Supporting Information

Electrochemical synthesis of β -difluoromethylamide compounds by

N-benzenesulfonylacrylamide with difluorine reagents

Zhi-Long Lei,^a Zong-Cang Ding,^b Shu-Hui Li,*^a Fei-Hu Cui,*^a Hai-Tao Tang^a and Ying-Ming Pan*^a

^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
^b Nataorganic Material (Suzhou) Co., Ltd.

E-mail: gxnulsh@gxnu.edu.cn; cuifeihuhao@163.com; panym@mailbox.gxnu.edu. cn.

Table of Contents

1. General methods	3
2. Supplementary experiments	4
3. Synthesis of Substrates	5
5.Control experiments	6
6. Electrochemical applications	7
7. Cyclic voltammetry studies	8
8. Characterization data for the products	9
9. Copies of the NMR spectra	19
10. References	

1. General methods

Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. Column chromatography on silica gel (300-400 mesh) was carried out using technical grade 60-90 °C petroleum ether and analytical grade EtOAc (without further purification). ¹H and ¹³C and ¹⁹F spectra were recorded on a 400 MHz or 600MHz spectrometer. Chemical shifts were reported in ppm. ¹H and ¹⁹F NMR spectra were referenced to CDCl₃ (7.26 ppm) or DMSO (2.5 ppm) or MeOD (4.87 ppm), and ¹³C-NMR spectra were referenced to CDCl₃ (77.0 ppm) or DMSO (39.5 ppm) or MeOD (49.0 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and *J*, coupling constant in Hz. The HRMS spectrum was measured by micromass QTOF₂ Quadrupole/Time of Flight Tandem mass spectrometer with electron spray ionization. Potentiostat was purchased from Shanghai Xinrui Companyand the model is DJS-292B. Cyclic voltammograms were recorded on a CHI 660E potentiostat.

2. Supplementary experiments

Table S1 Screening of reaction conditions^a

Entr y	Electrode	Current (mA)	Electrolyte	T (ºC)	Solvent	Yield (%) ^[b]
1	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	80
2	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	72 ^[c]
3	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	68 ^[d]
4	GF(+) Pt(-)	4	Et ₄ NClO ₄	rt	CH ₃ CN/DCE	17
5	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	29
6	GF(+) Pt(-)	4	Et ₄ NClO ₄	60	CH ₃ CN/DCE	72
7	GF(+) Pt(-)	4	Et ₄ NClO ₄	35	CH ₃ CN/DCE	33
8	GF(+) Pt(-)	2	Et ₄ NClO ₄	45	CH ₃ CN/DCE	56 ^[e]
9	GF(+) Pt(-)	6	Et ₄ NClO ₄	45	CH ₃ CN/DCE	68 ^[f]
10	C(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	60
11	C(+) Ni(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	69
12	C(+) C(-)	4	Et_4NClO_4	45	CH ₃ CN/DCE	54
13	RVC(+) RVC(-	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	57
)					
14	RVC(+) Pt(-)	4	Et_4NClO_4	45	CH ₃ CN/DCE	60
15	Pt(+) Ni(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	68
15	GF(+) Pt(-)	4	ⁿ Bu ₄ NClO ₄	45	CH3CN/DCE	45
16	GF(+) Pt(-)	4	ⁿ Bu ₄ NBF ₄	45	CH ₃ CN/DCE	32
17	GF(+) Pt(-)	4	ⁿ Bu ₄ NBF ₆	45	CH ₃ CN/DCE	29
18	GF(+) Pt(-)	4	ⁿ Bu ₄ NBr	45	CH ₃ CN/DCE	trace
19	GF(+) Pt(-)	4	LiClO ₄	45	CH ₃ CN/DCE	60
20	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	51
21	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	DCM/DCE	0
22	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN	45
23	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	DCE	0
24	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ OH	0
25	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCM	71
26	GF(+) Pt(-)	0	Et ₄ NClO ₄	45	CH ₃ CN/DCE	nr
26	GF(+) Pt(-)	4	Et ₄ NClO ₄	45	CH ₃ CN/DCE	nr ^[g]

^[a] Reaction conditions: **1a** (0.1 mmol), **2a** (0.3 mmol), Et₄NClO₄ as electrolyte (0.4 mmol), MeCN and DCE (1:1) as solvent (4 mL), electrolysis at a constant current of 4 mA for 2 h in an undivided cell. ^[b] Isolated yields. ^[c] Et₄NClO₄ (0.05 M). ^[d] Et₄NClO₄ (0.125 M). ^[e] 2 mA, 4.5 h. ^[f] 6 mA, 1.5 h. ^[g] 4 mA, Air.

