Regiodivergent C–H Alkynylation of 2-Arylthiazoles Switched by Ru^{II} and Pd^{II} Catalysis

Pengfei Zhou[‡], Xinyao Liang[‡], Zekun Xu, Honggu Chen, Zongwu Wei,

Taoyuan Liang, Jun Jiang*, and Zhuan Zhang*

School of Chemistry and Chemical Engineering, Guangxi University,

Nanning, Guangxi 530004, P. R. China

Email: zhuan.zhang@gxu.edu.cn

Table of Contents

1. General information2
2. Optimization of the reaction conditions
3. Experimental procedure
3.1 Procedure for the synthesis of starting materials4
3.2 Ru(II)-catalyzed ortho-alkynylation: procedure and compound characterizations5
3.3 Pd(II)-catalyzed C5-alkynylation: procedure and compound characterizations
3.4 Ru(II)-catalyzed ortho-alkynylation: reaction on 3 mmol scale
3.5 Pd(II)-catalyzed C5-alkynylation: reaction on 4 mmol scale17
3.6 Preparation and characterization of products 5aa, 6aa, 7aa, 8aa, 9aa, 10aa
3.7 TEMPO-trapping experiment19
3.8 H/D exchange experiment
3.9 KIE determination
4. Crystallographic description25
5. NMR charts
6. References

1. General information

All the reagents were purchased from Bide Pharmatech Ltd. and Energy Chemical. All solvents were purchased from Greagent (Shanghai Titansci incorporated company) and used without further purification. Unless otherwise stated, all reactions were carried out in oven-dried glassware under air atmosphere. All heating reactions were heated by metal sand bath (WATTCAS, LAB-500).

¹H-NMR spectra were obtained on Bruker-600 NMR spectra for all the samples were recorded in deuterochloroform (CDCl₃). Chemical shifts (δ) were reported in parts per million relative to residual chloroform (7.28 ppm for ¹H; 77.23 ppm for ¹³C), constants were reported in Hertz. ¹H NMR assignment abbreviations were the following: singlet (s), doublet (d), triplet (t), quartet (q), doublets of doublet (dd), doublets of triplet(dt), triplets of doublet(td), triplets of triplet (tt) and multiplet (m), integration and coupling constant(s) J in hertz (Hz). ¹³C NMR spectra were recorded at 151 MHz on the same spectrometer and reported in ppm. All spectra were processed using the MestReNova program.

High-resolution mass spectra (HRMS) were recorded on a mass spectrometer (Thermo fisher Q Exactive HRMS) using electrospray ionization-time of flight (ESI-TOF) reflection experiments.

2. Optimization of the reaction conditions

Table S1. Optimization of the reaction conditions ^a

entry	variation from "standard conditions"	Yield [%] ^b
		3aa/4aa
1	none	81 ^c /-
2	without [Ru(<i>p</i> -cymene)Cl ₂] ₂	0/-
3	without NaOAc	0/-
4	K ₂ CO ₃ (2 equiv.) instead of NaOAc	61/-
5	carried out at 100 °C	63/-
6	carried out for 8 h	70/-
7	None	-/80
8	without Pd(OAc) ₂	-/0
9	without AgOTf	-/50
10	without NaOAc	-/36
11	without K ₂ CO ₃	-/22
12	AgOTf (1 equiv.)	-/71
13	Ag ₂ O (2 equiv.) instead of AgOTf	-/0
14	Ag ₂ CO ₃ (2 equiv.) instead of AgOTf	-/0
15	AgOAc (2 equiv.) instead of AgOTf	-/trace
16	Cu(OTf) ₂ (2 equiv.) instead of AgOTf	-/trace
17	NaOTf (2 equiv.) instead of AgOTf	-/55
18	carried out at 100 °C	-/68
19	carried out for 8 h	-/72

^{*a*}Reaction conditions for **3aa**: **1a** (0.2 mmol), **2a** (entries 1–6, 0.44 mmol), [Ru(*p*-cymene)Cl₂]₂ (5 mol%), NaOAc (0.4 mmol) and EtOH (1.5 mL). ^{*a*}Reaction conditions for **4aa**: 1a (0.2 mmol), **2a** (entries 7–17, 0.3 mmol), Pd(OAc)₂ (10 mol%), AgOTf (0.4 mmol), NaOAc (0.4 mmol), K₂CO₃ (0.4 mmol) and toluene (1.5 mL). ^{*b*}Isolated yield. ^cThe reaction afforded trace *mono*-alkynylated product.

3. Experimental procedure

3.1 Procedure for the synthesis of starting materials

Synthesis of substrates 1a-1u¹: To a 100 mL oven dried Schlenk tube, $Pd(PPh_3)_4$ (0.4 mmol, 5 mol%), phenylboronic acid derivatives (12 mmol, 1.5 equiv.), 2-bromothiazole derivatives (8 mmol, 1 equiv.), 2M Na₂CO₃ (15 ml) and toluene (15 ml) were successively added. The reaction mixture was stirred at 110 °C (metal sand bath temperature) for 24 hours under argon. Then the reaction mixture was quenched with water (10 mL) and extracted with EtOAc (3 x 20 mL). Combine organic phases and concentrate by drying under vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate = 30:1) to get the desired products.

3.2 Ru(II)-catalyzed ortho-alkynylation: procedure and compound characterizations

General Procedure A: To a 15 mL oven dried Schlenk tube, 2-arylthiazole derivatives (0.2 mmol, 1 equiv.), $[Ru(p-cymene)Cl_2]_2$ (6.1 mg, 0.01 mmol, 5 mol%), NaOAc (0.4 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane (0.44 mmol, 2.2 equiv.) and EtOH (1.5 mL) were successively added. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 12 hours under the air. After cooling the reaction at room temperature and concentration, the crude mixture was purified by silica column chromatography to afford the desired alkynylated products.

3.3 Pd(II)-catalyzed C5-alkynylation: procedure and compound characterizations

General Procedure B: To a 15 mL oven dried Schlenk tube, K_2CO_3 (0.4 mmol, 2 equiv.), 2arylthiazole derivatives (0.2 mmol, 1 equiv.), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol, 10 mol%), NaOAc (0.4 mmol, 2 equiv.), AgOTf (0.4 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane (0.3 mmol, 1.5 equiv.) and toluene (1.5 mL) were successively added. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 12 hours under the air. After cooling the reaction at room temperature and concentration, the crude mixture was purified by silica column chromatography to afford the desired alkynylated products.

2-(2,6-Bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3aa). Following the general procedure **A** using 2-phenylthiazole (32.2 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the

residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3aa** (84.4 mg, 81%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 3.3 Hz, 1H), 7.52 (d, J = 7.8 Hz, 2H), 7.41 (d, J = 3.3 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 0.97 (d, J = 1.6 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 164.2, 142.9, 138.9, 132.7, 129.0, 124.9, 120.4, 104.0, 96.3, 18.6, 11.3.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{48}NSSi_2$ 522.3040; Found 522.3028.

2-(4-Methyl-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ba). Following the general procedure **A** using 2-(*p*-tolyl)thiazole (34.9 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica gel

(petroleum ether/ethyl acetate = 30:1) to afford **3ba** (87.7 mg, 82%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 3.3 Hz, 1H), 7.39 (d, J = 3.3 Hz, 1H), 7.34 (s, 2H), 2.35 (s, 3H), 1.02 − 0.93 (m, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 164.3, 142.8, 139.1, 136.2, 133.4, 124.6, 120.3, 104.2, 95.7, 21.0, 18.7, 11.3.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{32}H_{50}NSSi_2$ 536.3197; Found 536.3184.

2-(4-Isopropyl-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ca). Following the general procedure **A** using 2-(4-isopropylphenyl)thiazole (40.5 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica gel

(petroleum ether/ethyl acetate = 30:1) to afford **3ca** (84.4 mg, 75%) as a yellow solid. ¹**H NMR (600 MHz, CDCl**₃) δ 7.84 (d, J = 3.3 Hz, 1H), 7.38 (d, J = 3.3 Hz, 1H), 7.36 (s, 2H), 2.90

(p, J = 6.9 Hz, 1H), 1.27 (d, J = 6.9 Hz, 6H), 0.97 (d, J = 2.2 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 164.4, 150.0, 142.8, 136.6, 131.0, 124.7, 120.3, 104.4, 95.5, 33.9, 23.7, 18.7, 11.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₄H₅₄NSSi₂ 564.3510; Found 564.3496.

2-(4-(*tert***-Butyl)-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3da).** Following the general procedure **A** using 2-(4-(*tert*-butyl)phenyl)thiazole (43.3 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3da** (90.0 mg, 78%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 3.3 Hz, 1H), 7.51 (s, 2H), 7.38 (d, J = 3.3 Hz, 1H), 1.35 (s, 9H), 0.97 (d, J = 1.8 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 164.4, 152.4, 142.8, 136.4, 129.9, 124.5, 120.3, 104.6, 95.4, 34.8, 31.1, 18.7, 11.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₅H₅₆NSSi₂ 578.3666; Found 578.3651.

2-(4-Fluoro-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ea). Following the general procedure **A** using 2-(4-fluorophenyl)thiazole (35.7 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3ea** (70.1 mg, 65%) as a brown liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 3.3 Hz, 1H), 7.42 (d, J = 3.3 Hz, 1H), 7.22 (d, J = 8.7 Hz, 2H), 0.96 (s, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.4, 162.9, 161.3, 142.9, 135.3, 126.8, 126.7, 120.7, 119.8, 119.6, 102.87, 102.85, 97.9, 18.6, 11.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -112.00 (s).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₄₇FNSSi₂ 540.2946; Found 540.2933.

2-(4-Chloro-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3fa). Following the general procedure **A** using 2-(4-chlorophenyl)thiazole (38.9 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3fa** (78.8 mg, 71%) as a brown solid. ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 3.3 Hz, 1H), 7.49 (s, 2H), 7.42 (d, J = 3.3 Hz, 1H), 0.96 (s, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.1, 143.0, 137.3, 134.9, 132.4, 126.3, 120.7, 102.7, 98.1, 18.6,

11.2. HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{47}CINSSi_2$ 556.2650; Found 556.2637.

2-(4-Bromo-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ga). Following the general procedure **A** using 2-(4-bromophenyl)thiazole (47.8 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3ga** (87.4 mg, 73%) as a yellowish solid. ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 3.2 Hz, 1H), 7.65 (s, 2H), 7.42 (d, J = 3.2 Hz, 1H), 0.96 (s, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.2, 143.0, 137.7, 135.2, 126.4, 122.7, 120.7, 102.5, 98.2, 18.6, 11.2.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{47}BrNSSi_2$ 600.2145; Found 600.2130.

2-(4-Methoxy-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ha). Following the general procedure **A** using 2-(4-methoxyphenyl)thiazole (38.2 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3ha** (83.7 mg, 76%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 3.3 Hz, 1H), 7.38 (d, J = 3.3 Hz, 1H), 7.04 (s, 2H), 3.85 (s, 3H), 0.96 (s, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 164.2, 159.5, 142.7, 131.7, 125.9, 120.4, 118.4, 104.0, 96.0, 55.8, 18.6, 11.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₂H₅₀NOSSi₂ 552.3146; Found 552.3133.

2-(4-(Trifluoromethyl)-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ia). Following the general procedure **A** using 2-(4-(trifluoromethyl)phenyl)thiazole (45.7 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was

purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3ia** (82.5 mg, 70%) as a brown solid.

¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 3.3 Hz, 1H), 7.72 (s, 2H), 7.46 (d, J = 3.3 Hz, 1H), 0.97 (d, J = 1.4 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 162.8, 143.2, 141.9, 131.9, 131.6, 129.0 (q, J = 3.4 Hz), 125.9, 124.1, 122.3, 120.9, 102.5, 98.8, 18.6, 11.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -63.22 (s).

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{32}H_{47}F_3NSSi_2$ 590.2914; Found 590.2900.

1-(4-(Thiazol-2-yl)-3,5-bis((triisopropylsilyl)ethynyl)phenyl)ethan-1one (3ja). Following the general procedure **A** using 1-(4-(thiazol-2yl)phenyl)ethan-1-one (40.5 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3ja** (69.8 mg, 62%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.03 (s, 2H), 7.89 (d, J = 3.3 Hz, 1H), 7.46 (d, J = 3.3 Hz, 1H), 2.65 (s, 3H), 0.97 (s, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 196.6, 163.2, 143.2, 142.6, 137.4, 132.0, 125.6, 120.8, 103.1, 97.9, 27.0, 18.6, 11.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₅₀NOSSi₂ 564.3146; Found 564.3132.

2-(3-Methyl-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ka). Following the general procedure **A** using 2-(*m*-tolyl)thiazole (35.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography

on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3ka** (33.2 mg, 31%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 3.3 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.24 (d, J = 8.0 Hz, 1H), 2.49 (s, 3H), 0.99 – 0.92 (m, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 164.8, 142.8, 141.6, 139.1, 132.0, 130.3, 124.8, 122.2, 120.3, 104.2, 102.5, 101.0, 95.2, 21.5, 18.67, 18.65, 11.30, 11.27.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₂H₅₀NSSi₂ 536.3197; Found 536.3192.

2-(3-Fluoro-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3la). Following the general procedure **A** using 2-(3-fluorophenyl)thiazole (35.7 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3la** (70.1 mg, 65%) as a brown solid. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, J = 3.3 Hz, 1H), 7.49 (dd, J = 8.7, 5.3 Hz, 1H), 7.44 (d, J = 3.3 Hz, 1H), 7.11 (t, J = 8.5 Hz, 1H), 0.97 (d, J = 10.1 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.7, 162.9, 162.0, 143.0, 140.8, 133.9, 133.8, 120.89, 120.87, 120.7, 116.6, 116.5, 114.1, 113.9, 103.1, 102.92, 102.89, 96.6, 95.9, 18.63, 18.59, 11.3, 11.2.
¹⁹F NMR (565 MHz, CDCl₃) δ -106.22 (s).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₄₇FNSSi₂ 540.2946; Found 540.2932.

2-(3-Chloro-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3ma). Following the general procedure **A** using 2-(3-chlorophenyl)thiazole (38.9 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg,

0.44 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3ma** (76.6 mg, 69%) as a brown liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, J = 3.3 Hz, 1H), 7.49 − 7.39 (m, 3H), 0.97 (d, J = 14.7 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.6, 143.0, 140.6, 136.9, 132.7, 130.1, 124.8, 123.4, 120.7, 103.4, 103.1, 100.2, 97.4, 18.6, 11.2.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{31}H_{47}CINSSi_2$ 556.2650; Found 556.2635.

