Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Pd-catalyzed Markovnikov selective oxidative amination of

4-pentenoic acid

Lihua Mao,^a Chao Liu,^a Xiangwen Tan,^a Biao Yao,^a Jiahao Wu,^a Wanqing Wu^a and Huanfeng Jiang^{*}

^{a.} Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
 ^{‡.} These authors contributed equally to this work.
 E-mail: jianghf@scut.edu.cn Fax: 86-20-87112906.

Table of Contents

1.	General information	2
2.	Optimization of Reaction Conditions	2
3.	General procedure	5
4.	Characterization data for products	7
5.	References	19
6.	NMR spectra for products	20

1. General information

All chemicals were purchased from Alfa Aesar, Adams-beta, TCI, J&K, Energy and Bidepharm, and used as received unless otherwise stated. All the heating reactions were heated in a heating mantle. Analytical thin-layer chromatography was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm. ¹H and ¹³C NMR spectra were recorded using a Bruker DRX-400 spectrometer using CDCl₃ as solvent. The chemical shifts are referenced to signals at 7.26 and 77.0 ppm, respectively. Mass spectra were recorded on a Thermo Scientific ISQ gas chromatograph-mass spectrometer. The data of HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker TENSOR 27 spectrometer. Melting points were determined with a Büchi Melting Point B-545 instrument.

2. Optimization of Reaction Conditions

NH_2 [Pd] catalyst H N dmphen (15 mol%)) 0 TBHP (1.50 eq.) 2a 1a CH₃CN, 70 °C, air 3a Yield(%)^b Entry [Pd] catalyst Pd(TFA)₂ 45 1 2 Pd(OAc)₂ 42 3 PdBr₂ n.d. 4 PdCl₂ n.d. 5 Pd(dba)₂ n.d. Pd(PPh₃)₄ 6 n.d.

Table S1. Screening of palladium catalyst^a

^{*a*}Reaction conditions: **1a** (0.75 mmol), **2a** (0.25 mmol), [Pd] (10 mol%), dmphen (15 mol%), CH₃CN (0.5 mL), TBHP (5.5 mol/L in decane, 1.50 eq.), 70 °C, 12 h. ^{*b*}Yields were determined by ¹H NMR using CH₃NO₂ as an internal standard.

Table S2. Optimization of solvent^a

₩H2 + 1a	O Pd(TFA) ₂ (10 mol%) OH dmphen (15 mol%) TBHP (1.50 eq.) solvent, 70 °C, air	H
Entry	Solvent	$\text{Yield}(\%)^b$
1	Dioxane	trace
2	Toluene	37
3	CH ₃ CN	45
4	PhCF ₃	25
5	Acetone	43
6	THF	n.d.
7	DMF	n.d.

^{*a*}Reaction conditions: **1a** (0.75 mmol), **2a** (0.25 mmol), Pd(TFA)₂ (10 mol%), dmphen (15 mol%), solvent (0.5 mL), TBHP (5.5 mol/L in decane, 1.50 eq.), 70 °C, 12 h. ^{*b*}Yields were determined by ¹H NMR using

CH₃NO₂ as an internal standard.

NH ₂ + 1a	O O O H O H Za Pd(TFA) ₂ (10 mol%) L (15 mol%) TBHP (1.50 eq.) CH ₃ CN, 70 °C, air	$H \qquad O \\ O \\ O \\ 3a$
Entry	Ligand	$Yield(\%)^b$
1	1,10-phen	17
2	dmphen	45
3	dbphen	55
4	dpphen	n.d.
5	dmbpy	35
6	bpy	n.d.
7	BINAP	n.d.
8	Xantphos	30

Table S3. Screening of ligands^a

^{*a*}Reaction conditions: **1a** (0.75 mmol), **2a** (0.25 mmol), Pd(TFA)₂ (10 mol%), L (15 mol%), CH₃CN (0.5 mL), TBHP (5.5 mol/L in decane, 1.50 eq.), 70 °C, 12 h. ^{*b*}Yields were determined by ¹H NMR using CH₃NO₂ as an internal standard.

Table S4. Screening of oxidant^a

NH ₂	ОН	Pd(TFA) ₂ (10 mol%) dbphen (15 mol%)	
1a	2a	oxidant (1.50 eq.) CH ₃ CN, 70 °C, air	й За
Entry		Oxidant	$\text{Yield}(\%)^b$
1		O ₂	35
2		TBHP	45
3		DTBP	42
4		BQ	trace
5		H_2O_2	40
6		Cu(OAc) ₂	n.d.
7		AgNO ₃	n.d.
8		PhI(OAc) ₂	n.d

^{*a*}Reaction conditions: **1a** (0.75 mmol), **2a** (0.25 mmol), Pd(TFA)₂ (10 mol%), dbphen (15 mol%), CH₃CN (0.5 mL), oxidant (1.50 eq.), 70 °C, 12 h. ^{*b*}Yields were determined by ¹H NMR using CH₃NO₂ as an internal standard.