3. Synthesis of Substrates

In a dry 100 mL round-bottom flask, a mixture of aniline (10 mmol) and Et_3N (20 mmol, 2 equiv) in 20 mL of DCM were stirred at room temperature^[1]. The benzene sulfochloride (11 mmol, 1.1 equiv) was added slowly by a dropping funnel. The reaction was monitored by TLC. After the reaction completed, the reaction mixture was washed with water and extracted with ethyl acetate (10 mL × 3). The combined organic layer was washed with brine, dried over Na₂SO₄, and the pure product was obtained by flash column chromatography on silica gel (hexane : ethyl acetate = 20 : 1 to 6 : 1).

Subsequently, in a dry 100 mL round-bottom flask, a mixture of *N*-phenylbenzenesulfonamide (10 mmol) and Et₃N (30 mmol) in 20 mL of DCM were stirred in ice bath. The methacryloyl chloride (12 mmol, 1.2 equiv) was added slowly by a dropping funnel. The reaction was monitored by TLC. After the reaction completed, the reaction mixture was washed with water and extracted with ethyl acetate (10 mL \times 3). The combined organic layer was washed with brine, dried over Na₂SO₄, and the pure product was obtained by flash column chromatography on silica gel (hexane : ethyl acetate = 20 : 1 to 4 : 1).

4. General procedure for the preparation of products

Electrochemical synthesis of β -difluoromethamide compounds 3a-3v

N-phenylsulfonyl acrylamide **1a** (0.1 mmol) and sodium difluoromethanesulfonate **2a** (0.3 mmol) as substrates were added to the three-necked flask with Et₄NClO₄ (0.1 M). A total of 4 mL of solvent was added to the flask with CH₃CN (2 mL) and DCE (2 mL). The flask, equipped with carbon felt (GF) as anode and platinum sheet (Pt) as cathode, was electrolyzed at a constant current of 4 mA in an argon atmosphere until the substrate was completely consumed. The reaction solution was collected, concentrated under reduced pressure, and purified by gradient elution by silica gel column chromatography (hexane/ethyl acetate = 10:1/4:1 elution) to obtain β -difluoromethamide compounds..

Electrochemical synthesis of β -difluoromethamide compound **3g-2-***D*

N-phenylsulfonyl acrylamide **1g** (0.1 mmol) and sodium difluoromethanesulfonate **2a** (0.3 mmol) as substrates were added to the three-necked flask with Et_4NCIO_4 (0.1 M). A total of 4 mL of solvent was added to the flask with CD_3CN (2 mL) and DCE (2 mL). The flask, equipped with carbon felt (GF) as anode and platinum sheet (Pt) as cathode, was electrolyzed at a constant current of 4 mA in an argon atmosphere until the substrate was completely consumed. The reaction solution was collected, concentrated under reduced pressure, and purified by gradient elution by silica gel column chromatography (hexane/ethyl acetate = 10:1/4:1 elution) to obtain β difluoromethamide compound.

5.Control experiments

5.1 TEMPO and BHT trapped experiment

Fig. S1: Compound 5a : HRMS (m/z) [ESI]: calculated for $C_{33}H_{47}F_2N_2O_5S^+$ [M+H]⁺ : 621.3169, found 621.3189 . Compound 5b : HRMS (m/z) [ESI]: calculated for C16H25F2O⁺ [M+H]⁺ : 271.1868, found 271.1848 .