2-(3-Methoxy-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3na). Following the general procedure **A** using 2-(3-methoxyphenyl)thiazole (38.2 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3na** (84.8 mg, 77%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 3.3 Hz, 1H), 7.47 (d, J = 8.7 Hz, 1H), 7.39 (d, J = 3.3 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 3.89 (s, 3H), 0.96 (dd, J = 11.4, 3.0 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 164.1, 160.8, 142.8, 140.6, 133.7, 120.3, 116.9, 114.6, 111.6, 104.1, 101.2, 99.7, 93.7, 56.4, 18.6, 11.3.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{32}H_{50}NOSSi_2$ 552.3146; Found 552.3132.

2-(2-Methyl-6-((triisopropylsilyl)ethynyl)phenyl)thiazole (3oa). Following the general procedure **A** using 2-(*o*-tolyl)thiazole (35.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica gel

(petroleum ether/ethyl acetate = 30:1) to afford **3oa** (58.9 mg, 83%) as a green liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 3.3 Hz, 1H), 7.44 (d, J = 3.3 Hz, 1H), 7.42 (d, J = 7.6 Hz, 1H), 7.27 (t, J = 7.7 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 2.17 (s, 3H), 0.97 (d, J = 2.5 Hz, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 165.5, 142.8, 138.3, 136.0, 130.6, 130.2, 129.1, 124.5, 120.3,

```
104.9, 95.5, 20.3, 18.6, 11.3.
```

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₃₀NSSi 356.1862; Found 356.1853.

2-(2-Chloro-6-((triisopropylsilyl)ethynyl)phenyl)thiazole (3pa). Following the general procedure A using 2-(2-chlorophenyl)thiazole (39.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3pa** (60.0 mg, 80%) as a yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 3.3 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.43 (dd, J = 8.2, 1.2 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 0.96 (s, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 162.9, 143.0, 135.4, 134.8, 131.4, 130.3, 129.7, 126.7, 121.0, 103.4, 97.4, 18.6, 11.2.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇CINSSi 376.1316; Found 376.1313.

2-(3-Fluoro-4-methyl-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3qa). Following the general procedure **A** using 2-(3-fluoro-4methylphenyl)thiazole (38.6 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3qa** (79.6 mg, 72%) as a brown solid.

¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 3.3 Hz, 1H), 7.41 (d, J = 3.3 Hz, 1H), 7.38 – 7.30 (m, 1H), 2.29 (d, J = 2.0 Hz, 3H), 1.03 – 0.90 (m, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.12, 163.10, 162.3, 160.6, 142.91, 142.87, 138.2, 135.21, 135.17, 126.6, 126.4, 120.8, 120.6, 120.20, 120.18, 113.5, 113.3, 103.4, 102.2, 102.1, 97.1, 95.2, 19.1, 18.63, 18.59, 11.3, 11.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -110.15 (s).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₂H₄₉FNSSi₂ 554.3102; Found 554.3091.

2-(3,5-Dimethyl-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole

(3ra). Following the general procedure A using 2-(3,5dimethylphenyl)thiazole (37.8 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the

residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3ra** (69.2 mg, 63%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 3.3 Hz, 1H), 7.38 (d, J = 3.3 Hz, 1H), 7.17 (s, 1H), 2.46 (s, 6H), 0.96 (d, J = 2.5 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 165.3, 142.7, 140.9, 139.3, 131.6, 122.2, 120.2, 102.7, 99.8, 21.4, 18.7, 11.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₃H₅₂NSSi₂ 550.3353; Found 550.3344.

2-(3,5-Difluoro-2,6-bis((triisopropylsilyl)ethynyl)phenyl)thiazole (3sa). Following the general procedure **A** using 2-(3,5-difluorophenyl)thiazole (39.4 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg,

0.44 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford 3sa (77.9 mg, 70%) as a brown solid.

¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 3.3 Hz, 1H), 7.47 (d, J = 3.3 Hz, 1H), 6.96 (t, J = 8.6 Hz, 1H), 1.01 – 0.87 (m, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.6, 163.5, 161.9, 161.8, 161.7, 143.2, 121.0, 110.51, 110.46, 110.40, 110.36, 105.5, 105.3, 105.1, 102.4, 95.8, 18.6, 11.2.

¹⁹F NMR (565 MHz, CDCl₃) δ -102.25 (s).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₄₆F₂NSSi₂ 558.2779; Found 558.2786.

2-(1,3-Bis((triisopropylsilyl)ethynyl)naphthalen-2-yl)thiazole (3ta). Following the general procedure A using 2-(naphthalen-2-yl)thiazole (42.2 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **3ta** (73.1 mg, 64%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 8.3 Hz, 1H), 8.06 (s, 1H), 7.91 (d, J = 3.3 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.59 – 7.54 (m, 1H), 7.45 (d, J = 3.3 Hz, 1H), 1.03 (d, J = 2.5 Hz, 21H), 1.00 (d, J = 2.4 Hz, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 164.8, 142.9, 136.8, 133.0, 132.93, 132.89, 128.3, 128.0, 127.9, 127.0, 123.0, 121.5, 120.5, 104.3, 102.5, 101.9, 95.7, 18.8, 18.7, 11.4, 11.3. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₃₅H₅₀NSSi₂ 572.3197; Found 572.3182.

TIPS

2-(5-Methyl-2-((triisopropylsilyl)ethynyl)phenyl)thiazole (3ka₁). Following the general procedure A using 2-(*m*-tolyl)thiazole (35.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica gel

(petroleum ether/ethyl acetate = 30:1) to afford **3ka**₁ (39.1 mg, 55%) as a yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ 8.05 (s, 1H), 7.90 (d, J = 3.2 Hz, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.41 (d, J = 3.2 Hz, 1H), 7.16 (dd, J = 8.1, 1.8 Hz, 1H), 2.41 (s, 3H), 1.20 – 1.12 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 165.6, 142.3, 139.1, 135.1, 134.8, 130.0, 128.9, 120.0, 118.3,

106.1, 99.3, 21.5, 18.9, 11.5. $\label{eq:HRMS} \mbox{(ESI)} \mbox{ m/z: } [M+H]^+ \mbox{ Calcd for } C_{21} \mbox{H}_{30} \mbox{NSSi } 356.1862; \mbox{ Found } 356.1853.$

2-(2,6-Bis((triisopropylsilyl)ethynyl)phenyl)-4-methylthiazole (3ua). Following the general procedure **A** using 4-methyl-2-phenylthiazole (35.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (114.8 mg, 0.44 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **3ua** (53.5 mg, 50%) as a yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, J = 7.8 Hz, 2H), 7.30 (t, J = 7.8 Hz, 1H), 6.95 (s, 1H), 2.46 (s, 3H), 0.97 (d, J = 1.6 Hz, 42H).

¹³C NMR (151 MHz, CDCl₃) δ 163.7, 152.7, 139.4, 132.5, 128.9, 124.9, 115.0, 104.0, 96.1, 18.9, 18.6, 11.3.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{32}H_{50}NSSi_2$ 536.3197; Found 536.3193.

2-Phenyl-5-((triisopropylsilyl)ethynyl)thiazole (4aa). Following the general procedure **B** using 2-phenylthiazole (32.2 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4aa** (54.5 mg, 80%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 8.00 − 7.83 (m, 3H), 7.51 − 7.40 (m, 3H), 1.18 − 1.11 (m, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 168.3, 148.2, 133.3, 130.6, 129.2, 126.7, 119.1, 100.3, 95.8, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₈NSSi 342.1706; Found 342.1697.

2-(p-Tolyl)-5-((triisopropylsilyl)ethynyl)thiazole (4ba). Following the
general procedure B using 2-(p-tolyl)thiazole (35.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the

residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ba** (54.7 mg, 77%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H), 1.17 − 1.11 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.5, 148.1, 141.0, 130.7, 129.9, 126.6, 118.6, 100.0, 95.9, 21.6, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₃₀NSSi 356.1862; Found 356.1853.

2-(4-Isopropylphenyl)-5-((triisopropylsilyl)ethynyl)thiazole(4ca).Following the general procedure B using 2-(4-isopropylphenyl)thiazole(40.7 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg,

0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ca** (50.5 mg, 66%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.84 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H), 2.95 (hept, J = 6.9 Hz, 1H), 1.28 (d, J = 6.9 Hz, 6H), 1.18 – 1.10 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.5, 151.9, 148.1, 131.1, 127.3, 126.8, 118.6, 100.0, 96.0, 34.3, 23.9, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₃₄NSSi 384.2175; Found 384.2171.

2-(4-(*tert***-Butyl)phenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4da).** Following the general procedure **B** using 2-(4-(tert-

butyl)phenyl)thiazole (43.5 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4da** (50.8 mg, 64%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 1.35 (s, 9H), 1.18 – 1.10 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.4, 154.1, 148.2, 130.7, 126.5, 126.2, 118.6, 100.0, 96.0, 35.1, 31.3, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₃₆NSSi 398.2332; Found 398.2321.

2-(4-Fluorophenyl)-5-((triisopropylsilyl)ethynyl)thiazole(4ea).Following the general procedure **B** using 2-(4-fluorophenyl)thiazole(35.8 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg,

0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ea** (50.9 mg, 71%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.92 – 7.88 (m, 2H), 7.88 (s, 1H), 7.13 (t, J = 8.6 Hz, 2H), 1.20 – 1.08 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 167.0, 165.1, 163.4, 148.1, 129.72, 129.70, 128.7, 128.6, 119.2, 116.4, 116.2, 100.5, 95.6, 18.8, 11.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -109.58 (s).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇FNSSi 360.1539; Found 360.1545.

2-(4-Chlorophenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4fa). Following the general procedure **B** using 2-(4-chlorophenyl)thiazole (39.1 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg,

0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4fa** (54.0 mg, 72%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.84 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 1.17 – 1.11 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 166.8, 148.2, 136.6, 131.8, 129.4, 127.9, 119.5, 100.8, 95.5, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇ClNSSi 376.1243; Found 376.1250.

2-(4-Bromophenyl)-5-((triisopropylsilyl)ethynyl)thiazole(4ga).Following the general procedure B using 2-(4-bromophenyl)thiazole(48.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg,

0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ga** (52.8 mg, 63%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.78 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 1.16 − 1.11 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 166.8, 148.3, 132.4, 132.2, 128.1, 124.9, 119.6, 100.8, 95.5, 18.8, 11.4.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{20}H_{27}BrNSSi$ 420.0811; Found 420.0798.

2-(4-Methoxyphenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4ha). Following the general procedure **B** using 2-(4-methoxyphenyl)thiazole (38.2 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg,

0.3 mmol), this residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ha** (55.6 mg, 75%) as an orange solid.

¹H NMR (600 MHz, CDCl₃) δ 8.07 – 7.68 (m, 3H), 6.95 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 1.19 – 1.07 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.3, 161.6, 148.0, 128.3, 126.3, 118.1, 114.5, 99.8, 96.0, 55.6, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₃₀NOSSi 372.1811; Found 372.1801.

2-(4-(Trifluoromethyl)phenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4ia). Following the general procedure **B** using 2-(4-(trifluoromethyl)phenyl)thiazole (45.8 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ia** (57.3 mg, 70%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.2 Hz, 2H), 7.95 (s, 1H), 7.70 (d, J = 8.2 Hz, 2H), 1.20 − 1.08 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 166.1, 148.4, 136.4, 132.20, 131.99, 126.9, 126.2 (q, J = 3.9 Hz), 120.4, 101.4, 95.3, 18.8, 11.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -62.88 (s).

HRMS (ESI) m/z: $[M+H]^+$ Calcd for C₂₁H₂₇F3NSSi 410.1507; Found 410.1512.

1-(4-(5-((Triisopropylsilyl)ethynyl)thiazol-2-yl)phenyl)ethan-1-one (4ja). Following the general procedure **B** using 1-(4-(thiazol-2-yl)phenyl)ethan-1-one (40.6 mg, 0.2 mmol) and

(bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ja** (49.8 mg, 65%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 8.03 – 7.98 (m, 4H), 7.95 (s, 1H), 2.63 (s, 3H), 1.17 – 1.10 (m, 21H). ¹³C NMR (151 MHz, CDCl₃) δ 197.3, 166.5, 148.5, 138.2, 137.1, 129.2, 126.8, 120.5, 101.4, 95.4, 26.9, 18.8, 11.4.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{22}H_{30}NOSSi$ 384.1739; Found 384.1744.

2-(*m***-Tolyl)-5-((triisopropylsilyl)ethynyl)thiazole (4ka).** Following the general procedure **B** using 2-(*m*-tolyl)thiazole (35.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the

residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ka** (41.2 mg, 58%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.76 (s, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 2.41 (s, 3H), 1.14 (d, J = 4.1 Hz, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.5, 148.1, 139.0, 133.2, 131.4, 129.1, 127.3, 124.0, 118.9, 100.2, 95.8, 21.5, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₃₀NSSi 356.1862; Found 356.1852.

2-(3-Fluorophenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4la). Following the general procedure **B** using 2-(3-fluorophenyl)thiazole (35.8 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg,

0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4la** (40.2 mg, 56%) as a light yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.91 (s, 1H), 7.76 – 7.58 (m, 2H), 7.50 – 7.33 (m, 1H), 7.19 – 7.06 (m, 1H), 1.19 – 1.08 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 166.6, 164.0, 162.4, 148.2, 135.34, 135.29, 130.82, 130.77, 122.44, 122.42, 119.8, 117.5, 117.4, 113.7, 113.5, 100.9, 95.5, 18.8, 11.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -111.94 (s).

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇FNSSi 360.1612; Found 360.1601.

2-(3-Chlorophenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4ma). Following the general procedure **B** using 2-(3-chlorophenyl)thiazole (39.1 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg,

0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ma** (57.0 mg, 76%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.91 (s, 1H), 7.76 (d, J = 7.6 Hz, 1H), 7.40 (dt, J = 8.1, 1.6 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 1.21 – 1.09 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 166.3, 148.2, 135.3, 134.9, 130.45, 130.40, 126.7, 124.8, 119.9, 101.0, 95.5, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇ClNSSi 376.1243; Found 376.1250.

2-(3-Methoxyphenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4na). Following the general procedure **B** using 2-(3-

methoxyphenyl)thiazole (38.2 mg, 0.2 mmol) and

(bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4na** (51.9 mg, 70%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.97 (s, 1H), 7.71 (d, J = 7.7 Hz, 1H), 7.34 (td, J = 7.4, 1.4 Hz, 1H), 7.31 – 7.26 (m, 2H), 2.59 (s, 3H), 1.17 – 1.11 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.0, 147.5, 136.8, 132.6, 131.7, 130.1, 129.9, 126.3, 119.7, 100.1, 95.7, 21.6, 18.8, 11.4.

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{21}H_{30}NOSSi$ 372.1811; Found 372.1801.

