CuBr₂-Mediated Dehydrogenative [4 + 2] Annulation of

1-Naphthyl-1,3-indandiones and Alkenes

Table of Contents

General methods and materials	2
Screening of Reaction Conditions	3-4
General catalytic procedure for [4 + 2] annulation of 1-naphthyl-1,3-indandionalkenes.	nes and
Procedure gram-scale for the synthesis of 3a	6
Mechanistic study	7-8
Characterization data for the products	9-24
Copies of ¹ H and ¹³ C NMR spectra of products	.25-60

General Methods and Materials

CuBr₂, CuBr, CuBr.SMe₂, CuCl₂, CuCl, CuI, Cu(OAc)₂, Cu(acac)₂, Cu(OTf)₂, CuOTf, Cu(TFA)₂, CuBr, Cs₂CO₃, NaOCH₃, KO'Bu, NaO'Bu, and LiO'Bu were purchased from Energy Chemical and used without further purification. Other chemicals were purchased from commercial suppliers, further dried and purified if necessary. The water used was re-distillated and ion-free. ¹H and ¹³C NMR spectra were achieved on a Bruker AVANCE 400 MHz spectrometer (¹H 400 MHz; ¹³C 100 MHz) in CDCl₃. Abbreviations for data quoted are *s*-singlet; *brs*-broad singlet; *d*-doublet; *t*-triplet; *dd*-doublet of doublets; m-multiplet. High-resolution mass spectra were measured on a Waters Micromass GCT facility. Thin-layer chromatographies were done on pre-coated silica gel 60F254 plates (Merck). Silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China) was used for general chromatography.

Screening of Reaction Conditions^a

$\begin{array}{c} 0 \\ 1a \end{array} + \begin{array}{c} Catalyst (20 \text{ mol}\%) \\ 2a \\ solvent, 120 °C, 24 \\ h \end{array} + \begin{array}{c} 0 \\ 0 \\ 3a \end{array}$

entry	catalyst	additive	solvent	yield (%) ^b
1	CuBr	K_2CO_3	toluene	14
2	CuBr ₂	K_2CO_3	toluene	21
3	CuBr.SMe ₂	K_2CO_3	toluene	trace
4	CuCl ₂	K ₂ CO ₃	toluene	14
5	CuCl	K_2CO_3	toluene	<5
6	CuI	K_2CO_3	toluene	trace
7	$Cu(OAc)_2$	K_2CO_3	toluene	0
8	$Cu(acac)_2$	K_2CO_3	toluene	0
9	Cu(OTf) ₂	K_2CO_3	toluene	0
10	CuOTf	K_2CO_3	toluene	0
11	Cu(TFA) ₂	K_2CO_3	toluene	0
12	CuBr ₂	Cs_2CO_3	toluene	0
13	CuBr ₂	NaOCH ₃	toluene	0
14	CuBr ₂	KO ^t Bu	toluene	43
15	CuBr ₂	LiO ^t Bu	toluene	0
16	CuBr ₂	NaO ^t Bu	toluene	78
17	CuBr ₂	NaO ^t Bu	DMSO	0
18	CuBr ₂	NaO ^t Bu	DMF	0
19	CuBr ₂	NaO ^t Bu	MeOH	24
20	CuBr ₂	NaO ^t Bu	THF	17
21	CuBr ₂	NaO ^t Bu	1,4-dioxane	0
22	CuBr ₂	NaO ^t Bu	DCE	0
23	CuBr ₂	NaO ^t Bu	CH ₃ CN	0
24 ^c	CuBr ₂	NaO ^t Bu	toluene	trace
25 ^d		NaO ^t Bu	toluene	trace
26 ^e	CuBr ₂		toluene	trace

^aReaction conditions: 1-naphthyl-1,3-indandione **1a** (0.2 mmol), styrene **2a** (0.3 mmol), catalyst (20.0 mol%), additive (30.0 mol%), solvent (3 mL), 120 °C, 24 h, reaction under air; ^b Isolated yield after chromatography; ^c Reaction carried out in 1.0 equiv of NaO'Bu;^d Reaction carried out in the absence of CuBr₂; ^e Reaction carried out in the absence of NaO'Bu.

To examine the possibility of our proposed [4 + 2] cycloaddition for the formation of desired spirocyclic product **3a**, we commenced our investigations on the reaction of 1-naphthyl-1,3-indandione (**1a**) with styrene (**2a**), using CuBr (20 mol %) as the catalyst, and K₂CO₃ (30 mol %) as the base under air in toluene at 120 °C for 24 h. To our delight, the reaction proceeded smoothly and the desired cycloaddition product 3'-phenyl-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3-dione (**3a**) was observed in a 14% yield (Table 1, entry 1). Based on this finding, a variety of copper catalysts were examined, and the CuBr₂ was found to be the best choice (entries 2-11). Regarding additives (entries 12-16), NaO'Bu gave the highest yield (78%). Then, several solvents including DMSO, DMF, MeOH, THF, 1,4-dioxane, DCE, and CH₃CN were tested, and toluene proved to be the most appropriate solvent for this conversion (entries 17-23). The reaction obviously reduced yield or completely inhibited in the absence of either CuBr₂ or NaO'Bu, indicating that CuBr₂/NaO'Bu co-catalytic system was essential for the reaction outcome (entries 25-26).

General Catalytic Procedure for [4 + 2] Annulation of 1-Naphthyl-1,3-indandiones and Alkenes

A reaction flask (25 mL) was charged with 1-naphthyl-1,3-indandione 1 (0.2 mmol, 1.0 equiv), alkene 2 (0.3 mmol, 1.5 equiv), CuBr₂ (8.9 mg, 20 mol%), NaO'Bu (5.8 mg, 30 mol%), then the toluene 3 mL was added. The mixture was stirred at 120 °C in the oil bath for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20 : 1) to yield product.