Table S5. Optimization of $3z^a$

1 $Pd_2(dba)_3$ PPh_3 BQ $PhCH_3$ $n.d.$ 2 $Pd (TFA)_2$ PPh_3 BQ $PhCH_3$ $n.d.$ 3 $Pd (TFA)_2$ PPh_3 $2,5$ - $DMBQ$ $PhCH_3$ $n.d.$ 4 $Pd (TFA)_2$ $dppp$ $2,5$ - $DMBQ$ $PhCH_3$ $n.d.$ 5 $Pd (OAc)_2$ $dppp$ $2,5$ - $DMBQ$ $PhCH_3$ 8 6 $Pd (OAc)_2$ $dppp$ $2,5$ - $DMBQ$ $PhCH_3$ 10 7 $Pd (OAc)_2$ $Aantphos$ $2, 5$ - $DMBQ$ $PhCH_3$ $n.d.$ 8 $Pd (OAc)_2$ $dppm$ $2, 6$ - $DMBQ$ $PhCH_3$ $n.d.$ 9 $Pd (OAc)_2$ $BINAP$ $2, 6$ - $DMBQ$ $PhCH_3$ $n.d.$ 10 $Pd(OAc)_2$ $BINAP$ $2, 6$ - $DMBQ$ CH_3CN $n.d.$ 10 $Pd(OAc)_2$ $Aantphos$ $2, 6$ - $DMBQ$ CH_3CN $ad(30)^c$						
2 $Pd (TFA)_2$ PPh_3 BQ $PhCH_3$ $n.d.$ 3 $Pd (TFA)_2$ PPh_3 $2,5$ -DMBQ $PhCH_3$ $n.d.$ 4 $Pd (TFA)_2$ $dppp$ $2,5$ -DMBQ $PhCH_3$ $n.d.$ 5 $Pd (OAc)_2$ $dppp$ $2,5$ -DMBQ $PhCH_3$ 8 6 $Pd (OAc)_2$ $dppp$ $2,5$ -DMBQ $PhCH_3$ 8 6 $Pd (OAc)_2$ $Xantphos$ $2,5$ -DMBQ $PhCH_3$ 10 7 $Pd (OAc)_2$ $dppm$ $2, 6$ -DMBQ $PhCH_3$ $n.d.$ 8 $Pd (OAc)_2$ $dppb$ $2, 6$ -DMBQ $PhCH_3$ $n.d.$ 9 $Pd (OAc)_2$ $BINAP$ $2, 6$ -DMBQ CH_3CN $n.d.$ 10 $Pd(OAc)_2$ $BINAP$ $2, 6$ -DMBQ CH_3CN $n.d.$	1	Pd ₂ (dba) ₃	PPh ₃	BQ	PhCH ₃	n.d.
3 Pd (TFA) ₂ PPh ₃ 2,5-DMBQ PhCH ₃ n.d. 4 Pd (TFA) ₂ dppp 2,5-DMBQ PhCH ₃ n.d. 5 Pd (OAc) ₂ dppp 2,5-DMBQ PhCH ₃ 8 6 Pd (OAc) ₂ Xantphos 2,5-DMBQ PhCH ₃ 10 7 Pd (OAc) ₂ Xantphos 2,6-DMBQ PhCH ₃ n.d. 8 Pd (OAc) ₂ dppm 2,6-DMBQ PhCH ₃ n.d. 9 Pd (OAc) ₂ dppb 2,6-DMBQ PhCH ₃ n.d. 9 Pd (OAc) ₂ BINAP 2,6-DMBQ CH ₃ CN n.d. 10 Pd(OAc) ₂ BINAP 2,6-DMBQ CH ₃ CN 38(30) ^c	2	Pd (TFA) ₂	PPh ₃	BQ	PhCH ₃	n.d.
4 Pd (TFA) ₂ dppp 2,5-DMBQ PhCH ₃ n.d. 5 Pd (OAc) ₂ dppp 2,5-DMBQ PhCH ₃ 8 6 Pd (OAc) ₂ Xantphos 2, 5-DMBQ PhCH ₃ 10 7 Pd (OAc) ₂ dppm 2, 6-DMBQ PhCH ₃ n.d. 8 Pd (OAc) ₂ dppm 2, 6-DMBQ PhCH ₃ n.d. 9 Pd (OAc) ₂ dppb 2, 6-DMBQ PhCH ₃ n.d. 10 Pd (OAc) ₂ BINAP 2, 6-DMBQ CH ₃ CN n.d. 10 Pd (OAc) ₂ Santphos 2, 6-DMBQ CH ₃ CN 38(30) c	3	Pd (TFA) ₂	PPh ₃	2,5-DMBQ	PhCH ₃	n.d.
5 $Pd (OAc)_2$ $dppp$ $2,5-DMBQ$ $PhCH_3$ 8 6 $Pd (OAc)_2$ $Xantphos$ $2, 5-DMBQ$ $PhCH_3$ 10 7 $Pd (OAc)_2$ $dppm$ $2, 6-DMBQ$ $PhCH_3$ $n.d.$ 8 $Pd (OAc)_2$ $dppb$ $2, 6-DMBQ$ $PhCH_3$ $n.d.$ 9 $Pd (OAc)_2$ $BINAP$ $2, 6-DMBQ$ CH_3CN $n.d.$ 10 $Pd(OAc)_2$ $Xantphos$ $2, 6-DMBQ$ CH_3CN $38(30)^c$	4	Pd (TFA) ₂	dppp	2,5-DMBQ	PhCH ₃	n.d.
6 $Pd (OAc)_2$ Xantphos2, 5-DMBQ $PhCH_3$ 107 $Pd (OAc)_2$ $dppm$ 2, 6-DMBQ $PhCH_3$ n.d.8 $Pd (OAc)_2$ $dppb$ 2, 6-DMBQ $PhCH_3$ n.d.9 $Pd (OAc)_2$ $BINAP$ 2, 6-DMBQ CH_3CN n.d.10 $Pd(OAc)_2$ Xantphos2, 6-DMBQ CH_3CN $38(30)^c$	5	Pd (OAc) ₂	dppp	2,5-DMBQ	PhCH ₃	8
7 $Pd (OAc)_2$ dppm2, 6-DMBQ $PhCH_3$ n.d.8 $Pd (OAc)_2$ dppb2, 6-DMBQ $PhCH_3$ n.d.9 $Pd (OAc)_2$ $BINAP$ 2, 6-DMBQ CH_3CN n.d.10 $Pd(OAc)_2$ Xantphos2, 6-DMBQ CH_3CN $38(30)^c$	6	Pd (OAc) ₂	Xantphos	2, 5-DMBQ	PhCH ₃	10
8 $Pd (OAc)_2$ dppb2, 6-DMBQ $PhCH_3$ n.d.9 $Pd (OAc)_2$ $BINAP$ 2, 6-DMBQ CH_3CN n.d.10 $Pd(OAc)_2$ Xantphos2, 6-DMBQ CH_3CN $38(30)^c$	7	Pd (OAc) ₂	dppm	2, 6-DMBQ	PhCH ₃	n.d.
9 $Pd (OAc)_2$ BINAP2, 6-DMBQ CH_3CN n.d.10 $Pd(OAc)_2$ Xantphos2, 6-DMBQ CH_3CN $38(30)^c$	8	Pd (OAc) ₂	dppb	2, 6-DMBQ	PhCH ₃	n.d.
10 $Pd(OAc)_2$ Xantphos 2, 6-DMBQ CH ₃ CN 38(30) ^{<i>c</i>}	9	Pd (OAc) ₂	BINAP	2, 6-DMBQ	CH ₃ CN	n.d.
	10	Pd(OAc) ₂	Xantphos	2, 6-DMBQ	CH ₃ CN	38(30) ^c

^{*a*}Reaction conditions: **1a** (0.25 mmol), **2a** (1 mmol), [Pd] (10 mol%), L (15 mol%), slvent (0.5 mL), oxidant (1.5 equiv), 80 °C, N₂, 24 h. BQ= 1,4-Benzoquinone. 2,5-DMBQ=2,5-Dimethylbenzoquinone. 2,6-DMBQ=2,6-Dimethylbenzoquinone. ^{*b*}Yields were determined by ¹H NMR using CH₃NO₂ as an internal standard. n.d. = not detected. ^{*c*}Isolated yields.

Table S6. Exploration of unsaturated carboxylic acid substrates

We have investigated the generality of this reaction concerning different unsaturated carboxylic acids. Surprisingly, 2-substituted-4-pentenoic acids **2b** and **2c** produced corresponding 5-hydroxy-2-pyrrolidone derivatives **3ba** and **3ca**. This may be due to the Thorpe-Ingold effect stabilizing them in the intermediate **12**.

However, the other substituted 4-pentenoic acid and 4-pentenoic acid derivatives (ester and amide) were not compatible with this reaction, presumably because of the sensitivity of the coordination model for alkene activation to subtle steric perturbations or the distinct coordination ability of carboxyl acid, ester

and amide.

Moreover, 5-heptenoic acid can also give rise to δ -ketoamide 3da with 35% yield.

3. General procedure

(1) General procedure for the synthesis of γ-ketoamides

To a 10 mL sealed tube equipped with a magnetic stir bar was successively added Pd(TFA)₂ (8.3 mg, 10 mol%), dbphen (11.0 mg, 15 mol%), substituted primary aromatic amine **1** (0.25 mmol, 1.0 eq.), substituted 4-pentenoic acid **2** (103 μ L, 1.0 mmol, 4.0 eq.) and CH₃CN (0.5 mL), followed by the addition of TBHP (5.5 mol/L in decane, 68.0 μ L, 1.50 eq.). The mixture was stirred at 60 °C for 24 h under air. After the reaction was completed, the mixture was cooled to room temperature, quenched with saturated NaHCO₃ solution, and the organic phase was extracted with EA, then concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product.

(2) General procedure for the synthesis of N-Substituted lactams¹

To a 10 mL sealed tube equipped with a magnetic stir bar was successively added γ -ketoamide **3** (0.1 mmol, 1.0 eq.), Al(OTf)₃ (1.4 mg, 10 mol%), HSiEt₃ (68.0 µL, 2.0 eq.) and CH₃CN (0.5 mL). The mixture was stirred at 75 °C for 12 h under air. After the reaction was completed, the mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the product **4**.

(3) General procedure for the synthesis of γ -methylene- γ -butyrolactone²

To a 25 mL dried round bottom flask equipped with a magnetic stir bar was successively added $Pd(OAc)_2$ (11.5 mg, 0.05 mmol, 4-pentynoic acid (1.00 g, 10.2 mmol, 1.0 eq.) and CHCl₃ (15 mL). The reaction mixture was stirred at 50 °C for 24 h under nitrogen. After cooling the reaction mixture to room temperature, CHCl₃ was evaporated under reduced pressure. Purification by column chromatography gave the γ -methylene- γ -butyrolactone 7 in 70% yield.

(4) General procedure for the synthesis of compound 9³

To a 25 mL dried round bottom flask equipped with a magnetic stir bar was successively added *N*-phenylpent-4-ynamide (0.17 g, 1mmol, 1.0 eq.), K_2CO_3 (0.69 g, 5.0 eq.) and NMP (5 mL). The mixture was stirred at 130 °C in 2 h. After the reaction was completed, the mixture was cooled to room temperature, water and EtOAc were added and the organic phase was collected, dried over Na₂SO₄ and

concentrated under reduced pressure. However, the mixture 9 was hydrolyzed to 3a in silica gel.