2-(o-Tolyl)-5-((triisopropylsilyl)ethynyl)thiazole (40a). Following the general procedure **B** using 2-(*o*-tolyl)thiazole (35.1 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4oa** (55.4 mg, 78%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.90 (s, 1H), 7.52 – 7.48 (m, 1H), 7.48 – 7.43 (m, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.01 – 6.94 (m, 1H), 3.87 (s, 3H), 1.20 – 1.08 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.1, 160.2, 148.1, 134.6, 130.2, 119.3, 119.2, 117.0, 111.2, 100.4, 95.7, 55.6, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₃₀NSSi 356.1862; Found 356.1852.

2-(2-Chlorophenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4pa). Following the general procedure **B** using 2-(2-chlorophenyl)thiazole (39.1 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **4pa** (53.2 mg, 71%) as a yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ 8.32 – 8.20 (m, 1H), 7.99 (s, 1H), 7.49 (dd, J = 7.7, 1.6 Hz, 1H), 7.42 – 7.30 (m, 2H), 1.20 – 1.10 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 163.2, 146.8, 131.9, 131.7, 131.0, 130.9, 130.7, 127.3, 120.9, 100.8, 95.5, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₇ClNSSi 376.1316; Found 376.1307.

2-(3-Fluoro-4-methylphenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4qa). Following the general procedure **B** using 2-(3-fluoro-4methylphenyl)thiazole (38.6 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4qa** (38.0 mg, 51%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.63 – 7.53 (m, 2H), 7.24 (t, J = 7.8 Hz, 1H), 2.31 (d, J = 1.8 Hz, 3H), 1.17 – 1.09 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 166.9, 162.4, 160.8, 148.1, 132.9, 132.8, 132.2, 132.1, 127.8, 127.7, 122.14, 122.11, 119.3, 113.2, 113.1, 100.6, 95.6, 18.8, 14.81, 14.78, 11.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -116.28 (s).

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{21}H_{29}$ FNSSi 374.1768; Found 374.1758.

2-(3,5-Dimethylphenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4ra). Following the general procedure **B** using 2-(3,5-dimethylphenyl)thiazole (37.8 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ra** (29.5 mg, 40%) as a light yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 7.89 (s, 1H), 7.53 (s, 2H), 7.07 (s, 1H), 2.37 (s, 6H), 1.21 − 1.05 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.8, 148.0, 138.9, 133.1, 132.4, 124.6, 118.8, 100.1, 95.9, 21.4, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₃₂NSSi 370.2019; Found 370.2009.

2-(3,5-Difluorophenyl)-5-((triisopropylsilyl)ethynyl)thiazole (4sa). Following the general procedure **B** using 2-(3,5-difluorophenyl)thiazole (39.4 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **4sa** (33.2 mg, 44%) as a yellow liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (s, 1H), 7.58 – 7.32 (m, 2H), 6.88 (t, J = 8.6 Hz, 1H), 1.13 (d, J = 5.0 Hz, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 165.1, 164.3, 164.2, 162.64, 162.56, 148.3, 136.1, 120.5, 109.74, 109.70, 109.59, 109.55, 105.9, 105.7, 105.5, 101.6, 95.2, 18.8, 11.4.

¹⁹F NMR (565 MHz, CDCl₃) δ -108.33 (s).

HRMS (ESI) m/z: $[M+H]^+$ Calcd for $C_{20}H_{26}F_2NSSi$ 378.1445; Found 378.1449.

2-(Naphthalen-2-yl)-5-((triisopropylsilyl)ethynyl)thiazole(4ta).Following the general procedure B using 2-(naphthalen-2-yl)thiazole(42.3 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue was purified by flash chromatography on silica

gel (petroleum ether/ethyl acetate = 30:1) to afford **4ta** (53.2 mg, 68%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 8.41 (s, 1H), 8.01 (dd, J = 8.5, 1.8 Hz, 1H), 7.96 (s, 1H), 7.93 – 7.88 (m, 2H), 7.87 – 7.83 (m, 1H), 7.56 – 7.49 (m, 2H), 1.19 – 1.11 (m, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 168.3, 148.3, 134.4, 133.3, 130.7, 129.0, 128.8, 128.0, 127.4, 127.1, 126.4, 123.9, 119.2, 100.5, 95.8, 18.8, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₃₀NSSi 392.1789; Found 392.1797.

4-Methyl-2-phenyl-5-((triisopropylsilyl)ethynyl)thiazole (4ua). Following the general procedure **B** using 4-methyl-2-phenylthiazole (35.0 mg, 0.2 mmol) and (bromoethynyl)triisopropylsilane (78.3 mg, 0.3 mmol), the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 30:1) to afford **4ua** (51.8 mg, 73%) as a yellow liquid.

¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.71 (m, 2H), 7.53 – 7.32 (m, 3H), 2.56 (s, 3H), 1.14 (d, J = 3.4 Hz, 21H).

¹³C NMR (151 MHz, CDCl₃) δ 166.0, 159.1, 133.4, 130.4, 129.1, 126.6, 113.9, 101.0, 96.8, 18.8, 16.6, 11.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₃₀NSSi 356.1862; Found 356.1853.

3.4 Ru(II)-catalyzed ortho-alkynylation: reaction on 3 mmol scale

To a 100 mL oven dried Schlenk tube, 2-phenylthiazole (483.6 mg, 3 mmol, 1 equiv.), [Ru(p-

cymene)Cl₂]₂ (91.8 mg, 0.15 mmol, 5 mol%), NaOAc (492.2 mg, 6 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane (1.72 g, 6.6 mmol, 2.2 equiv.) and EtOH (30 mL) were successively added. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 12 hours under the air. After cooling the reaction at room temperature and concentration, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 30:1) to afford the desired alkynylated product **3aa** (0.95 g, 61%).

3.5 Pd(II)-catalyzed C5-alkynylation: reaction on 4 mmol scale

To a 100 mL oven dried Schlenk tube, K_2CO_3 (1.1 g, 8 mmol, 2 equiv.), 2-phenylthiazole (644.9 mg, 4 mmol, 1 equiv.), Pd(OAc)₂ (90.6 mg, 0.4 mmol, 10 mol%), AgOTf (2.0 g, 8 mmol, 2 equiv.), NaOAc (656.2 mg, 8 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane (1.56 g, 6 mmol, 1.5 equiv.) and toluene (30 mL) were successively added. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 12 hours under the air. After cooling the reaction at room temperature and concentration, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 30:1) to afford the desired alkynylated product **4aa** (0.89 g, 65%).

3.6 Preparation and characterization of products 5aa, 6aa, 7aa, 8aa, 9aa, 10aa

2-(2,6-Diethynylphenyl)thiazole (5aa). To a 15 mL oven dried Schlenk tube, **3aa** (104.4 mg, 0.2 mmol), TBAF (1 M in THF, 0.4 ml), and THF (1 ml) were successively added. The reaction mixture was stirred at room temperature for 3 hours under argon. After concentration of reaction mixture, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 30:1) to afford the desired product **5aa** (33.4 mg, 80%) as a black solid. ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 3.3 Hz, 1H), 7.60 (d, J = 7.8 Hz, 2H), 7.53 (d, J = 3.3 Hz, 1H), 7.37 (t, J = 7.8 Hz, 1H), 3.07 (s, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 163.3, 143.0, 139.0, 133.7, 129.2, 123.4, 121.0, 82.3, 81.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₈NS 210.0365; Found 210.0372.

2-(2-Ethynyl-6-methylphenyl)thiazole (6aa). To a 15 mL oven dried Schlenk tube, **3oa** (71.1 mg, 0.2 mmol), TBAF (1 M in THF, 0.4 ml), and THF (1 ml) were successively added. The reaction mixture was stirred at room temperature for 3 hours under argon. After concentration of reaction mixture, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 30:1) to afford the desired product **6aa** (32.2 mg, 81%) as a green liquid. ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 3.3 Hz, 1H), 7.49 (d, J = 3.3 Hz, 1H), 7.44 (dd, J = 7.3, 1.7 Hz, 1H), 7.32 – 7.26 (m, 2H), 2.99 (s, 1H), 2.20 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 165.1, 142.9, 138.4, 136.3, 130.9, 130.8, 129.2, 123.0, 120.6, 81.9, 81.4, 20.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₀NS 200.0528; Found 200.0524.

2-(2-(1-Benzyl-1H-1,2,3-triazol-4-yl)-6-methylphenyl)thiazole (7aa). To a 15 mL oven dried Schlenk tube, **6aa** (39.8 mg, 0.2 mmol), BnN_3 (79.9 mg, 0.6 mmol, 2 equiv.), CuTc (19.2 mg, 0.1 mmol, 50 mol%), and toluene (1.5 ml) were successively added. The reaction mixture was stirred at room temperature for 1 hour under the air. After concentration of reaction mixture, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 10:1) to afford the desired product **7aa** (52.4 mg, 79%) as a Yellowish solid.

¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 3.4 Hz, 1H), 7.45 (t, J = 7.8 Hz, 1H), 7.33 (dd, J = 5.1, 2.0 Hz, 3H), 7.31 (d, J = 3.3 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 7.13 – 7.03 (m, 2H), 6.37 (s, 1H), 5.36 (s, 2H), 2.15 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 166.6, 146.2, 142.6, 138.4, 134.6, 131.5, 131.3, 130.0, 129.9, 129.1, 128.7, 128.1, 126.2, 121.8, 121.4, 54.0, 20.3.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₇N₄S 333.1168; Found 333.1163.

5-Ethynyl-2-phenylthiazole (8aa). To a 15 mL oven dried Schlenk tube, **4aa** (68 mg, 0.2 mmol), TBAF (1 M in THF, 0.4 ml), and THF (1 ml) were successively added. The reaction mixture was stirred at room temperature for 3 hours under argon. After concentration of reaction mixture, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl

acetate = 30:1) to afford the desired product **8aa** (30.7 mg, 83%) as a yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (s, 1H), 7.94 – 7.90 (m, 2H), 7.47 – 7.41 (m, 3H), 3.51 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 169.0, 148.9, 133.1, 130.8, 129.2, 126.8, 117.6, 85.1, 73.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₈NS 186.0371; Found 186.0366.

2-Phenyl-5-(phenylethynyl)thiazole (9aa). To a 15 mL oven dried Schlenk tube, **8aa** (37 mg, 0.2 mmol), PhI (81.6 mg, 0.4 mmol, 2 equiv.), Pd(PPh₃)₂Cl₂ (7.0 mg, 0.01 mmol, 5 mol%), CuI (0.95 mg, 0.005 mmol, 2.5mol%), and Et₃N (1.5 ml) were successively added. The reaction mixture was stirred at 50 °C for 6 hour under argon. After concentration of reaction mixture, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 30:1) to afford the desired product **9aa** (47.5 mg, 91%) as a yellow solid.

¹H NMR (600 MHz, CDCl₃) δ 7.99 (s, 1H), 7.97 – 7.93 (m, 2H), 7.57 – 7.52 (m, 2H), 7.45 (dd, J = 5.1, 2.0 Hz, 3H), 7.40 – 7.34 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 168.6, 147.6, 133.3, 131.6, 130.6, 129.2, 129.0, 128.6, 126.7, 122.5, 118.9, 96.8, 79.4.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₂NS 262.0684; Found 262.0681.

2-Phenyl-5-(1-tosyl-1H-1,2,3-triazol-4-yl)thiazole (10aa). To a 15 mL oven dried Schlenk tube, **8aa** (37 mg, 0.2 mmol), TsN₃ (118.3 mg, 0.6 mmol, 3 equiv.), CuTc (19.2 mg, 0.1 mmol, 50 mol%), and toluene (1.5 ml) were successively added. The reaction mixture was stirred at room temperature for 1 hour under the air. After concentration of reaction mixture, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 10:1) to afford the desired product **10aa** (53.5 mg, 70%) as a white solid.

¹H NMR (600 MHz, CDCl₃) δ 8.31 (s, 1H), 8.14 (s, 1H), 8.04 (d, J = 8.5 Hz, 2H), 7.99 – 7.89 (m, 2H), 7.45 (dd, J = 5.2, 2.0 Hz, 3H), 7.41 (d, J = 8.2 Hz, 2H), 2.46 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 168.9, 147.9, 141.6, 139.7, 133.2, 132.8, 130.72, 130.69, 129.2, 129.0, 126.7, 126.2, 119.3, 22.0.

HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₅N₄O₂S₂ 383.0630; Found 383.0620.

3.7 TEMPO-trapping experiment

To a 15 mL oven dried Schlenk tube, 2-phenylthiazole (0.2 mmol, 1 equiv.), $[Ru(p-cymene)Cl_2]_2$ (6.1 mg, 0.01 mmol, 5 mol%), NaOAc (0.4 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane (0.44 mmol, 2.2 equiv.), TEMPO (0.4 mmol, 2 equiv.) and EtOH (1.5 mL) were successively added. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 12 hours under the air. After cooling the reaction at room temperature and concentration, the crude

mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 10:1) to afford the desired alkynylated product **3aa** (72%, 75.0 mg). This observation suggests the non-involvement of any radical pathway.

To a 15 mL oven dried Schlenk tube, K_2CO_3 (0.4 mmol, 2 equiv.), 2-phenylthiazole (0.2 mmol, 1 equiv.), Pd(OAc)₂ (4.5 mg, 0.02 mmol, 10 mol%), NaOAc (0.4 mmol, 2 equiv.), AgOTf (0.4 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane (0.3 mmol, 1.5 equiv.), TEMPO (0.4 mmol, 2 equiv.) and toluene (1.5 mL) were successively added. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 12 hours under the air. After cooling the reaction at room temperature and concentration, the crude mixture was purified by silica column chromatography (petroleum ether/ethyl acetate = 10:1) to afford the desired alkynylated product **4aa** (65%, 44.3 mg). This observation suggests the non-involvement of any radical pathway.

3.8 H/D exchange experiment

2-Phenylthiazole **1a** (48.3 mg, 0.3 mmol, 1 equiv.), $[Ru(p-cymene)Cl_2]_2$ (9.2 mg, 0.015 mmol, 5 mol%), NaOAc (49.2 mg, 0.6 mmol, 2 equiv.), D₂O (0.2 mL) and EtOH (2 mL) were charged into a Schlenk tube. The mixture was then stirred at 120 °C under the air for 4 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1) to afford **[1a]-d**₂ as light yellow liquid in 82% isolated yield. Upon analyzing the ¹H NMR spectra as shown in **Figure S1**, the estimated deuterium incorporation at the *ortho*-position of the 2-phenyl ring was 60%.

2-Phenylthiazole **1a** (48.3 mg, 0.3 mmol, 1 equiv.), K_2CO_3 (82.9 mg, 0.6 mmol, 2 equiv.), $Pd(OAc)_2$ (6.8 mg, 0.03 mmol, 10 mol%), AgOTf (0.6 mmol, 2 equiv.), NaOAc (0.6 mmol, 2 equiv.), D_2O (0.2 mL) and toluene (2 mL) were charged into a Schlenk tube. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 12 hours under the air. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1) to afford **[1a-C5]-d_1** as light yellow liquid in 78% isolated yield. Upon analyzing the ¹H NMR spectra as shown in **Figure S2**, the estimated deuterium incorporation at the C5-position of the thiazole ring was 88%.