Procedure Gram-scale for the Synthesis of 3a

To a dry thick walled pressure resistant tube (250 mL) was charged with 1-naphthyl-1,3-indandione **1a** (5 mmol, 1.0 equiv), styrene **2a** (7.5 mmol, 1.5 equiv), CuBr₂ (223.0 mg, 20 mol%), NaO'Bu (145.0 mg, 30 mol%), then the toluene 75 mL was added. The tube was closed with a PTFE thread sealing cap. The mixture was stirred at 120 °C in oil bath for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 50 mL of dichloromethane and washed with 100 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (30 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20 : 1) to yield product **3a** (61% yield, 1140.7 mg).

Mechanistic Study

To a dry thick walled pressure resistant tube (25 mL) was charged with 2-(4-methylnaphthalen-1-yl)-1*H*-indene-1,3(2*H*)-dione (0.1 mmol, 1.0 equiv), 2-(4-bromonaphthalen-1-yl)-1*H*-indene-1,3(2*H*)-dione (0.1 mmol, 1.0 equiv), styrene (0.3 mmol, 1.5 equiv), CuBr₂ (8.9 mg, 20 mol%), NaO'Bu (5.8 mg, 30 mol%), then the toluene 3 mL was added. The mixture was stirred at 120 °C in the oil bath for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20 : 1) to yield product.

HRMS (ESI, m/z) calcd. for $C_{28}H_{30}NO_3$ [M+H]⁺ 428.2221, found 428.2223

To a dry thick walled pressure resistant tube (25 mL) was charged with 1-naphthyl-1,3-indandione **1a** (0.2 mmol, 1.0 equiv), styrene **2a** (0.3 mmol, 1.5 equiv), CuBr (8.9 mg, 20 mol%), NaO'Bu (5.8 mg, 30 mol%), TEMPO (0.6 mmol, 93.6 mg), then the toluene 3 mL was added. The mixture was stirred at 120 °C in the oil bath for 12 hours under an atmosphere of air. After the reaction finished, the resulted mixtures were diluted with 20 mL of dichloromethane and washed with 20 mL of H₂O. The aqueous layer was extracted twice with dichloromethane (10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by silica gel chromatography (hexane/AcOEt = 20 : 1) to yield product.

Characterization data for the products

3'-Phenyl-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3-dione (**3a**): Obtained as a pale yellow liquid (58.3 mg, 78% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 5.6 Hz, 1H), 8.05 (d, J = 4.4 Hz, 1H), 7.87 - 7.89 (m, 2H), 7.80 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.29 - 7.36 (m, 7H), 6.93 (d, J = 7.2 Hz, 1H), 6.88 (d, J = 6.8 Hz, 1H), 5.00 -5.04 (m, 1H), 2.76 - 2.83 (t, 1H), 2.27 - 2.31 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 200.3, 144.0, 142.1, 141.1, 138.1, 136.3, 136.0, 133.8, 131.1, 130.0, 129.1, 128.7, 128.5, 126.9, 126.8, 125.8, 125.7, 125.0, 124.6, 124.2, 123.6, 58.8, 41.8, 36.6; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₉O₂ [M + H] + 375.1380, found 375.1378.

3'-(*p*-Tolyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3-dione (**3b**): Obtained as a pale yellow liquid 65.2 mg, 84% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.10 - 8.17 (q, 2H), 7.94 - 7.96 (m, 2H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.35 - 7.42 (m, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.21 (d, *J* = 7.6 Hz, 2H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.92 (d, *J* = 7.2 Hz, 1H), 5.00 - 5.05 (m, 1H), 2.80 - 2.87 (t, 1H), 2.40 (s, 3H), 2.30 - 2.34 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 200.4, 142.1, 141.1, 140.9, 138.3, 136.5, 136.3, 135.9, 133.9, 131.1, 130.0, 129.4, 129.0, 128.5, 126.7, 125.8, 125.7, 125.0, 124.6, 124.2, 123.6, 58.8, 41.4, 36.6, 21.1; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁O₂ [M + H] + 389.1536, found 389.1535.

3'-(4-(*Tert*-butyl)phenyl)-2',3'-dihydrospiro[indene-2,1'-phena lene]-1,3-dione (**3c**): Obtained as a pale yellow liquid (75.7 mg, 88% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.94 - 8.02 (m, 2H), 7.76 - 7.79 (m, 2H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.20 -7.28 (m, 4H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 7.2 Hz, 1H), 4.87 - 4.91 (q, 1H), 2.66 - 2.72 (t, 1H), 2.16 - 2.20 (q, 1H), 1.23 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 200.4, 149.7, 142.1, 141.1, 140.8, 138.3, 136.3, 135.9, 133.8, 131.1, 130.1, 128.7, 128.5, 126.7, 125.8, 125.7, 125.6, 125.0, 124.5, 124.2, 123.6, 58.9, 41.3, 36.7, 34.4, 31.4; HRMS (ESI-TOF) m/z calcd for C₃₁H₂₇O₂ [M + H] + 431.2006, found 431.2008.

