Supporting information

Inverse kinetic isotope effect of ammonia decomposition over Ru/CeO₂ using deuterated ammonia

Takuya Suguro, Fuminao Kishimoto, Sota Kuramoto,* William J. Movick, and Kazuhiro Takanabe*

Department of Chemical System Engineering, School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

E-mail: <u>kfuminao@chemsys.t.u-tokyo.ac.jp</u>; <u>takanabe@chemsys.t.u-tokyo.ac.jp</u>

Experimental section

Catalyst Preparation

Cerium oxide ([CeO₂] Daiichi Kigenso Kagaku Kogyo, >99.0 %) were heated at 500 °C for 4 h in static air prior to use. After the heat treatment, wetness impregnation was performed. In a typical synthetic procedure, 500 mg of support materials was first placed in a glass beaker with a stir bar. After this step, 55 mg g of Ru₃(CO)₁₂ (Sigma Aldrich, 99 %) dissolved in 5 mL of tetrahydrofuran (Wako, 99.5 %) was added to the beaker and stirred at 400 rpm at room temperature. After 1 h of stirring, the beaker was heated at 80 °C until all tetrahydrofuran evaporated (typically 1 h). Next, the dried sample was moved to an alumina boat and placed in a tubular furnace. Ar (JFP, 99.9999 %) flowed at 50 mL min⁻¹ in the tubular furnace while the sample was heated to 350 °C for 5 h with a ramp rate of 3 °C min⁻¹. Samples were then cooled to room temperature, and air was slowly diffused into the furnace to avoid overoxidation. Samples were labeled as 5 wt% Ru/CeO₂. The catalysts were diluted and used by physical mixing of x times of the supports as appropriate to control the reaction rate. The TEM image of the catalyst was taken by JEOL, JEM-2010F.

Ammonia decomposition reaction

The samples were prepared by pelletizing, crushing, and sieving to a particle diameter of 250– 500 μ m prior to conducting activity measurements. The catalyst bed suspended by quartz wool was placed in a quartz tube with an internal diameter of 4 mm and heated with an electric furnace. The temperature of the cylindrical catalyst bed was measured using a thermocouple located outside the quartz tube at the catalyst bed. The four-way valve allows switching between a flow reactor and a recirculating batch reactor. The sample was pretreated under an H₂ (JFP, 99.99999 %) flow of 60 mL min⁻¹ for 2 h at 400°C and 0.1 MPa, before being set to the measurement temperature and stabilized under reaction conditions for at least 30 min using 10 mL min⁻¹ NH₃ (JFP, 99.9999 %) and 90 mL min⁻¹ Ar in the flow system.

In the Flow reaction, 0.5% NH₃ (diluted with argon) was introduced at flow rates of 25, 50, and 100 mL min⁻¹. After waiting 30 min for stabilization, NH₃ concentration was measured by the area of IR spectra using a Fourier-transform infrared spectrometer (Shimadzu, IRAffinity-1S). The area of the IR spectrum in the range of 3325 to 3342 cm⁻¹ was determined, and the concentration of NH₃ was calculated using the calibration curve.

In the recirculation batch reaction, the composition of H_2 , N_2 (JFP, 99.99995 %), NH_3 and Ar was adjusted to achieve various partial pressures of H_2 , N_2 , NH_3 and Ar under total flow rate of 200

mL min⁻¹ to try to achieve gradient-less conditions inside the 81 mL closed cirdulation system. The quartz tube with the caralyst bed was connected to a gas cell, pump, and four way valve, as shown in Fig. 1. After waiting 30 min for stabilization, the four-way valve was switched to start the ammonia decomposition reaction as a recirculation batch reactor. NH₃ concentration was measured in the same way as for the flow reaction. The rates of each condition shown in Figs. 2-4 were obtained by the slope of the decrease in ammonia up to 10% conversion of the reaction and the lines (if any) show the fitting curves of the plot.

Derivation of equilibrium constantss for D₂ chemisorptioon

The equilibrium constant can be expressed in the formalism of statistical mechanics as follows.

$$K = \frac{\prod_{j} q_{p}^{v_{j}}}{\prod_{i} q_{r}^{v_{i}}}$$
(1)

where q_r and q_p are the partition functions for reactants and products, and v_i and v_j the stoichiometric coefficients for reactant *i* and pruduct *j*. In most cases, the largest part of the isotope effect results from a change in the ground-state vibrational frequency.

The isotope effect of the equilibrium constant for D/H chemisorption in Eq. (7) in the main text can be expressed as follows, assuming that the adsorbed atoms are not mobile and the degree of freedom is 3.¹

$$\frac{K_{7,\mathrm{D}}}{K_{7,\mathrm{H}}} = \left(\frac{m_{\mathrm{H}_2}}{m_{\mathrm{D}_2}}\right)^{5/2} \exp\left\{\left[-2\sum_{i=1}^3 (v_i^{\mathrm{D}} - v_i^{\mathrm{H}}) + (v_1^{\mathrm{D}_2} - v_1^{\mathrm{H}_2})\right]h/(2kT)\right\}$$
(2)

where $m_{\rm H_2}$ and $m_{\rm D_2}$ are the masses of H₂ and D₂, $v_i^{\rm H}$ and $v_i^{\rm D}$ are the vibrational frequencies for adsorbed H and D atoms, and $v_1^{\rm H_2}$ and $v_1^{\rm D_2}$ are the vibrational frequencies for faseous H₂ and D₂, and *h* is Planck's constant, *k* is Boltzmann's constant, and *T* is temperature.