Figure S2. The ¹H NMR spectra of [1a-C5]-d₁

3.9 KIE determination

Synthesis of [10]-d₂²: To a 15 mL oven dried Schlenk tube, 2-(*o*-tolyl)thiazole (52.5 mg, 0.3 mmol, 1 equiv.), K_2CO_3 (82.9mg, 0.6 mmol, 2 equiv.), $[Ru(p-cymene)Cl_2]_2$ (9.2 mg, 0.015 mmol, 5 mol%), 1-AdCOOH (16.2 mg, 0.09 mmol, 0.3 equiv.), D_2O (0.4 mL) and toluene (1 mL) were successively added. The reaction mixture was stirred at 120 °C (metal sand bath temperature) for 24 hours under argon. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 15:1) to afford **[10]-d₂** as white liquid in 85% isolated yield. Upon analyzing the ¹H NMR spectra

as shown in **Figure S3**, the estimated deuterium incorporation at the *ortho*-position of the 2-(*o*-tolyl) ring was 90% and at the C5-position of the thiazole ring was 86%.

Figure S3. The ¹H NMR spectra of [10]-d₂

To a 15 mL oven dried Schlenk tube, **1o** (26.3 mg, 0.15 mmol, 1 equiv.), **[1o]-d₂** (26.4 mg, 0.15 mmol, 1 equiv.), $[Ru(p-cymene)Cl_2]_2$ (4.5 mg, 0.0075 mmol, 5 mol%), NaOAc (24.6 mg, 0.3 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane **2a** (58.7 mg, 0.225 mmol, 1.5 equiv.) and EtOH (1.5 mL) were successively added. The mixture was then stirred at 120 °C under the air for 12 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1) to afford the mixture of products **3oa** and **[3oa]-d₁** as light yellow liquid. By analyzing the 1H NMR of the mixture **3oa** and **[3oa]-d₁** as shown in **Figure S4**, the ratio of **3oa** and **[3oa]-d₁** was determined

to be 0.75:0.25. Accordingly, the intermolecular KIE $(k_{\rm H}/k_{\rm D})$ = 0.75/1-0.75 = 3.0.

Figure S4. The ¹H NMR spectra of mixture **3oa** and **[3oa]-d**₁.

To a 15 mL oven dried Schlenk tube, **1o** (26.3 mg, 0.15 mmol, 1 equiv.), **[1o]-d₂** (26.4 mg, 0.15 mmol, 1 equiv.), K_2CO_3 (0.3 mmol, 2 equiv.), Pd(OAc)₂ (3.5 mg, 0.015 mmol, 10 mol%), NaOAc (0.3 mmol, 2 equiv.), AgOTf (0.3 mmol, 2 equiv.), (bromoethynyl)triisopropylsilane **2a** (58.7 mg, 0.225 mmol, 1.5 equiv.) and toluene (1.5 mL) were successively added. The mixture was then stirred at 120 °C under the air for 12 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography (petroleum ether/ethyl acetate = 30:1) to afford the mixture of products **40a** and **[40a]-d₁** as light yellow liquid. By analyzing the 1H NMR of the mixture **40a** and **[40a]-d₁** as shown in **Figure S5**, the ratio of **40a** and **[40a]-d₁** was determined to be 0.56:0.44. Accordingly, the intermolecular KIE

Figure S5. The ¹H NMR spectra of mixture 4oa and [4oa]-d₁.

4. Crystallographic description

Colorless transparent block-like single crystals of **3Ia** were grown by layering a dichlormethane solution with hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a R-AXIS SPIDER diffractometer. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 298(2) K, using the ω - and φ - scans to a maximum θ value of 28.327°. The data were refined by full-matrix least-squares techniques on F² with SHELXL-2018/3. And the structures were solved by direct methods SHELXL-2018/3. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. And an ORTEP representation of the structure is shown below.

Figure S6. ORTEP diagram of 3la with the thermal ellipsoids set at 50% probability.

Identification code	exp_14225_auto
Empirical formula	$C_{31}H_{46}FNSSi_2$
Formula weight	539.93
Temperature/K	298.15
Crystal system	monoclinic
Space group	P21
a/Å	8.1462(4)
b/Å	13.1951(5)
c/Å	15.8775(7)
α/°	90
β/°	96.946(4)
γ/°	90
Volume/ų	1694.15(13)
Z	2
$\rho_{calc}g/cm^3$	1.058
µ/mm⁻¹	0.190
F(000)	584.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.1$
Radiation	Μο Κα (λ = 0.71073)

Table S2	Crystal	data	and	structure	refinemen	it for	3la
	Crystur	uutu	unu	Junucture	rennemen	101	Jiu

S26

20 range for data collection/° 5.038 to 58.41

Index ranges	$-10 \le h \le 11, -17 \le k \le 17, -21 \le l \le 21$
Reflections collected	15050
Independent reflections	$6943 [R_{int} = 0.0250, R_{sigma} = 0.0425]$
Data/restraints/parameters	6943/13/348
Goodness-of-fit on F ²	1.037
Final R indexes [I>=2σ (I)]	$R_1 = 0.0659$, $wR_2 = 0.1685$
Final R indexes [all data]	$R_1 = 0.0993$, $wR_2 = 0.1946$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.71/-0.19
Flack parameter	0.65(4)

Table S3 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3la**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
Si ⁽²⁾	8571.8(16)	203.1(10)	2955.6(8)	58.2(4)
Si ⁽¹⁾	15967.6(18)	9.9(13)	8750.2(8)	69.4(5)
S ⁽¹⁾	10348(3)	-55.4(18)	6359.2(15)	119.5(8)
C ⁽⁷⁾	12025(6)	145(4)	5847(3)	55.2(10)
C ⁽⁴⁾	13047(6)	-688(3)	5576(3)	49.3(10)
C ⁽³⁾	14415(6)	-1055(4)	6106(3)	57.2(11)
C ⁽²¹⁾	11307(6)	-726(3)	4180(3)	52.0(10)
C ⁽¹⁰⁾	14857(7)	-644(5)	6943(3)	68.5(13)
C ⁽¹⁾	14986(9)	-2235(5)	5038(5)	80.0(16)
C ⁽²⁶⁾	6583(7)	-97(6)	3386(4)	89.8(19)
C ⁽⁵⁾	12662(6)	-1104(4)	4761(3)	52.5(10)
N ⁽¹⁾	12264(8)	1093(4)	5733(5)	108(2)
C ⁽²²⁾	10219(6)	-390(4)	3694(3)	60.0(12)
C ⁽¹¹⁾	15301(7)	-343(5)	7649(3)	75.4(15)
F ⁽¹⁾	13303(6)	-2257(4)	3739(3)	115.1(14)
C ⁽²⁾	15356(7)	-1823(5)	5826(4)	74.2(16)
C ⁽⁶⁾	13642(7)	-1874(4)	4512(3)	62.5(13)
C ⁽¹⁸⁾	14078(10)	105(11)	9296(4)	139(4)
C ⁽²⁹⁾	8668(7)	-382(5)	1882(3)	76.1(15)
C ⁽²³⁾	9081(10)	1588(5)	2952(5)	94(2)
C ⁽²⁸⁾	5041(8)	238(12)	2808(7)	162(5)
C ⁽³¹⁾	10319(9)	-202(8)	1541(5)	114(3)
C ⁽¹²⁾	17345(9)	-1046(6)	9214(4)	100(2)
C ⁽⁹⁾	9986(13)	1206(7)	6382(5)	109(3)
C ⁽²⁴⁾	7989(11)	2206(6)	2287(6)	121(3)
C ⁽¹⁵⁾	17210(12)	1195(6)	8729(4)	112(3)

C ⁽²⁷⁾	6564(10)	250(8)	4287(5)	125(3)
C ⁽⁸⁾	11058(15)	1666(6)	6028(7)	133(4)
C ⁽³⁰⁾	8279(13)	-1509(6)	1893(5)	123(3)
C ⁽²⁰⁾	12764(13)	783(11)	8879(9)	185(6)
C ⁽¹⁹⁾	14308(13)	20(14)	10248(5)	171(5)
C ⁽¹⁴⁾	18949(12)	-1122(11)	8804(8)	172(5)
C ⁽¹⁶⁾	16464(16)	2058(8)	8200(7)	181(6)
C ⁽¹³⁾	16395(16)	-2036(7)	9200(8)	168(5)
C ⁽¹⁷⁾	17954(14)	1577(7)	9604(5)	137(4)
C ⁽³²⁾	9640(30)	2054(9)	3791(12)	102(7)
C ⁽²⁵⁾	10690(20)	1932(15)	3176(17)	132(11)

Table S4 Anisotropic Displacement Parameters (Å²×10³) for **3la**. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

	•	-		-		
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Si ⁽²⁾	55.9(7)	65.2(8)	50.9(6)	5.0(6)	-4.4(5)	-3.1(7)
Si ⁽¹⁾	70.3(9)	90.7(11)	43.7(6)	3.8(7)	-6.8(5)	-0.7(8)
S ⁽¹⁾	109.7(14)	120.1(16)	141.4(17)	19.5(14)	66.7(13)	22.4(13)
C ⁽⁷⁾	61(3)	58(3)	45(2)	-7(2)	0.4(17)	-1(2)
C ⁽⁴⁾	53(3)	49(2)	45(2)	3.1(19)	2.6(18)	-3(2)
C ⁽³⁾	58(3)	64(3)	47(2)	5(2)	-4(2)	1(2)
C ⁽²¹⁾	61(3)	51(2)	43(2)	-2.6(19)	-1(2)	-5(2)
C ⁽¹⁰⁾	69(3)	83(3)	50(3)	10(3)	-7(2)	1(3)
C ⁽¹⁾	81(4)	70(3)	87(4)	-8(3)	3(3)	24(3)
C ⁽²⁶⁾	64(3)	116(5)	89(4)	7(4)	8(3)	-20(4)
C ⁽⁵⁾	55(3)	54(2)	47(2)	1(2)	1.0(19)	-4(2)
N ⁽¹⁾	120(5)	48(3)	160(6)	-7(3)	37(4)	-2(3)
C ⁽²²⁾	68(3)	62(3)	48(2)	-5(2)	0(2)	-6(2)
C ⁽¹¹⁾	73(3)	94(4)	54(3)	3(3)	-14(2)	-2(3)
F ⁽¹⁾	129(3)	123(3)	89(3)	-35(2)	-4(2)	14(3)
C ⁽²⁾	64(3)	82(4)	70(3)	2(3)	-15(3)	17(3)
C ⁽⁶⁾	72(3)	64(3)	52(3)	-13(2)	8(2)	4(3)
C ⁽¹⁸⁾	97(5)	240(12)	82(4)	14(7)	19(4)	18(8)
C ⁽²⁹⁾	82(4)	89(4)	52(3)	-1(3)	-11(2)	0(3)
C ⁽²³⁾	100(5)	72(4)	104(5)	14(4)	-7(4)	-8(4)
C ⁽²⁸⁾	62(4)	263(14)	157(8)	63(10)	-5(4)	-7(7)
C ⁽³¹⁾	93(5)	169(8)	84(4)	-8(5)	23(4)	19(5)
C ⁽¹²⁾	106(5)	123(6)	62(4)	4(4)	-23(3)	9(5)
C ⁽⁹⁾	121(7)	119(6)	91(5)	-21(5)	25(5)	47(6)

C ⁽²⁴⁾	132(7)	84(5)	138(7)	30(5)	-19(6)	23(5)
C ⁽¹⁵⁾	145(7)	106(5)	77(4)	3(4)	-18(4)	-34(5)
C ⁽²⁷⁾	112(6)	162(8)	110(6)	-21(6)	53(5)	-38(6)
C ⁽⁸⁾	187(11)	74(5)	141(8)	-21(5)	34(8)	30(6)
C ⁽³⁰⁾	184(9)	95(5)	85(5)	-13(4)	-4(5)	-2(6)
C ⁽²⁰⁾	92(7)	234(15)	229(13)	3(12)	21(7)	58(8)
C ⁽¹⁹⁾	154(8)	272(15)	97(6)	-3(8)	50(6)	-1(11)
C ⁽¹⁴⁾	116(8)	187(12)	216(13)	-15(10)	35(8)	50(8)
C ⁽¹⁶⁾	239(13)	137(9)	153(9)	60(8)	-34(9)	-76(9)
C ⁽¹³⁾	224(13)	98(6)	169(11)	38(7)	-22(9)	-9(7)
C ⁽¹⁷⁾	180(10)	127(7)	95(6)	-22(5)	-25(6)	-43(7)
C ⁽³²⁾	136(15)	52(7)	118(13)	-14(7)	7(11)	-27(8)
C ⁽²⁵⁾	94(13)	116(13)	170(20)	63(14)	-40(13)	-48(11)

Table S5 Bond Lengths for 3la.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Si ⁽²⁾	C ⁽²⁶⁾	1.875(6)	C ⁽¹⁾	C ⁽²⁾	1.364(9)
Si ⁽²⁾	C ⁽²²⁾	1.846(5)	C ⁽¹⁾	C ⁽⁶⁾	1.379(9)
Si ⁽²⁾	C ⁽²⁹⁾	1.881(6)	C ⁽²⁶⁾	C ⁽²⁸⁾	1.529(8)
Si ⁽²⁾	C ⁽²³⁾	1.874(7)	C ⁽²⁶⁾	C ⁽²⁷⁾	1.505(8)
Si ⁽¹⁾	C ⁽¹¹⁾	1.827(5)	C ⁽⁵⁾	C ⁽⁶⁾	1.379(7)
Si ⁽¹⁾	C ⁽¹⁸⁾	1.859(7)	N ⁽¹⁾	C ⁽⁸⁾	1.367(11)
Si ⁽¹⁾	C ⁽¹²⁾	1.882(8)	F ⁽¹⁾	C ⁽⁶⁾	1.325(6)
Si ⁽¹⁾	C ⁽¹⁵⁾	1.865(8)	C ⁽¹⁸⁾	C ⁽²⁰⁾	1.488(10)
S ⁽¹⁾	C ⁽⁷⁾	1.693(5)	C ⁽¹⁸⁾	C ⁽¹⁹⁾	1.505(9)
S ⁽¹⁾	C ⁽⁹⁾	1.691(10)	C ⁽²⁹⁾	C ⁽³¹⁾	1.529(8)
C ⁽⁷⁾	C ⁽⁴⁾	1.474(7)	C ⁽²⁹⁾	C ⁽³⁰⁾	1.520(8)
C ⁽⁷⁾	N ⁽¹⁾	1.282(8)	C ⁽²³⁾	C ⁽²⁴⁾	1.531(8)
C ⁽⁴⁾	C ⁽³⁾	1.399(6)	C ⁽²³⁾	C ⁽³²⁾	1.488(17)
C ⁽⁴⁾	C ⁽⁵⁾	1.405(6)	C ⁽²³⁾	C ⁽²⁵⁾	1.390(17)
C ⁽³⁾	C ⁽¹⁰⁾	1.439(7)	C ⁽¹²⁾	C ⁽¹⁴⁾	1.532(9)
C ⁽³⁾	C ⁽²⁾	1.377(8)	C ⁽¹²⁾	C ⁽¹³⁾	1.518(9)
C ⁽²¹⁾	C ⁽⁵⁾	1.440(6)	C ⁽⁹⁾	C ⁽⁸⁾	1.251(12)
C ⁽²¹⁾	C ⁽²²⁾	1.187(6)	C ⁽¹⁵⁾	C ⁽¹⁶⁾	1.500(10)
C ⁽¹⁰⁾	C ⁽¹¹⁾	1.204(7)	C ⁽¹⁵⁾	C ⁽¹⁷⁾	1.533(8)

Table S6 Bond Angles for 3la.