^{Ph} 3'-([1,1'-Biphenyl]-4-yl)-2',3'-dihydrospiro[indene-2,1'-phenalen e]-1,3-dione (**3d**): Obtained as a pale yellow liquid (65.7 mg, 73% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.12 - 8.15 (m, 1H), 8.07 - 8.09 (m, 1H), 7.91 - 7.93 (m, 2H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.58 - 7.62 (m, 4H), 7.38 - 7.45 (m, 5H), 7.31 - 7.35 (m, 2H),7.02 (d, *J* = 6.8 Hz, 1H), 6.89 (d, *J* = 7.2 Hz, 1H), 5.05 - 5.09 (m, 1H), 2.80 - 2.86 (t, 1H), 2.30 -2.35 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 200.4, 143.1, 142.1, 141.1, 140.8, 139.8, 138.0, 136.4, 136.0, 135.3, 133.9, 131.0, 128.7, 128.6, 127.4, 127.2, 127.1, 127.0, 126.9, 125.8, 125.0, 124.6, 124.3, 123.7, 123.6, 58.8, 41.5, 36.6; HRMS (ESI-TOF) m/z calcd for C₃₃H₂₃O₂ [M + H] ⁺ 451.1693, found 451.1692.

O- 3'-(4-Methoxyphenyl)-2',3'-dihydrospiro[indene-2,1'-phenale ne]-1,3-dione (**3e**): Obtained as a pale yellow liquid (65.4 mg, 81% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 8.06 (m, 2H), 7.84 - 7.85 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.22 -7.30 (m, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.88 (d, J = 7.2 Hz, 1H), 6.79 - 6.83 (m, 3H), 4.86 - 4.91 (q, 1H), 3.73 (s, 3H), 2.65 - 2.72 (t, 1H), 2.17 - 2.21 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.5, 200.4, 158.5, 142.1, 141.1, 138.5, 136.3, 135.99, 135.97, 133.9, 131.1, 130.06, 130.07, 128.5, 126.7, 125.8, 125.7, 125.0, 124.6, 124.2, 123.6, 114.1, 58.9, 55.2, 41.0, 36.7; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁O₃ [M + H] ⁺ 405.1485, found 405.1483.

SMe 3'-(4-(Methylthio)phenyl)-2',3'-dihydrospiro[indene-2,1'-phena lene]-1,3-dione (**3f**): Obtained as a pale yellow liquid (62.2 mg, 74% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.10 - 8.11 (m, 1H), 8.03 - 8.05 (m, 1H), 7.87 - 7.89 (m, 2H), 7.76 - 7.80 (m, 2H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.30 - 7.36 (m, 2H), 7.21 - 7.25 (m, 3H), 6.94 (d, *J* = 6.8 Hz, 1H), 6.87 (d, *J* = 7.2 Hz, 1H), 4.97 - 5.00 (m, 1H), 2.72 - 2.79 (t, 1H), 2.46 (s, 3H), 2.24 - 2.28 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 200.3, 142.0, 141.0, 140.8, 137.9, 136.8, 136.3, 136.0, 133.8, 131.0, 129.9, 129.6, 128.5, 126.8, 126.8, 125.7, 125.6, 125.0, 124.5, 124.2, 123.5, 58.6, 41.2, 36.4, 15.8; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁SO₂ [M + H] + 421.1257, found 421.1255.

3-dione (**3g**): Obtained as a pale yellow liquid (58.0 mg, 74% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.10 - 8.18 (m, 2H), 7.94 - 7.98 (m, 2H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.29 - 7.42 (m, 4H), 7.06 - 7.11 (t, 2H), 6.92 - 6.96 (m, 2H), 5.05 - 5.09 (q, 1H), 2.76 - 2.83 (t, 1H), 2.30 - 2.34 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.3, 200.3, 161.8 (d, *J* = 243.5 Hz), 142.1, 141.1, 139.7 (d, *J* = 3.2 Hz), 137.9, 136.4, 136.0, 133.9, 131.0, 130.6 (d, *J* = 7.6 Hz), 129.9, 128.5, 126.9, 125.8, 125.6, 125.1, 124.6, 124.3, 123.6, 115.6 (d, *J* = 21.0 Hz), 58.6, 41.1, 36.6; ¹⁹F NMR (400 MHz, CDCl₃) δ -115.7; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈FO₂ [M + H] ⁺ 393.1285, found 393.1287.

Cl 3'-(4-Chlorophenyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-

1,3-dione (**3h**): Obtained as a pale yellow liquid (57.9 mg, 71% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.98 - 8.06 (m, 2H), 7.82 - 7.87 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.17 - 7.30 (m, 6H), 6.78 - 6.83 (m, 2H), 4.92 - 4.96 (q, 1H), 2.63 - 2.70 (t, 1H), 2.16 - 2.20 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.2, 200.3, 142.6, 142.1, 141.1, 137.6, 136.4, 136.1, 133.9, 132.7, 131.0, 130.5, 129.9, 128.9, 128.6, 127.0, 125.8, 125.7, 125.1, 124.6, 124.3, 123.7, 58.6, 41.2, 36.4; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈ClO₂ [M + H] + 409.0990, found 409.0988.

Br 3'-(4-Bromophenyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1, 3-dione (**3i**): Obtained as a pale yellow liquid (66.0 mg, 73% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.00 - 8.06 (m, 2H), 7.83 - 7.85 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.28 - 7.31 (t, 1H), 7.22 - 7.26 (t, 1H), 7.16 - 7.18 (m, 2H), 7.03 - 7.08 (m, 2H), 6.87 (d, J = 7.2 Hz, 1H), 6.80 (d, J = 7.2 Hz, 1H), 5.68 - 5.72 (q, 1H), 2.57 - 2.64 (t, 1H), 2.20 - 2.25 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 199.8, 143.5, 142.1, 141.2, 136.7, 136.4, 136.0, 134.0, 132.8, 131.1, 130.1, 129.9, 128.6, 128.4, 128.0, 126.9, 126.0, 125.8, 125.3, 125.1, 124.8, 124.3, 123.6, 58.5, 40.4, 35.4; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈BrO₂ [M + H] ⁺ 453.0458, found 453.0456.

