Supporting Information

Tunable Electrochemical Diverse Sulfurization of Sulfoxonium Ylides with Disulfides

Xinwei Hu, ‡ Kaihui Zhong, ‡ Zhixiong Ruan *

Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical

Sciences, Guangzhou Medical University, Guangzhou, 511436, P.R.China

[‡] These authors contributed equally to this work.

Email: <u>zruan@gzhmu.edu.cn</u>

Table of Contents

General Remarks	2
Optimization Studies	3
General Procedures	5
Characterization Data of Products 3a-3z-2, 4a-4q, 5a-5d and 6-12	8
Gram-scale Synthesis	29
Synthetic Application	30
Control Experiments and Mechanism Studies	33
Cyclic Voltammetry Experiments	
Crystallographic description of 3s and 4a	36
References	42
NMR Spectra	43

General Remarks

Electrochemical reactions were conducted using an AXIOMET AX-3003P potentiostat in constant current mode using undivided cell equipped with graphite plate (1.0 cm × 1.0 cm × 0.2 cm) as the anode and platinum plate (1.0 cm × 1.0 cm × 0.01 cm) as the cathode under air. Graphite plates are commercially available from Bei Jing Jinglong Special Carbon Technology Co., Ltd. Platinum electrodes are commercially available from Tian Jin Aida (China). Chemicals were obtained from commercial sources and were used without further purification. Yields refer to isolated compounds, estimated to be >95% pure as determined by ¹H-NMR. TLC: Macherey-Nagel, TLC plates Alugram®Sil G/UV254. Detection under UV light at 254 nm. Chromatography separations were carried out on silica gel 60H (200-300 mesh) manufactured by Qingdao Haiyang Chemical Group Co. (China). High resolution mass spectrometry (HRMS) was measured on Thermo-DFS mass spectrometer (Q Exactive Focus). NMR spectra were recorded on *J*EOL 400 NMR (¹H 400 MHz; ¹³C 100 MHz) in DMSO or CDCl₃. If not otherwise specified, chemical shifts (δ) are given in ppm. All sulfides were purchased from TCI, Meryer or Macklin.

The devices of electrochemical reaction

Figure S1. (a) Equipment of standard reaction; (b) Equipment of gram-scale reaction.

Optimization Studies

Table S1. Optimization of Electrochemical Reaction Conditions^a

O Ia	s = 0 + $s = s$ + $s =$	SPh 3a
Entry	Deviation from standard conditions	Yield $(\%)^b$
1	None	82
2	No current	NR
3	No <i>n</i> -Bu ₄ NI	NR
4	<i>n</i> -Bu4NBF4 instead of <i>n</i> -Bu4NI	Messy
5	<i>n</i> -Bu ₄ NPF ₆ instead of <i>n</i> -Bu ₄ NI	31
6	<i>n</i> -Bu4NHSO4 instead of <i>n</i> -Bu4NI	Messy
7	2 mA	37
8	MeOH as solvent	17
9	MeCN as solvent	60
10	DCM/HFIP (20:1) as solvent	50
11	Graphite instead of Pt	45

^{*a*} Reaction conditions: Undivided cell, graphite anode (1.5 cm × 1.0 cm × 0.2 cm), Pt cathode (1.5 cm × 1.0 cm × 0.01 cm), **1a** (0.5 mmol), **2a** (0.6 mmol), *n*-Bu₄NI (0.5 mmol), DCM (6 mL), constant current = 4.0 mA, 8.0 h (2.4 *F*), RT, under air. ^{*b*} Yields of isolated products.

Table S2. Optimization of Electrochemical Reaction Conditions^a

2	No current	NR
3	No NH4I	NR
4	1.0 equiv NH4I	36
5	2 h	59
6	<i>n</i> -Bu ₄ NI instead of NH ₄ I	53
7	<i>n</i> -Bu ₄ NPF ₆ instead of <i>n</i> -Bu ₄ NI	53
8	<i>n</i> -Bu ₄ NHSO ₄ instead of <i>n</i> -Bu ₄ NI	50
9	DCM/HFIP (20:1) instead of HFIP	Trace
10	DCM/HFIP (1:1) instead of HFIP	25
11	MeOH instead of HFIP	NR

_

^{*a*} Reaction conditions: Undivided cell, graphite anode (1.5 cm \times 1.0 cm \times 0.2 cm), Pt cathode (1.5 cm \times 1.0 cm \times 0.01 cm), **1a** (0.5 mmol), **2a** (0.6 mmol), NH₄I (0.75 mmol), HFIP (6 mL), constant current = 4.0 mA, 4.0 h (1.2 *F*), RT, under air. ^{*b*} Yields of isolated products.

General Procedure

The substrates $1a-1z^{[1]}$ were synthesized according to previously described methods as follows.

To a solution of carboxylic acid compound (5.0 mmol, 1.0 equiv) in DCM (30 mL) at 0 °C under N₂ was added dropwise of (COCl)₂ (10 mmol, 2.0 equiv) followed by a catalytic amount of dry DMF. The reaction was allowed to stir at room temperature until completion. The solvent was then removed under reduce pressure to afford the corresponding crude acid chloride.

To a solution of potassium *tert*-butoxide (15 mmol, 3.0 equiv) in anhydrous THF (25 mL) under argon atmosphere, trimethylsulfoxonium iodide (10 mmol; 2.0 equiv) was added. After refluxing at 80 °C for 2 h, the reaction mixture were cooled at 0 °C, followed by slow addition of the crude acid chloride diluted with anhydrous THF. After that, the reaction mixture temperature was naturally increased to room time and stirred overnight. The solvent was then removed on a rotary evaporator. The resulting mixture was added to 60 mL H₂O and extracted with CH₂Cl₂: *i*-PrOH(3:1) mixture (160 mL). After washing with water for three times, the organic phase was dried over Na₂SO₄ and concentrated in vacuo to afford the corresponding sulfoxonium ylides **1a-1z**. Preparation of **5c** with **4a** and 1,3-diphenylpropane-1,3-dione (**S1**)^[2]

To a solution of compound 4a (2.0 mmol, 673 mg) in 1,3-diphenylpropane-1,3-dione (S1) (2.0 mmol, 448 mg), was added Cs₂CO₃ (4.0 mmol, 1.3 g) and Cu(OAc)₂ (0.4 mmol, 79.9 mg). The solution was stirred for 24 h at 130 °C. Upon completion, the solvent was removed directly under reduced pressure to afford the crude product, which was further purified by flash column chromatography (PE/EtOAc: 15/1) to give a

yellow liquid 5c (410 mg, 90%).

Preparation of 5d with 1a and 2,6-dimethylbenzenethiol (2f)^[3]

To a solution of compound **1a** (5.0 mmol, 981 mg) in MeCN (5 mL) was added 2,6dimethylbenzenethiol (**2f**) (5.0 mmol, 0.67 mL). The reaction mixture was stirred for 24 h at room temperature. Then, the crude compound was purified by flash column chromatography (PE/EA: 15/1) to give a yellow liquid **5d** (833 mg, 65%). General Procedure for Electrochemical Reactions

Procedure A: In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates 1 (0.5 mmol), 2 (0.6 mmol), *n*-Bu₄NI (0.5 mmol, 185 mg) and DCM (6 mL) were added. The cell was equipped with graphite (1.5 cm \times 1.0 cm \times 0.2 cm) as the anode and platinum plate (1.5 cm \times 1.0 cm \times 0.01 cm) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 8 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography afford the desired products **3a-3z**.

Procedure **B**: In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **1** (0.5 mmol), **2** (0.6 mmol), NH4I (0.75 mmol, 0.109 mg) and HFIP (6 mL) were added. The cell was equipped with graphite (1.5 cm \times 1.0 cm \times 0.2 cm) as the anode and platinum plate (1.5 cm \times 1.0 cm \times 0.01 cm) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 4 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography afford the desired products **4a-4l**. Notely,

products of 4m, 4n, 4o, and 4p need to undergo a room-temperature reaction for 4 h.

Characterization Data of Products 3a-3z-2, 4a-4q, 5a-5d and 6-12.

2-(Dimethyl(oxo)-\lambda^6-sulfaneylidene)-1-phenyl-2-(phenylthio)ethan-1-one (3a): Compound **3a** (121 mg, 80%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow solid. m.p. 90–92 °C ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.47 (d, *J* = 6.9 Hz, 2H), 7.35 – 7.21 (m, 7H), 7.07 (dd, *J* = 7.2, 7.2 Hz, 1H), 3.73 (s, 3H), 3.66 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.2, 141.8, 140.8, 130.1, 129.6, 127.9, 127.7, 125.6, 124.2, 76.7, 42.0, 41.6. HR-MS (ESI) *m/z* calcd for C₁₆H₁₇O₂S₂ [M+H]⁺ 305.0664, found 305.0665.

2-(Dimethyl(oxo)-\lambda^6-sulfaneylidene)-2-(phenylthio)-1-(*p***-tolyl)ethan-1-one (3b): Compound 3b** (92 mg, 58%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as white solid. m.p. 125–127 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.42 (d, *J* = 7.9 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.24 – 7.21 (m, 2H), 7.11 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.06 (d, *J* = 7.8 Hz, 2H), 3.72 (s, 3H), 3.65 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.0, 141.9, 139.8, 137.9, 129.6, 128.5, 127.9, 125.5, 124.2, 76.5, 42.1, 41.8, 21.4. HR-MS (ESI) *m/z* calcd for C₁₇H₁₉O₂S₂ [M+H]⁺319.0821, found 319.0820.