(5) General procedure for the synthesis of 2a-¹⁸O

To a 10 mL sealed tube equipped with a magnetic stir bar was successively added pent-4-enoyl chloride (0.22 mL, 2 mmol), $H_2^{18}O$ (0.23 mL, 5.0 eq.) and anhydrous CH_2Cl_2 (2 mL). The mixture was refluxed under nitrogen for 24 hours. After cooling the reaction mixture to room temperature, CH_2Cl_2 was evaporated under reduced pressure. Purification by column chromatography gave **2a**-¹⁸O in 55% yield.

(6) General procedure for the synthesis of 2a-γ-d

1) Protection: To a 100 mL dry round bottom flask equipped with a magnetic stir bar was added Imidazole (2.04 g, 1.5 eq.), 4-pentenoic acid (1 mL, 10.0 mmol), DCM (20 mL) and TBDPSCl (2.85 mL, 1.1 equiv.) under air. After stirring at rt for 4 h, water and EtOAc were added, and the organic phase was collected, dried by Na₂SO₄, and concentrated under reduced pressure. Purification by column chromatography gave the corresponding silyl ether in 85% yield.

2) Deuteration: To a 25 mL dried Schlenk tube equipped with a magnetic stir bar was added the silyl ether (0.66 g, 2.14 mmol), anhydrous THF (6 mL) in glove box. Then, CpZrClD (0.91g, 4.28 mmol, 2.2 equiv.) was added slowly at 25 °C. After being stirred for 1 h at this temperature, H₂O (2 mL, 50 equiv.) was added, and the mixture was further incubated under for 12 h. After this time, water and EtOAc were added and the organic phase was collected, dried by Na_2SO_4 and concentrated under reduced pressure. Purification by column chromatography to afford the corresponding deuterated silyl ether in 60 yield.

3) Deprotection: To a 25 mL dried Schlenk tube equipped with a magnetic stir bar was added the deuterated silyl ether (0.64 g, 2.0 mmol), TBAF (2mL, 1.0mol/L in THF, 2.0 equiv.) and DCM (2 mL). The mixture was stirred under rt for 12 h. After this time, water and EtOAc were added and the organic phase was collected, dried over Na_2SO_4 and concentrated under reduced pressure. Purification by column chromatography to afford the corresponding deuterated 4-pentenoic acid in 30 yield.

4. Characterization data for products

4-oxo-N-phenylpentanamide (3a)

Yield: 81% (38.7 mg) as a white solid; m.p. = 93.5 – 94.2 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.48 (d, *J* = 7.37 Hz ,2H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.08 (t, *J* = 7.4 Hz, 1H), 2.88 (t, *J* = 6.3 Hz, 2H), 2.61 (t, *J* = 6.3 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 170.2, 137.9, 128.9, 124.1, 119.7, 38.6, 31.1, 29.9. v_{max} (KBr)/cm⁻¹ 3370, 2661, 1628, 1437, 1358, 1075, 758, 695. HRMS-APCI (m/z): calcd for C₁₁H₁₃NO₂, [M+H]⁺: 192.1019, found 192.1016.

4-oxo-N-(p-tolyl)pentanamide (3b)

Yield: 78% (40.0 mg) as a white solid; m.p. = $109.2 - 110.3 \,^{\circ}$ C; R_f = $0.4 \,(\text{PE} : \text{EA} = 2 : 1)$. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.36 (d, $J = 8.4 \,\text{Hz}$, 2H), 7.10 (d, $J = 8.2 \,\text{Hz}$, 2H), 2.88 (t, $J = 6.3 \,\text{Hz}$, 2H), 2.60 (t, $J = 6.3 \,\text{Hz}$, 2H), 2.30 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.0, 170.1, 135.3, 133.8, 129.4, 119.8, 38.6, 31.0, 29.9, 20.8. $v_{\text{max}}(\text{KBr})/\text{cm}^{-1}$ 3316, 2662, 1627, 1359, 1072, 818, 766. HRMS-APCI (m/z); calcd for C₁₂H₁₅NO₂, [M+H]⁺: 206.1176, found 206.1174.

N-(4-(tert-butyl)phenyl)-4-oxopentanamide (3c)

Yield: 80% (49.3 mg) as a white solid; m.p. = 86.5 – 87.2 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.40 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 2.86 (t, J = 6.4 Hz, 2H), 2.60 (t, J = 6.4 Hz, 2H), 2.19 (s, 3H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 170.23, 147.1, 135.4, 125.7, 119.6, 38.6, 34.3, 31.4, 40.0, 30.0. v_{max} (KBr)/cm⁻¹ 3303, 2961, 2661, 1672, 1529, 1403, 1362, 1260, 1162, 1110, 834, 554. HRMS-APCI (m/z): calcd for C₁₅H₂₁NO₂, [M+H]⁺: 248.1645, found 248.1643.

N-(4-cyclohexylphenyl)-4-oxopentanamide (3d)

Yield: 82% (56.1 mg) as a yellow solid; m.p. = 124.8 – 125.3 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.38 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 2.86 (t, J = 6.4 Hz, 2H), 2.59 (t, J = 6.4 Hz, 2H), 2.44 (td, J = 8.7, 4.3 Hz, 1H), 2.19 (s, 3H), 1.87 – 1.79 (m, 4H), 1.76 – 1.70 (m, 1H), 1.43 – 1.32 (m, 4H), 1.28 – 1.20 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 170.1, 144.1, 135.6, 127.1, 119.9, 43.9, 38.6, 34.4, 30.9, 29.9, 26.8, 26.1. v_{max} (KBr)/cm⁻¹ 3325, 2922, 2850, 2357, 1708, 1628, 1526, 1412, 1361, 1157, 822, 775. HRMS-APCI (m/z): calcd for C₁₇H₂₃NO₂, [M+H]⁺: 274.1802, found 274.1800.

N-(4-fluorophenyl)-4-oxopentanamide (3e)

Yield: 70% (36.6 mg) as a white solid; m.p. = 121.5 - 122.3 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.42 (dd, *J* = 9.0, 4.7 Hz, 2H), 6.95 (t, *J* = 8.7 Hz, 2H), 2.87 (t, *J* = 6.3 Hz, 2H), 2.59 (t, *J* = 6.3 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 170.3, 160.4, 158.0, 134.0, 133.9, 121.5 (d, *J* = 7.8 Hz), 115.4 (d, *J* = 22.4 Hz), 38.4, 30.8, 29.9. v_{max}(KBr)/cm⁻¹ 3356, 2662, 2360, 1694, 1628, 1504, 1361, 1090, 844, 772. HRMS-APCI (m/z): calcd for C₁₁H₁₂FNO₂, [M+H]⁺: 210.0925, found 210.0923.

N-(4-chlorophenyl)-4-oxopentanamide (3f)

Yield: 70% (39.4 mg) as a white solid; m.p. = 143.5 – 144.1 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.42 (d, J = 8.8 Hz, 2H), 7.22 (d, J = 8.8 Hz, 2H), 2.87 (t, J = 6.3 Hz, 2H), 2.59 (t, J = 6.3 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.4, 170.3, 136.5, 129.0, 128.8, 120.9, 38.4, 30.9, 29.9. v_{max} (KBr)/cm⁻¹ 3353, 2360, 1628, 1361, 1082, 826, 775. HRMS-APCI (m/z): calcd for C₁₁H₁₂ClNO₂, [M+H]⁺: 226.0626, found 226.0629.

4-oxo-N-(4-(trifluoromethyl)phenyl)pentanamide (3g)

Yield: 45% (29.1 mg) as a white solid; m.p. = 146.7 – 147.5 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.60 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 2.91 (t, J = 6.2 Hz, 2H), 2.64 (t, J = 6.2 Hz, 2H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.6, 170.6, 141.0, 126.3 (q, J = 14.9 Hz), 125.4, 122.7, 119.2, 38.4, 31.1, 30.0. v_{max} (KBr)/cm⁻¹ 3363, 2661, 2361, 1680, 1628, 1417, 1360, 1158, 1107, 1068, 846, 775. HRMS-APCI (m/z): calcd for C₁₂H₁₂F₃NO₂, [M+H]⁺: 260.0893, found 260.0891.