6. Electrochemical applications

1e (2.63 mmol, 1.0eq), EtNCIO₄ (11.08 mmol, 4.0eq) and 2a (13.85 mmol, 5.0eq) were added successively into a 400 ml round-bottomed flask. The battery was equipped with a carbon felt anode (6 cm x 6 cm) and a platinum plate cathode (6 cm x 6 cm). In an argon atmosphere, CH₃CN (50 mL) and DCE (50 mL) are injected into the reactor. electrolysis was carried out for the corresponding time at a constant current of 25 mA at 45 °C until the substrate was completely consumed. The reaction solution was collected, concentrated under reduced pressure, and purified by gradient elution by silica gel column chromatography (hexane/ethyl acetate = 10:1/4:1 elution) to obtain **2e**.

Fig. S2 Electrolysis setup

7. Cyclic voltammetry studies

The cyclic voltammograms were recorded in an electrolyte solution of $LiClO_4$ (0.1 M) in CH₃CN/H₂O using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Fig. S3 Cyclic voltammograms in $CH_3CN/H_2O + 0.1$ M LiClO₄. The scanning rate is set to 100 mV/s, $CH_3CN/H_2O + 0.1$ M LiClO₄ cyclic voltammetry. a) Blank b) **2a** (0.3 mmol) c) **1a** (0.1 mmol). Charting with IUPAC. Init E (V)=0 V, Final E (V)=0 V, High E(V)= 3 V.

Fig. S4 Preparation for the CV test.Grinding material: aluminum powder. Grinding

8. Characterization data for the products

4,4-difluoro-*N*,**2-bis**(**4-methoxyphenyl**)-**2-methylbutanamide** (**3a**). The title compound (27.2 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 78% yield. colourless liquid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (m, 2H), 7.23 (m, 2H), 6.95 (m, 2H), 6.81 (m, 2H), 6.72 (s, 1H), 5.84-5.53 (m, 1H), 3.83 (s, 3H), 3.76 (s, 3H), 2.71-2.65 (m, 1H), 2.49-2.45 (m, 1H), 1.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 159.2, 156.6, 133.4, 130.6, 128.0, 121.9, 116.7 (t, *J* = 232.3 Hz), 114.6, 114.1, 55.5, 55.3, 48.0, 43.5 (t, *J* = 20.0 Hz), 23.7. ¹⁹F NMR (376 MHz, Chloroform-d) δ -110.85--111.01 (m, *J* = 71.4 Hz), -111.01--111.27 (m *J* = 97.8 Hz), 2F. HRMS(m/z)(ESI): calcd for C₁₉H₂₁F₂NNaO₃⁺ [M+Na]⁺ 372.1382, found 372.1380.

2-(4-butoxyphenyl)-4,4-difluoro-*N***-(4-methoxyphenyl)-2-methylbutanamide (3b)**. The title compound (30.9 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 79% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m 2H), 7.23 (m, 2H), 6.94 (m, 2H), 6.80 (m, 2H), 6.72 (s, 1H), 5.83-5.52 (m, 1H), 3.98 (t, J = 4.0 Hz, 2H), 3.76 (s, 3H), 2.70-2.61 (m, 1H), 2.49-2.44 (m, 1H), 1.80-1.77 (m, 2H), 1.75 (s, 3H), 1.54-1.48 (m, 2H), 0.99 (t, J = 8.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 158.8, 156.6, 133.1, 130.6, 128.0, 121.8, 116.8 (t, *J* = 242.4 Hz), 115.1, 114.1, 67.8, 55.5, 48.0, 43.5 (t, *J* = 20.2 Hz), 31.3, 23.7, 19.3, 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.05 (d, *J* = 3.8 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₂H₂₈F₂NO₃⁺ [M+H]⁺ 392.2032, found 392.2028.

2-(4-(benzyloxy)phenyl)-4,4-difluoro-*N*-(4-methoxyphenyl)-2-methylbutanamide (**3c**). The title compound (35.7 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 84% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (m, 4H), 7.37-7.29 (m, 3H), 7.26-7.21 (m, 2H), 7.03 (m, 2H), 6.81 (m, 2H), 6.73 (s, 1H), 5.85-5.54 (m, 1H), 5.09 (s, 2H), 3.77 (s, 3H), 2.71-2.66 (m, 1H), 2.49-2.45 (m, 1H), 1.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 158.4, 156.6, 136.6, 133.7 130.6, 128.7, 128.2, 128.0, 127.6, 121.9, 116.8 (t, *J* = 242.4 Hz), 115.5, 114.1, 70.1, 55.5, 48.0, 43.5 (t, *J* = 20.2 Hz), 23.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.02 (d, *J* = 3.8 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₅H₂₆F₂NO₃⁺ [M+H]⁺ 426.1875, found 426.1874.