1-([1,1'-Biphenyl]-4-yl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-2-(phenylthio)ethan-1-on (3c): Compound 3c (143 mg, 75%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.65 (d, *J* = 7.3 Hz, 2H), 7.60 – 7.56 (m, 4H), 7.43 (dd, *J* = 8.3, 6.8 Hz, 2H), 7.36 – 7.25 (m, 5H), 7.15 – 7.11 (m, 1H), 3.75 (s, 3H), 3.68 (s, 3H). ¹³C NMR (100 MHz, DMSO-*D*₆) δ 188.7, 141.9, 141.8, 140.0, 139.8, 129.7, 129.5, 128.7, 128.3, 127.3, 126.3, 125.7, 124.3, 76.9, 42.1, 41.7. HR-MS(ESI) *m*/*z* calcd for C₂₂H₂₁O₂S₂ [M+H]⁺ 381.0970, found 381.0977.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(4-methoxyphenyl)-2-(phenylthio)ethan-1one (3d): Compound 3d (102 mg, 61%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow solid. m.p. 80–82 °C. ¹H NMR (400 MHz, DMSO d_6) δ = 7.56 (d, J = 8.8 Hz, 2H), 7.33 – 7.28 (m, 2H), 7.26 – 7.23 (m, 2H), 7.12 (dd, J = 7.2, 7.2 Hz, 1H), 6.81 (d, J = 8.7 Hz, 2H), 3.71 (d, J = 2.2 Hz, 6H), 3.65 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 188.1, 161.1, 142.0, 132.7, 130.0, 129.6, 125.6, 124.2, 113.2, 76.1, 55.7, 42.1, 41.8. HR-MS(ESI) *m/z* calcd for C₁₇H₁₉O₃S₂ [M+H]⁺ 335.0770, found 335.0771.

1-(4-Chlorophenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-2-(phenylthio)ethan-1one (3e): Compound 3e (122 mg, 72%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.49 (d, J = 8.3 Hz, 2H), 7.31 – 7.23 (m, 4H), 7.17 (d, J = 7.5 Hz, 2H), 7.08 (dd, J = 8.0, 8.0, 1H), 3.70 (s, 3H), 3.61 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 187.8, 141.5, 139.6, 134.7, 129.7, 129.6, 128.1, 125.7, 124.2, 77.1, 41.9, 41.5. HR-MS (ESI) *m/z* calcd for C₁₆H₁₆ClO₂S₂ [M+H]⁺ 339.0275, found 339.0273.

Ethyl 4-(2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-2-(phenylthio)acetyl)benzoate (3f): Compound 3f (134 mg, 71%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.94 (d, *J* = 7.3 Hz, 2H), 7.64 (d, *J* = 7.8 Hz, 2H), 7.43 – 7.21 (m, 5H), 4.40 – 4.35 (m, 2H), 3.87 (s, 3H), 3.78 (s, 3H), 1.40 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*D*₆) δ 188.5, 166.0, 145.7, 141.5, 131.0, 129.7, 129.0, 127.9, 125.8, 124.4, 77.6, 61.5, 42.0, 41.6, 14.8. HR-MS (ESI) *m/z* calcd for C₁₉H₂₁O₄S₂ [M+H]⁺ 377.0876, found 377.0868.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-**2-(phenylthio)**-**1-(4-(trifluoromethyl)phenyl)** ethan-1-one (3g): Compound 3g (150 mg, 81%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow solid. m.p. 80–82 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.63 (d, *J* = 2.4 Hz, 4H), 7.32 – 7.27 (m, 2H), 7.24 – 7.21 (m, 2H), 7.15 – 7.10 (m, 1H), 3.78 (d, *J* = 2.4 Hz, 3H), 3.68 (d, *J* = 2.5 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 187.9, 145.1, 141.3, 129.9 (q, ²*J*_{C-F} = 31.6 Hz), 129.7, 128.3, 125.8, 125.1 (q, ³*J*_{C-F} = 3.8 Hz), 124.5 (d, ¹*J*_{C-F} = 272.7 Hz), 124.2, 123.2, 77.5, 41.9, 41.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.8 (s). HR-MS (ESI) *m*/*z* calcd for C₁₇H₁₆F₃O₂S₂ [M+H]⁺ 373.0538, found 373.0535.

4-(2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-2-(phenylthio)acetyl)benzonitrile (3h): Compound 3h (135 mg, 82%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.75 (d, *J* = 8.2 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.21 (dd, *J* = 8.4, 1.0 Hz, 2H), 7.18 – 7.08 (m, 1H), 3.76 (s, 3H), 3.67 (s, 3H). ¹³C NMR (101 MHz, DMSO-*D*₆) δ 187.5, 145.6, 141.2, 132.2, 129.7, 128.4, 125.9, 124.4, 119.1, 112.4, 77.8, 41.9, 41.5. HR-MS (ESI) *m/z* calcd for C₁₇H₁₆NO₂S₂ [M+H]⁺ 330.0617, found 330.0611.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(4-nitrophenyl)-2-(phenylthio)ethan-1-one (3i): Compound 3i (129 mg, 74%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.13 (d, J = 8.7 Hz, 2H), 7.64 (d, J = 8.7 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.22 – 7.20 (m, 2H), 7.13 (dd, J = 7.6, 6.8 Hz, 1H) 3.79 (s, 3H), 3.68 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 187.3, 148.1, 147.5, 141.1, 129.7, 128.7, 125.9, 124.3, 123.4, 77.8, 41.8, 41.3. HR-MS (ESI) *m/z* calcd for C₁₆H₁₆NO₄S₂ [M+H]⁺ 350.0515, found 350.0516.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-**2-(phenylthio)**-**1-(***m*-tolyl)ethan-**1-one** (**3j**): Compound **3j** (105 mg, 66%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as colorless liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.31 (dd, *J* = 8.0, 7.6 Hz, 2H), 7.25 – 7.21 (m, 4H), 7.15 – 7.09 (m, 3H), 3.72 (s, 3H), 3.65 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.5, 141.9, 140.9, 136.9, 130.7, 129.5, 128.4, 127.8, 125.6, 124.8, 124.3, 76.7, 41.9, 41.6, 21.4. HR-MS (ESI) *m/z* calcd for C₁₇H₁₉O₂S₂ [M+H]⁺ 319.0821, found 319.0818.

1-(3-Chlorophenyl)-2-(dimethyl(oxo)- λ^{6} **-sulfaneylidene)-2-(phenylthio)ethan-1one (3k):** Compound **3k** (96 mg, 57%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.45 – 7.36 (m, 3H), 7.33 – 7.28 (m, 3H), 7.23 (d, *J* = 7.7 Hz, 2H), 7.13 (dd, *J* = 7.6, 7.2 Hz, 1H), 3.75 (s, 3H), 3.67 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 187.3, 142.9, 141.4, 132.6, 130.1, 129.8, 129.6, 127.5, 126.2, 125.7, 124.3, 77.3, 41.8, 41.5. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₆ClO₂S₂ [M+H]⁺ 339.0275, found 339.0271.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-**2-(phenylthio)**-**1-(***o*-tolyl)ethan-1-one (31): Compound **3**I (115 mg, 75%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.26 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.17 (d, *J* = 7.8 Hz, 2H), 7.13 – 7.06 (m, 3H), 6.97 (d, *J* = 6.6 Hz, 2H), 3.78 (s, 3H), 3.65 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 191.5, 142.2, 141.5, 134.2, 130.3, 129.4, 128.3, 125.9, 125.5, 125.1, 124.3, 77.5, 42.0, 41.4, 19.3. HR-MS (ESI) *m/z* calcd for C₁₇H₁₉O₂S₂ [M+H]⁺ 319.0821, found 319.0820.

1-(2-Chlorophenyl)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-2-(phenylthio)ethan-1one (3m): Compound 3m (128 mg, 76%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow solid. m.p. 115–117 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.35 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.22 (m, 3H), 7.21 – 7.07 (m, 5H), 3.77 (s, 3H), 3.66 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 187.7, 141.5, 141.0, 130.0, 129.9, 129.5, 129.4, 127.7, 126.9, 125.6, 124.4, 77.5, 41.8, 41.2. HR-MS (ESI) *m/z* calcd for C₁₆H₁₆ClO₂S₂ [M+H]⁺ 339.0274, found 339.0279.

2-(Dimethyl(oxo)-\lambda^6-sulfaneylidene)-1-(3,5-dimethylphenyl)-2-(phenylthio)ethan-1-one (3n): Compound **3n** (99 mg, 60%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.33 – 7.29 (m, 2H), 7.25 – 7.21 (m, 2H), 7.15 – 7.11 (m, 1H), 7.02 (s, 2H), 6.95 (s, 1H), 3.73 (s, 3H), 3.65 (s, 3H), 2.12 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.8, 142.1, 140.9, 136.8, 131.4, 129.5, 125.61, 125.58, 124.4, 76.7, 41.9, 41.6, 21.3. HR-MS (ESI) *m/z* calcd for C₁₈H₂₁O₂S₂ [M+H]⁺ 333.0977, found 333.0975.