4-oxo-N-(4-(trifluoromethoxy)phenyl)pentanamide (3h)

Yield: 62% (42.6 mg) as a white solid; m.p. = 128.6 – 129.1 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.49 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 2.88 (t, J = 6.2 Hz, 2H), 2.61 (t, J = 6.2 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.4, 170.4, 145.1, 136.6, 121.7, 121.6, 120.8, 119.2, 38.5, 31.0, 29.9. v_{max} (KBr)/cm⁻¹ 3350, 2661, 2358, 1696, 1628, 1361, 1210, 1160, 1107, 853, 775. HRMS-APCI (m/z): calcd for C₁₂H₁₂F₃NO₃, [M+H]⁺: 276.0842, found 276.0840.

N-(4-methoxyphenyl)-4-oxopentanamide (3i)

Yield: 42% (23.2 mg) as a white solid; m.p. = 125.8 - 126.3 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.37 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.7 Hz, 2H), 3.77 (s, 3H), 2.87 (t, *J* = 0.4 (PE : EA= 2 : 1).

6.3 Hz, 2H), 2.58 (t, J = 6.4 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 170.0, 156.3, 131.0, 121.6, 114.0, 55.4, 38.6, 30.8, 29.9. ν_{max} (KBr)/cm⁻¹ 3293, 2661, 2356, 1629, 1360, 1070, 825, 775. HRMS-APCI (m/z): calcd for C₁₂H₁₅NO₃, [M+H]⁺: 222.1125, found 222.1122.

N-(4-benzylphenyl)-4-oxopentanamide (3j)

Yield: 56% (39.3 mg) as a brown solid; m.p. = 102.8 - 103.2 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.37 (d, J = 8.1 Hz, 2H), 7.08 – 7.17 (m, 5H), 3.90 (s, 2H), 2.85 (t, J = 6.3 Hz, 2H), 2.57 (t, J = 6.3 Hz, 2H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.0, 170.1, 141.1, 137.0, 135.9, 129.4, 128.8, 128.4, 126.0, 119.9, 41.3, 38.6, 31.1, 29.9. v_{max} (KBr)/cm⁻¹ 3382, 2920, 2836, 2661, 2357, 1628, 1528, 1359, 1071, 851, 778. HRMS-APCI (m/z): calcd for C₁₈H₁₉NO₂, [M+H]⁺: 282.1489, found 282.1486.

N-([1,1'-biphenyl]-3-yl)-4-oxopentanamide (3k)

Yield: 70% (46.7 mg) as a white solid; m.p. = 123.5 - 1123.9 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.75 (t, *J* = 1.9 Hz, 1H), 7.58 - 7.54 (m, 2H), 7.48 - 7.46 (m, 1H), 7.41 (m, 2H), 7.42 - 7.38 (m, 3H), 2.88 (t, *J* = 6.3 Hz, 2H), 2.63 (t, *J* = 6.3 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 170.4, 141.9, 140.6, 138.4, 129.2, 128.7, 127.4, 127.1, 122.9, 118.6, 118.5, 38.5, 31.0, 29.9. ν_{max} (KBr)/cm⁻¹ 3296, 2966, 2832, 2661, 2358, 1627, 1416, 1359, 1157, 1075, 759, 697. HRMS-APCI (m/z): calcd for C₁₇H₁₇NO₂, [M+H]⁺: 268.1332, found 268.1329.

N-(3-bromophenyl)-4-oxopentanamide (3l)

Yield: 55% (36.9 mg) as a brown solid; m.p. = 93.6 – 94.1 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.75 (s, 1H), 7.35 (d, *J* = 7.9 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.11 (t, *J* = 8.0 Hz, 1H), 2.87 (t, *J* = 6.3 Hz, 2H), 2.60 (t, *J* = 6.3 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.4, 170.4, 139.2, 130.1, 127.0, 122.5, 122.5, 118.1, 38.4, 30.9, 29.9. v_{max} (KBr)/cm⁻¹ 3317, 2964, 2661, 2359, 1678, 1629, 1531, 1476, 1415, 1360, 1162, 1068, 871, 777. HRMS-APCI (m/z): calcd for C₁₁H₁₂BrNO₂, [M+H]⁺: 270.0124, found 270.0128.

N-(3,5-difluorophenyl)-4-oxopentanamide (3m)

Yield: 35% (19.9 mg) as a yellow solid; m.p. = 125.3 - 126.5 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.15 - 7.05 (m, 2H), 6.51 (tt, *J* = 8.9, 2.35 Hz, 1H), 2.90 (t, *J* = 6.2 Hz) (t, J = 6.2 Hz) (

Hz, 2H), 2.61 (dd, J = 6.8, 5.6 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.5, 170.5, 164.4, 164.3, 162.0, 161.8, 140.1, 140.0, 102.5 (d, J = 29.2 Hz), 99.2 (t, J = 25.6 Hz), 38.5, 31.1, 29.9. v_{max} (KBr)/cm⁻¹ 3343, 3059, 2360, 1690, 1628, 1479, 1414, 1360, 1312, 1162, 1107, 849, 705. HRMS-APCI (m/z): calcd for C₁₁H₁₁F₂NO₂, [M+H]⁺: 228.0831, found 228.0827.

N-(3-fluoro-5-methoxyphenyl)-4-oxopentanamide (3n)

Yield: 48% (28.7 mg) as a white solid; m.p. = 118.3 – 118.6 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 6.91 (dt, J = 10.47, 2.1 Hz, 1H), 6.87 (d, J = 2.3 Hz, 1H), 6.33 (dt, J = 10.5, 2.3 Hz, 1H), 3.75 (s, 3H), 2.88 (t, J = 6.3 Hz, 2H), 2.60 (t, J = 6.3 Hz, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 170.4, 164.8, 162.4, 161.0 (d, J = 13.0 Hz), 139.8 (d, J = 13.8 Hz), 100.8, 99.4 (d, J = 26.9 Hz), 97.5 (d, J = 25.4 Hz), 55.5, 38.4, 31.1, 29.9. v_{max} (KBr)/cm⁻¹ 3347, 2661, 2358, 1687, 1625, 1559, 1474, 1424, 1365, 1158, 1061, 839, 705. HRMS-APCI (m/z): calcd for C₁₂H₁₄FNO₃, [M+H]⁺: 240.1030, found 240.1026.

ethyl 4-(4-oxopentanamido)benzoate (30)

Yield: 40% (26.3 mg) as a brown solid; m.p. = 101.8 - 102.5 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.96 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.7 Hz, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 2.89 (t, *J* = 6.2 Hz, 2H), 2.64 (dd, *J* = 6.8, 5.7 Hz, 2H), 2.22 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 170.5, 166.2, 142.1, 130.7, 125.7, 118.6, 60.8, 38.4, 31.1, 29.9, 14.3. v_{max}(KBr)/cm⁻¹ 3339, 2661, 2359, 1703, 1629, 1532, 1362, 1275, 1106, 858, 769. HRMS-APCI (m/z): calcd for C₁₄H₁₇NO₄, [M+H]⁺: 264.1230, found 264.1228.

ethyl (E)-3-(4-(4-oxopentanamido)phenyl)acrylate (3p)

Yield: 43% (31.1 mg) as a brown solid; m.p. = 112.8 – 113.2 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.60 (d, J = 16.0 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 6.33 (d, J = 16.0 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.88 (t, J = 6.3 Hz, 2H), 2.62 (t, J = 6.3 Hz, 2H), 2.21 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 170.4, 167.2, 143.9, 139.8, 130.1, 128.9, 119.6, 116.9, 60.4, 38.4, 31.1, 29.9, 14.3. ν_{max} (KBr)/cm⁻¹ 3350, 2661, 2358, 1699, 1629, 1528, 1359, 1170, 833, 766. HRMS-APCI (m/z): calcd for C₁₆H₁₉NO₄, [M+H]⁺: 290.1387, found 290.1383.