2-([1,1'-biphenyl]-4-yl)-4,4-difluoro-N-(4-methoxyphenyl)-2-methylbutanamide

(3d). The title compound (35.2 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 89% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (m, 2H), 7.60 (m, 2H), 7.46 (m, 4H), 7.37 (m, 1H), 7.25 (m, 2H), 6.81 (m, 2H), 6.77 (s, 1H), 5.92-5.61 (m, 1H), 3.75 (s, 3H), 2.76-2.71 (m, 1H), 2.54-2.0 (m, 1H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 156.7, 140.9, 140.7, 140.0, 130.5, 129.0, 127.9, 127.8, 127.2, 122.0, 116.7 (t, *J* = 232.3 Hz), 114.1, 55.5, 43.6 (t, *J* = 20.2 Hz), 23.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.94 (d, *J* = 3.8 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₄H₂₃F₂NaNO₂⁺ [M+Na]⁺ 418.1589, found 418.1578.

4,4-difluoro-*N*-(**4-methoxyphenyl**)-**2-methyl**-**2-(naphthalen-2-yl)butanamide** (**3e**). The title compound (28.0 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 6 : 1) in 76% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.86 (m, 4H), 7.57-7.55 (m, 2H), 7.45-7.43 (m, 1H), 7.22-7.19 (m, 2H), 6.80-6.78 (m, 2H), 6.71 (s, 1H), 5.86-5.55 (m, 1H), 3.75 (s, 3H), 2.83-2.77 (m, 1H), 2.63-2.58 (m, 1H), 1.90 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 156.7, 138.9, 133.3, 132.7, 130.5, 129.4, 128.2, 127.7, 126.9, 125.4, 124.9, 122.0, 116.7 (t, *J* = 232.3 Hz), 114.1, 55.5, 48.8, 43.2 (t, *J* = 20.2 Hz), 23.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.96 (s, 2F). HRMS(m/z)(ESI): calcd for C₂₂H₂₂F₂NO₂⁺ [M+H]⁺ 370.1613, found 370.1614.

2-(2,3-dihydrobenzofuran-5-yl)-4,4-difluoro-N-(4-methoxyphenyl)-2-

methylbutanamide (3f). The title compound (29.2 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 81% yield. White solid. m.p. 105.2-107.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.22 (m, 3H), 7.14-7.12 (m, 1H), 6.82-6.80 (m, 3H), 6.76 (s, 1H), 5.83-5.53 (m, 1H), 4.61 (t, J = 8.0 Hz, 2H), 3.77 (s, 3H), 3.23 (t, J = 12.0 Hz, 2H), 2.69-2.64 (m, 1H), 2.48-2.44 (m, 1H), 1.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 159.9, 156.6, 133.4, 130.6, 128.4, 126.5, 123.5, 121.8, 116.8 (t, J = 242.4 Hz), 114.1, 109.7, 71.6, 55.5, 48.2, 43.7 (t, J = 20.2 Hz), 29.7, 23.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.01 (d, J = 7.5 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₀H₂₂F₂NO₃⁺ [M+H]⁺ 362.1562, found 362.1562.

2-(4-cyclohexylphenyl)-4,4-difluoro-N-(4-methoxyphenyl)-2-methylbutanamide

(3g). The title compound (32.1 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 80% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.29 (m, 2H), 7.26-7.22 (m, 4H), 6.82-6.79 (m, 2H), 6.72 (s, 1H), 5.84-5.54 (m, 1H), 3.76 (s, 3H), 2.71-2.66 (m, 1H), 2.53 -2.44 (m, 2H), 1.89-1.85 (m, 5H), 1.76 (s, 3H), 1.43-1.38 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 156.6, 148.0, 138.9, 130.6, 127.7, 126.6, 122.0, 116.7 (t, *J* = 232.3 Hz), 114.1, 55.5, 48.3, 44.1, 43.6 (t, *J* = 20.2 Hz), 34.3 (d, *J* = 10.1 Hz), 26.8, 26.1, 23.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.97 (d, *J* = 7.5 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₄H₃₀F₂NO₂⁺ [M+H]⁺ 402.2239, found 402.2238.