0.3(8)	$C^{(11)}Si^{(1)}C^{(12)}C^{(13)}$
1.2(7)	$C^{(11)}Si^{(1)}C^{(15)}C^{(16)}$
	S30

A B C D

-90.5(5) $C^{(22)} Si^{(2)} C^{(23)} C^{(25)}$

91.1(5) $C^{(11)} Si^{(1)} C^{(18)} C^{(20)}$

-2.5(8) $C^{(11)} Si^{(1)} C^{(18)} C^{(19)}$

-1.8(12) $C^{(11)} Si^{(1)} C^{(12)} C^{(14)}$

Angle/°

23.4(16)

-53.6(11)

159.0(10)

66.1(7)

-61.8(7)

51.1(9)

Table	S7	Torsion	Ang	les 3	3la

Angle/°

A B C D

 $S^{(1)}$ $C^{(7)}$ $C^{(4)}$ $C^{(3)}$

 $S^{(1)}$ $C^{(7)}$ $C^{(4)}$ $C^{(5)}$

 $S^{(1)}$ $C^{(7)}$ $N^{(1)}$ $C^{(8)}$

 $S^{(1)}$ $C^{(9)}$ $C^{(8)}$ $N^{(1)}$

 $C^{(7)}$ $S^{(1)}$ $C^{(9)}$ $C^{(8)}$

 $C^{(7)}$ $C^{(4)}$ $C^{(3)}$ $C^{(10)}$

Aton	n Aton	n Atom	Angle/°	Aton	n Aton	n Atom	Angle/°
C ⁽²⁶⁾	Si ⁽²⁾	C ⁽²⁹⁾	112.1(3)	C ⁽⁶⁾	C ⁽⁵⁾	C ⁽⁴⁾	118.6(4)
C ⁽²²⁾	Si ⁽²⁾	C ⁽²⁶⁾	105.8(3)	C ⁽⁶⁾	C ⁽⁵⁾	C ⁽²¹⁾	119.8(4)
C ⁽²²⁾	Si ⁽²⁾	C ⁽²⁹⁾	107.1(2)	C ⁽⁷⁾	N ⁽¹⁾	C ⁽⁸⁾	111.4(7)
C ⁽²²⁾	Si ⁽²⁾	C ⁽²³⁾	105.8(3)	C ⁽²¹⁾	C ⁽²²⁾	Si ⁽²⁾	176.8(4)
C ⁽²³⁾	Si ⁽²⁾	C ⁽²⁶⁾	114.1(4)	C ⁽¹⁰⁾	C ⁽¹¹⁾	Si ⁽¹⁾	175.5(6)
C ⁽²³⁾	Si ⁽²⁾	C ⁽²⁹⁾	111.3(3)	C ⁽¹⁾	C ⁽²⁾	C ⁽³⁾	121.3(5)
C ⁽¹¹⁾	Si ⁽¹⁾	C ⁽¹⁸⁾	107.2(3)	C ⁽¹⁾	C ⁽⁶⁾	C ⁽⁵⁾	121.7(5)
C ⁽¹¹⁾	Si ⁽¹⁾	C ⁽¹²⁾	106.2(3)	F ⁽¹⁾	C ⁽⁶⁾	C ⁽¹⁾	119.4(5)
C ⁽¹¹⁾	Si ⁽¹⁾	C ⁽¹⁵⁾	107.2(3)	F ⁽¹⁾	C ⁽⁶⁾	C ⁽⁵⁾	118.9(5)
C ⁽¹⁸⁾	Si ⁽¹⁾	C ⁽¹²⁾	110.8(4)	C ⁽²⁰⁾	C ⁽¹⁸⁾	Si ⁽¹⁾	115.1(7)
C ⁽¹⁸⁾	Si ⁽¹⁾	C ⁽¹⁵⁾	115.7(5)	C ⁽²⁰⁾	C ⁽¹⁸⁾	C ⁽¹⁹⁾	119.1(10)
C ⁽¹⁵⁾	Si ⁽¹⁾	C ⁽¹²⁾	109.2(4)	C ⁽¹⁹⁾	C ⁽¹⁸⁾	Si ⁽¹⁾	117.0(6)
C ⁽⁹⁾	S ⁽¹⁾	C ⁽⁷⁾	90.5(4)	C ⁽³¹⁾	C ⁽²⁹⁾	Si ⁽²⁾	113.1(4)
C ⁽⁴⁾	C ⁽⁷⁾	S ⁽¹⁾	122.7(4)	C ⁽³⁰⁾	C ⁽²⁹⁾	Si ⁽²⁾	111.1(5)
N ⁽¹⁾	C ⁽⁷⁾	S ⁽¹⁾	111.4(4)	C ⁽³⁰⁾	C ⁽²⁹⁾	C ⁽³¹⁾	110.4(7)
N ⁽¹⁾	C ⁽⁷⁾	C ⁽⁴⁾	125.9(5)	C ⁽²⁴⁾	C ⁽²³⁾	Si ⁽²⁾	114.3(5)
C ⁽³⁾	C ⁽⁴⁾	C ⁽⁷⁾	121.3(4)	C ⁽³²⁾	C ⁽²³⁾	Si ⁽²⁾	116.3(7)
C ⁽³⁾	C ⁽⁴⁾	C ⁽⁵⁾	119.5(4)	C ⁽³²⁾	C ⁽²³⁾	C ⁽²⁴⁾	119.0(9)
C ⁽⁵⁾	C ⁽⁴⁾	C ⁽⁷⁾	119.2(4)	C ⁽²⁵⁾	C ⁽²³⁾	Si ⁽²⁾	121.3(9)
C ⁽⁴⁾	C ⁽³⁾	C ⁽¹⁰⁾	121.1(5)	C ⁽²⁵⁾	C ⁽²³⁾	C ⁽²⁴⁾	116.9(9)
C ⁽²⁾	C ⁽³⁾	C ⁽⁴⁾	119.6(5)	C ⁽¹⁴⁾	C ⁽¹²⁾	Si ⁽¹⁾	112.4(6)
C ⁽²⁾	C ⁽³⁾	C ⁽¹⁰⁾	119.3(4)	C ⁽¹³⁾	C ⁽¹²⁾	Si ⁽¹⁾	110.7(6)
C ⁽²²⁾	C ⁽²¹⁾	C ⁽⁵⁾	178.0(5)	C ⁽¹³⁾	C ⁽¹²⁾	C ⁽¹⁴⁾	113.4(9)
C ⁽¹¹⁾	C ⁽¹⁰⁾	C ⁽³⁾	176.1(6)	C ⁽⁸⁾	C ⁽⁹⁾	S ⁽¹⁾	109.6(6)
C ⁽²⁾	C ⁽¹⁾	C ⁽⁶⁾	119.3(5)	C ⁽¹⁶⁾	C ⁽¹⁵⁾	Si ⁽¹⁾	117.6(6)
C ⁽²⁸⁾	C ⁽²⁶⁾	Si ⁽²⁾	113.8(5)	C ⁽¹⁶⁾	C ⁽¹⁵⁾	C ⁽¹⁷⁾	110.3(8)
C ⁽²⁷⁾	C ⁽²⁶⁾	Si ⁽²⁾	113.0(4)	C ⁽¹⁷⁾	C ⁽¹⁵⁾	Si ⁽¹⁾	114.5(6)
C ⁽²⁷⁾	C ⁽²⁶⁾	C ⁽²⁸⁾	112.3(8)	C ⁽⁹⁾	C ⁽⁸⁾	N ⁽¹⁾	117.0(8)
C ⁽⁴⁾	C ⁽⁵⁾	C ⁽²¹⁾	121.6(4)				

$C^{(7)}$ $C^{(4)}$ $C^{(3)}$ $C^{(2)}$	-178.9(5)	$C^{(11)} Si^{(1)} C^{(15)} C^{(17)}$	-177.0(7)
$C^{(7)}$ $C^{(4)}$ $C^{(5)}$ $C^{(21)}$	0.9(7)	$C^{(2)}$ $C^{(1)}$ $C^{(6)}$ $C^{(5)}$	0.2(10)
$C^{(7)}$ $C^{(4)}$ $C^{(5)}$ $C^{(6)}$	179.2(5)	$C^{(2)} \ C^{(1)} \ C^{(6)} \ F^{(1)}$	178.4(6)
$C^{(7)} N^{(1)} C^{(8)} C^{(9)}$	2.9(13)	$C^{(6)}$ $C^{(1)}$ $C^{(2)}$ $C^{(3)}$	0.0(10)
$C^{(4)}$ $C^{(7)}$ $N^{(1)}$ $C^{(8)}$	177.5(6)	$C^{(18)}Si^{(1)}C^{(12)}C^{(14)}$	-177.8(7)
$C^{(4)}$ $C^{(3)}$ $C^{(2)}$ $C^{(1)}$	0.2(9)	$C^{(18)} Si^{(1)} C^{(12)} C^{(13)}$	54.3(8)
$C^{(4)}$ $C^{(5)}$ $C^{(6)}$ $C^{(1)}$	-0.6(8)	$C^{(18)} Si^{(1)} C^{(15)} C^{(16)}$	-68.4(9)
$C^{(4)} \ C^{(5)} \ C^{(6)} \ F^{(1)}$	-178.8(5)	$C^{(18)} Si^{(1)} C^{(15)} C^{(17)}$	63.5(8)
$C^{(3)}$ $C^{(4)}$ $C^{(5)}$ $C^{(21)}$	-177.5(4)	$C^{(29)} Si^{(2)} C^{(26)} C^{(28)}$	-57.5(9)
$C^{(3)}$ $C^{(4)}$ $C^{(5)}$ $C^{(6)}$	0.7(7)	$C^{(29)} Si^{(2)} C^{(26)} C^{(27)}$	172.8(6)
$C^{(21)} C^{(5)} C^{(6)} C^{(1)}$	177.7(6)	$C^{(29)} Si^{(2)} C^{(23)} C^{(24)}$	56.3(7)
$C^{(21)} C^{(5)} C^{(6)} F^{(1)}$	-0.5(8)	$C^{(29)} Si^{(2)} C^{(23)} C^{(32)}$	-158.9(11)
$C^{(10)} C^{(3)} C^{(2)} C^{(1)}$	-179.9(6)	$C^{(29)} Si^{(2)} C^{(23)} C^{(25)}$	-92.6(16)
$C^{(26)} Si^{(2)} C^{(29)} C^{(31)}$	-176.5(6)	$C^{(23)} Si^{(2)} C^{(26)} C^{(28)}$	70.2(9)
$C^{(26)} Si^{(2)} C^{(29)} C^{(30)}$	-51.7(6)	$C^{(23)} Si^{(2)} C^{(26)} C^{(27)}$	-59.6(7)
$C^{(26)} Si^{(2)} C^{(23)} C^{(24)}$	-71.7(7)	$C^{(23)}Si^{(2)}C^{(29)}C^{(31)}$	54.3(6)
$C^{(26)} Si^{(2)} C^{(23)} C^{(32)}$	73.1(11)	$C^{(23)} Si^{(2)} C^{(29)} C^{(30)}$	179.1(6)
$C^{(26)} Si^{(2)} C^{(23)} C^{(25)}$	139.3(16)	$C^{(12)} Si^{(1)} C^{(18)} C^{(20)}$	-169.2(9)
$C^{(5)}$ $C^{(4)}$ $C^{(3)}$ $C^{(10)}$	179.5(5)	$C^{(12)} Si^{(1)} C^{(18)} C^{(19)}$	43.4(12)
$C^{(5)}$ $C^{(4)}$ $C^{(3)}$ $C^{(2)}$	-0.6(7)	$C^{(12)} Si^{(1)} C^{(15)} C^{(16)}$	165.8(8)
$N^{(1)} C^{(7)} C^{(4)} C^{(3)}$	89.5(7)	$C^{(12)} Si^{(1)} C^{(15)} C^{(17)}$	-62.3(9)
$N^{(1)} C^{(7)} C^{(4)} C^{(5)}$	-88.9(7)	$C^{(9)}$ $S^{(1)}$ $C^{(7)}$ $C^{(4)}$	-178.7(5)
$C^{(22)} Si^{(2)} C^{(26)} C^{(28)}$	-174.0(8)	$C^{(9)} S^{(1)} C^{(7)} N^{(1)}$	1.3(5)
$C^{(22)} Si^{(2)} C^{(26)} C^{(27)}$	56.3(7)	$C^{(15)} Si^{(1)} C^{(18)} C^{(20)}$	65.8(10)
$C^{(22)} Si^{(2)} C^{(29)} C^{(31)}$	-60.9(6)	$C^{(15)} Si^{(1)} C^{(18)} C^{(19)}$	-81.6(11)
$C^{(22)} Si^{(2)} C^{(29)} C^{(30)}$	64.0(6)	$C^{(15)}Si^{(1)}C^{(12)}C^{(14)}$	-49.2(8)
$C^{(22)} Si^{(2)} C^{(23)} C^{(24)}$	172.3(6)	$C^{(15)}Si^{(1)}C^{(12)}C^{(13)}$	-177.1(7)
$C^{(22)} Si^{(2)} C^{(23)} C^{(32)}$	-42.8(12)		

Table S8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for **3la**.