 $1-(2,6-Difluorophenyl)-2-(dimethyl(oxo)-\lambda^6-sulfaneylidene)-2-(phenylthio)ethan-2-(p$

1-one (30): Compound **30** (139 mg, 82%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow solid. m.p. 123–125 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.34 – 7.16 (m, 5H), 7.14 – 6.99 (m, 2H), 6.94 (d, *J* = 9.0 Hz, 1H), 3.77 (s, 3H), 3.70 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 180.8, 159.2 (d, ¹*J*_{C-F} = 246.7 Hz), 158.7 (d, ¹*J*_{C-F} = 246.1 Hz), 140.3, 130.7 (d, ²*J*_{C-F} = 39.5 Hz), 129.4, 125.8, 124.5, 119.8 (t, ²*J*_{C-F} = 24.1 Hz), 112.0 (d, ²*J*_{C-F} = 21.6 Hz), 79.9, 41.7, 41.3. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.7 (s), -114.4 (s). HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₅F₂O₂S₂ [M+H]⁺ 341.0476, found 341.0476.

2-(Dimethyl(oxo)- λ^{6} -sulfaneylidene)-**2-(phenylthio)**-**1-(2,4,6-trifluorophenyl)**ethan-1-one (3p): Compound 3p (133 mg, 74%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.25 (d, *J* = 7.5 Hz, 2H), 7.18 (d, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.4 Hz, 2H), 7.05 – 7.00 (m, 1H), 3.74 (d, *J* = 29.4 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 179.8, 162.1 (d, ¹*J*C-F = 248.7 Hz), 159.2 (d, ¹*J*C-F = 233.3 Hz), 140.2, 129.4, 125.9, 124.5, 116.6 (d, ²*J*C-F = 24.2 Hz) 101.0 (m), 79.8, 41.6, 41.3. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -108.0 (m), -110.6 (s), -111.6(s). HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₄F₃O₂S₂ [M+H]⁺ 359.0382, found 359.0383.

2-(Dimethyl(oxo)-\lambda^6-sulfaneylidene)-2-(phenylthio)-1-(2,4,6-trichlorophenyl) ethan-1-one (3q): Compound **3q** (173 mg, 85%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as white solid. m.p. 80–82 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.56 (d, *J* = 41.8 Hz, 2H), 7.26 – 7.22 (m, 4H), 7.13 – 7.07 (m, 1H), 3.77 (s, 3H), 3.69 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 183.2, 139.9, 139.2, 133.6, 132.8, 132.2, 129.3, 128.5, 128.1, 125.9, 125.2, 78.7, 41.6, 40.9. HR-MS (ESI) *m/z* calcd for C₁₆H₁₄C₁₃O₂S₂ [M+H]⁺ 406.9495, found 406.9498.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(naphthalen-2-yl)-2-(phenylthio)ethan-1one (3r): Compound 3r (110 mg, 62%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.02 (s, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 8.3 Hz, 1H), 7.56 – 7.44 (m, 2H), 7.34 – 7.23 (m, 4H), 7.13 (dd, *J* = 7.2, 7.2 Hz, 1H), 3.79 (s, 3H), 3.70 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.2, 141.8, 138.3, 133.9, 132.4, 129.58, 129.59, 128.9, 128.0, 127.4, 127.3, 126.9, 125.7, 125.5, 124.3, 77.1, 42.0, 41.6. HR-MS (ESI) *m*/*z* calcd for C₂₀H₁₉O₂S₂ [M+H]⁺ 355.0821, found 355.0817.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(perfluorophenyl)-2-(phenylthio)ethan-1one (3s): Compound 3s (136 mg, 69%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow solid. m.p. 116–118 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.30 – 7.24 (m, 2H), 7.19 (d, *J* = 7.5 Hz, 2H), 7.13 (dd, *J* = 7.6, 7.2 Hz, 1H), 3.81 (s, 3H), 3.73 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 176.4, 144.5 (d, ¹*J*_C-F = 253.8 Hz), 139.6, 137.1 (d, ¹*J*_C-F = 249.4 Hz), 129.5, 126.2, 124.8, 117.1 (t, ²*J*_C-F = 21.8 Hz), 81.4, 41.4, 41.0. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -141.9 (d, *J* = 30.8 Hz), -143.6 (d, *J* = 20.7 Hz), -154.6 (t, *J* = 21.8 Hz), -161.7 (m). HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₂F₅O₂S₂ [M+H]⁺ 395.0193, found 395.0192.

1-(Dimethyl(oxo)-λ⁶-sulfaneylidene)-4-phenyl-1-(phenylthio)butan-2-one (3t) Compound 3t (121 mg, 73%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.27 (d, *J* = 7.5 Hz, 2H), 7.19 (dd, *J* = 7.4, 2.2 Hz, 4H), 7.15 – 7.06 (m, 4H), 3.63 (s, 3H), 3.56 (s, 3H), 2.86 (ddd, *J* = 14.6, 9.4, 5.9 Hz, 1H), 2.78 – 2.72 (m, 2H), 2.60 – 2.51 (m, 1H). ¹³C NMR (100 MHz, DMSO-*D*₆) δ = 192.7, 142.4, 141.2, 129.6, 128.8, 128.7, 126.2, 125.6, 124.2, 75.1, 42.2, 41.8, 31.3. HR-MS (ESI) m/z calcd for C₁₈H₂₀O₂S₂ [M⁺H]⁺ 333.0977, found 333.0962.

1-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(4-methoxyphenyl)-1-(phenylthio)propan-**2-one (3u):** Compound **3u** (145 mg, 83%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.33 – 7.29 (m, 2H), 7.24 – 7.21 (m, 2H), 7.17 – 7.12 (m, 1H), 7.02 (d, *J* = 8.7 Hz, 2H), 6.77 – 6.73 (m, 2H), 3.68 (s, 3H), 3.61 (s, 3H), 3.55 (s, 3H), 3.38 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 191.7, 158.1, 141.2, 130.8, 129.6, 129.2, 125.7, 124.2, 113.9, 75.4, 55.5, 43.1, 42.1, 41.7. HR-MS (ESI) *m/z* calcd for C₁₈H₂₁O₃S₂ [M+H]⁺ 349.0927, found 349.0930.

1-(Dimethyl(oxo)-λ⁶-sulfaneylidene)-1-(phenylthio)nonadecan-2-one (3v): Compound 3v (119 mg, 50%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as yellow solid. m.p. 75–77 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.29 – 7.25 (m, 2H), 7.22 (d, *J* = 7.4 Hz, 2H), 7.12 (dd, 1H), 3.53 (s, 3H), 3.48 (s, 3H), 2.75 – 2.40 (m, 2H), 1.60 – 1.52 (m, 2H), 1.25 – 1.21 (m, 28H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 140.7, 129.2, 125.5, 124.3, 74.8, 43.2, 42.9, 41.1, 37.8, 32.0, 29.80, 29.76, 29.60, 29.57, 29.5, 25.5, 22.8, 14.2. HR-MS (ESI) *m/z* calcd for C₂₇H₄₇O₂S₂ [M+H]⁺ 467.3012, found 467.3003.

1-Cyclohexyl-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-2-(phenylthio)ethan-1-one (3w): Compound 3w (78 mg, 50%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.33 – 7.28 (m, 2H), 7.24 – 7.20 (m, 2H), 7.15 – 7.10 (m, 1H), 3.59 (s, 3H), 3.52 (s, 3H), 2.90 (tt, *J* = 11.2, 3.6 Hz, 1H), 1.70 – 1.52 (m, 4H), 1.37 – 0.97 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 197.1, 141.8, 129.6, 125.6, 124.2, 74.2, 44.3, 42.2, 41.8, 30.1, 29.2, 26.1, 26.1, 25.9. HR-MS (ESI) *m/z* calcd for C₁₆H₂₃O₂S₂ [M+H]⁺ 311.1134, found 311.1132.

3-(Adamantan-1-yl)-1-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-(phenylthio)propan-2one (3x): Compound 3x (150 mg, 80%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.33 - 7.28 (m, 2H), 7.22 - 7.18 (m, 2H), 7.15 - 7.10 (m, 1H), 3.61 (s, 3H), 3.53 (s, 3H), 2.57 (d, *J* = 12.9 Hz, 1H), 1.88 – 1.81 (m, 4H), 1.66 – 1.59 (m, 6H), 1.58 – 1.49 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 193.0, 141.7, 129.5, 125.6, 124.3, 77.2, 49.8, 42.9, 42.5, 42.1, 33.9, 28.7. HR-MS (ESI) *m/z* calcd for C₂₁H₂₉O₂S₂ [M+H]⁺ 377.1603, found 377.1606.

1-(Dimethyl(oxo)-*λ*⁶**-sulfaneylidene)-3-(4-isobutylphenyl)-1-(phenylthio)butan-2-one (3y):** Compound **3y** (157 mg, 81%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as white solid. m.p. 97–99 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.38 – 7.33 (m, 1H), 7.30 – 7.26 (m, 1H), 7.18 (dd, *J* = 7.2, 7.6 Hz, 2H), 7.09 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.98 – 6.91 (m, 2H), 6.81 (d, *J* = 7.9 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 1H), 3.59 (d, *J* = 3.6 Hz, 3H), 3.53 (s, 3H), 2.34 (dd, *J* = 7.2 Hz, 7.2 Hz, 2H), 1.83 – 1.68 (m, 1H), 1.23 (d, *J* = 7.2 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.81 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.6, 141.3, 140.4, 139.2, 129.5, 128.9, 127.9, 125.5, 124.2, 75.3, 44.8, 44.6, 42.1, 41.8, 30.1, 22.8, 20.0. HR-MS (ESI) *m/z* calcd for C₂₂H₂₉O₂S₂ [M+H]⁺ 389.1603, found 389.1607.