N-(4-(benzyloxy)phenyl)-4-oxopentanamide (3q)

Yield: 42% (39.3 mg) as a white solid; m.p. = 124.9 - 125.3 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.42 – 7.33 (m, 6H), 6.91 (d, J = 8.5 Hz, 2H), 5.03 (s, 2H), 2.88 (t, J = 6.3 Hz, 2H), 2.59 (t, J = 6.3 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 170.0, 155.5, 136.9, 131.2, 128.5, 127.9, 127.4, 121.6, 115.1, 70.2, 38.6, 30.9, 29.9. ν_{max} (KBr)/cm⁻¹ 3297, 2920, 2661, 2360, 1629, 1359, 1071, 820, 771. HRMS-APCI (m/z): calcd for C₁₈H₁₉NO₃, [M+H]⁺: 298.1438, found 298.1435.

tert-butyl (4-(4-oxopentanamido)phenethyl)carbamate (3r)

Yield: 55% (45.9 mg) as a white solid; m.p. = 120.7 - 121.1 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 4.56 (s, 1H), 3.32 (d, *J* = 6.8 Hz, 2H), 2.86 (t, *J* = 6.3 Hz, 2H), 2.73 (t, *J* = 7.0 Hz, 2H), 2.60 (t, *J* = 6.3 Hz, 2H), 2.20 (s, 3H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 170.3, 155.9, 136.3, 134.7, 129.1, 120.0, 79.2, 41.7, 38.5, 35.5, 30.9, 29.9, 28.3. ν_{max} (KBr)/cm⁻¹ 3359, 2661, 2358, 1678, 1628, 1359, 1164, 1067, 832, 771. HRMS-APCI (m/z): calcd for C₁₈H₂₆N₂O₄, [M+H]⁺: 335.1965, found 335.1960.

N-(3-morpholinophenyl)-4-oxopentanamide (3s)

Yield: 35% (24.1 mg) as a brown solid; m.p. = 128.7 – 129.1 °C; $R_f = 0.4$ (PE : EA= 1 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.32 (s, 1H), 7.16 (t, J = 8.1 Hz, 1H), 6.81 (d, J = 8.1 Hz, 1H), 6.63 (d, J = 7.3 Hz, 1H), 3.82 (t, J = 4.4 Hz, 4H), 3.13 (t, J = 4.4 Hz, 4H), 2.87 (t, J = 6.3 Hz, 2H), 2.59 (t, J = 6.3 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.1, 170.3, 152.0, 139.0, 129.5, 111.4, 111.1, 107.1, 66.9, 66.8, 49.2, 38.6, 31.1, 29.9. ν_{max} (KBr)/cm⁻¹ 3314, 2661, 2360, 1628, 1438, 1359, 1116, 1068, 871, 773. HRMS-APCI (m/z): calcd for C₁₅H₂₀N₂O₃, [M+H]⁺: 277.1547, found 277.1543.

N-(3-chloro-4-methoxyphenyl)-4-oxopentanamide (3t)

Yield: 57% (36.3 mg) as a yellow solid; m.p. = 137.8 - 139.1 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.56 (d, *J* = 2.6 Hz, 1H), 7.29 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 1H), 3.85 (s, 3H), 2.87 (t, *J* = 6.3 Hz, 2H), 2.58 (t, *J* = 6.3 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 170.2, 151.7, 131.5, 122.3, 119.4, 112.1, 56.3, 38.5, 30.8, 29.9. v_{max}(KBr)/cm⁻¹

3354, 2661, 2360, 1629, 1360, 1065, 869, 774. HRMS-APCI (m/z): calcd for $C_{12}H_{14}CINO_3$, [M+H]⁺: 256.0735, found 256.0731.

N-(naphthalen-2-yl)-4-oxopentanamide (3u)

Yield: 60% (36.2 mg) as a brown solid; m.p. = 98.6 – 99.2 °C; $R_f = 0.4$ (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.17 (s, 1H), 7.73 – 7.69 (m, 3H), 7.46 – 7.32 (m, 3H), 2.87 (t, *J* = 6.3 Hz, 2H), 2.65 (t, *J* = 6.3 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.4, 170.6, 135.5, 133.8, 130.6, 128.7, 127.6, 127.5, 126.4, 124.9, 119.9, 116.5, 38.5, 31.1, 30.0. v_{max} (KBr)/cm⁻¹ 3320, 2663, 2356, 1627, 1361, 1156, 1067, 817, 754. HRMS-APCI (m/z): calcd for C₁₅H₁₅NO₂, [M+H]⁺: 242.1176, found 242.1172.

N-(4-(3-ethyl-2,6-dioxopiperidin-3-yl)phenyl)-4-oxopentanamide (3v)

Yield: 57% (47.1 mg) as a white solid; m.p. = 167.7 - 168.2 °C; R_f = 0.4 (PE : EA= 1 : 2). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.96 (s, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 2.89 (t, *J* = 6.2 Hz, 2H), 2.61 (t, *J* = 6.2 Hz, 2H), 2.57 - 2.55 (m, 1H), 2.43 - 2.31 (m, 2H), 2.21 (s, 4H), 2.00 (dt, *J* = 14.7, 7.4 Hz, 1H), 1.87 (dt, *J* = 14.6, 7.3 Hz, 1H), 0.85 (t, *J* = 7.4 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 175.3, 172.4, 170.5, 137.4, 134.2, 126.8, 120.1, 50.7, 38.6, 32.8, 31.1, 30.0, 29.3, 27.0, 9.0. v_{max} (KBr)/cm⁻¹ 3431, 3355, 2662, 2359, 1628, 1358, 1075, 844, 756. HRMS-APCI (m/z): calcd for C₁₈H₂₂N₂O₄, [M+H]⁺: 331.1652, found 331.1647.

N-(benzo[b]thiophen-5-yl)-4-oxopentanamide (3w)

Yield: 60% (37.1 mg) as a white solid; m.p. = 148.4 – 148.9 °C; $R_f = 0.4$ (PE : EA= 1 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 2.1 Hz, 1H), 7.83 (s, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.43 (d, J = 5.4 Hz, 1H), 7.30 (dd, J = 8.6, 2.0 Hz, 1H), 7.25 (s, 1H), 2.91 (t, J = 6.3 Hz, 2H), 2.65 (t, J = 6.3 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 170.3, 140.2, 135.4, 134.7, 127.5, 123.9, 122.6, 117.5, 114.5, 38.7, 31.2, 30.0. v_{max} (KBr)/cm⁻¹ 3355, 2661, 2361, 1629, 1356, 1074, 863, 759. HRMS-APCI (m/z): calcd for C₁₃H₁₃NO₂S, [M+H]⁺: 248.0740, found 248.0737.

N-(benzofuran-5-yl)-4-oxopentanamide (3x)

Yield: 55% (31.8 mg) as a yellow solid; m.p. = 118.6 - 119.2 °C; $R_f = 0.4$ (PE : EA= 1 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.85 (d, J = 2.2 Hz, 1H), 7.57 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 8.7 Hz,

1H), 7.21 (dd, J = 8.8, 2.2 Hz, 1H), 6.67 (d, J = 2.2 Hz, 1H), 2.87 (t, J = 6.4 Hz, 2H), 2.62 (t, J = 6.4 Hz, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 170.4, 151.9, 145.7, 133.2, 127.7, 117.6, 112.9, 111.3, 106.8, 38.6, 30.9, 30.0. ν_{max} (KBr)/cm⁻¹ 3345, 2661, 2358, 1628, 1358, 1073, 870, 762. HRMS-APCI (m/z): calcd for C₁₃H₁₃NO₃, [M+H]⁺: 232.0968, found 232.0965.