Atom	x	у	Z	U(eq)
H ⁽¹⁾	15634.12	-2752.69	4857.03	96
H ⁽²⁶⁾	6525.75	-838.43	3404.62	108
H ⁽²⁾	16262.54	-2065.93	6180.79	89
H ⁽¹⁸⁾	13577.24	-556.77	9147.58	167
H ⁽²⁹⁾	7806.82	-59.99	1486.73	91
H ^(23A)	10122	1575.4	2700.43	113
H ⁽²³⁾	8594.99	1795.89	3459.85	113
		521		

S31

H ^(28A)	4980.93	964.91	2800.61	243
H ^(28B)	4074.29	-32.35	3017.81	243
H ^(28C)	5098.21	-7.02	2243.2	243
H ^(31A)	10530.6	512.44	1520.92	172
H ^(31B)	10274.83	-481.55	980.14	172
H ^(31C)	11189.04	-525.03	1906.79	172
H ⁽¹²⁾	17664.68	-875.92	9812.07	120
H ⁽⁹⁾	9123.34	1510.89	6620.94	131
H ^(24A)	7763.98	1817.18	1775.6	182
H ^(24B)	8550.26	2820.55	2169.62	182
H ^(24C)	6966.85	2369.48	2500.33	182
H ⁽¹⁵⁾	18171.71	993.78	8451.95	135
H ^(27A)	7396.17	-108.46	4650.41	187
H ^(27B)	5497.66	116.73	4462.39	187
H ^(27C)	6786.37	964.54	4324.05	187
H ⁽⁸⁾	11034.44	2367.41	5967.73	159
H ^(30A)	9044.52	-1839.29	2311.97	185
H ^(30B)	8375.47	-1793.76	1344.53	185
H ^(30C)	7172.85	-1604.45	2028.18	185
H ^(20A)	12893.45	1448.53	9122.13	277
H ^(20B)	11698.49	518.55	8963.34	277
H ^(20C)	12852.83	819.59	8282.2	277
H ^(19A)	14865.06	-603.46	10412.06	257
H ^(19B)	13247.12	28.32	10453.76	257
H ^(19C)	14957.55	580.43	10485.86	257
H ^(14A)	18690.07	-1253.28	8208.16	257
$H^{(14B)}$	19614.09	-1664.82	9063.26	257
H ^(14C)	19548.39	-496.23	8884.27	257
H ^(16A)	16325.89	1864.91	7612.93	271
H ^(16B)	17181.79	2636.73	8277.12	271
H ^(16C)	15407.23	2226.68	8371.76	271
H ^(13A)	17127.03	-2589.45	9120.83	251
H ^(13B)	15510	-2025.91	8742.49	251
H ^(13C)	15948.93	-2120.62	9728.21	251
H ^(17A)	17079.38	1739.75	9936.38	206
H ^(17B)	18604.42	2172.3	9538.68	206
H ^(17C)	18642.6	1059.62	9886.62	206
H ^(32A)	8879.38	1873.63	4186.03	154
H ^(32B)	9662.2	2777.82	3733.33	154
H ^(32C)	10721.16	1811.42	3996.46	154

H ^(25A)	11311.98	1424.67	3508.49	198
H ^(25B)	10663.02	2543.45	3502.06	198
H ^(25C)	11193.85	2066.05	2672.23	198

Table S9 Atomic Occupancy for 3la.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H ^(23A)	0.50(2)	H ⁽²³⁾	0.50(2)	C ⁽³²⁾	0.50(2)
H ^(32A)	0.50(2)	H ^(32B)	0.50(2)	H ^(32C)	0.50(2)
C ⁽²⁵⁾	0.50(2)	H ^(25A)	0.50(2)	H ^(25B)	0.50(2)
H ^(25C)	0.50(2)				

Colorless transparent block-like single crystals of **4ja** were grown by layering a dichlormethane solution with hexane at ambient temperature. X-Ray diffraction data of one these crystals were collected on a R-AXIS SPIDER diffractometer. The measurements were performed with Mo-K α radiation ($\lambda = 0.71073$ Å). Data were collected at 298(2) K, using the ω - and φ - scans to a maximum θ value of 28.327°. The data were refined by full-matrix least-squares techniques on F² with SHELXL-2018/3. And the structures were solved by direct methods SHELXL-2018/3. All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included at geometrically idealized positions. And an ORTEP representation of the structure is shown below.

Figure S7. ORTEP diagram of 4ja with the thermal ellipsoids set at 50% probability.

-	
Identification code	exp_14226_auto
Empirical formula	C ₂₂ H ₂₉ NOSSi
Formula weight	383.61
Temperature/K	293.15
Crystal system	triclinic
Space group	P-1
a/Å	8.7980(7)
b/Å	12.4654(13)
c/Å	21.0908(14)
α/°	104.490(7)
β/°	90.974(6)
γ/°	91.921(7)
Volume/ų	2237.4(3)
Z	4
$\rho_{calc}g/cm^3$	1.139
µ/mm⁻¹	0.208
F(000)	824.0
Crystal size/mm ³	$0.03 \times 0.02 \times 0.01$
Radiation	Μο Κα (λ = 0.71073)

Table S10 Crystal data and structure	refinement for 4ja.
--------------------------------------	---------------------

20 range for data collection/° 4.536 to 52.746

Index ranges	$-10 \le h \le 10, -15 \le k \le 15, -26 \le l \le 26$
Reflections collected	17857
Independent reflections	9131 [$R_{int} = 0.0452$, $R_{sigma} = 0.0814$]
Data/restraints/parameters	9131/4/483
Goodness-of-fit on F ²	1.019
Final R indexes [I>=2σ (I)]	$R_1 = 0.0671$, $wR_2 = 0.1786$
Final R indexes [all data]	$R_1 = 0.1493$, $wR_2 = 0.2381$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.28

Table S11 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **4ja**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
S ⁽²⁾	4532.7(9)	8161.6(8)	3730.8(3)	62.1(3)
Si ⁽²⁾	7810.3(11)	5728.0(9)	1608.7(4)	70.3(3)
O ⁽¹⁾	-91(4)	11436(3)	6303.6(14)	129.4(13)
N ⁽²⁾	5686(3)	7514(2)	4685.7(12)	65.1(7)
C ⁽³⁰⁾	3662(3)	8818(3)	5036.1(13)	51.9(8)
C ⁽³¹⁾	4646(3)	8152(3)	4547.1(12)	50.5(7)
C ⁽³⁵⁾	7045(4)	6424(3)	2402.4(15)	72.8(10)
C ⁽³³⁾	5989(3)	7253(3)	3573.8(14)	59.2(8)
C ⁽²⁹⁾	3638(4)	8643(3)	5660.4(13)	60.7(8)
C ⁽³²⁾	6430(4)	7009(3)	4133.1(15)	68.6(9)
C ⁽²⁸⁾	2716(4)	9286(3)	6123.3(15)	72.1(10)
C ⁽²⁵⁾	1807(4)	10086(3)	5976.4(15)	65.2(10)
C ⁽²⁷⁾	2758(3)	9621(3)	4892.9(14)	63.2(9)
C ⁽³⁴⁾	6561(4)	6828(3)	2933.3(15)	67.6(10)
C ⁽²⁶⁾	1841(3)	10246(3)	5359.5(15)	69.6(10)
C ⁽²⁴⁾	795(5)	10760(4)	6473.6(19)	86.9(12)
C ⁽³⁹⁾	9802(4)	6313(4)	1568.6(17)	105.3(14)
C ⁽⁴⁰⁾	10866(5)	6250(5)	2120(2)	143(2)
C ⁽⁴²⁾	7640(6)	4205(4)	1564.9(19)	118.7(16)
C ⁽²³⁾	871(5)	10644(4)	7139.8(17)	111.6(15)
C ⁽³⁶⁾	6568(5)	6064(5)	963.9(18)	120.8(18)
C ⁽⁴¹⁾	10514(5)	5900(5)	899(2)	150(2)
C ⁽⁴³⁾	8402(7)	3860(5)	2131(2)	153(2)
C ⁽⁴⁴⁾	7938(7)	3430(4)	902(2)	160(2)
C ⁽³⁷⁾	6686(8)	7296(6)	990(3)	185(3)
C ⁽³⁸⁾	4922(5)	5631(7)	996(3)	201(4)

S ⁽¹⁾	10552.3(9)	6786.5(7)	6267.2(3)	62.4(3)
N ⁽¹⁾	9321(3)	7461(2)	5336.2(12)	67.7(8)
C ⁽⁶⁾	11342(3)	6180(3)	4950.8(13)	52.8(8)
C ⁽⁹⁾	10386(3)	6822(3)	5458.2(12)	49.9(7)
C ⁽¹³⁾	8098(4)	8477(3)	7632.5(16)	76.7(11)
C ⁽¹¹⁾	9086(3)	7684(3)	6445.5(14)	58.6(8)
C ⁽⁵⁾	11300(4)	6348(3)	4326.6(14)	65.1(9)
O ⁽²⁾	15086(4)	3628(3)	3618.0(16)	140.5(14)
C ⁽⁴⁾	12200(4)	5724(3)	3847.2(14)	70.8(10)
C ⁽⁷⁾	12297(4)	5387(3)	5080.3(14)	65.6(9)
C ⁽¹²⁾	8566(4)	8092(3)	7098.7(15)	68.1(10)
C ⁽¹⁰⁾	8609(4)	7944(3)	5898.8(15)	68.1(9)
C ⁽³⁾	13156(4)	4940(3)	3981.3(15)	64.1(9)
C ⁽⁸⁾	13192(4)	4783(3)	4600.6(16)	71.6(10)
C ⁽²⁾	14130(5)	4275(4)	3461(2)	92.3(13)
C ⁽¹⁾	13951(5)	4386(4)	2796.5(17)	106.6(15)
C ⁽²⁰⁾	5606(6)	9953(4)	8192(2)	122.9(18)
C ⁽²²⁾	4311(6)	9109(7)	7888(3)	179(3)
C ⁽²¹⁾	6023(7)	10727(5)	7763(3)	181(3)
C ⁽¹⁷⁾	6654(5)	8168(4)	8861.7(19)	118.2(16)
C ⁽¹⁸⁾	7754(7)	7402(5)	8968(3)	158(2)
C ⁽¹⁹⁾	5800(6)	8677(5)	9486.3(19)	156(2)
C ⁽¹⁴⁾	8845(6)	10242(5)	8831(2)	144(2)
C ⁽¹⁵⁾	10374(6)	9847(6)	8850(3)	166(2)
C ⁽¹⁶⁾	8370(7)	11109(5)	9424(2)	177(3)
Si ⁽¹⁾	7302.4(12)	9228.1(10)	8410.8(4)	77.7(4)

Table S12 Anisotropic Displacement Parameters (Å²×10³) for **4ja**. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U_{12}
S ⁽²⁾	70.5(5)	71.4(6)	44.1(4)	13.1(4)	7.6(4)	7.1(4)
Si ⁽²⁾	74.8(6)	85.3(8)	47.9(5)	8.5(5)	9.2(5)	18.6(6)
O ⁽¹⁾	113(2)	155(4)	109(2)	7(2)	14.2(19)	55(2)
N ⁽²⁾	74.3(17)	69(2)	51.7(15)	12.7(14)	3.3(13)	9.1(15)
C ⁽³⁰⁾	56.1(17)	51(2)	44.3(16)	6.0(14)	1.8(14)	-11.9(16)
C ⁽³¹⁾	57.1(17)	52(2)	39.5(15)	7.2(14)	0.2(13)	-9.4(16)
C ⁽³⁵⁾	81(2)	77(3)	57.5(19)	10.1(18)	5.5(17)	11(2)
C ⁽³³⁾	65.8(19)	58(2)	50.3(17)	6.5(16)	6.2(15)	-2.6(17)
C ⁽²⁹⁾	77(2)	57(2)	46.6(17)	11.6(15)	3.8(15)	0.0(17)
C ⁽³²⁾	74(2)	74(3)	56.1(19)	11.0(18)	7.7(17)	14.0(19)
-------------------	----------	----------	----------	----------	----------	-----------
C ⁽²⁸⁾	94(3)	70(3)	45.4(17)	2.2(17)	17.3(17)	-15(2)
C ⁽²⁵⁾	60.4(19)	66(2)	55.8(19)	-9.0(18)	8.9(16)	-13.1(18)
C ⁽²⁷⁾	66(2)	69(2)	53.0(18)	11.6(17)	5.6(16)	4.1(18)
C ⁽³⁴⁾	76(2)	71(3)	51.3(18)	7.1(17)	9.7(17)	-5.8(19)
C ⁽²⁶⁾	58.4(19)	80(3)	64(2)	5.2(18)	1.2(16)	2.8(18)
C ⁽²⁴⁾	82(3)	81(3)	82(2)	-9(2)	24(2)	-8(2)
C ⁽³⁹⁾	97(3)	134(4)	79(3)	14(3)	19(2)	14(3)
C ⁽⁴⁰⁾	84(3)	205(7)	128(4)	19(4)	-18(3)	14(3)
C ⁽⁴²⁾	162(4)	109(4)	80(3)	11(3)	20(3)	25(3)
C ⁽²³⁾	164(4)	97(3)	65(2)	1(2)	48(2)	-3(3)
C ⁽³⁶⁾	118(4)	173(6)	74(3)	29(3)	-2(2)	53(4)
C ⁽⁴¹⁾	118(4)	199(6)	123(4)	14(4)	51(3)	6(4)
C ⁽⁴³⁾	230(6)	115(5)	133(4)	54(4)	44(4)	69(4)
C ⁽⁴⁴⁾	215(6)	111(4)	130(4)	-22(3)	42(4)	24(4)
C ⁽³⁷⁾	247(7)	185(7)	154(5)	86(5)	17(5)	109(6)
C ⁽³⁸⁾	75(3)	372(11)	143(5)	35(5)	-13(3)	43(5)
S ⁽¹⁾	71.2(5)	68.7(6)	47.1(4)	13.0(4)	10.4(4)	8.7(4)
N ⁽¹⁾	76.2(18)	72(2)	52.9(15)	10.9(14)	4.2(13)	12.9(16)
C ⁽⁶⁾	56.7(18)	49(2)	47.4(16)	3.3(14)	6.0(14)	-13.6(16)
C ⁽⁹⁾	62.0(18)	46.7(19)	39.0(15)	7.7(13)	2.1(13)	-3.9(15)
C ⁽¹³⁾	84(2)	80(3)	66(2)	13.5(19)	21.6(19)	13(2)
C ⁽¹¹⁾	62.9(19)	52(2)	56.9(18)	5.4(16)	12.8(16)	3.6(16)
C ⁽⁵⁾	83(2)	60(2)	50.5(18)	10.4(16)	12.1(16)	-0.2(18)
O ⁽²⁾	109(2)	173(4)	124(3)	1(2)	25(2)	58(3)
C ⁽⁴⁾	96(3)	69(3)	43.3(17)	8.5(17)	13.8(17)	-15(2)
C ⁽⁷⁾	68(2)	74(3)	50.3(18)	6.2(17)	7.3(16)	6.5(19)
C ⁽¹²⁾	73(2)	71(3)	55.5(19)	6.1(17)	14.2(17)	2.5(19)
C ⁽¹⁰⁾	76(2)	70(3)	55.6(19)	9.3(18)	4.1(17)	19.8(19)
C ⁽³⁾	65(2)	55(2)	61(2)	-5.0(17)	13.0(17)	-12.7(18)
C ⁽⁸⁾	61.2(19)	84(3)	65(2)	9.8(19)	7.5(17)	7.9(19)
C ⁽²⁾	87(3)	91(3)	81(2)	-14(2)	34(2)	-13(2)
C ⁽¹⁾	145(4)	95(3)	67(2)	-4(2)	45(2)	-10(3)
C ⁽²⁰⁾	152(4)	134(5)	92(3)	34(3)	36(3)	85(4)
C ⁽²²⁾	117(4)	266(9)	155(5)	51(5)	-19(4)	56(5)
C ⁽²¹⁾	241(7)	207(7)	136(4)	100(5)	72(4)	123(6)
C ⁽¹⁷⁾	144(4)	133(4)	89(3)	38(3)	44(3)	59(3)
C ⁽¹⁸⁾	191(6)	153(6)	159(5)	80(4)	57(4)	84(5)
C ⁽¹⁹⁾	212(6)	173(6)	99(3)	52(3)	78(4)	60(4)
C ⁽¹⁴⁾	151(5)	127(5)	123(4)	-31(3)	10(4)	23(4)