(*S*)-1-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-3-(6-methoxynaphthalen-2-yl)-1-(phenyl thio)butan-2-one (3z): Compound 3z (170 mg, 83%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as white solid. m.p. 110–112 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.77 (d, *J* = 8.9 Hz, 0.5H), 7.73 – 7.67 (m, 1H), 7.51 (d, *J* = 8.6 Hz, 0.5H), 7.46 – 7.42 (m, 1H), 7.40 – 7.30 (m, 3H), 7.25 (d, *J* = 2.6 Hz, 0.5H), 7.21 – 7.10 (m, 2H), 7.06 – 6.91 (m, 2.7H), 4.68 – 4.46 (m, 1H), 3.84 (d, *J* = 9.2 Hz, 3H), 3.61 (s, 3H), 3.54 (d, *J* = 8.0 Hz, 3H), 1.33 (dd, *J* = 41.8, 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*D*₆) δ 194.5, 157.4, 141.3, 138.8, 133.5, 129.7, 129.2, 128.9, 127.4,

127.0, 126.3, 125.5, 124.3, 118.8, 106.1, 75.4, 55.6, 44.9, 42.0, 19.8. HR-MS (ESI) *m/z* calcd for C₂₃H₂₅O₃S₂ [M+H]⁺ 413.1240, found 413.1242.

2-((4-Chlorophenyl)thio)-2-(dimethyl(oxo)- λ^6 -sulfaneylidene)-1-phenylethan-1one (3z-1): Compound 3z-1 (150 mg, 89%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.47 – 7.43 (m, 2H), 7.39 – 7.28 (m, 3H), 7.29 – 7.23 (m, 4H), 3.75 (s, 3H), 3.66 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.2, 141.1, 140.8, 130.2, 130.1, 129.5, 128.0, 127.6, 126.0, 76.5, 42.0, 41.6. HR-MS (ESI) *m*/*z* calcd for C₁₆H₁₆ClO₂S₂ [M+H]⁺ 339.0275, found 339.0276.

2-(Dimethyl(oxo)- λ^6 -sulfaneylidene)-2-((4-nitrophenyl)thio)-1-phenylethan-1-one (3z-2): Compound 3z-2 (122 mg, 70%) (PE/EA = 1/2) was prepared using the general procedure A and isolated as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.16 – 8.12 (m, 2H), 7.50 (d, *J* = 8.9 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.39 – 7.28 (m, 1H), 7.29 – 7.24 (m, 2H), 3.81 (s, 3H), 3.69 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.1, 152.2, 145.4, 140.6, 130.3, 128.1, 127.5, 124.8, 124.7, 75.0, 42.1, 41.6. HR-MS (ESI) *m/z* calcd for C₁₆H₁₆NO₄S₂ [M+H]⁺ 350.0515, found 350.0518.

1-Phenyl-2,2-bis(phenylthio)ethan-1-one (4a): Compound **4a** (122 mg, 73%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as a yellow solid. ¹H

NMR (400 MHz, DMSO- d_6) $\delta = 8.05$ (d, J = 7.1 Hz, 2H), 7.68 (dd, J = 7.2, 8.0 Hz, 1H), 7.53 (dd, J = 7.6, 8.0 Hz, 2H), 7.43 – 7.36 (m, 4H), 7.36 – 7.35 (m, 6H), 6.67 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 191.3, 134.3, 133.8, 133.1, 131.5, 129.1, 129.0, 128.8, 128.4, 59.8. Analytical data for compound **4a** is consistent with literature report.^[4]

2,2-Bis(phenylthio)-1-(*p***-tolyl)ethan-1-one (4b):** Compound **4b** (96 mg, 55%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.97 (d, *J* = 8.2 Hz, 2H), 7.42 (dd, *J* = 6.6, 3.0 Hz, 4H), 7.36 - 7.31 (m, 8H), 6.62 (s, 1H), 2.38 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 191.4, 144.9, 133.6, 132.2, 132.1, 129.9, 129.7, 129.5, 128.9, 60.3, 21.8. Analytical data for compound **4b** is consistent with literature report.^[4]

1-([1,1'-Biphenyl]-4-yl)-2,2-bis(phenylthio)ethan-1-one (4c): Compound 4c (99 mg, 48%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.16 (s, 2H), 7.84 – 7.75 (m, 4H), 7.51 (dd, *J* = 6.4, 6.8 Hz, 2H), 7.47 – 7.43 (m, 5H), 7.37 – 7.34 (m, 6H), 6.71 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 191.3, 145.6, 139.3, 133.7, 132.1, 130.3, 129.6, 129.6, 129.2, 129.1, 128.9, 127.6, 127.4, 60.4. Analytical data for compound 4c is consistent with literature report.^[4]

1-(4-Chlorophenyl)-2,2-bis(phenylthio)ethan-1-one (4d): Compound **4d** (107 mg, 58%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.08 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.43 – 7.39 (m, 4H), 7.39 – 7.33 (m, 6H), 6.69 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 190.8, 139.3, 133.7, 133.5, 131.8, 131.5, 129.6, 129.4, 129.0, 60.5. Analytical data for compound **4d** is consistent with literature report.^[4]

1-(4-(Dimethylamino)phenyl)-2,2-bis(phenylthio)ethan-1-one (4e): Compound **4e** (68 mg, 36%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow solid. m.p. 103–105 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.91 (d, *J* = 9.1 Hz, 2H), 7.47 – 7.38 (m, 4H), 7.35 – 7.31 (m, 6H), 6.70 (d, *J* = 9.1 Hz, 2H), 6.43 (s, 1H), 3.02 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 189.3, 154.1, 133.2, 132.9, 131.8, 129.5, 128.6, 121.4, 111.2, 60.0, 40.1. HR-MS (ESI) *m/z* calcd for C₂₂H₂₂NOS₂ [M+H]⁺ 380.1137, found 380.1134.

Ethyl 4-(2,2-bis(phenylthio)acetyl)benzoate (4f): Compound 4f (43 mg, 21%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as a yellow liquid. ¹H NMR (400 MHz, DMSO- d_6) δ = 8.16 (d, J = 8.1 Hz, 2H), 8.07 (d, J = 5.7 Hz, 2H), 7.42–7.36 (m, 10H), 6.74 – 6.72 (m, 1H), 4.36 (q, J = 7.0 Hz, 2H), 1.34 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO- D_6) δ 191.6, 165.6, 138.5, 134.6, 133.9,

131.8, 130.4, 130.0, 129.8, 129.2, 61.9, 61.0, 14.8. HR-MS (ESI) m/z calcd for C₂₃H₂₁O₃S₂ [M+H]⁺ 409.0927, found 409.0921.

4-(2,2-Bis(phenylthio)acetyl)-*N*,*N*-dipropylbenzenesulfonamide (4g): Compound 4g (157 mg, 63%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.21 (d, *J* = 8.6 Hz, 2H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.43 – 7.39 (m, 4H), 7.39 – 7.36 (m, 6H), 6.77 (s, 1H), 3.11 – 3.05 (m, 4H), 1.52 – 1.44 (m, 4H), 0.81 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 191.1, 144.2, 137.9, 133.8, 131.6, 130.5, 129.6, 129.1, 127.5, 60.9, 50.1, 22.1, 11.5. HR-MS (ESI) *m/z* calcd for C₂₆H₂₉NNaO₃S₃ [M+Na]⁺ 522.1207, found 522.1200.

1-(Naphthalen-2-yl)-2,2-bis(phenylthio)ethan-1-one (4h): Compound **4h** (85 mg, 44%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.79 (s, 1H), 8.06 – 7.98 (m, 4H), 7.71 – 7.61 (m, 2H), 7.47 – 7.45 (m, 4H), 7.38 – 7.33 (m, 6H), 6.82 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 191.8, 135.7, 133.8, 132.6, 132.1, 132.0, 131.6, 130.2, 129.6, 129.0, 128.2, 127.6, 124.9, 60.7. Analytical data for compound **4h** is consistent with literature report.^[4]

2,2-Bis(phenylthio)-1-(thiophen-2-yl)ethan-1-one (4i): Compound **4i** (110 mg, 64%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.18 – 8.16 (m, 1H), 8.08 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.47 – 7.43 (m, 4H), 7.38 – 7.34 (m, 6H), 7.26 – 7.23 (m, 1H), 6.45 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 185.3, 141.3, 137.1, 135.5, 133.5, 132.2, 129.6, 129.4, 129.0, 60.1. Analytical data for compound **4i** is consistent with literature report.^[4]

1,1-Bis(phenylthio)nonadecan-2-one (4j): Compound **4j** (112 mg, 45%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow solid. m.p. 65–67 °C. ¹H NMR (400 MHz, CDCl₃) δ = 7.45 (dd, *J* = 6.7, 3.0 Hz, 4H), 7.34 – 7.30 (m, 6H), 4.90 (s, 1H), 2.67 (t, *J* = 7.3 Hz, 2H), 1.59 – 1.52 (m, 2H), 1.26 (d, *J* = 6.3 Hz, 28H), 0.89 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.4, 133.1, 132.8, 129.3, 128.6, 64.8, 38.8, 32.1, 29.82, 29.79, 29.7, 29.6, 29.50, 29.45, 29.2, 24.1, 22.8, 14.3. HR-MS (ESI) *m/z* calcd for C₃₁H₄₆NaOS₂ [M+Na]⁺ 521.2882, found 521.2875.