¹ 3'-(4-Iodophenyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3-d ione (**3j**): Obtained as a pale yellow liquid (73.0 mg, 73% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.12 - 8.14 (m, 1H), 8.05 - 8.07 (m, 1H), 7.91 - 7.93 (m, 2H), 7.80 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.30 - 7.37 (m, 2H), 7.08 (d, J = 8.0 Hz, 2H), 6.86 -6.92 (q, 2H), 4.96 - 5.01 (q, 1H), 2.70 - 2.76 (t, 1H), 2.24 - 2.28 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.2, 200.3, 143.8, 142.1, 141.1, 137.8, 137.4, 136.4, 136.1, 133.8, 131.2, 130.9, 129.8, 128.6, 127.0, 125.8, 125.7, 125.1, 124.6, 124.3, 123.6, 92.3, 58.5, 41.4, 36.2; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈IO₂ [M + H] ⁺ 501.0346, found 501.0344.

CF₃ 3'-(4-(Trifluoromethyl)phenyl)-2',3'-dihydrospiro[indene-2,1'phenalene]-1,3-dione (**3**k): Obtained as a pale yellow liquid (60.1 mg, 68% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.99 -8.07 (m, 2H), 7.83 - 7.88 (m, 2H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.23 - 7.30 (m, 2H), 6.78 - 6.82 (m, 2H), 5.03 - 5.07 (q, 1H), 2.67 - 2.74 (t, 1H), 2.18 - 2.22 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 200.2, 148.3, 142.2, 141.1, 137.1, 136.5, 136.1, 133.9, 130.9, 129.5 (q, *J* = 25.4, 35.6 Hz), 128.6, 127.2, 125.7 (q, *J* = 3.9, 7.1 Hz), 125.2, 124.7, 124.4, 123.7, 58.4, 41.7, 36.3; ¹⁹F NMR (400 MHz, CDCl₃) δ -62.4; HRMS (ESI-TOF) m/z calcd for C₂₈H₁₈F₃O₂ [M + H] ⁺ 443.1253, found 443.1251.

CN 4-(1,3-Dioxo-1,2',3,3'-tetrahydrospiro[indene-2,1'-phenalen]-3'

-yl)benzonitrile (**31**): Obtained as a pale yellow liquid (49.5 mg, 62% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 8.08 (m, 2H), 7.84 - 7.90 (m, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.24 - 7.31 (m, 2H), 6.81 (d, J = 7.2 Hz, 1H), 6.75 (d, J = 7.2 Hz, 1H), 5.04 - 5.08 (q, 1H), 2.64 - 2.71 (t, 1H), 2.17 - 2.22 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.9, 200.1, 149.9, 142.1, 141.1, 136.6, 136.5, 136.2, 133.9, 132.6, 130.8, 130.0, 129.7, 128.7, 127.4, 125.7, 125.6, 125.3, 124.7, 124.4, 123.7, 118.8, 110.9, 58.2, 42.0, 36.0; HRMS (ESI-TOF) m/z calcd for C_{28H18}NO₂ [M + H] ⁺ 400.1332, found 400.1331.

^{NO₂} 3'-(4-Nitrophenyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3-dione (**3m**): Obtained as a pale yellow liquid (53.6 mg, 64% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.01 - 8.08 (m, 2H), 7.86 - 7.88 (m, 2H), 7.75 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.22 -7.31 (m, 6H), 6.87 (d, J = 6.8 Hz, 1H), 6.81 (d, J = 6.8 Hz, 1H), 4.92 - 4.96 (q, 1H), 2.70 - 2.76 (t, 1H), 2.20 - 2.25 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 200.4, 197.2, 144.0, 142.2, 141.2, 138.1, 136.4, 136.0, 133.9, 131.1, 129.3, 129.2, 128.8, 128.6, 127.0, 126.8, 125.8, 125.8, 125.0, 124.6, 124.3, 123.7, 58.8, 41.8, 36.6; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈NO₄ [M + H] ⁺ 420.1230, found 420.1231.

3'-(*m*-Tolyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3-dione (**3n**): Obtained as a pale yellow liquid (59.8 mg, 77% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 8.07 (q, 2H), 7.85 -7.86 (m, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.23 - 7.31 (m, 2H), 7.15 - 7.19 (t, 1H), 7.02 - 7.08 (m, 3H), 6.89 (d, J = 7.2 Hz, 1H), 6.80 (d, J = 7.2 Hz, 1H), 4.87 - 4.92 (m, 1H), 2.69 - 2.75 (t, 1H), 2.26 (s, 3H), 2.18 - 2.23 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.5, 200.4, 143.9, 142.1, 141.1, 138.3, 138.2, 136.3, 136.0, 133.9, 131.1, 130.0, 128.6, 128.5, 127.7, 126.7, 125.8, 125.8, 125.0, 124.6, 124.3, 123.6, 58.9, 41.8, 36.6, 21.4; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁O₂ [M + H] + 389.1536, found 389.1538.

F 3'-(3-Fluorophenyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1, 3-dione (**3o**): Obtained as a pale yellow liquid (54.9 mg, 70% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 8.08 (q, 2H), 7.85 - 7.89 (m, 2H), 7.74 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.22 - 7.32 (m, 3H), 7.05 (d, J = 7.6 Hz, 1H), 6.86 - 6.98 (m, 3H), 6.80 (d, J = 7.2 Hz, 1H), 4.95 -4.99 (m, 1H), 2.65 - 2.72 (t, 1H), 2.20 - 2.24 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.2, 200.3, 163.1 (d, J = 244.5 Hz), 146.7 (d, J = 6.9 Hz), 142.2, 141.1, 137.3, 136.4, 136.1, 133.9, 130.9, 130.2 (d, J = 8.1 Hz), 129.9, 128.6, 127.1, 125.7 (d, J =13.0 Hz), 125.1, 124.9, 124.7, 124.3, 123.7, 116.0 (d, J = 21.0 Hz), 113.9 (d, J = 20.9Hz), 58.6, 41.7, 36.3; ¹⁹F NMR (400 MHz, CDCl₃) δ -112.8; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈FO₂ [M + H] ⁺ 393.1285, found 393.1286.