2-(4-(tert-butyl)phenyl)-4,4-difluoro-*N***-(4-methoxyphenyl)-2-methylbutanamide** (**3h**). The title compound (25.5 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 68% yield. colourless liquid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.44-7.42 (m, 2H), 7.33-7.31 (m, 2H), 7.25-7.23 (m, 2H), 6.83-6.81 (m, 2H), 6.70 (s, 1H), 5.82-5.59 (m, 1H), 3.77 (s, 3H), 2.71-2.67 (m, 1H), 2.52-2.46 (m, 1H), 1.77 (s, 3H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 174.2, 156.6, 151.1, 138.5, 130.6, 126.4, 126.3, 122.0, 116.8 (t, *J* = 237.5 Hz), 114.1, 55.5, 48.3, 43.6 (t, *J* = 25.0 Hz), 31.4, 31.3, 23.6. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.00 (d, *J* = 11.3 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₂H₂₈F₂NO₂⁺ [M+H]⁺ 376.2083, found 376.2083.

4,4-difluoro-2-mesityl-*N***-(4-methoxyphenyl)-2-methylbutanamide** (**3i**). The title compound (26.0 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 72% yield. colourless liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.25-7.23 (m, 2H), 6.87 (s, 2H), 6.84-6.82 (m, 3H), 5.92-5.64 (m, 1H), 3.77 (s, 3H), 2.67-2.57 (m, 2H), 2.40 (s, 6H), 2.26 (s, 3H), 1.96 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.0, 156.6, 138.5, 137.2, 134.2, 132.7, 130.9, 121.9, 117.3 (t, *J* = 232.3 Hz), 114.2, 55.5, 51.1, 41.7 (t, *J* = 20.2 Hz), 29.0, 23.6, 20.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.35 (d, *J* = 63.9 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₁H₂₅F₂NNaO₂⁺ [M+Na]⁺ 384.1746, found 384.1737.

2-(4-ethylphenyl)-4,4-difluoro-*N***-(4-methoxyphenyl)-2-methylbutanamide** (**3j**). The title compound (27.5 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 74% yield. white solid. m.p. 99.2-99.8 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.30 (m, 2H), 7.26-7.25 (m, 2H), 7.24-7.23 (m, 2H), 6.82-6.80 (m, 2H), 6.69 (s, 1H), 5.82-5.57 (m, 1H), 3.77 (s, 3H), 2.73-2.64 (m, 3H), 2.54-2.46 (m, 1H), 1.77 (s, 3H), 1.26 (t, *J* = 8.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.2, 156.6, 144.2, 138.8, 130.6, 128.8, 126.7, 121.9, 116.8 (t, *J* = 237.5 Hz), 114.1, 55.5, 43.5 (t, *J* = 12.6 Hz), 28.4, 23.6, 15.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.02 (d, *J* = 3.8 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₀H₂₄F₂NO₂⁺ [M+H]⁺ 348.1770, found 348.1763.

4,4-difluoro-*N*-(**4-methoxyphenyl**)-**2-methyl-2-(o-tolyl**)**butanamide** (3k). The title compound (24.3 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 73% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.46 (m, 1H), 7.31-7.30 (m, 2H), 7.26-7.24 (m, 1H), 7.23-7.20 (m, 2H), 6.82-6.80 (m, 2H), 6.73 (s, 1H), 5.67-5.37 (m, 1H), 3.76 (s, 3H), 2.69-2.64 (m, 2H), 2.31 (s, 3H), 1.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 156.7, 138.5, 137.3, 132.9, 130.5, 128.5, 127.2, 126.8, 122.0, 116.7 (t, *J* = 232.3 Hz), 114.2, 55.5, 48.3, 43.5 (t, *J* = 20.2 Hz), 25.9, 20.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.16 (s, 2F). HRMS(m/z)(ESI): calcd for C₁₉H₂₁F₂NNaO₂⁺ [M+Na]⁺ 356.1433, found 356.1420.