3,3-Dimethyl-1,1-bis(phenylthio)butan-2-one (4k): Compound 4k (82 mg, 52%)

(PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow solid. m.p. 65–67 °C. as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ 7.52 – 7.42 (m, 4H), 7.39 – 7.35 (m, 6H), 5.78 (s, 1H), 1.09 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6) δ 206.1, 134.0, 132.2, 129.6, 129.1, 58.4, 44.5, 26.8. HR-MS (ESI) *m/z* calcd for C₁₈H₂₀NaOS₂ [M+Na]⁺ 339.0848, found 339.0850.

1-Cyclohexyl-2,2-bis(phenylthio)ethan-1-one (4l): Compound **4l** (102 mg, 60%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as white solid. m.p. 65–67 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.46 – 7.42 (m, 4H), 7.39 – 7.33 (m, 6H), 5.84 (s, 1H), 2.86 (tt, *J* = 11.2, 3.5 Hz, 1H), 1.79 – 1.65 (m, 4H), 1.27 – 1.06 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 204.1, 133.0, 132.3, 129.5, 128.7, 61.7, 47.6, 29.0, 25.7, 25.5. HR-MS (ESI) *m*/*z* calcd for C₂₀H₂₂NaOS₂ [M+Na]⁺ 365.1004, found 365.1007.

3-(4-Isobutylphenyl)-1,1-bis(phenylthio)butan-2-one (4m): Compound **4m** (105 mg, 50%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.40 – 7.36 (m, 4H), 7.25 – 7.17 (m, 3H), 7.12 – 7.05 (m, 7H), 5.47 (s, 1H), 4.30 (q, *J* = 6.9 Hz, 1H), 2.40 (d, *J* = 7.0 Hz, 2H), 1.85 – 1.75 (m, 1H), 1.30 (d, *J* = 6.9 Hz, 3H), 0.84 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 201.3, 140.7, 137.3, 134.1, 132.7, 132.5, 131.6, 129.8, 129.7, 129.5, 129.4, 128.5, 128.3, 62.7, 49.2, 44.8, 30.2, 22.7, 18.9. HR-MS (ESI) *m/z* calcd for C₂₆H₂₈NaOS₂ [M+Na]⁺ 443.1474, found 443.1477.

2,2-Bis(ethylthio)-1-phenylethan-1-one (4n): Compound **4n** (108 mg, 90%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ = 8.04 – 8.00 (m, 2H), 7.60 – 7.55 (m, 1H), 7.47 (dd, *J* = 8.0, 7.6 Hz, 2H), 5.36 (s, 1H), 2.76 (q, *J* = 7.4 Hz, 2H), 2.62 (q, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 191.9, 134.5, 133.5, 129.0, 128.7, 54.4, 24.3, 14.2. HR-MS (ESI) *m/z* calcd for C₁₂H₁₆NaOS₂ [M+Na]⁺ 263.0535, found 263.0536.

1-Phenyl-2,2-bis(*p*-tolylthio)ethan-1-one (4o): Compound 4o (91 mg, 50%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 7.7 Hz, 2H), 7.60 – 7.55 (m, 1H), 7.47 – 7.43 (m, 2H), 7.37 (d, *J* = 7.8 Hz, 4H), 7.13 (d, *J* = 7.9 Hz, 4H), 5.66 (s, 1H), 2.35 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 191.5, 139.3, 134.7, 134.6, 133.6, 130.0, 129.2, 128.7, 128.7, 63.5, 21.4. Analytical data for compound 4o is consistent with literature report.^[4]

2,2-Bis((**2,6-dimethylphenyl)thio**)-**1-phenylethan-1-one** (**4p**): Compound **4p** (137 mg, 70%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow solid. m.p. 108–110 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 7.66 – 7.62 (m,

2H), 7.61 – 7.57 (m, 1H), 7.36 (dd, J = 7.6, 8.0 Hz, 2H), 7.17 (dd, J = 8.3, 6.8 Hz, 2H), 7.08 (d, J = 7.6 Hz, 4H), 5.03 (s, 1H), 2.22 (s, 12H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 193.7, 143.6, 134.5, 134.4, 131.4, 130.2, 129.2, 129.0, 128.9, 60.9, 21.8. HR-MS (ESI) m/z calcd for C₂₄H₂₄NaOS₂ [M+Na]⁺ 415.1161, found 415.1142.

2,2-Bis((4-hydroxyphenyl)thio)-1-phenylethan-1-one (4q): Compound **4q** (81 mg, 44%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 9.79 (s, 2H), 7.99 – 7.94 (m, 2H), 7.75 (dd, *J* = 7.6, 7.2 Hz, 1H), 7.56 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.25 – 7.20 (m, 4H), 6.76 – 6.70 (m, 4H), 6.10 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 192.2, 159.0, 137.0, 135.1, 134.1, 129.4, 129.2, 120.2, 116.6, 63.4. Analytical data for compound **4q** is consistent with literature report.^[4]

2-((4-Nitrophenyl)thio)-1-phenylethan-1-one (5a): Compound **5a** (20 mg, 14%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. as a yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.13 – 8.07 (m, 4H), 7.71 – 7.66 (m, 1H), 7.59 – 7.52 (m, 4H), 4.98 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 194.1, 147.2, 145.1, 135.8, 134.4, 129.4, 129.2, 127.1, 124.3, 39.8. Analytical data for compound **5a** is consistent with literature report.^[3]

2,6-Di-tert-butyl-4-methyl-4-(2-oxo-2-phenyl-1-(phenylthio)ethyl)cyclohexa-2,5-

dien-1-one (5b): Compound **5b** (49 mg, 22%) (PE/EA = 15/1) was prepared using the general procedure B and isolated as yellow liquid. ¹H NMR (400 MHz, DMSO-*d*₆) δ = 8.01 – 7.92 (m, 2H), 7.62 (dd, *J* = 7.6, 7.2 Hz, 1H), 7.47 (dd, *J* = 8.0, 7.6 Hz, 2H), 7.40 – 7.36 (m, 2H), 7.30 – 7.21 (m, 3H), 7.02 (d, *J* = 2.7 Hz, 1H), 6.89 (d, *J* = 2.9 Hz, 1H), 5.46 (s, 1H), 1.35 (s, 3H), 1.14 (s, 9H), 1.03 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 196.6, 186.0, 144.9, 143.9, 137.0, 135.2, 134.2, 131.1, 129.7, 129.3, 129.0, 127.8, 58.5, 43.5, 35.0, 29.60, 29.55, 24.0. HR-MS (ESI) *m/z* calcd for C₂₉H₃₄NaO₂S [M+Na]⁺ 469.2172, found 469.2167.

1-Phenyl-2-(phenylthio)ethan-1-one (**5c**): ¹H NMR (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 8.0 Hz, 2H), 7.60 – 7.56 (m, 1H), 7.48 – 7.43 (m, 2H), 7.41 – 7.37 (m, 2H), 7.28 (dd, *J* = 7.6 Hz, 2H), 7.25 – 7.21 (m, 1H), 4.28 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.2, 135.5, 134.9, 133.6, 130.6, 129.2, 128.82, 128.80, 127.2, 41.3. Analytical data for compound **5c** is consistent with literature report.^[3]

2-((2,6-Dimethylphenyl)thio)-1-phenylethan-1-one (5d): ¹H NMR (400 MHz, CDCl₃) δ = 7.88 (d, *J* = 7.7 Hz, 2H), 7.56 (dd, *J* = 7.6, 7.2 Hz, 1H), 7.43 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.15 (dd, *J* = 8.7, 6.1 Hz, 1H), 7.09 (d, *J* = 8.1 Hz, 2H), 3.98 (s, 2H), 2.46 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 194.6, 143.5, 135.6, 133.4, 132.1, 129.1, 128.8, 128.7, 128.5, 40.9, 22.0. HR-MS (ESI) *m/z* calcd for C₁₆H₁₇OS [M+H]⁺ 257.0995,

found 257.0998.

