2 (Sheldrick, 2015) using full matrix least squares minimisation on F2. The ellipsoids are shown at 30% probability levels. Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Center and allocated with the deposition numbers: CCDC 2345876 for compound **3m**, CCDC 2345879 for compound **5o**.

5. Reference

- T. Morita, N. Ito and H. Nakamura, Asymmetric Synthesis of Bicyclic Isoxazolines via Dearomative Cycloaddition of 4-Nitroisoxazoles with Zwitterionic π-Allyl Palladium Species. Org. Lett., 2023, 25, 26, 4787–4791.
- Z. Huang, X. Yang, F. Yang, T. Lu and Q. Zhou, Phosphine-Catalyzed Domino β/γ-Additions of Benzofuranones with Allenoates: A Method for Unsymmetrical 3,3-Disubstituted Benzofuranones. *Org. Lett.*, 2017, **19**, 3524–3527.
- J. Jia, A. Yu, S. Ma, Y. Zhang, K. Li and X. Meng, Solvent-Controlled Switchable Domino Reactions of MBH Carbonate: Synthesis of Benzothiophene Fused α-Pyran, 2,3-Dihydrooxepine, and Oxatricyclodecene Derivatives. *Org. Lett.*, 2017, 19, 6084–6087.

6. ¹H, ¹³C, ¹⁹F NMR spectra of compounds.

¹H NMR (500 MHz, CDCl₃)

S43

13C NMR (126 MHz, CDCl3)

		-134.93 -134.94 -134.95 -134.95 -134.96	-135.00 -135.01 -135.02 -135.02 -135.02 -136.13		
¹⁹ F NMR (471 MHz, CDCl ₃)					
F F O' F Jr	CH ₃				
20 10 0 -10 -20 -30 -40	-50 -60 -70 -80 -1	90 -110 -1 fl (ppm)	30 -150	-170 -190	-210
H NMR (500 MHz, CDC))	-7.29 -6.94 -6.34	4.34 4.32 4.31 4.26	-3.24 -3.20	$\stackrel{1.37}{\leftarrow}_{1.34}$	-0.00
		O H CO ₂ Et			
		M			ł

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (500 MHz, CDCl₃)

$\begin{array}{c} -0.00 \\$

H₃C

S69

н₃с

 $\begin{array}{c} -7.52\\ -7.17\\ -7.17\\ -7.17\\ -7.27\\ -7.17\\ -7.27\\ -7.27\\ -6.54\\ -6.24\\ -6.22\\ -4$

¹H NMR (500 MHz, CDCl₃)

5s

H₃C

$\begin{array}{c} 7.85\\ 7.85\\ 7.88\\ 7.88\\ 7.88\\ 7.81\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.79\\ 7.19\\ 7.19\\ 7.19\\ 7.10\\ 7.10\\ 7.10\\ 7.10\\ 7.12\\$

¹H NMR (500 MHz, CDCl₃)

¹⁹F NMR (471 MHz, CDCl3)

-112.84 -112.85 -112.87 -112.87 -126.57 -126.62 -139.13 -139.13-139.17

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-0.00

¹H NMR (500 MHz, CDCl₃)