C ⁽¹⁵⁾	134(4)	186(7)	152(5)	-1(4)	-22(4)	-3(5)
C ⁽¹⁶⁾	249(7)	148(6)	99(3)	-33(3)	17(4)	-1(5)
Si ⁽¹⁾	94.1(8)	84.7(9)	52.1(5)	8.8(5)	18.5(5)	29.3(6)

Table S13 Bond Lengths for 4ja.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S ⁽²⁾	C ⁽³¹⁾	1.726(3)	S ⁽¹⁾	C ⁽⁹⁾	1.722(3)
S ⁽²⁾	C ⁽³³⁾	1.720(3)	S ⁽¹⁾	C ⁽¹¹⁾	1.721(3)
Si ⁽²⁾	C ⁽³⁵⁾	1.832(3)	N ⁽¹⁾	C ⁽⁹⁾	1.313(4)
Si ⁽²⁾	C ⁽³⁹⁾	1.887(4)	N ⁽¹⁾	C ⁽¹⁰⁾	1.362(4)
Si ⁽²⁾	C ⁽⁴²⁾	1.879(5)	C ⁽⁶⁾	C ⁽⁹⁾	1.463(4)
Si ⁽²⁾	C ⁽³⁶⁾	1.867(4)	C ⁽⁶⁾	C ⁽⁵⁾	1.384(4)
O ⁽¹⁾	C ⁽²⁴⁾	1.278(5)	C ⁽⁶⁾	C ⁽⁷⁾	1.393(4)
N ⁽²⁾	C ⁽³¹⁾	1.308(4)	C ⁽¹³⁾	C ⁽¹²⁾	1.194(4)
N ⁽²⁾	C ⁽³²⁾	1.368(4)	C ⁽¹³⁾	Si ⁽¹⁾	1.837(3)
C ⁽³⁰⁾	C ⁽³¹⁾	1.467(4)	C ⁽¹¹⁾	C ⁽¹²⁾	1.432(4)
C ⁽³⁰⁾	C ⁽²⁹⁾	1.388(4)	C ⁽¹¹⁾	C ⁽¹⁰⁾	1.338(4)
C ⁽³⁰⁾	C ⁽²⁷⁾	1.387(4)	C ⁽⁵⁾	C ⁽⁴⁾	1.389(4)
C ⁽³⁵⁾	C ⁽³⁴⁾	1.199(4)	O ⁽²⁾	C ⁽²⁾	1.279(6)
C ⁽³³⁾	C ⁽³²⁾	1.344(4)	C ⁽⁴⁾	C ⁽³⁾	1.388(5)
C ⁽³³⁾	C ⁽³⁴⁾	1.429(4)	C ⁽⁷⁾	C ⁽⁸⁾	1.377(4)
C ⁽²⁹⁾	C ⁽²⁸⁾	1.390(4)	C ⁽³⁾	C ⁽⁸⁾	1.368(4)
C ⁽²⁸⁾	C ⁽²⁵⁾	1.390(5)	C ⁽³⁾	C ⁽²⁾	1.500(5)
C ⁽²⁵⁾	C ⁽²⁶⁾	1.365(4)	C ⁽²⁾	C ⁽¹⁾	1.449(6)
C ⁽²⁵⁾	C ⁽²⁴⁾	1.497(5)	C ⁽²⁰⁾	C ⁽²²⁾	1.541(7)
C ⁽²⁷⁾	C ⁽²⁶⁾	1.382(4)	C ⁽²⁰⁾	C ⁽²¹⁾	1.520(7)
C ⁽²⁴⁾	C ⁽²³⁾	1.449(5)	C ⁽²⁰⁾	Si ⁽¹⁾	1.879(5)
C ⁽³⁹⁾	C ⁽⁴⁰⁾	1.500(5)	C ⁽¹⁷⁾	C ⁽¹⁸⁾	1.435(6)
C ⁽³⁹⁾	C ⁽⁴¹⁾	1.529(4)	C ⁽¹⁷⁾	C ⁽¹⁹⁾	1.533(4)
C ⁽⁴²⁾	C ⁽⁴³⁾	1.519(6)	C ⁽¹⁷⁾	Si ⁽¹⁾	1.890(5)
C ⁽⁴²⁾	C ⁽⁴⁴⁾	1.520(5)	C ⁽¹⁴⁾	C ⁽¹⁵⁾	1.451(6)
C ⁽³⁶⁾	C ⁽³⁷⁾	1.523(8)	C ⁽¹⁴⁾	C ⁽¹⁶⁾	1.511(5)
C ⁽³⁶⁾	C ⁽³⁸⁾	1.537(7)	C ⁽¹⁴⁾	Si ⁽¹⁾	1.873(5)

Table S14 Bond Angles for 4ja.

Atom	h Atom	n Atom	Angle/°	Aton	n Ator	n Atom	Angle/°
C ⁽³³⁾	S ⁽²⁾	C ⁽³¹⁾	89.51(15)	C ⁽¹¹⁾	S ⁽¹⁾	C ⁽⁹⁾	89.20(15)

C ⁽³⁵⁾	Si ⁽²⁾	C ⁽⁴²⁾	105.50(17)	C ⁽⁵⁾	C ⁽⁶⁾	C ⁽⁹⁾	120.0(3)
C ⁽³⁵⁾	Si ⁽²⁾	C ⁽³⁶⁾	107.03(18)	C ⁽⁵⁾	C ⁽⁶⁾	C ⁽⁷⁾	118.7(3)
C ⁽⁴²⁾	Si ⁽²⁾	C ⁽³⁹⁾	115.9(2)	C ⁽⁷⁾	C ⁽⁶⁾	C ⁽⁹⁾	121.3(3)
C ⁽³⁶⁾	Si ⁽²⁾	C ⁽³⁹⁾	109.9(2)	N ⁽¹⁾	C ⁽⁹⁾	S ⁽¹⁾	114.4(2)
C ⁽³⁶⁾	Si ⁽²⁾	C ⁽⁴²⁾	110.3(2)	N ⁽¹⁾	C ⁽⁹⁾	C ⁽⁶⁾	123.1(3)
C ⁽³¹⁾	N ⁽²⁾	C ⁽³²⁾	110.5(3)	C ⁽⁶⁾	C ⁽⁹⁾	S ⁽¹⁾	122.5(2)
C ⁽²⁹⁾	C ⁽³⁰⁾	C ⁽³¹⁾	119.1(3)	C ⁽¹²⁾	C ⁽¹³⁾	Si ⁽¹⁾	172.2(4)
C ⁽²⁷⁾	C ⁽³⁰⁾	C ⁽³¹⁾	121.8(3)	C ⁽¹²⁾	C ⁽¹¹⁾	S ⁽¹⁾	122.3(3)
C ⁽²⁷⁾	C ⁽³⁰⁾	C ⁽²⁹⁾	119.0(3)	C ⁽¹⁰⁾	C ⁽¹¹⁾	S ⁽¹⁾	109.5(2)
N ⁽²⁾	C ⁽³¹⁾	S ⁽²⁾	114.1(2)	C ⁽¹⁰⁾	C ⁽¹¹⁾	C ⁽¹²⁾	128.2(3)
N ⁽²⁾	C ⁽³¹⁾	C ⁽³⁰⁾	123.8(3)	C ⁽⁶⁾	C ⁽⁵⁾	C ⁽⁴⁾	119.5(3)
C ⁽³⁰⁾	C ⁽³¹⁾	S ⁽²⁾	122.1(2)	C ⁽³⁾	C ⁽⁴⁾	C ⁽⁵⁾	121.5(3)
C ⁽³⁴⁾	C ⁽³⁵⁾	Si ⁽²⁾	176.4(4)	C ⁽⁸⁾	C ⁽⁷⁾	C ⁽⁶⁾	121.0(3)
C ⁽³²⁾	C ⁽³³⁾	S ⁽²⁾	109.3(2)	C ⁽¹³⁾	C ⁽¹²⁾	C ⁽¹¹⁾	176.5(4)
C ⁽³²⁾	C ⁽³³⁾	C ⁽³⁴⁾	127.6(3)	C ⁽¹¹⁾	C ⁽¹⁰⁾	N ⁽¹⁾	116.8(3)
C ⁽³⁴⁾	C ⁽³³⁾	S ⁽²⁾	123.0(3)	C ⁽⁴⁾	C ⁽³⁾	C ⁽²⁾	121.0(4)
C ⁽³⁰⁾	C ⁽²⁹⁾	C ⁽²⁸⁾	118.8(3)	C ⁽⁸⁾	C ⁽³⁾	C ⁽⁴⁾	118.6(3)
C ⁽³³⁾	C ⁽³²⁾	N ⁽²⁾	116.6(3)	C ⁽⁸⁾	C ⁽³⁾	C ⁽²⁾	120.4(4)
C ⁽²⁵⁾	C ⁽²⁸⁾	C ⁽²⁹⁾	122.0(3)	C ⁽³⁾	C ⁽⁸⁾	C ⁽⁷⁾	120.7(4)
C ⁽²⁸⁾	C ⁽²⁵⁾	C ⁽²⁴⁾	121.7(4)	O ⁽²⁾	C ⁽²⁾	C ⁽³⁾	119.0(4)
C ⁽²⁶⁾	C ⁽²⁵⁾	C ⁽²⁸⁾	118.5(3)	O ⁽²⁾	C ⁽²⁾	C ⁽¹⁾	122.2(4)
C ⁽²⁶⁾	C ⁽²⁵⁾	C ⁽²⁴⁾	119.9(4)	C ⁽¹⁾	C ⁽²⁾	C ⁽³⁾	118.8(5)
C ⁽²⁶⁾	C ⁽²⁷⁾	C ⁽³⁰⁾	121.2(3)	C ⁽²²⁾	C ⁽²⁰⁾	Si ⁽¹⁾	110.8(4)
C ⁽³⁵⁾	C ⁽³⁴⁾	C ⁽³³⁾	176.9(4)	C ⁽²¹⁾	C ⁽²⁰⁾	C ⁽²²⁾	112.5(5)
C ⁽²⁵⁾	C ⁽²⁶⁾	C ⁽²⁷⁾	120.6(4)	C ⁽²¹⁾	C ⁽²⁰⁾	Si ⁽¹⁾	112.1(4)
O ⁽¹⁾	C ⁽²⁴⁾	C ⁽²⁵⁾	119.3(4)	C ⁽¹⁸⁾	C ⁽¹⁷⁾	C ⁽¹⁹⁾	111.9(4)
O ⁽¹⁾	C ⁽²⁴⁾	C ⁽²³⁾	121.8(4)	C ⁽¹⁸⁾	C ⁽¹⁷⁾	Si ⁽¹⁾	117.1(4)
C ⁽²³⁾	C ⁽²⁴⁾	C ⁽²⁵⁾	118.9(4)	C ⁽¹⁹⁾	C ⁽¹⁷⁾	Si ⁽¹⁾	113.0(3)
C ⁽⁴⁰⁾	C ⁽³⁹⁾	Si ⁽²⁾	115.5(3)	C ⁽¹⁵⁾	C ⁽¹⁴⁾	C ⁽¹⁶⁾	116.6(5)
C ⁽⁴⁰⁾	C ⁽³⁹⁾	C ⁽⁴¹⁾	112.1(4)	C ⁽¹⁵⁾	C ⁽¹⁴⁾	Si ⁽¹⁾	118.1(4)
C ⁽⁴¹⁾	C ⁽³⁹⁾	Si ⁽²⁾	113.4(3)	C ⁽¹⁶⁾	C ⁽¹⁴⁾	Si ⁽¹⁾	115.5(4)
C ⁽⁴³⁾	C ⁽⁴²⁾	Si ⁽²⁾	115.0(3)	C ⁽¹³⁾	Si ⁽¹⁾	C ⁽²⁰⁾	106.43(18)
C ⁽⁴³⁾	C ⁽⁴²⁾	C ⁽⁴⁴⁾	113.0(4)	C ⁽¹³⁾	Si ⁽¹⁾	C ⁽¹⁷⁾	107.71(18)
C ⁽⁴⁴⁾	C ⁽⁴²⁾	Si ⁽²⁾	115.9(3)	C ⁽¹³⁾	Si ⁽¹⁾	C ⁽¹⁴⁾	105.51(19)
C ⁽³⁷⁾	C ⁽³⁶⁾	Si ⁽²⁾	111.2(4)	C ⁽²⁰⁾	Si ⁽¹⁾	C ⁽¹⁷⁾	109.4(2)
C ⁽³⁷⁾	C ⁽³⁶⁾	C ⁽³⁸⁾	113.0(5)	C ⁽¹⁴⁾	Si ⁽¹⁾	C ⁽²⁰⁾	111.5(3)
C ⁽³⁸⁾	C ⁽³⁶⁾	Si ⁽²⁾	111.3(4)	C ⁽¹⁴⁾	Si ⁽¹⁾	C ⁽¹⁷⁾	115.8(3)

 $C^{(35)}$ Si⁽²⁾ $C^{(39)}$ 107.87(16) $C^{(9)}$ N⁽¹⁾ $C^{(10)}$ 110.1(3)