1-Phenyl-2,2-bis(phenylsulfonyl)ethan-1-one (**6**): ¹H NMR (400 MHz, CDCl₃) $\delta = 7.94$ (d, J = 8.4 Hz, 4H), 7.78 (d, J = 8.2 Hz, 2H), 7.67 (dd, J = 7.5 Hz, 2H), 7.58 (dd, J = 11.5, 4.2 Hz, 1H), 7.52 (dd, J = 8.0, 7.6 Hz, 4H), 7.42 (dd, J = 7.6, 7.6 Hz, 2H), 6.54 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 137.4, 136.3, 135.2, 134.9, 130.5, 129.14, 129.13, 129.10, 86.2. Analytical data for compound **6** is consistent with literature report.^[5]

1-Phenyl-2,2-bis(phenylthio)ethan-1-ol (7):¹H NMR (400 MHz, CDCl₃) δ = 7.43 – 7.26 (m, 15H), 4.93 (d, *J* = 4.7 Hz, 1H), 4.62 (d, *J* = 4.9 Hz, 1H), 3.32 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 134.1, 133.6, 133.09, 133.07, 129.3, 129.1, 128.3, 128.26, 128.24, 128.1, 126.9, 74.5, 68.5. Analytical data for compound **7** is consistent with literature report.^[5]

2-Fluoro-1-phenyl-2,2-bis(phenylsulfonyl)ethan-1-one (**8**): ¹H NMR (400 MHz, Chloroform-*d*) δ = 7.98 (d, *J* = 7.9 Hz, 4H), 7.75 – 7.70 (m, 2H), 7.62 (d, *J* = 7.6 Hz, 2H), 7.57 – 7.54 (m, 5H), 7.36 – 7.32 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.8, 136.0, 134.9, 134.5, 131.5, 130.3, 129.7, 129.6, 129.3, 128.5, 113.1(d, *J* = 282.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -166.8. Analytical data for compound **8** is consistent with literature report.^[5]

2-Phenyl-1,1-bis(phenylthio)propan-2-ol (9): ¹H NMR (400 MHz, CDCl₃) δ = 7.54 (d, *J* = 7.5 Hz, 2H), 7.31 (dd, *J* = 8.0 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.22 – 7.16 (m, 10H), 4.67 (s, 1H), 3.30 (s, 1H), 1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 135.02, 134.96, 133.3, 133.2, 129.01, 129.00, 128.1, 127.98, 127.95, 127.6, 125.9, 77.8, 76.6, 27.2. Analytical data for compound **9** is consistent with literature report.^[5]

(Z)-1-Phenyl-2,2-bis(phenylthio)ethan-1-one oxime (10): ¹H NMR (400 MHz, CDCl₃) δ = 7.74 (d, *J* = 7.2 Hz, 2H), 7.46 – 7.39 (m, 7H), 7.27 – 7.24 (m, 6H), 6.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 134.5, 133.4, 132.8, 129.7, 129.1, 128.34, 128.25, 128.0, 51.7. HR-MS (ESI) *m/z* calcd for C₂₀H₁₈NOS₂ [M+H]⁺ 352.0824, found 352.0814.

(*E*)-1-(4-Methoxyphenyl)-3-phenyl-3-(phenylthio)prop-2-en-1-one (11): ¹H NMR (400 MHz, CDCl₃) $\delta = 8.05$ (d, J = 8.7 Hz, 2H), 7.24 – 7.19 (m, 5H), 7.16 – 7.13 (m, 3H), 7.09 – 7.05 (m, 3H), 6.98 (d, J = 8.7 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 187.5, 163.2, 161.0, 139.0, 134.4, 133.0, 131.5, 130.6, 129.1, 128.4, 127.9, 120.1, 113.9, 55.6. Analytical data for compound **11** is consistent with literature report. [6]

(Z)-1-(4-Methoxyphenyl)-3-phenyl-2,3-bis(phenylthio)prop-2-en-1-one (12): ¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, J = 8.8 Hz, 2H), 7.54 – 7.50 (m, 2H), 7.30 – 7.26 (m, 4H), 7.24 – 7.21 (m, 1H), 7.16 – 7.12 (m, 5H), 7.07 – 7.05 (m, 3H), 6.91 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 163.8, 136.9, 136.8, 136.1, 133.6, 133.4, 131.9, 131.8, 131.5, 129.9, 129.3, 128.8, 128.7, 128.5, 128.3, 128.1, 127.4, 113.9, 55.6. Analytical data for compound **12** is consistent with literature report. ^[7]

Gram-scale synthesis

(a) Gram-scale experiments for **3a**:

In an undivided cell (250.0 mL) equipped with a stir bar, a mixture of substrates **1a** (10.0 mmol, 1.96 g), **2a** (12.0 mmol, 2.62 g), *n*-Bu₄NI (10.0 mmol, 3.69 g) and DCM (120.0 mL) were added. The cell was equipped with graphite ($3 \text{ cm} \times 3 \text{ cm} \times 0.6 \text{ cm}$) as the anode and platinum plate ($3 \text{ cm} \times 3 \text{ cm} \times 0.01 \text{ cm}$) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 50 mA at room temperature for 8 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 1/2) to give as yellow liquid **3a** (2.10 g, 69%).

(b) Gram-scale experiments for 4a:

In an undivided cell (250.0 mL) equipped with a stir bar, a mixture of substrates **1a** (10.0 mmol, 1.96 g), **2a** (12.0 mmol, 2.62 g), NH₄I (15.0 mmol, 2.17 g) and HFIP (120 mL) were added. The cell was equipped with graphite ($3 \text{ cm} \times 3 \text{ cm} \times 0.6 \text{ cm}$) as the anode and platinum plate ($3 \text{ cm} \times 3 \text{ cm} \times 0.01 \text{ cm}$) as the cathode and connected to a DC regulated power supply. The reaction mixture was stirred and electrolyzed at a constant current of 50 mA at room temperature for 4 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 15/1) to give as yellow liquid **4a** (2.35 g, 70%).

The Synthetic Application of Compound 4a

(a) Procedure for the synthesis of 4a

In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **3a** (0.5 mmol, 152 mg), **2a** (0.6 mmol, 131 mg), NH4I (0.75 mmol, 109 mg) and HFIP (6 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 4 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 15/1) to give **4a** (62 mg, 37%).

(b) Procedure for the synthesis of 1-phenyl-2,2-bis(phenylsulfonyl)ethan-1-one $(6)^{[5]}$

To a solution of compound **4a** (0.2 mmol, 67.3 mg) in AcOH (2 mL) was added H₂O₂ (0.3 mmol, 30% in H₂O). After stirring for 2 h at room temperature, the reaction mixture was allowed to slowly warm up to 50 °C and stir overnight. After the reaction completed, the mixture was cooled to room temperature, and concentrated in vacuo. The crude compound was purified by flash column chromatography (PE/EA: 1/1) to give as white solid (56.1 mg, 70%).

(c) Procedure for the synthesis of 1-phenyl-2,2-bis(phenylthio)ethan-1-ol (7)^[5]

To a solution of compound **4a** (0.2 mmol, 67.3 mg) in MeOH (2 mL) at 0 °C was added NaBH₄ (0.5 mmol, 19.4 mg). After stirring for 2 h at room temperature, the resulting mixture was quenched with saturated NH₄Cl (aq.) and extracted with EtOAc. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude compound was purified by flash column chromatography (PE/EA: 10/1) to give as colorless liquid (54.1 mg, 80%).

(d) Procedure for the synthesis of 2-fluoro-1-phenyl-2,2-bis(phenylsulfonyl)ethan- 1one (**8**)^[5]

To a solution of compound **6** (0.2 mmol, 80 mg) in 2 mL DMF was added *t*-BuOK (0.6 mmol, 67.3 mg). The reaction was stirred at room temperature for 20 min before Selectfluor (0.6 mmol, 213 mg) in 2 mL DMF was added slowly. After stirring for 2 h at room temperature, the resulting mixture was quenched by water and extracted with EtOAc. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude compound was purified by flash column chromatography (PE/EA/DCM: 7/1/3) to give as colorless liquid (17.8 mg, 25%).

(e) Procedure for the synthesis of 2-phenyl-1,1-bis(phenylthio)propan-2-ol (9)^[5]

To a solution of compound **4a** (0.5 mmol, 168 mg) in dry THF (5 mL) was added methylmagnesium iodide (1.25 mmol, 208 mg) at 0 °C under argon atmosphere. After stirring for 5 h at room temperature, the resulting mixture was quenched with saturated NH4Cl (aq) and extracted with EtOAc. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude compound was purified by flash column chromatography (PE/EA: 10/1) to give as colorless liquid (132 mg, 75%).

(f) Procedure for the synthesis of (Z)-1-phenyl-2,2-bis(phenylthio)ethan-1-one oxime (10)^[8]

To a solution of compound **4a** (0.2 mmol, 67.3mg) in C₂H₅OH (10 mL) was added NH₂Cl·H₂O (0.4 mmol, 27.8 mg) and Pyridine (0.6 mmol, 47.5 mg). The reaction mixture were refluxed at 80 °C for 2 h. After completion of the reaction as indicated by thin-layer chromatography (TLC), the solvent was evaporated. The reaction was quenched with water (10 mL) and extracted with EtOAc (2×10 mL). The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude compound was purified by flash column chromatography (PE/EtOAc: 1/3) to give as yellow liquid (26.7 mg, 38%).

(g) Procedure for the synthesis of (E)-1-(4-methoxyphenyl)-3-phenyl- 3-(phenylthio)prop-2-en-1-one (11) and (Z)-1-(4-methoxyphenyl)-3-phenyl-2,3bis(phenylthio)prop-2-en-1-one (12)^[9]

To a solution of compound **4a** (0.3 mmol, 101 mg) in DMSO (2 mL) was added CsCO₃ (1.0 mmol, 195 mg) and 1-(4-methoxyphenyl)-3-phenylprop-2-yn-1-one **S2** (0.3 mmol, 70.8 mg) under nitrogen atmosphere. After stirring for 2 h at room temperature, the resulting mixture was quenched by water and extracted with EtOAc. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude compound was purified by flash column chromatography (PE/EA/DCM: 10/1/3) to give a yellow liquid **11** (16.7 mg, 16%) and a yellow liquid **12** (19.0 mg, 14%).

Control Experiments and Mechanism Studies

(a) Radical scavenger experiments with BHT

In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **1a** (0.5 mmol, 98 mg), BHT (4.0 mmol, 440 mg), **2a** (0.6 mmol, 131 mg), *n*-Bu₄NI (0.5 mmol, 185 mg) and DCM (6 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 8 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 1/3) to give as yellow liquid **3a** (52 mg, 34%).