N-(3,4-dimethoxyphenyl)-4,4-difluoro-2-methyl-2-(p-tolyl)butanamide (31). The title compound (31.9 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 88% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.28 (m, 2H), 7.26-7.23 (m, 3H), 6.73-6.72 (m, 2H), 6.64-6.61 (m, 1H), 5.83-5.52 (m, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 2.71-2.66 (m, 1H), 2.52-2.38 (m, 1H), 2.38 (s, 3H), 1.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 149.0, 146.0, 138.4, 138.0, 131.2, 130.1, 126.6, 116.7 (t, *J* = 232.3 Hz), 111.8, 111.1, 104.8, 56.1, 55.9, 48.4, 43.5 (t, *J* = 20.2 Hz), 23.6, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.07 (d, *J* = 3.8 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₀H₂₄F₂NO₃⁺ [M+H]⁺ 364.1719, found 364.1717.

N-(2-bromo-4-methoxyphenyl)-4,4-difluoro-2-methyl-2-(p-tolyl)butanamide (3m). The title compound (22.2 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 54% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.49 (m, 1H), 7.32-7.30 (m, 1H), 7.30-7.25 (m, 4H), 6.81-6.79 (m, 1H), 6.66 (s, 1H), 5.82-5.52 (m, 1H), 3.85 (s, 3H), 2.70-2.65 (m, 1H), 2.54-2.38 (m, 1H), 2.38 (s, 3H), 1.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 153.0, 138.2, 138.1, 131.3, 130.1, 126.6, 125.5, 120.6, 119.0, 116.6 (t, *J* = 242.4 Hz), 111.9, 111.5, 56.5, 48.4, 43.4 (t, *J* = 20.2 Hz), 23.5, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.10 (d, *J* = 2.2 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₉H₂₁BrF₂NO₂⁺ [M+H]⁺ 412.0718, found 412.0708.

N-(2,4-dimethylphenyl)-4,4-difluoro-2-methyl-2-(p-tolyl)butanamide (3n). The title compound (19.9 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 60% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (m, 1H), 7.33 (m, 2H), 7.25 (m, 2H), 6.98 (m, 1H), 6.90 (s, 1H), 6.61 (s, 1H), 5.86-5.56 (m, 1H), 2.38 (s, 3H), 2.25 (s, 3H), 1.83 (s, 3H), 1.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 138.6, 138.0, 134.9, 132.8, 131.1, 130.0, 129.1, 127.3, 126.7, 122.7, 116.8 (t, *J* = 242.4 Hz), 48.4, 43.2 (t, *J* = 20.2 Hz), 23.6, 21.0, 20.8, 17.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.94 (s, 2F). HRMS(m/z)(ESI): calcd for C₂₀H₂₄F₂NO₂⁺ [M+H]⁺ 332.1821, found 332.1825.

N-(3-bromo-4-methoxyphenyl)-4,4-difluoro-2-methyl-2-(p-tolyl)butanamide (3o). The title compound (31.2 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 76% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (m, 1H), 7.36-7.34 (m, 1H), 7.32-7.27 (m, 4H), 6.85-6.83 (m, 1H), 6.70 (s, 1H), 5.82-5.58 (m, 1H), 3.89 (s, 3H), 2.73-2.69 (m, 1H), 2.54-2.42 (m, 1H), 2.42 (s, 3H), 1.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 153.0, 138.2, 131.3, 130.2, 126.6, 125.5, 120.6, 116.7 (t, *J* = 239.4 Hz), 111.8, 111.4, 56.5, 48.4, 43.4 (t, *J* = 25.2 Hz), 23.5, 21.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.11 (d, *J* = 3.8 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₉H₂₀BrF₂NaNO₃⁺ [M+Na]⁺ 450.0487, found 450.0480.