Applying the values in Table S1, $\frac{K_{7,D}}{K_{7,H}}$ is below 1 between 180°C to 270°C. It has been claimed that the ratio of equilibrium constants for D/H chemisorption is less than 1 on Pt², Ni³, and Ru¹.

Species	Mode	Frequency / cm ⁻¹
H ₂	v(H–H)	4161
D ₂	v(D–D)	2933
M–H	<i>v</i> (M–H)	2250-1700
	$\delta (M-H)^a$	800–600
M–D	v(M–D)	1591–1202
	$\delta (M-D)^a$	566–424

Table S1. Vibrational Frequencies for Molecular and Atomically Adsorbed H_2 and D_2 .⁴

^a Doubly generate.

Figure S1. TEM image of 5wt% Ru/CeO₂.

Figure S2. (a) Typical results of NH₃ decomposition in the recirculation batch system and (b) rate as a function of conversion plots. Catalyst: 0.1 mg of 5 wt% Ru/CeO₂ diluted with 9.9 mg of CeO₂ for 200 and 300°C and 10× further dilution for 400°C reaction within the pellets. Initial conditions: ~0.5 kPa NH₃ balanced with Ar, total 101 kPa. Absolute pressure of NH₃ was calculated from IR peak area. Pretreatment at 400°C under H₂.

Figure S3. Time course measurement of NH_3 decomposition at various initial NH_3 pressures over supported Ru/CeO_2 at (a) 200°C (loaded Ru amount: 25 mg) and (b) 400°C (loaded Ru amount: 50 ng). The measurements were conducted in the recirculation batch reactor. The initial total pressure was balanced with Ar to 101 kPa.

Figure S4. Time course measurement of NH₃ decomposition at various initial N₂ pressures over supported Ru/CeO₂ at (a) 200°C (loaded Ru amount: 25 mg) and (b) 400°C (loaded Ru amount: 50 ng). The measurements were conducted in the recirculation batch reactor. The initial pressure of NH₃ was ~10 kPa and total pressure was balanced with Ar to 101 kPa.

Figure S5. Time course measurement of NH₃ decomposition at various initial H₂ pressures over supported Ru/CeO₂ at (a) 200°C (loaded Ru amount: 0.5 mg), (b) 250°C (loaded Ru amount: 0.025 mg), (c) 300°C (loaded Ru amount: 5 μ g), (d) 350°C, (loaded Ru amount: 0.25 μ g) (e) 400°C (loaded Ru amount: 50 ng). The measurements were conducted in the recirculation batch reactor. The initial pressure of NH₃ was ~10 kPa and total pressure was balanced with Ar to 101 kPa.

Figure S6. Time course measurement of NH₃ (black circle) and ND₃ (red line) decomposition at 200°C over supported Ru/CeO₂ (loaded Ru amount: 0.5 mg). The measurements were conducted in the recirculation batch reactor. The initial ratio of gas was Ar:NH₃ = 100:1 kPa or Ar/ND₃ = 100:1 kPa. The reaction rate was calculated from the slope of the change in ammonia concentration until a conversion of 10 % was reached as shown in the right panel.

Figure S7. Time course measurement of NH₃ (black circle) and ND₃ (red line) decomposition at 250°C over supported Ru/CeO₂ (loaded Ru amount: 0.025 mg). The measurements were conducted in the recirculation batch reactor. The initial ratio of gas was Ar:NH₃ = 100:1 kPa or Ar/ND₃ = 100:1 kPa. The reaction rate was calculated from the slope of the change in ammonia concentration until a conversion of 10 % was reached as shown in the right panel.

Figure S8. Time course measurement of NH₃ (black circle) and ND₃ (red line) decomposition at 300°C over supported Ru/CeO₂ (loaded Ru amount: 5 μ g). The measurements were conducted in the recirculation batch reactor. The initial ratio of gas was Ar:NH₃ = 100:1 kPa or Ar/ND₃ = 100:1 kPa. The reaction rate was calculated from the slope of the change in ammonia concentration until a conversion of 10 % was reached as shown in the right panel.

Figure S9. Time course measurement of NH₃ (black circle) and ND₃ (red line) decomposition at 350°C over supported Ru/CeO₂ (loaded Ru amount: 0.25 μ g). The measurements were conducted in the recirculation batch reactor. The initial ratio of gas was Ar:NH₃ = 100:1 kPa or Ar/ND₃ = 100:1 kPa. The reaction rate was calculated from the slope of the change in ammonia concentration until a conversion of 10 % was reached as shown in the right panel.

Figure S10. Time course measurement of NH₃ (black circle) and ND₃ (red line) decomposition at 400°C over supported Ru/CeO₂ (loaded Ru amount: 50 ng)). The measurements were conducted in the recirculation batch reactor. The initial ratio of gas was Ar:NH₃ = 100:1 kPa or Ar/ND₃ = 100:1 kPa. The reaction rate was calculated from the slope of the change in ammonia concentration until a conversion of 10 % was reached as shown in the right panel.

References

- 1 C. S. Kellner and A. T. Bell, J. Catal., 1981, 67, 175–185.
- 2 S. L. Leung, D. Hibbitts, M. Gárcia-Diéguez and E. Iglesia, J. Phys. Chem. C Nanomater. Interfaces, 2022, **126**, 3923–3938.
- 3 G. Wedler and G. Santelmann, Ber. Bunsenges. Phys. Chem., 1971, 75, 1026–1032.
- 4 K. Nakamoto, *Infrared spectra of inorganic and coordination compounds*, John Wiley & Sons, Nashville, 1970.