3'-(o-Tolyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3-dione

(**3p**): Obtained as a pale yellow liquid (56.6 mg, 73% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.00 - 8.06 (m, 2H), 7.84 - 7.86 (m, 2H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.23 - 7.29 (m, 2H), 7.11 - 7.17 (m, 4H), 6.77 - 7.80 (m, 2H), 5.33 - 5.37 (q, 1H), 2.70 - 2.77 (t, 1H), 2.39 (s, 3H), 2.14 - 2.18 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.5, 200.6, 142.2, 142.1, 141.2, 137.9, 137.1, 136.3, 136.0, 134.0, 131.2, 130.2, 128.6, 127.9, 126.7, 126.6, 125.8, 125.1, 124.6, 124.3, 123.6, 58.8, 36.1, 35.7, 19.6; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁O₂ [M + H] + 389.1536, found 389.1535.

3'-(2-Chlorophenyl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1, 3-dione (**3q**): Obtained as a pale yellow liquid (53.9 mg, 66% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.14 - 8.16 (m, 1H), 8.09 - 8.12 (m, 1H), 7.93 - 7.97 (m, 2H), 7.82 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.44 - 7.47 (m, 1H), 7.31 - 7.41 (m, 3H), 7.25 - 7.29 (m, 1H), 7.22 - 7.24 (m, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.88 (d, J = 7.2 Hz, 1H), 5.78 - 5.82 (m, 1H), 2.68 - 2.74 (t, 1H), 2.28 - 2.32 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.5, 199.9, 142.1, 141.7, 141.2, 136.7, 136.4, 136.0, 135.1, 134.0, 131.0, 130.1, 129.8, 129.4, 128.6, 128.1, 127.3, 126.9, 125.8, 125.3, 125.1, 124.8, 124.3, 123.6, 58.5, 37.3, 35.4; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈ClO₂ [M + H] ⁺ 409.0990, found 409.0993.

3'-(2,5-Dimethylphenyl)-2',3'-dihydrospiro[indene-2,1'-phenalen e]-1,3-dione (**3r**): Obtained as a pale yellow liquid (66.7 mg, 83% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.99 - 8.07 (m, 2H), 7.84 - 7.86 (m, 2H), 7.73 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.25 -7.30 (m, 2H), 7.05 (d, J = 7.6 Hz, 1H), 6.91 - 6.94 (m, 2H), 6.79 - 6.83 (t, 2H), 5.28 -5.32 (q, 1H), 2.71 - 2.77 (t, 1H), 2.34 (s, 3H), 2.13 - 2.17 (q, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 203.6, 200.5, 142.2, 141.8, 141.2, 138.0, 136.3, 136.0, 133.9, 133.9, 131.2, 130.2, 130.1, 128.5, 128.4, 127.4, 126.6, 125.9, 125.1, 125.0, 124.6, 124.3, 123.6, 58.9, 36.1, 35.7, 21.0, 19.7; HRMS (ESI-TOF) m/z calcd for C₂₉H₂₃O₂ [M + H] ⁺ 403.1693, found 403.1692.

3'-(Naphthalen-2-yl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1, 3-dione (**3s**): Obtained as a pale yellow liquid (76.3 mg, 90% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.11 - 8.14 (m, 1H), 8.07 - 8.09 (m, 1H), 7.78 - 7.90 (m, 8H), 7.45 - 7.47 (m, 2H), 7.30 - 7.38 (m, 3H), 6.90 - 6.95 (m, 2H), 5.21 (d, *J* = 13.2 Hz, 1H), 2.88 - 2.95 (m, 1H), 2.32 - 2.36 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 200.4, 142.1, 141.5, 141.3, 141.1, 137.9, 136.4, 136.0, 135.3, 133.9, 133.6, 132.6, 128.5, 128.5, 127.7, 127.6, 126.9, 126.6, 126.1, 126.0, 125.8, 125.7, 125.0, 124.6, 124.3, 123.7, 123.6, 58.7, 41.9, 36.4; HRMS (ESI-TOF) m/z calcd for C₃₁H₂₁O₂ [M + H] ⁺ 425.1536, found 425.1534.

3'-(Thiophen-2-yl)-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3 -dione (**3t**): Obtained as a pale yellow liquid (62.3 mg, 82% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.05 - 8.07 (t, 1H), 7.98 - 8.00 (m, 1H), 7.83 - 7.87 (m, 2H), 6.73 (d, J = 8.0 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 7.30 - 7.34 (t, 1H), 7.22 - 7.26 (t, 1H), 7.17 (d, J = 4.2 Hz, 1H), 7.07 (d, J = 7.2Hz, 1H), 7.01 (d, J = 3.2 Hz, 1H), 6.93 - 6.95 (t, 1H), 6.79 (d, J = 7.2 Hz, 1H), 5.31 -5.35 (m, 1H), 2.72 - 2.79 (t, 1H), 2.33 - 2.37 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.0, 200.3, 146.8, 142.2, 141.1, 137.4, 136.4, 136.1, 133.8, 130.8, 129.5, 128.5, 127.2, 126.6, 126.4, 125.9, 125.3, 125.1, 124.6, 124.4, 124.3, 123.7, 58.6, 37.2, 37.0; HRMS (ESI-TOF) m/z calcd for C₂₅H₁₇O₂S [M + H] ⁺ 381.0944, found 381.0946. O Ph 3'-Methyl-3'-phenyl-2',3'-dihydrospiro[indene-2,1'-phenalene]-1, 3-dione (**3u**): Obtained as a pale yellow liquid (54.3 mg, 70% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.2 Hz, 1H), 7.91 (d, J = 6.8 Hz, 1H), 7.76 - 7.85 (m, 3H), 7.71 (d, J = 8.0 Hz, 1H), 7.35 -7.39 (t, 1H), 7.25 - 7.29 (t, 1H), 7.11 - 7.19 (m, 6H), 6.74 (d, J = 7.2 Hz, 1H), 2.85 (d, J = 10.0 Hz, 1H), 2.32 (d, J = 14.0 Hz, 1H), 1.89 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.8, 201.3, 150.2, 142.1, 141.9, 135.9, 135.9, 134.0, 131.0, 129.9, 128.7, 127.9, 127.7, 126.9, 126.2, 126.2, 125.8, 125.2, 125.1, 124.4, 123.9, 60.3, 44.6, 43.1, 30.7; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁O₂ [M + H] ⁺ 389.1536, found 389.1535.