N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-4-oxopentanamide (3y)

Yield: 54% (33.6 mg) as a white solid; m.p. = 98.5 – 99.1 °C; $R_f = 0.4$ (PE : EA= 1 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.10 (d, *J* = 2.5 Hz, 1H), 6.86 (dd, *J* = 8.7, 2.5 Hz, 1H), 6.75 (d, *J* = 8.6 Hz, 1H), 4.21 (s, 4H), 2.85 (t, *J* = 6.4 Hz, 2H), 2.56 (t, *J* = 6.4 Hz, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.2, 170.1, 143.4, 140.3, 131.7, 117.1, 113.5, 109.7, 64.4, 64.3, 38.6, 30.9, 30.0. v_{max} (KBr)/cm⁻¹ 3311, 2662, 2358, 1627, 1506, 1361, 1064, 875, 809. HRMS-APCI (m/z): calcd for C₁₃H₁₅NO₄, [M+H]⁺: 250.1074, found 250.1071.

4-oxo-N-(pyridin-3-yl)pentanamide (3z)

Yield: 30% (14.7 mg) as yellow liquid; $R_f = 0.4$ (PE : EA=1 : 2). ¹H NMR (400 MHz, CDCl₃) δ 10.71 (s, 1H), 9.13 (s, 1H), 8.87 (d, J = 8.6 Hz, 1H), 8.34 – 8.29 (m, 1H), 7.72 (dd, J = 8.6, 5.3 Hz, 1H), 2.85 (t, J = 6.0 Hz, 2H), 2.73 (t, J = 6.1 Hz, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 207.7, 172.3, 135.2, 133.9, 133.1, 126.7, 37.7, 30.4, 29.9. v_{max} (KBr)/cm⁻¹ 3455, 2392, 1648, 1539, 1504, 1296, 748. HRMS-APCI (m/z): calcd for C₁₀H₁₃N₂O₂, [M+H]⁺: 193.0972, found 193.0971.

3a-methyl-3,3a-dihydro-5H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-1(2H)-one (3aa)

Yield: 35% (17.8 mg) as a yellow liquid; $R_f = 0.4$ (PE : EA= 4 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.3 Hz, 1H), 7.28 (t, J = 8.4 Hz, 1H), 7.11 (td, J = 7.5, 1.2 Hz, 1H), 7.05 (dd, J = 7.9, 1.6 Hz, 1H), 5.02 (d, J = 15.6 Hz, 1H), 4.87 (d, J = 15.6 Hz, 1H), 2.67 – 2.58 (m, 2H), 2.28 – 2.15 (m, 2H), 1.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 132.9, 127.5, 124.1, 124.0, 123.0, 120.5, 90.0, 62.8, 33.0, 30.2, 21.2. v_{max} (KBr)/cm⁻¹ 2970, 2662, 2358, 1699, 1628, 1372, 1060, 758. HRMS-APCI (m/z): calcd for C₁₂H₁₃NO₃, [M+H]⁺: 204.1019, found 204.1016.

N-(3-bromo-4-chlorophenyl)-4-oxopentanamide (3ab)

Yield: 35% (26.5 mg) as a white solid; m.p. = 129.8 - 130.2 °C; R_f = 0.4 (PE : EA= 2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.73 (d, *J* = 2.5 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 1H), 7.21 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 1H), 7.21 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 1H), 7.48 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.48 (dd, J = 8.7, 2.5 Hz, 1

1H), 2.89 (t, J = 6.1 Hz, 2H), 2.60 (t, J = 6.1 Hz, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.5, 170.4, 138.2, 134.7, 133.6, 121.2, 119.0, 116.5, 38.5, 31.1, 30.0. v_{max}(KBr)/cm⁻¹ 3340, 2661, 2359, 1686, 1629, 1361, 1110, 870, 757. HRMS-APCI (m/z): calcd for C₁₁H₁₁BrClNO₂, [M+H]⁺: 303.9734, found 303.9732.

4-oxo-N-(1-oxo-1,3-dihydroisobenzofuran-4-yl)pentanamide (3ac)

Yield: 25% (15.4 mg) as a brown solid; m.p. = 134.8 – 135.4 °C; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.71 (dd, J = 7.7, 3.1 Hz, 2H), 7.48 (t, J = 7.7 Hz, 1H), 5.31 (s, 2H), 3.02 – 2.85 (m, 2H), 2.65 (t, J = 6.0 Hz, 2H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.6, 171.2, 170.5, 138.5, 132.4, 129.9, 127.1, 126.7, 122.2, 69.7, 38.7, 30.6, 30.0. v_{max} (KBr)/cm⁻¹ 3359, 2661, 2358, 1759, 1629, 1359, 1075, 861, 755. HRMS-APCI (m/z): calcd for C₁₃H₁₃NO₄, [M+H]⁺: 248.0917, found 248.0914.

N-(4-((3-fluorobenzyl)oxy)phenyl)-4-oxopentanamide (3ad)

Yield: 27% (21.2 mg) as a white solid; m.p. = 154.8 - 155.3 °C; R_f = 0.4 (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.60 (d, J = 2.5 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.28 – 7.26 (m, 1H), 7.22 – 7.15 (m, 2H), 7.01 – 6.97 (m, 1H), 6.84 (d, J = 8.8 Hz, 1H), 5.08 (s, 2H), 2.88 (t, J = 6.1 Hz, 2H), 2.58 (t, J = 6.1 Hz, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.3, 170.2, 164.2, 161.8, 150.6, 139.1, 132.2, 130.2, 130.1 (d, J = 8.2 Hz), 123.5, 122.5 (d, J = 3.0 Hz), 122.4, 122.3, 119.3, 114.9 (d, J = 21.3 Hz), 114.5, 114.0 (d, J = 22.2 Hz), 70.4, 38.6, 30.9, 30.0. v_{max} (KBr)/cm⁻¹ 3356, 2661, 2358, 1685, 1629, 1356, 1061, 827, 757. HRMS-APCI (m/z): calcd for C₁₈H₁₈FNO₃, [M+H]⁺: 316.1343, found 316.1340.

5-hydroxy-3,5-dimethyl-1-phenylpyrrolidin-2-one (3ba)

Yield: 26% (13.3 mg) as a white solid; m.p. = 96.3 – 96.8 °C; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 8.3, 6.7 Hz, 2H), 7.37 – 7.27 (m, 3H), 2.91 – 2.82 (m, 1H), 2.49 (dd, J = 13.2, 8.3 Hz, 1H), 1.85 (dd, J = 13.2, 10.1 Hz, 1H), 1.43 (s, 3H), 1.28 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 135.8, 129.1, 128.1, 127.6, 89.1, 44.3, 34.7, 27.4, 16.0. ν_{max} (KBr)/cm⁻¹ 3449, 2970, 1598, 1495, 1382, 1114, 759, 694. HRMS-APCI (m/z): calcd for C₁₂H₁₅NO₂, [M+H]⁺: 206.1178, found 206.1176.

5-hydroxy-3,3,5-trimethyl-1-phenylpyrrolidin-2-one (3ca)

Yield: 28% (15.3 mg) as a white solid; m.p. = 98.6 – 99.1 °C; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 2H), 7.38 – 7.32 (m, 1H), 7.31 – 7.26 (m, 2H), 2.80 (s, 1H), 2.27 – 2.12 (m, 2H), 1.43 (s, 3H), 1.39 (s, 3H), 1.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 179.8, 135.7, 129.0, 128.7, 127.7, 88.3, 50.1, 39.8, 28.4, 26.7, 26.3. v_{max} (KBr)/cm⁻¹ 3453, 2972, 1681, 1403, 1190, 759, 694. HRMS-APCI (m/z): calcd for C₁₃H₁₈NO₂, [M+H]⁺: 220.1334, found 220.1332.

5-oxo-N-phenylhexanamide (3ea)

Yield: 35% (17.9 mg) as a brown solid; m.p. = 77.8 – 80.1 °C; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) 7.62 (s, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.30 (t, J = 7.7 Hz, 2H), 7.09 (t, J = 7.4 Hz, 1H), 2.57 (t, J = 6.9 Hz, 2H), 2.38 (t, J = 7.2 Hz, 2H), 2.15 (s, 3H), 1.98 (p, J = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 209.0, 170.8, 138.0, 129.0, 124.2, 119.8, 42.3, 36.3, 30.1, 19.5. v_{max} (KBr)/cm⁻¹ 3313, 2955, 2921, 2359, 1709, 1659, 1537, 1441, 1310, 1157, 1076, 756, 694. HRMS-APCI (m/z): calcd for C₁₂H₁₅NO₂, [M+H]⁺: 206.1176, found 206.1174.