(b) Reactions of 1a and 2c under standard condition A

In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **1a** (0.5 mmol, 98 mg), **2c** (0.6 mmol, 93 mg), *n*-Bu₄NI (0.5 mmol, 185 mg) and DCM (6 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 8 h. Upon completion, the solvent was further removed

directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 1/1) to give as yellow liquid **5a** (68 mg, 50 %). (c) Radical scavenger experiments with BHT under condition B

In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **1a** (0.5 mmol, 98 mg), BHT (4.0 mmol, 440 mg), **2a** (0.6 mmol, 131 mg), NH4I (0.75 mmol, 109 mg) and HFIP (6 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 4 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 15/1) to give **4a** (34 mg, 20%) and yellow liquid **5b** (50 mg, 22%).

(d) Reactions of 3a and 2a under standard condition B

In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **3a** (0.5 mmol, 152 mg), **2a** (0.6 mmol, 131 mg), NH₄I (0.75 mmol, 109 mg) and HFIP (6 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 4 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 15/1) to give **4a** (62 mg, 37%).

(e) Reactions of 5c and 2a under standard condition B

In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **5c** (0.5 mmol, 114 mg), **2a** (0.6 mmol, 131 mg), NH4I (0.75 mmol, 109 mg) and HFIP (6 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 4 h. Upon completion, the solvent was further removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography (PE/EtOAc: 15/1) to give **4a** (102 mg, 61%).

(f) Reactions of 5d and 2f under standard condition B

In an undivided cell (30 mL) equipped with a stirring bar, a mixture of substrates **5d** (0.5 mmol, 128 mg), **2f** (0.6 mmol, 83 mg), NH₄I (0.75 mmol, 109 mg) and HFIP (6 mL) were added. The reaction mixture was stirred and electrolyzed at a constant current of 4 mA at room temperature for 4 h. Upon completion, the reaction does not give the expected product.

Cyclic Voltammetry Experiment

Cyclic voltammetry experiments were carried out on an IGS 1230 electrochemical work station (Ingsens instruments, Guangzhou). 0.1 M electrolyte was dissolved in acetonitrile. Working electrode: glassy carbon, counter electrode: Pt, reference electrode: Ag/AgCl (3 M KCl). Scan rate: 100 mV/s.

Figure S2-a. Cyclic voltammograms of condition A. Conditions: a glassy carbon working electrode, a Ag/AgCl (3 M KCl) reference electrode, and a platinum wire counter electrode, 0.01 M analyte in 0.1 M *n*-Bu₄NI dissolved in DCM, 100 mV/s scan rate. (a) *n*-Bu₄NPF₆ (1 mM) as blank; (b) **1a** (1 mM); (c) **2a** (1 mM); (d) *n*-Bu₄NI (1 mM); (e) **1a** and **2a** (1 mM).

Figure S2-b. Cyclic voltammograms of condition B. Conditions: a glassy carbon working electrode, a Ag/AgCl (3 M KCl) reference electrode, and a platinum wire counter electrode, 0.01 M analyte in 0.1 M *n*-Bu₄NPF₆ dissolved in HFIP, 100 mV/s scan rate. (a) *n*-Bu₄NPF₆ (1 mM) as blank; (b) **1a** (1 mM); (c) **2a** (1 mM); (d) NH₄I (1 mM) (e) **5c** (1 mM).

Crystallographic description of 3s and 4a

(a) Crystal structure determination of 3s

The compound **3s** was crystallized from a mixture of CH₂Cl₂ and *n*-hexane ether. Suitable single crystal was picked from the mother liquor and covered with perfluorinated polyether oil on a microscope slide. Compound **3s** was collected at 180.00 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. Data reduction was carried out with the diffractometer's software^[10]. The structure was solved by direct methods using Olex2 software^[11], and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018^[12] using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms. Crystallographic data has been deposited with the Cambridge Crystallographic Centre and allocated with the deposition numbers: CCDC 2272115. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Crystal structure determination of 3s

Crystal Data for C₁₆H₁₁F₅O₂S₂ (M =394.37 g/mol): triclinic, space group P-1 (no. 2), a = 9.0497(5) Å, b = 9.8617(6) Å, c = 17.5484(11) Å, $a = 92.637(5)^{\circ}$, $\beta = 91.848(5)^{\circ}$, $\gamma = 95.942(5)^{\circ}$, V = 1554.97(16) Å³, Z = 4, T = 169.99(10) K, μ (Mo K α) = 0.406 mm⁻¹, *Dcalc* = 1.685 g/cm³, 9482 reflections measured (4.158° $\leq 2\Theta \leq 50^{\circ}$), 5463 unique ($R_{int} = 0.0548$, $R_{sigma} = 0.0849$) which were used in all calculations. The final R_1 was 0.0684 (I > 2 σ (I)) and wR_2 was 0.1752 (all data).

3s
$C_{16}H_{11}F_5O_2S_2$
394.37
169.99(10)
triclinic
P-1
9.0497(5)
9.8617(6)
17.5484(11)
92.637(5)
91.848(5)
95.942(5)
1554.97(16)
4
1.685
0.406
800.0
$0.16 \times 0.12 \times 0.1$
Mo Kα (λ = 0.71073)

Table S3 Crystal data and structure refinement for 3s.

2 Θ range for data collection/°	4.158 to 50
Index ranges	$-10 \le h \le 9, -10 \le k \le 11, -18 \le l \le 20$
Reflections collected	9482
Independent reflections	5463 [$R_{int} = 0.0548$, $R_{sigma} = 0.0849$]
Data/restraints/parameters	5463/0/455
Goodness-of-fit on F ²	1.061
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0684, wR_2 = 0.1653$
Final R indexes [all data]	$R_1 = 0.0839, wR_2 = 0.1752$
Largest diff. peak/hole / e Å ⁻³	0.53/-0.47

omitted for clarity.

 Table S4. Bond lengths [Å] and angles [°] of 3s

	-	-			
S1-O2	1.440(4)	C23-C24	1.406(7)	C11-C12-C13	119.2(5)
S1-C8	1.722(5)	C27-C28	1.390(7)	C14-C13-C12	120.4(5)
S1-C9	1.759(5)	C27-C32	1.403(7)	C15-C14-C13	119.8(5)
S1-C10	1.764(5)	C28-C29	1.384(7)	C14-C15-C16	121.0(5)
S2-C8	1.736(5)	C29-C30	1.380(7)	C15-C16-C11	119.3(5)
S2-C11	1.786(5)	C30-C31	1.389(8)	C24-S3-C27	105.1(2)
F1-C2	1.345(6)	C31-C32	1.371(7)	O4-S4-C24	112.3(2)
F2-C3	1.341(6)			O4-S4-C25	110.5(3)
F3-C4	1.337(5)			O4-S4-C26	111.3(3)
F4-C5	1.335(6)			C24-S4-C25	109.6(3)
F5-C6	1.356(5)	O2-S1-C8	112.5(2)	C24-S4-C26	109.4(3)
O1-C7	1.246(6)	O2-S1-C9	110.6(3)	C25-S4-C26	103.3(3)
C1-C2	1.390(7)	O2-S1-C10	110.9(3)	F8-C17-C18	120.6(5)
C1-C6	1.369(7)	C8-S1-C9	109.2(2)	F8-C17-C22	119.5(5)
C1-C7	1.520(6)	C8-S1-C10	109.0(3)	C18-C17-C22	119.8(5)
C2-C3	1.378(7)	C9-S1-C10	104.3(3)	F7-C18-C17	120.1(5)
C3-C4	1.374(7)	C8-S2-C11	105.3(2)	F7-C18-C19	119.9(5)
C4-C5	1.373(7)	C2-C1-C7	121.6(4)	C17-C18-C19	120.0(5)
C5-C6	1.383(7)	C6-C1-C2	117.0(4)	F6-C19-C18	119.6(5)
C7-C8	1.403(7)	C6-C1-C7	121.4(4)	F6-C19-C20	120.6(5)

C11-C12	1.390(7)	F1-C2-C1	120.2(4)	C18-C19-C20	119.8(5)
C11-C16	1.387(7)	F1-C2-C3	118.2(5)	F10-C20-C19	118.3(5)
C12-C13	1.395(7)	C3-C2-C1	121.6(5)	F10-C20-C21	120.3(5)
C13-C14	1.381(8)	F2-C3-C2	120.8(5)	C19-C20-C21	121.4(5)
C14-C15	1.372(8)	F2-C3-C4	119.4(4)	C20-C21-C23	122.3(5)
C15-C16	1.386(8)	C4-C3-C2	119.7(5)	C22-C21-C20	117.4(5)
S3-C24	1.735(5)	F3-C4-C3	119.9(5)	C22-C21-C23	120.1(4)
S3-C27	1.782(5)	F3-C4-C5	120.0(5)	F9-C22-C17	118.6(5)
S4-O4	1.440(4)	C5-C4-C3	120.1(5)	F9-C22-C21	119.9(5)
S4-C24	1.721(5)	F4-C5-C4	120.2(5)	C21-C22-C17	121.5(5)
S4-C25	1.758(6)	F4-C5-C6	120.7(5)	O3-C23-C21	118.3(4)
S4-C26	1.759(5)	C4-C5-C6	119.0(5)	O3-C23-C24	124.0(5)
F6-C19	1.346(6)	F5-C6-C1	119.7(4)	C24-C23-C21	117.6(4)
F7-C18	1.342(6)	F5-C6-C5	117.7(4)	S4-C24-S3	116.9(3)
F8-C17	1.339(6)	C1-C6-C5	122.6(5)	C23-C24-S3	126.1(4)
F9-C22	1.338(6)	O1-C7-C1	117.8(4)	C23-C24-S4	116.8(4)
O3-C23	1.247(6)	01-C7-C8	124.7(4)	C28-C27-S3	123.3(4)
C17-C18	1.360(8)	C8-C7-C1	117.4(4)	C28-C27-C32	119.4(5)
C17-C22	1.394(7)	S1-C8-S2	116.3(3)	C32-C27-S3	117.3(4)
C18-C19	1.377(8)	C7-C8-S1	116.8(3)	C29-C28-C27	119.7(4)
C19-C20	1.382(7)	C7-C8-S2	126.8(4)	C30-C29-C28	121.1(5)
C20-C21	1.385(7)	C12-C11-S2	122.3(4)	C29-C30-C31	118.8(5)
C21-C22	1.379(7)	C16-C11-S2	117.3(4)	C32-C31-C30	121.3(5)
C21-C23	1.515(7)	C16-C11-C12	120.3(5)	C31-C32-C27	119.7(5)