^F 3'-(4-Fluorophenyl)-3'-methyl-2',3'-dihydrospiro[indene-2,1'-phen alene]-1,3-dione (**3**v): Obtained as a pale yellow liquid (50.3 mg, 62% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.08 - 8.10 (m, 1H), 7.97 - 7.99 (m, 1H), 7.83 - 7.91 (m, 3H), 7.79 (d, J = 8.0 Hz, 1H), 7.43 - 7.47 (t, 1H), 7.32 - 7.36 (m, 1H), 7.18 - 7.22 (m, 3H), 6.90 - 6.96 (m, 2H), 6.80 - 6.82 (q, 1H), 2.86 (d, J = 14.4 Hz, 1H), 2.40 (d, J = 14.4 Hz, 1H), 1.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.7, 201.2, 161.2 (d, J = 243.6 Hz), 145.8 (d, J = 3.2 Hz), 141.9 (d, J = 10.5 Hz), 141.7, 135.9 (d, J = 4.5 Hz), 134.0, 130.9, 129.7, 129.3, 129.2, 128.7, 127.0, 126.1, 125.8, 125.3, 125.2, 124.3, 124.0, 114.7, 114.5, 60.1, 44.6, 42.6, 31.0; ¹⁹F NMR (400 MHz, CDCl₃) δ -117.0; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₀FO₂ [M + H] ⁺ 407.1442, found 407.1445.

3'-Methyl-3'-(naphthalen-2-yl)-2',3'-dihydrospiro[indene-2,1'-phe nalene]-1,3-dione (**3w**): Obtained as a pale yellow liquid (57.8 mg, 66% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.2 Hz, 1H), 7.98 (d, *J* = 6.8 Hz, 1H), 7.83 - 7.88 (m, 4H), 7.76 - 7.78 (m, 3H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.41 - 7.45 (m, 2H), 7.34 - 7.39 (m, 2H), 7.28 - 7.30 (m, 1H), 7.11 (d, *J* = 7.2 Hz, 1H), 6.84 (d, *J* = 6.8 Hz, 1H), 3.06 (d, *J* = 14.4 Hz, 1H), 2.35 (d, *J* = 14.4 Hz, 1H), 2.09 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.4, 201.0, 147.6, 142.2, 142.1, 141.8, 136.1, 135.8, 134.0, 132.9, 131.9, 130.9, 129.7, 128.7, 128.0, 127.7, 127.4, 127.1, 126.8, 126.4, 125.9, 125.9, 125.7, 125.5, 125.2, 125.1, 124.4, 123.9, 60.1, 44.1, 43.3, 26.9; HRMS (ESI-TOF) m/z calcd for C₃₂H₂₃O₂ [M + H] + 439.1693, found 439.1692.

^O Ph 7'-Methoxy-3'-phenyl-2',3'-dihydrospiro[indene-2,1'-phenalene]-1, 3-dione (**3x**): Obtained as a pale yellow liquid (73.5 mg, 91% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.97 - 8.02 (m, 2H), 7.78 - 7.83 (m, 3H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.23 - 7.34 (m, 5H), 7.12 - 7.19 (m, 2H), 6.81 (d, *J* = 6.8 Hz, 1H), 4.69 - 4.72 (m, 1H), 3.46 (s, 3H), 2.62 - 2.69 (t, 1H), 2.21 -2.25 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.4, 202.9, 152.7, 143.2, 140.7, 138.8, 136.7, 135.4, 135.2, 131.6, 130.1, 129.2, 129.0, 128.6, 126.9, 126.6, 125.3, 123.5, 123.4, 122.8, 116.5, 112.9, 56.9, 55.8, 41.6, 37.1; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₁O₃ [M + H] ⁺ 405.1485, found 405.1484.

^O Ph 7'-Bromo-3'-phenyl-2',3'-dihydrospiro[indene-2,1'-phenalene]-1,3 -dione (**3y**): Obtained as a pale yellow liquid (48.8 mg, 54% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 8.4 Hz, 1H), 8.08 - 8.10 (m, 1H), 8.03 - 8.05 (m, 1H), 7.86 - 7.89 (m, 2H), 7.62 (d, J = 7.6 Hz, 1H), 7.42 - 7.46 (m, 1H), 7.27 - 7.37 (m, 5H), 7.00 (d, J = 7.6 Hz, 1H), 6.73 (d, J =8.0 Hz, 1H), 4.96 - 5.01 (m, 1H), 2.73 - 2.80 (t, 1H), 2.26 - 2.31 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.9, 200.0, 143.8, 142.0, 141.0, 138.8, 136.6, 136.3, 135.6, 132.4, 131.4, 131.2, 129.2, 129.0, 128.8, 128.4, 127.2, 127.0, 126.3, 124.7, 123.8, 123.5, 58.8, 41.9, 36.7; HRMS (ESI-TOF) m/z calcd for C₂₇H₁₈BrO₂ [M + H] + 453.0485, found 453.0488.