5-methyl-1-phenylpyrrolidin-2-one (4a)

Yield: 80% (14.7 mg) as yellow liquid; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.28 (m, 4H), 7.23 – 7.15 (m, 1H), 4.33 – 4.26 (m, 1H), 2.70 – 2.48 (m, 2H), 2.41 – 2.32 (m, 1H), 1.79 – 1.71 (m, 1H), 1.20 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 137.6, 129.0, 125.8, 124.1, 55.6, 31.4, 26.8, 20.2. v_{max} (KBr)/cm⁻¹ 2970, 2661, 2359, 1693, 1629, 1496, 1383, 1075, 759. HRMS-APCI (m/z): calcd for C₁₁H₁₃NO, [M+H]⁺: 176.1070, found 176.1067.

5-methyl-1-(3-morpholinophenyl)pyrrolidin-2-one (4b)

Yield: 86% (22.3 mg) as brown liquid; $R_f = 0.4$ (PE : EA=1 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 9.1 Hz, 1H), 7.04 (s, 1H), 6.76 (d, J = 7.9 Hz, 2H), 4.28 – 4.24 (m, 1H), 3.84 (t, J = 4.9 Hz, 4H), 3.16 (t, J = 4.8 Hz, 4H), 2.64 – 2.48 (m, 2H), 2.40 – 2.31 (m, 1H), 1.78 – 1.69 (m, 1H), 1.2 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 151.9, 138.6, 129.5, 115.3, 113.1, 112.2, 66.9, 55.9, 49.3, 31.4, 26.7, 20.2. v_{max} (KBr)/cm⁻¹ 2966, 2661, 2359, 1687, 1629, 1361, 1117, 757. HRMS-APCI (m/z): calcd for C₁₅H₂₀N₂O₂, [M+H]⁺: 261.1598, found 261.1595.

4-(4-(2-methyl-5-oxopyrrolidin-1-yl)phenyl)morpholin-3-one (4c)

Yield: 73% (19.9 mg) as a white solid; m.p. = 145.9 – 146.3 °C; $R_f = 0.4$ (PE : EA=1 : 2). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 4.34 (s, 2H), 4.30 (q, J = 6.4 Hz, 1H), 4.03 (t, J = 5.0 Hz, 2H), 3.77 – 3.74 (m, 2H), 2.69 – 2.61 (m, 1H), 2.58 – 2.50 (m, 1H), 2.42 – 2.33 (m, 1H), 1.83 – 1.75 (m, 1H), 1.24 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 166.7, 138.4, 136.2, 125.9, 124.4, 68.5, 64.1, 55.5, 49.6, 31.3, 26.6, 20.1. v_{max} (KBr)/cm⁻¹ 2970, 2660, 2360, 1629, 1358, 1122, 757. HRMS-APCI (m/z): calcd for C₁₅H₁₈N₂O₃, [M+H]⁺: 275.1390, found 275.1388.

5-methyl-1-(4-((pyrrolidin-1-ylsulfonyl)methyl)phenyl)pyrrolidin-2-one (4d)

Yield: 70% (22.6 mg) as a green solid; m.p. = 209.6 – 210.1 °C; $R_f = 0.4$ (PE : EA=1 : 3). ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.32 (m, 4H), 4.39 – 4.28 (m, 1H), 4.22 (s, 2H), 3.34 – 3.03 (m, 4H), 2.70 – 2.62 (m, 1H), 2.58 – 2.50 (m, 1H), 2.44 – 2.31 (m, 1H), 1.87 – 1.79 (m, 4H), 1.22 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 138.0, 131.2, 126.3, 123.4, 55.8, 55.3, 48.1, 31.3, 26.5, 25.9, 19.9. v_{max} (KBr)/cm⁻¹ 2969, 2923, 2661, 2359, 1688, 1630, 1382, 1138, 1073, 758. HRMS-APCI (m/z): calcd for C₁₆H₂₂N₂O₃S, [M+H]⁺: 323.1424, found 323.1420.

1-(2,3-dihydro-1H-inden-5-yl)-5-methylpyrrolidin-2-one (4e)

Yield: 80% (17.2 mg) as green liquid; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.10 (m, 2H), 7.02 (d, J = 7.9 Hz, 1H), 4.24 – 4.16 (m, 1H), 2.93 – 2.86 (m, , 4H), 2.64 – 2.47 (m, 2H), 2.41 – 2.30 (m, 1H), 2.11 – 2.04 (m, 2H), 1.81 – 1.74 (m, 1H), 1.18 (d, J = 6.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 145.2, 142.3, 135.6, 124.6, 122.7, 121.2, 56.2, 33.0, 32.5, 31.3, 26.9, 25.6, 20.3. v_{max} (KBr)/cm⁻¹ 2961, 2844, 2661, 2359, 1693, 1628, 1491, 1381, 1077, 817, 757. HRMS-APCI (m/z): calcd for C₁₄H₁₇NO, [M+H]⁺: 216.1383, found 216.1380.

ethyl 6-(2-methyl-5-oxopyrrolidin-1-yl)benzofuran-2-carboxylate (4f) Yield: 82% (22.9 mg) as green liquid; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 2.2 Hz, 1H, 7.59 (d, J = 8.9 Hz, 1H), 7.49 (s, 1H), 7.38 (dd, J = 8.9, 2.1 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 4.29 (q, J = 6.4 Hz, 1H), 2.68 - 2.52 (m, 2H), 2.45 - 2.34 (m, 1H), 1.82 - 1.73 (m, 1H), 1.42 (t, J = 7.1 Hz, 3H), 1.19 (d, J = 6.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 174.6, 159.4, 153.7, 146.6, 133.6, 127.5, 124.7, 119.1, 113.8, 112.8, 61.7, 56.4, 31.2, 26.9, 20.3, 14.3. v_{max}(KBr)/cm⁻¹ 2971, 2662, 2360, 1691, 1629, 1365, 1165, 1098, 757. HRMS-APCI (m/z): calcd for C₁₆H₁₇NO₄, [M+H]⁺: 288.1230, found 288.1227.

1-(benzofuran-5-yl)-5-methylpyrrolidin-2-one (4g)

Yield: 90% (19.4 mg) as yellow liquid; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (t, J = 1.7 Hz, 1H), 7.56 – 7.42 (m, 2H), 7.19 (dd, J = 8.6, 2.0 Hz, 1H), 6.75 (d, J = 2.1 Hz, 1H), 4.29 – 4.21 (m, 1H), 2.68 – 2.52 (m, 2H), 2.47 – 2.34 (m, 1H), 1.83 – 1.72 (m, 1H), 1.18 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 153.1, 145.9, 132.5, 128.0, 121.7, 118.3, 111.8, 106.8, 56.7, 31.2, 27.0, 20.4. v_{max} (KBr)/cm⁻¹ 970, 2928, 2661, 2359, 1687, 1629, 1469, 1390, 1112, 768, 741. HRMS-APCI (m/z): calcd for C₁₃H₁₃NO₂, [M+H]⁺: 216.1019, found 216.1018.

1-(benzo[b]thiophen-5-yl)-5-methylpyrrolidin-2-one (4h)

Yield: 92% (21.3 mg) as orange liquid; $R_f = 0.4$ (PE : EA=1 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 2.0 Hz, 1H), 7.47 (d, J = 5.4 Hz, 1H), 7.37 – 7.27 (m, 2H), 4.37 – 4.29 (m, 1H), 2.74 – 2.51 (m, 2H), 2.45 – 2.37 (m, 1H), 1.80 (dd, J = 6.9, 3.1 Hz, 1H), 1.21 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.5, 140.2, 137.4, 134.2, 127.6, 123.9, 122.9, 121.3, 119.7, 56.2, 31.3, 26.9, 20.3. v_{max} (KBr)/cm⁻¹ 2970, 2927, 2661, 2360, 1687, 1629, 1434, 1368, 1085, 757. HRMS-APCI (m/z): calcd for C₁₃H₁₃NOS, [M+H]⁺: 232.0791, found 232.0787.