(b) Crystal structure determination of 4a

The compound **4a** was crystallized from a mixture of CH₂Cl₂ and *n*-hexane ether. Suitable single crystal was picked from the mother liquor and covered with perfluorinated polyether oil on a microscope slide. Compound **4a** was collected at 180.00 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. Data reduction was carried out with the diffractometer's software^[10]. The structure was solved by direct methods using Olex2 software^[11], and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXL-2018^[12] using a full-matrix least squares procedure based on F^2 . The weighted *R* factor, *wR* and goodness-of-fit *S* values were obtained based on F^2 . The hydrogen atom positions were fixed geometrically at the calculated distances and allowed to ride on their parent atoms. Crystallographic data has been deposited with the Cambridge Crystallographic Centre and allocated with the deposition numbers: CCDC 2272099. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

Crystal structure determination of 4a

Crystal Data for C₂₀H₁₆OS₂ (*M* =336.45 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 10.0077(5) Å, *b* = 11.6105(5) Å, *c* = 14.5031(7) Å, *β* = 99.121(4)°, *V* = 1663.87(14) Å³, *Z* = 4, *T* = 169.98(10) K, μ (Mo K α) = 0.321 mm⁻¹, *Dcalc* = 1.343 g/cm³, 7621 reflections measured (4.516° ≤ 2 Θ ≤ 49.998°), 2934 unique (*R*_{int} = 0.0190, R_{sigma} = 0.0248) which were used in all calculations. The final *R*₁ was 0.0305 (I > 2 σ (I)) and *wR*₂ was 0.0752 (all data).

Identification code	4a
Empirical formula	C20H16OS2
Formula weight	336.45
Temperature/K	169.98(10)
Crystal system	monoclinic
Space group	P21/n
a/Å	10.0077(5)
b/Å	11.6105(5)
c/Å	14.5031(7)
α/°	90
β/°	99.121(4)
γ/°	90
Volume/Å ³	1663.87(14)
Z	4
$\rho_{calc}g/cm^3$	1.343
µ/mm ⁻¹	0.321
F(000)	704.0
Crystal size/mm ³	0.15 imes 0.12 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.516 to 49.998

Table S5 Crystal data and structure refinement for 4a.

Index ranges	$-11 \le h \le 9, -13 \le k \le 11, -16 \le l \le 17$
Reflections collected	7621
Independent reflections	2934 [$R_{int} = 0.0190$, $R_{sigma} = 0.0248$]
Data/restraints/parameters	2934/0/208
Goodness-of-fit on F ²	1.069
Final R indexes [I>=2σ (I)]	$R_1 = 0.0305, wR_2 = 0.0722$
Final R indexes [all data]	$R_1 = 0.0361, wR_2 = 0.0752$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.20

Figure S4. X-ray structure of 4a. Ellipsoids show 30% probability levels. H atoms are omitted for clarity.

Table S6. Bond lengths [Å] and angles [°] of 4a

S1-C1	1.7851(16)	C15-C16	1.388(2)	C8-C7-S2	109.37(10)
S1-C7	1.8200(15)	C16-C17	1.381(3)	O1-C8-C7	119.43(14)
S2-C7	1.8302(16)	C17-C18	1.381(3)	O1-C8-C9	122.04(14)
S2-C15	1.7771(17)	C18-C19	1.379(3)	C9-C8-C7	118.52(13)
O1-C8	1.2140(19)	C19-C20	1.380(3)	C10-C9-C8	123.34(14)
C1-C2	1.391(2)			C14-C9-C8	117.49(14)
C1-C6	1.386(2)			C14-C9-C10	119.10(15)
C2-C3	1.386(2)			C11-C10-C9	120.12(15)
C3-C4	1.379(3)	C1-S1-C7	98.76(7)	C12-C11-C10	120.20(15)
C4-C5	1.379(3)	C15-S2-C7	102.50(7)	C11-C12-C13	119.89(15)
C5-C6	1.382(2)	C2-C1-S1	121.42(12)	C14-C13-C12	120.23(15)
C7-C8	1.523(2)	C6-C1-S1	118.83(12)	C13-C14-C9	120.45(15)
C8-C9	1.492(2)	C6-C1-C2	119.72(15)	C16-C15-S2	118.91(13)
C9-C10	1.395(2)	C3-C2-C1	119.65(16)	C16-C15-C20	119.99(16)
C9-C14	1.391(2)	C4-C3-C2	120.32(17)	C20-C15-S2	121.04(13)
C10-C11	1.384(2)	C3-C4-C5	120.01(17)	C17-C16-C15	119.77(17)
C11-C12	1.383(2)	C4-C5-C6	120.18(17)	C18-C17-C16	120.25(18)

C12-C13	1.383(2)	C5-C6-C1	120.09(16)	C19-C18-C17	119.93(18)
C13-C14	1.378(2)	S1-C7-S2	115.66(9)	C18-C19-C20	120.34(18)
C15-C15	1.386(2)	C8-C7-S1	108.74(10)	C19-C20-C15	119.72(17)

References

 Wang, X.-T., Song, J.-L., Zhong, M., Kang, H.-J., Xie, H., Che, T., Shu, B., Peng, D., Zhang, L. and Zhang, S.-S. *Eur. J. Org. Chem.*, **2020**, 3635-3639.

[2] Zou, L.-H., Priebbenow, D.L., Wang, L., Mottweiler, J. and Bolm, C. Adv. Synth. Catal., 2013, 355, 2558–2563.

[3] Dias, R. M. P. and Burtoloso, A. C. B. Org. Lett., 2016, 18, 3034-3037.

[4] Duan, B., Li, H., Chen, Y., Xu, C., Yin, G. Tetrahedron Lett., 2022, 94, 153697.

[5] Zhu, Z., Tang, X., Cen, J., Wu, W., Jiang H. Chem, Commun., 2018, 54, 3767-3770.

[6] Zhao, Y.-M., Wang, X., Guo, Z.-Y., Li, H., Zhang, J.-T., Xie M.-H. J. Org. Chem. 2022, 87, 11796–11804.

[7] Shankar, R., Jha, A. k., Singh, U. S., Hajela, K. Tetrahedron Lett., 2006, 47 3077–3079.

[8] Ding, Q., Wu, J. Adv. Synth. Catal., 2008, 350, 1850-1854.

[9] Yang, Y., Cheng, L., Wang, M., Yin, L., Feng, Y., Wang, C., Li, Y. Org. Lett. 2021, 23, 5339–5343.

[10] Dolomanov, O. V.; Bourhis, L. J., J. Appl. Cryst., 2009, 42, 339-341.

[11] Bourhis, L.J.; Puschmann, H. Acta Cryst., 2015, A71, 59-75.

[12] Sheldrick, G.M.; Acta Cryst., 2015, C71, 3-8.

NMR Spectra

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

 $\chi^{3.71}_{3.71}_{3.65}$

 $\begin{array}{c} 7.58\\ 7.55\\ 7.32\\ 7.30\\ 7.26\\ 7.26\\ 7.12\\ 7.12\\ 7.12\\ 7.12\\ 6.82\\ 6.82\\ 6.80\end{array}$

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 F1 (ppm)

 $<^{1.41}_{1.39}$

7,163 7,162 7,162 7,162 7,162 7,162 7,173 7,173 7,172 7,172 7,772

— -60.83

3g, ¹⁹F NMR DMSO-*d*₆, 376 MHz

50 40 50 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2: r1 (ppm)

5.0 f1 (ppm) 8.0 7.5 7.0 4.0 3.5 9.0 8.5 6.5 5.5 4.5 3.0 2.5 2.0 1.5 1.0 0.5 6.0

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

 $<^{-113.70}_{-114.39}$

30, ¹⁹F NMR DMSO-*d*₆, 376 MHz

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 F1 (ppm)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2 f1 (ppm)

 $\begin{array}{c} 3.63\\ 3.56\\ 3.56\\ 3.56\\ 3.56\\ 3.56\\ 2.58\\ 3.56\\$

220 210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 11 (ppm)

8.116 8.116 8.115 8.115 8.113 8.113 8.113 1.715 1.715 1.715 1.714 1.7173 1.71753 1.71753 1.71

4c, ¹H NMR DMSO-*d*₆, 400 MHz

 $\overbrace{1.32}^{1.36}$

-166.8

12, ¹H NMR CDCl₃, 400 MHz