4,4-difluoro-2-methyl-*N***,2-di-p-tolylbutanamide** (**3p**). The title compound (25.4 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 80% yield. white solid. m.p. 92.2-93.0 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.29-7.26 (m, 2H), 7.24-7.20 (m, 4H), 7.08-7.06 (m, 2H), 6.72 (s, 1H), 5.83- 5.53(m, 1H), 2.75-2.62 (m, 1H), 2.54-2.41 (m, 1H), 2.37 (s, 3H), 2.28 (s, 3H), 1.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 138.5, 137.9, 135.0, 134.2, 130.0, 129.4, 126.6, 120.0, 116.7 (t, *J* = 232.3 Hz), 48.4, 43.5 (t, *J* = 20.2 Hz), 23.5, 21.0, 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.03 (d, *J* = 3.8 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₉H₂₂F₂NO⁺ [M+H]⁺ 318.1664, found 318.1660.

4,4-difluoro-2-(4-methoxyphenyl)-2-methyl-*N***-phenylbutanamide** (**3q**). The title compound (21.7 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 68% yield. colourless liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.35-7.31 (m, 4H), 7.29-7.26 (m, 2H), 7.10-7.06 (m, 1H), 6.97-6.95 (m, 2H), 6.78 (s, 1H), 5.83-5.52 (m, 1H), 3.84 (s, 3H), 2.71-2.64 (m, 1H), 2.55-2.46 (m, 1H), 1.77 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.4, 159.2, 137.5, 133.1, 129.0, 128.0, 124.5, 119.8, 116.7 (t, *J* = 242.4 Hz), 114.7, 55.4, 48.2, 43.5 (t, *J* = 20.2 Hz), 23.7. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.11 (d, *J* = 3.1 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₈H₁₉F₂NaNO₂⁺ [M+H]⁺ 342.1276, found 342.1266.

N-(4-(tert-butyl)phenyl)-4,4-difluoro-2-methyl-2-(p-tolyl)butanamide (**3r**). The title compound (27.3 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 76% yield. Yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.22 (m, 8H), 6.73 (s, 1H), 5.82-5.52 (m, 1H), 2.70-2.61(m, 1H), 2.54-2.44 (m, 1H), 2.36 (s, 3H), 1.75 (s, 3H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 147.6, 138.5, 137.9, 134.9, 130.0, 126.6, 125.8, 119.6, 116.7 (t, J = 242.4 Hz), 48.4, 43.5 (t, J = 20.2 Hz), 34.4, 31.3, 23.5, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.04 (d, J = 3.2 Hz, 2F). HRMS(m/z)(ESI): calcd for C₂₂H₂₈F₂NO₂⁺ [M+H]⁺ 360.2133, found 360.2140.

4,4-difluoro-2-methyl-*N*-(**m-tolyl**)-**2**-(**p-tolyl**)**butanamide** (**3s**). The title compound (22.8 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 72% yield. colourless liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.29-7.20 (m, 5H), 7.17-7.08 (m, 2H), 6.90-6.89 (m, 1H), 6.74 (s, 1H), 5.84-5.53 (m, 1H), 2.71-2.65 (m, 1H), 2.51-2.45 (m, 1H), 2.37 (s, 3H), 2.29 (s, 3H), 1.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 139.0, 138.4, 138.0, 137.5, 130.1, 128.8, 126.6, 125.3, 120.5, 116.9, 116.6 (t, *J* = 232.3 Hz), 48.5, 43.5 (t, *J* = 20.2 Hz), 23.5, 21.4, 21.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.03 (d, *J* = 2.3 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₉H₂₁F₂NONa⁺ [M+Na]⁺ 340.1489, found 340.1489.

4,4-difluoro-N-(4-methoxyphenyl)-2-methyl-2-(thiophen-2-yl)butanamide(3t).

The title compound (23.1 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 71% yield. colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.37 (m, 1H), 7.26-7.24 (m, 2H), 7.12-7.08 (m, 2H), 7.06 (s, 1H), 6.83-6.81 (m, 2H), 6.00-5.70 (m, 1H), 3.77 (s, 3H), 2.85-2.74 (m, 1H), 2.60-2.50 (m, 1H), 1.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 156.8, 146.4, 130.3, 127.6, 126.2, 125.9, 122.0, 116.3 (t, *J* = 242.2 Hz), 114.1, 55.5, 47.0, 44.1 (t, *J* = 20.2 Hz), 25.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.07. (d, *J* = 2.3 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₆H₁₈F₂NOS⁺ [M+H]⁺ 326.1021, found 326.1029.