^O Ph 3-Phenyl-2,3-dihydrospiro[benzo[de]anthracene-1,2'-indene]-1',3' -dione (**3z**): Obtained as a pale yellow liquid (73.8 mg, 87% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.13 -8.17 (m, 2H), 7.91 - 8.04 (m, 4H), 7.28 - 7.40 (m, 7H), 7.16 - 7.21 (m, 2H), 6.79 (d, *J* = 6.8 Hz, 1H), 4.70 (d, *J* = 13.2 Hz, 1H), 2.84 - 2.91 (t, 1H), 2.42 - 2.47 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 202.0, 142.7, 140.1, 138.8, 138.1, 136.3, 136.2, 131.7, 131.6, 131.0, 129.7, 129.1, 128.8, 128.7, 127.6, 127.2, 126.4, 125.7, 124.7, 124.6, 124.4, 124.2, 124.2, 61.5, 42.0, 40.3; HRMS (ESI-TOF) m/z calcd for C₃₁H₂₁O₂ [M + H] ⁺ 425.1536, found 425.1537.

^O Ph 5-Phenyl-4,5-dihydrospiro[benzo[cd]pyrene-3,2'-indene]-1',3' -dione (**3aa**): Obtained as a pale yellow liquid (78.8 mg, 88% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.15 - 8.17 (m, 1H), 8.03 - 8.12 (m, 5H), 7.98 - 8.01 (m, 1H), 7.90 - 7.96 (m, 4H), 7.44 - 7.50 (m, 3H), 7.36 - 7.43 (m, 3H), 5.17 - 5.21 (m, 1H), 2.94 - 3.01 (t, 1H), 2.40 - 2.45 (q, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 200.7, 143.6, 142.1, 141.1, 136.8, 136.4, 136.1, 131.1, 131.0, 130.6, 129.4, 128.9, 128.8, 128.6, 128.4, 127.7, 127.2, 127.1, 126.4, 126.1, 125.2, 124.9, 124.8, 124.7, 124.6, 124.4, 123.8, 123.7, 123.6, 59.6, 42.1, 37.1; HRMS (ESI-TOF) m/z calcd for C₃₃H₂₁O₂ [M + H] ⁺ 449.1536, found 449.1535.

Ph 7'-Methoxy-3'-methyl-3'-phenyl-2',3'-dihydrospiro[indene-2,1'-ph enalene]-1,3-dione(**3ab**): Obtained as a pale yellow liquid (70.2 mg, 84% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.02 - 8.03 (m, 1H), 7.89 - 7.91 (m, 2H), 7.79 - 7.86 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.23 - 7.29 (m, 5H), 7.17 - 7.21 (m, 2H), 7.08 (d, J = 7.2 Hz, 1H), 3.47 (s, 3H), 2.75 (d, J = 14.4 Hz, 1H), 2.25 (d, J = 14.0 Hz, 1H), 1.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 202.6, 152.8, 149.5, 140.9, 140.03, 140.02, 135.2, 135.1, 131.2, 130.4, 129.5, 127.9, 127.7, 126.7, 126.2, 126.0, 123.6, 123.5, 123.1, 116.2, 112.8, 58.4, 55.9, 44.8, 43.4, 29.7; HRMS (ESI-TOF) m/z calcd for C₂₉H₂₃O₃ [M + H] + 419.1642, found 419.1643.

Ph 3-Methyl-3-phenyl-2,3-dihydrospiro[benzo[de]anthracene-1,2'-in dene]-1',3'-dione (**3ac**): Obtained as a pale yellow liquid (70.1 mg, 80% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.14 - 8.16 (m, 1H), 7.90 - 8.04 (m, 5H), 7.40 - 7.43 (q, 1H), 7.33 - 7.37 (m, 1H), 7.19 - 7.27 (m, 6H), 7.12 - 7.16 (m, 1H), 6.98 (d, *J* = 8.8 Hz, 1H), 2.98 (d, *J* = 14.0 Hz, 1H), 2.52 (d, *J* = 14.0 Hz, 1H), 1.87 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 201.8, 201.5, 148.8, 141.6, 140.0, 139.9, 136.0, 135.9, 132.0, 131.6, 130.5, 129.7, 129.6, 128.7, 128.0, 127.9, 127.5, 126.5, 125.4, 125.3, 124.7, 124.6, 124.5, 124.2, 124.1, 62.6, 47.4, 43.5, 29.9; HRMS (ESI-TOF) m/z calcd for C₃₂H₂₃O₂ [M + H] ⁺ 439.1693, found 439.1695.

5-Methyl-5-phenyl-4,5-dihydrospiro[benzo[cd]pyrene-3,2'-in dene]-1',3'-dione (**3ad**): Obtained as a pale yellow liquid (70.2 mg, 76% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 7.95 -8.17 (m, 8H), 7.87 - 7.93 (m, 2H), 7.78 (s, 1H), 6.42 (d, *J* = 7.6 Hz, 2H), 7.24 - 7.33 (m, 4H), 3.08 (d, *J* = 14.4 Hz, 1H), 2.53 (d, *J* = 14.4 Hz, 1H), 2.10 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 201.4, 149.6, 142.2, 142.0, 140.9, 136.0, 135.9, 131.2, 131.1, 130.7, 128.6, 128.4, 128.1, 127.8, 127.6, 127.4, 126.8, 126.4, 126.1, 125.3, 125.3, 125.0, 124.8, 124.4, 124.0, 123.6, 61.1, 44.9, 43.6, 30.6; HRMS (ESI-TOF) m/z calcd for C₃₄H₂₃O₂ [M + H] ⁺ 463.1693, found 463.1695.