	•		•
$S^{(2)} C^{(33)} C^{(32)} N^{(2)}$	-0.7(4)	$S^{(1)} \ C^{(11)} C^{(10)} N^{(1)}$	0.9(4)
$C^{(30)} C^{(29)} C^{(28)} C^{(25)}$	0.9(5)	$C^{(6)}$ $C^{(5)}$ $C^{(4)}$ $C^{(3)}$	-0.6(5)
$C^{(30)} C^{(27)} C^{(26)} C^{(25)}$	0.1(5)	$C^{(6)}$ $C^{(7)}$ $C^{(8)}$ $C^{(3)}$	-0.6(5)
$C^{(31)}S^{(2)}$ $C^{(33)}C^{(32)}$	0.5(3)	$C^{(9)} \ S^{(1)} \ C^{(11)} C^{(12)}$	-178.2(3)
$C^{(31)} S^{(2)} C^{(33)} C^{(34)}$	178.9(3)	$C^{(9)} \ S^{(1)} \ C^{(11)} C^{(10)}$	-0.7(3)
$C^{(31)}N^{(2)}C^{(32)}C^{(33)}$	0.4(4)	$C^{(9)} \ N^{(1)} \ C^{(10)} \ C^{(11)}$	-0.7(4)
$C^{(31)} C^{(30)} C^{(29)} C^{(28)}$	179.2(3)	$C^{(9)}$ $C^{(6)}$ $C^{(5)}$ $C^{(4)}$	-179.3(3)
$C^{(31)} C^{(30)} C^{(27)} C^{(26)}$	-179.7(3)	$C^{(9)}$ $C^{(6)}$ $C^{(7)}$ $C^{(8)}$	179.8(3)
$C^{(35)} Si^{(2)} C^{(39)} C^{(40)}$	55.1(4)	$C^{(11)}S^{(1)}\ C^{(9)}\ N^{(1)}$	0.4(3)
$C^{(35)} Si^{(2)} C^{(39)} C^{(41)}$	-173.5(4)	$C^{(11)}S^{(1)}\ C^{(9)}\ C^{(6)}$	-178.9(2)
$C^{(35)} Si^{(2)} C^{(42)} C^{(43)}$	-55.5(4)	$C^{(5)}$ $C^{(6)}$ $C^{(9)}$ $S^{(1)}$	-171.5(2)
$C^{(35)} Si^{(2)} C^{(42)} C^{(44)}$	169.5(4)	$C^{(5)}$ $C^{(6)}$ $C^{(9)}$ $N^{(1)}$	9.3(4)
$C^{(35)} Si^{(2)} C^{(36)} C^{(37)}$	65.7(4)	$C^{(5)}$ $C^{(6)}$ $C^{(7)}$ $C^{(8)}$	0.4(5)
$C^{(35)} Si^{(2)} C^{(36)} C^{(38)}$	-61.3(5)	$C^{(5)}$ $C^{(4)}$ $C^{(3)}$ $C^{(8)}$	0.4(5)
$C^{(33)}S^{(2)}\ C^{(31)}N^{(2)}$	-0.3(2)	$C^{(5)}$ $C^{(4)}$ $C^{(3)}$ $C^{(2)}$	-179.6(3)
$C^{(33)}S^{(2)}\ C^{(31)}C^{(30)}$	179.1(2)	$C^{(4)}$ $C^{(3)}$ $C^{(8)}$ $C^{(7)}$	0.2(5)
$C^{(29)} C^{(30)} C^{(31)} S^{(2)}$	169.8(2)	$C^{(4)}$ $C^{(3)}$ $C^{(2)}$ $O^{(2)}$	174.2(4)
$C^{(29)} C^{(30)} C^{(31)} N^{(2)}$	-10.8(4)	$C^{(4)}$ $C^{(3)}$ $C^{(2)}$ $C^{(1)}$	-5.9(5)
$C^{(29)} C^{(30)} C^{(27)} C^{(26)}$	0.0(5)	$C^{(7)}$ $C^{(6)}$ $C^{(9)}$ $S^{(1)}$	9.0(4)
$C^{(29)} C^{(28)} C^{(25)} C^{(26)}$	-0.7(5)	$C^{(7)}$ $C^{(6)}$ $C^{(9)}$ $N^{(1)}$	-170.2(3)
$C^{(29)} C^{(28)} C^{(25)} C^{(24)}$	178.8(3)	$C^{(7)}$ $C^{(6)}$ $C^{(5)}$ $C^{(4)}$	0.2(4)
$C^{(32)}N^{(2)}C^{(31)}S^{(2)}$	0.0(4)	$C^{(12)}C^{(11)}C^{(10)}N^{(1)}$	178.2(3)
$C^{(32)}N^{(2)}C^{(31)}C^{(30)}$	-179.4(3)	$C^{(10)} N^{(1)} C^{(9)} S^{(1)}$	0.1(4)
$C^{(28)} C^{(25)} C^{(26)} C^{(27)}$	0.2(5)	$C^{(10)} N^{(1)} C^{(9)} C^{(6)}$	179.4(3)
$C^{(28)} C^{(25)} C^{(24)} O^{(1)}$	-175.6(4)	$C^{(8)}$ $C^{(3)}$ $C^{(2)}$ $O^{(2)}$	-5.8(5)
$C^{(28)} C^{(25)} C^{(24)} C^{(23)}$	5.7(5)	$C^{(8)}$ $C^{(3)}$ $C^{(2)}$ $C^{(1)}$	174.0(3)
$C^{(27)} C^{(30)} C^{(31)} S^{(2)}$	-10.4(4)	$C^{(2)}$ $C^{(3)}$ $C^{(8)}$ $C^{(7)}$	-179.8(3)
$C^{(27)} C^{(30)} C^{(31)} N^{(2)}$	168.9(3)	$C^{(22)} C^{(20)} Si^{(1)} C^{(13)}$	69.0(4)
$C^{(27)} C^{(30)} C^{(29)} C^{(28)}$	-0.5(4)	$C^{(22)} C^{(20)} Si^{(1)} C^{(17)}$	-47.1(4)
$C^{(34)} C^{(33)} C^{(32)} N^{(2)}$	-179.0(3)	$C^{(22)}C^{(20)}Si^{(1)}C^{(14)}$	-176.4(3)
$C^{(26)} C^{(25)} C^{(24)} O^{(1)}$	3.9(5)	$C^{(21)} C^{(20)} Si^{(1)} C^{(13)}$	-57.6(5)
$C^{(26)} C^{(25)} C^{(24)} C^{(23)}$	-174.8(3)	$C^{(21)} C^{(20)} Si^{(1)} C^{(17)}$	-173.7(4)
$C^{(24)} C^{(25)} C^{(26)} C^{(27)}$	-179.3(3)	$C^{(21)} C^{(20)} Si^{(1)} C^{(14)}$	57.0(5)
$C^{(39)} Si^{(2)} C^{(42)} C^{(43)}$	63.7(4)	$C^{(18)}C^{(17)}Si^{(1)}C^{(13)}$	54.2(5)
$C^{(39)} Si^{(2)} C^{(42)} C^{(44)}$	-71.2(4)	$C^{(18)}C^{(17)}Si^{(1)}C^{(20)}$	169.5(4)
$C^{(39)} Si^{(2)} C^{(36)} C^{(37)}$	-51.2(4)	$C^{(18)}C^{(17)}Si^{(1)}C^{(14)}$	-63.5(5)
$C^{(39)} Si^{(2)} C^{(36)} C^{(38)}$	-178.2(4)	$C^{(19)}C^{(17)}Si^{(1)}C^{(13)}$	-173.5(3)
$C^{(42)} Si^{(2)} C^{(39)} C^{(40)}$	-62.8(4)	$C^{(19)} C^{(17)} Si^{(1)} C^{(20)}$	-58.2(4)

Table S15Torsion Angles for 4ja.

A B C D Angle/° A B C D Angle/°

$C^{(42)}Si^{(2)}C^{(39)}C^{(41)}$	68.6(4)	$C^{(19)} C^{(17)} Si^{(1)} C^{(14)}$	68.8(4)
$C^{(42)} Si^{(2)} C^{(36)} C^{(37)}$	180.0(4)	$C^{(15)} C^{(14)} Si^{(1)} C^{(13)}$	-46.2(5)
$C^{(42)} Si^{(2)} C^{(36)} C^{(38)}$	52.9(5)	$C^{(15)} C^{(14)} Si^{(1)} C^{(20)}$	-161.3(5)
$C^{(36)} Si^{(2)} C^{(39)} C^{(40)}$	171.4(4)	$C^{(15)} C^{(14)} Si^{(1)} C^{(17)}$	72.8(5)
$C^{(36)} Si^{(2)} C^{(39)} C^{(41)}$	-57.1(4)	$C^{(16)} C^{(14)} Si^{(1)} C^{(13)}$	168.9(4)
$C^{(36)} Si^{(2)} C^{(42)} C^{(43)}$	-170.8(3)	$C^{(16)}C^{(14)}Si^{(1)}C^{(20)}$	53.8(5)
$C^{(36)} Si^{(2)} C^{(42)} C^{(44)}$	54.3(4)	$C^{(16)}C^{(14)}Si^{(1)}C^{(17)}$	-72.1(5)

Table S16 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 4ja.

Atom	x	У	z	U(eq)
H ⁽²⁹⁾	4228.28	8104.55	5767.08	73
H ⁽³²⁾	7202.12	6521.47	4143.83	82
H ⁽²⁸⁾	2708.49	9177.55	6543.83	87
H ⁽²⁷⁾	2768.28	9741.87	4475.33	76
H ⁽²⁶⁾	1243.16	10779.02	5252.3	84
H ⁽³⁹⁾	9682.11	7108.31	1616.66	126
H ^(40A)	10388.55	6537.81	2530.35	215
H ^(40B)	11782.26	6680.78	2101.37	215
H ^(40C)	11109.15	5491.81	2081.03	215
H ⁽⁴²⁾	6553.11	4074.7	1625.04	142
H ^(23A)	1870.68	10870.1	7324.74	167
H ^(23B)	659.56	9883.64	7139.81	167
H ^(23C)	133.6	11101.92	7396.42	167
H ⁽³⁶⁾	6953.91	5667.81	539.5	145
H ^(41A)	10701.29	5124.55	825.37	226
H ^(41B)	11456.38	6305.11	888.99	226
H ^(41C)	9830.41	6010.09	563.62	226
H ^(43A)	9474.56	4034.05	2138.91	230
H ^(43B)	8236.05	3076.71	2075.83	230
H ^(43C)	7977.17	4251.89	2535.76	230
H ^(44A)	7385	3661.09	566.14	241
H ^(44B)	7611.42	2687.08	902.05	241
H ^(44C)	9006.88	3450.98	818.75	241
H ^(37A)	6312.61	7713.15	1399.74	278
H ^(37B)	6090.98	7437.11	636.15	278
H ^(37C)	7730.7	7513.51	950.94	278
H ^(38A)	4904.44	4841.2	934.54	302
H ^(38B)	4311.92	5810.81	657.97	302

H ^(38C)	4520.25	5971.24	1416.06	302
H ⁽⁵⁾	10674.16	6874.44	4228.91	78
H ⁽⁴⁾	12162.01	5833.91	3427.18	85
H ⁽⁷⁾	12330.6	5263.14	5497.23	79
H ⁽¹⁰⁾	7828.43	8430.36	5902.55	82
H ⁽⁸⁾	13829	4262.17	4698.64	86
H ^(1A)	14593.62	3878.16	2513.99	160
H ^(1B)	14232.14	5130.76	2783.54	160
H ^(1C)	12909.71	4221.86	2651.59	160
H ⁽²⁰⁾	5232.8	10413.47	8602.86	147
H ^(22A)	3471.87	9492.55	7763.66	268
H ^(22B)	3984.03	8716.1	8202.04	268
H ^(22C)	4669.63	8592.12	7507.32	268
H ^(21A)	6416.41	10306.39	7358.72	272
H ^(21B)	6781.43	11267.99	7986.28	272
H ^(21C)	5133.59	11096.16	7674.01	272
H ⁽¹⁷⁾	5881.06	7703.9	8568.5	142
H ^(18A)	8511.68	7787.92	9283.42	238
H ^(18B)	8229.62	7075.74	8562.66	238
H ^(18C)	7255.28	6830.31	9129.43	238
H ^(19A)	5393.25	8096.47	9666.62	234
H ^(19B)	4983.34	9101.9	9382.79	234
H ^(19C)	6487.01	9152.23	9800.57	234
H ⁽¹⁴⁾	8965.53	10693.74	8514.36	173
H ^(15A)	11082.63	10469.17	8984.92	248
H ^(15B)	10623.77	9417.45	8422.84	248
H ^(15C)	10427.21	9394.21	9156.71	248
H ^(16A)	8069.38	10756.17	9760.81	266
H ^(16B)	7530.4	11497.94	9306.03	266
H ^(16C)	9208.93	11624.2	9583.75	266

S43

3ca | ¹H NMR (CDCl₃, 600 MHz)

3da | ¹H NMR (CDCl₃, 600 MHz)

3ea | ¹H NMR (CDCl₃, 600 MHz)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3ea | ¹⁹F{¹H} NMR (CDCl₃, 565 MHz)

3fa | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

3ga | ¹H NMR (CDCl₃, 600 MHz)

3ga | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

3ha | ¹H NMR (CDCl₃, 600 MHz)

3ia | ¹H NMR (CDCl₃, 600 MHz)

3ja | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

3la | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

3na | ¹H NMR (CDCl₃, 600 MHz)

3na | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

3oa | ¹H NMR (CDCl₃, 600 MHz)

30a | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

3pa | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

3qa | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

3sa | ¹⁹F{¹H} NMR (CDCl₃, 565 MHz)

3ka₁ | ¹H NMR (CDCl₃, 600 MHz)

3ka₁ | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

3ua | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4aa | ¹H NMR (CDCl₃, 600 MHz)

4aa | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4ba | ¹H NMR (CDCl₃, 600 MHz)

4ba | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4ca | ¹H NMR (CDCl₃, 600 MHz)

4ca | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4da | ¹H NMR (CDCl₃, 600 MHz)

4da | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4ea | ¹H NMR (CDCl₃, 600 MHz)

4ea | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4fa | ¹H NMR (CDCl₃, 600 MHz)

S73

4ga | ¹H NMR (CDCl₃, 600 MHz)

TIPS

4ia | ¹H NMR (CDCl₃, 600 MHz)

4ia | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4ka | ¹H NMR (CDCl₃, 600 MHz)

4ka | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4la | ¹H NMR (CDCl₃, 600 MHz)

4la | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4ma | ¹H NMR (CDCl₃, 600 MHz)

4na | ¹H NMR (CDCl₃, 600 MHz)

4qa | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4ra | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

4sa | ¹H NMR (CDCl₃, 600 MHz)

4ta | ¹H NMR (CDCl₃, 600 MHz)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5aa | ¹³C{¹H} NMR (CDCl₃, 151 MHz)

S93

f1 (ppm)

S95

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

6. References

- 1 C. Yao, B. Jiao, X. Yang, X. Xu, J. Dang, G. Zhou, Z. Wu, X. Lv, Y. Zeng and W. Y. Wong, *Eur. J. Inorg. Chem.*, 2013, **2013**, 4754-4763.
- 2 X. Huang, P. Zhou, X. Yang, R. Wang, G. Huang, T. Liang and Z. Zhang, *Adv. Synth. Catal.*, 2023, **365**, 3674-3679.