3-ethyl-3-(4-(2-methyl-5-oxopyrrolidin-1-yl)phenyl)piperidine-2,6-dione (4i)

Yield: 75% (23.6 mg) as a green solid; m.p. = 99.8 – 100.2 °C; $R_f = 0.4$ (PE : EA=1: 2). ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.6 Hz, 2H), 4.34 – 4.26 (m, J = 6.3 Hz, 1H), 2.66 – 2.55 (m, 2H), 2.47 – 2.31 (m, 3H), 2.25 – 2.17 (m, 1H), 2.07 – 2.00 (m, 1H), 1.93 – 1.83 (m, 2H), 1.79 – 1.70 (m, 1H), 1.20 (d, J = 6.2 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 175.1, 174.3, 172.4, 137.0, 135.8, 135.7, 126.8, 123.8, 55.4, 50.8, 31.3, 29.3, 29.3, 27.0, 26.9, 26.6, 20.1, 9.1, 9.0. ν_{max} (KBr)/cm⁻¹2969, 2660, 2360, 1694, 1629, 1357, 1191, 1076, 760. HRMS-APCI (m/z): calcd for C₁₈H₂₂N₂O₃, [M+H]⁺: 315.1703, found 315.1697.

1-(4-cyclopropylphenyl)-5-methylpyrrolidin-2-one (4j)

Yield: 86% (18.5 mg) as yellow liquid; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.16 (m, 2H), 7.12 – 7.03 (m, 2H), 4.28 – 4.18 (m, 1H), 2.66 – 2.48 (m, 2H), 2.39 – 2.30 (m, 1H), 1.91 – 1.84 (m, 1H), 1.78 – 1.68 (m, 1H), 1.17 (d, J = 6.2 Hz, 3H), 0.98 – 0.87 (m, 2H), 0.74 – 0.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 141.8, 134.8, 126.3, 124.3, 55.8, 31.3, 26.8, 20.2, 15.0, 9.2, 9.1. v_{max} (KBr)/cm⁻¹ 2971, 2662, 2360, 1692, 1629, 1516, 1386, 1222, 1049, 895, 822. HRMS-APCI (m/z): calcd for C₁₄H₁₇NO, [M+H]⁺: 216.1383, found 216.1380.

1-(dibenzo[b,d]thiophen-2-yl)-5-methylpyrrolidin-2-one (4k)

Yield: 85% (23.9 mg) as orange liquid; $R_f = 0.4$ (PE : EA=2 : 1). ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.09 (m, 2H), 7.86 (dd, J = 8.7, 3.8 Hz, 2H), 7.53 – 7.35 (m, 3H), 4.45 – 4.35 (m, 1H), 2.76 – 2.58 (m, 2H), 2.49 – 2.40 (m, 1H), 1.86-1.78 (m, , 1H), 1.25 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.6, 140.1, 136.9, 136.3, 135.2, 134.5, 127.0, 124.4, 123.4, 123.2, 122.9, 121.9, 117.9, 56.3, 31.4, 26.9, 20.3. v_{max} (KBr)/cm⁻¹ 2969, 2282, 1690, 1472, 1380, 1282, 733, 667. HRMS-APCI (m/z): calcd for C₁₇H₁₅NOS, [M+H]⁺: 282.0947, found 282.0944.

1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)-5-methylpyrrolidin-2-one (41)

Yield: 72% (18.4 mg) as yellow liquid; $R_f = 0.4$ (PE : EA=1 : 1). ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, J = 2.4 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.47 (dd, J = 8.4, 2.5 Hz, 1H), 4.13 (dt, J = 7.3, 6.1 Hz, 1H), 2.74 – 2.56 (m, 2H), 2.45-2.36 (m, 1H), 1.83 – 1.77 (m, 1H), 1.17 (d, J = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 144.9, 144.0, 128.4, 116.9, 115.2, 113.9, 57.7, 31.2, 26.8, 20.2. v_{max} (KBr)/cm⁻¹ 2922, 1649, 1525, 1367, 1268, 811, 722. HRMS-APCI (m/z): calcd for C₁₂H₁₁F₂NO₃, [M+H]⁺: 256.0786, found 256.0780.

5. References

- (1) J. Qi, C. Sun, Y. Tian, X. Wang, G. Li, Q. Xiao and D. Yin, Org. Lett., 2014, 16, 190-192.
- (2) Z. Wang, R. Poli, C. Detrembleur and A. Debuigne, *Macromolecules*, 2019, 52, 8976-8988.
- (3) J. Liu, Y. Zhang, G. Li, F. Roschangar, V. Farina, C. H. Senanayake and B. Z. Lu, *Adv. Synth. Catal.*, 2010, **352**, 2667-2671.

6. NMR spectra for products

¹³C NMR (100 MHz, CDCl₃) spectrum of 3a

¹H NMR (400 MHz, CDCl₃) spectrum of 3b

¹³C NMR (100 MHz, CDCl₃) spectrum of 3b

¹H NMR (400 MHz, CDCl₃) spectrum of 3c

¹³C NMR (100 MHz, CDCl₃) spectrum of 3c

¹³C NMR (100 MHz, CDCl₃) spectrum of 3d

fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3e

¹³C NMR (100 MHz, CDCl₃) spectrum of 3e

¹³C NMR (100 MHz, CDCl₃) spectrum of 3f

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3g

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3h

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3j

¹³C NMR (100 MHz, CDCl₃) spectrum of 3j

¹H NMR (400 MHz, CDCl₃) spectrum of 3k

¹³C NMR (100 MHz, CDCl₃) spectrum of 3k

¹³C NMR (100 MHz, CDCl₃) spectrum of 31

¹³C NMR (100 MHz, CDCl₃) spectrum of 3m

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3n

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 30

¹³C NMR (100 MHz, CDCl₃) spectrum of 30

¹H NMR (400 MHz, CDCl₃) spectrum of 3p

¹³C NMR (100 MHz, CDCl₃) spectrum of 3p

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3q

¹³C NMR (100 MHz, CDCl₃) spectrum of 3q

¹H NMR (400 MHz, CDCl₃) spectrum of 3r

¹³C NMR (100 MHz, CDCl₃) spectrum of 3r

¹H NMR (400 MHz, CDCl₃) spectrum of 3s

¹³C NMR (100 MHz, CDCl₃) spectrum of 3t

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3u

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3v

¹³C NMR (100 MHz, CDCl₃) spectrum of 3w

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3y

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3z

¹³C NMR (100 MHz, CDCl₃) spectrum of 3z

¹H NMR (400 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (100 MHz, CDCl₃) spectrum of 3aa

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ab

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ac

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ad

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ba

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ca

¹³C NMR (100 MHz, CDCl₃) spectrum of 3ea

208.98	170.83	137.96 128.99 124.22 119.80	42.34 36.34 30.05 19.53
I	I	\sim	215 1

¹³C NMR (100 MHz, CDCl₃) spectrum of 4a

¹H NMR (400 MHz, CDCl₃) spectrum of 4b

¹³C NMR (100 MHz, CDCl₃) spectrum of 4b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 4c

¹³C NMR (100 MHz, CDCl₃) spectrum of 4c

¹³C NMR (100 MHz, CDCl₃) spectrum of 4d

¹H NMR (400 MHz, CDCl₃) spectrum of 4e

¹³C NMR (100 MHz, CDCl₃) spectrum of 4e

^{210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10} fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 4f

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 4g

¹³C NMR (100 MHz, CDCl₃) spectrum of 4g

fl (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 4h

¹H NMR (400 MHz, CDCl₃) spectrum of 4i

¹³C NMR (100 MHz, CDCl₃) spectrum of 4i

¹H NMR (400 MHz, CDCl₃) spectrum of 4j

¹³C NMR (100 MHz, CDCl₃) spectrum of 4j

¹³C NMR (100 MHz, CDCl₃) spectrum of 4k

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) spectrum of 4l

¹³C NMR (100 MHz, CDCl₃) spectrum of 4l