Ph 7'-Methoxy-3'-phenyl-3'-propyl-2',3'-dihydrospiro[indene-2,1'-p henalene]-1,3-dione (**3ae**): Obtained as a pale yellow liquid (63.3 mg, 71% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.2 Hz, 1H), 7.79 - 7.92 (m, 4H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.29 - 7.33 (t, 1H), 7.14 - 7.31 (m, 7H), 3.46 (s, 3H), 2.68 (d, *J* = 14.0 Hz, 1H), 2.40 (d, *J* = 14.0 Hz, 1H), 2.24 - 2.32 (m, 1H), 2.07 - 2.14 (m, 1H), 1.28 - 1.38 (m, 1H), 1.06 - 1.17 (m, 1H), 0.85 - 0.89 (t, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.8, 152.8, 147.7, 140.1, 140.0, 137.6, 135.1, 131.8, 130.4, 129.8, 128.0, 127.9, 127.0, 126.9, 126.1, 123.6, 123.1, 122.9, 116.3, 112.8, 58.5, 56.0, 47.2, 42.8, 41.8, 18.5, 14.3; HRMS (ESI-TOF) m/z calcd for C₃₁H₂₇O₃ [M + H] ⁺ 447.1955, found 447.1954.

^O Ph 3'-Butyl-7'-methoxy-3'-phenyl-2',3'-dihydrospiro[indene-2,1'phenalene]-1,3-dione (**3af**): Obtained as a pale yellow liquid (57.0 mg, 62% yield), eluting with 5% EtOAc in PE (elution gradient); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 6.8 Hz, 1H), 7.75 - 7.91 (m, 5H), 7.31 - 7.34 (t, 1H), 7.17 - 7.26 (m, 7H), 6.74 (d, *J* = 7.2 Hz, 1H), 3.46 (s, 3H), 2.67 (d, *J* = 14.4 Hz, 1H), 2.43 (d, *J* = 14.4 Hz, 1H), 2.25 - 2.32 (m, 1H), 2.10 - 2.17 (m, 1H), 1.21 - 1.34 (m, 4H), 0.81 - 0.84 (t, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.8, 202.6, 152.8, 147.8, 140.1, 140.0, 137.4, 135.1, 131.8, 130.4, 129.7, 128.0, 127.9, 127.0, 126.9, 126.1, 123.6, 123.2, 122.9, 116.3, 112.8, 58.5, 56.0, 47.1, 42.7, 39.6, 27.4, 23.1, 14.1; HRMS (ESI-TOF) m/z calcd for C₃₂H₂₉O₃ [M + H] ⁺ 461.2111, found 461.2108.

Copies of ¹H and ¹³C NMR spectra of products

¹H NMR and ¹³C NMR of 3e

¹H NMR and ¹³C NMR of 3f

$\begin{array}{c} 7.96 \\ 7.96 \\ 7.96 \\ 7.97 \\ 7.94 \\ 7.94 \\ 7.94 \\ 7.94 \\ 7.74 \\ 7.74 \\ 7.74 \\ 7.73 \\ 7.73 \\ 7.33 \\ 7.73 \\ 7.33 \\ 7.73 \\ 7.33 \\ 7.73 \\ 7.$ 2.2339 2.2339 2.2339 2.2339 2.2339 2.2339 2.2336 -5.085 -5.062 -5.052 5.895]][[0 1 ſ ó 1.00H F66.0 -79.0 4.30 2.16 1.98 1.98 1.14-0.99 5.0 4.5 f1 (ppm) 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 142.11 136.25 136.25 136.25 136.02 133.00 128.52 128.55 128.55 128.55 128.55 128.55 128.55 128.55 128.55 128.55 12 F646 ~203.28 ~163.03 -58.64 -41.06 0 Ó È 110 100 90 fl (ppm) 210 200 190 180 170 160 150 140 130 120 80 70 60 50 40 30 20 10 0

¹H NMR, ¹³C NMR and ¹⁹F NMR of 3g

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

¹H NMR, ¹³C NMR and ¹⁹F NMR of 3k

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

37

¹H NMR and ¹³C NMR of 3l

¹H NMR and ¹³C NMR of 3m

7,7,870 77,860 77,860 77,860 77,690 77,690 77,690 77,690 77,690 77,690 77,690 77,274 66,875 66,875 66,875 66,8126 -2.720 -2.687 -2.687 -2.654 -2.264 -2.229 -2.229 -2.229 Ó 1.00H 1.014 3.06 1.04 2.99 0.96 1.00-1.04 1.04 1.04 1.04 1.04 4.5 4.0 f1 (ppm) 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 F645 ~203.22 142.15 141.12 156.64 156.64 156.64 156.67 156.67 1130.15 1130.15 1130.15 1130.15 1130.15 1130.15 1125.56 1125. ~164.31 ~161.87 -41.66 -36.33 -58.55 0′′ Ó 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 70

¹H NMR, ¹³C NMR and ¹⁹F NMR of 30

80

60 50 40 30 20 10 0

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 fl (ppm) -120 -140 -160 -180 -200

¹H NMR and ¹³C NMR of 3u

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

¹H NMR and ¹³C NMR of 3w

¹H NMR and ¹³C NMR of 3x

¹H NMR and ¹³C NMR of 3aa

¹H NMR and ¹³C NMR of 3ab

¹H NMR and ¹³C NMR of 3ac

¹H NMR and ¹³C NMR of 3ad

¹H NMR and ¹³C NMR of 3ae

60