4,4-difluoro-2-methyl-*N***,2-diphenylbutanamide** (**3u**). The title compound (12.4 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 43% yield. Yellow liquid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.47-7.42 (m, 5H), 7.35-7.27 (m, 5H), 6.74 (s, 1H), 5.86-5.56 (m, 1H), 2.80-2.65 (m, 1H), 2.54-2.44 (m, 1H), 1.80 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 174.0, 141.5, 137.5, 129.4, 129.0, 128.2, 126.7, 124.6, 119.9, 116.6 (t, *J* = 232.3 Hz), 48.8, 43.5 (t, *J* = 20.2 Hz), 23.4. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.08 (s). (d, *J* = 2.3 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₇H₁₈F₂NO⁺ [M+H]⁺ 290.1351, found 290.1350.

4,4-difluoro-*N***-(4-methoxyphenyl)-2-methyl-2-phenylbutanamide** (**3v**). The title compound (15.0 mg) was isolated by flash chromatography (hexane : ethyl acetate = 20 : 1 to 4 : 1) in 47% yield. Colorless liquid. ¹**H** NMR (400 MHz, CDCl₃) δ 7.46-7.36 (m, 5H), 7.24-7.22 (m, 2H), 6.82-6.80 (m, 2H), 6.70 (s, 1H), 5.86-5.56 (m, 1H), 3.76 (s, 3H), 2.73-2.68 (m, 1H), 2.52- 2.47 (m, 1H), 1.79 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 174.0, 156.7, 141.7, 130.5, 129.4, 128.1, 126.7, 122.0, 116.7 (t, *J* = 242.4 Hz), 114.1, 55.5, 48.6, 43.5 (t, *J* = 20.2 Hz), 23.5. ¹⁹**F** NMR (376 MHz, CDCl₃) δ -111.02 (d, *J* = 2.4 Hz, 2F). HRMS(m/z)(ESI): calcd for C₁₈H₂₀F₂NO⁺ [M+H]⁺ 320.1457, found 320.1460.

9. Copies of the NMR spectra

4,4-difluoro-*N*,2-bis(4-methoxyphenyl)-2-methylbutanamide (3a).

S23

5.0 4.5 f1 (ppm)

6.0 5.5

9.5 9.0 8.5 8.0 7.5 7.0 6.5

4.0 3.5 3.0

2.5

2.0 1.5

1.0

0.5

0.0 -0.:

2-(4-(benzyloxy)phenyl)-4,4-difluoro-*N*-(4-methoxyphenyl)-2-methylbutanamide (3c).

2-([1,1'-biphenyl]-4-yl)-4,4-difluoro-*N*-(4-methoxyphenyl)-2-methylbutanamide (3d).

7,766 7,759 7,746 7,746 7,746 6,827 5,5925

 $\label{eq:2.1} \textbf{4,4-difluoro-N-(4-methoxyphenyl)-2-methyl-2-(naphthalen-2-yl)butanamide~(3e)}.$

2-(2,3-dihydrobenzofuran-5-yl)-4,4-difluoro-*N*-(4-methoxyphenyl)-2-methylbutanamide (3f).

2-(4-cyclohexylphenyl)-4,4-difluoro-*N*-(4-methoxyphenyl)-2-methylbutanamide (3g).

2-(4-(tert-butyl)phenyl)-4,4-difluoro-*N*-(4-methoxyphenyl)-2-methylbutanamide (3h).

4,4-difluoro-2-mesityl-N-(4-methoxyphenyl)-2-methylbutanamide (3i).

 $<^{-110.26}_{-110.43}$

4,4-difluoro-*N*-(4-methoxyphenyl)-2-methyl-2-(o-tolyl)butanamide (3k).

7,148 7,147 7,147 7,147 7,147 7,147 7,147 7,1487,148 7,148 7,148 7,148 7,148

N-(2-bromo-4-methoxyphenyl)-4,4-difluoro-2-methyl-2-(p-tolyl)butanamide (3m).

N-(3-bromo-4-methoxyphenyl)-4,4-difluoro-2-methyl-2-(p-tolyl)butanamide (30).

4,4-difluoro-2-methyl-N,2-di-p-tolylbutanamide (3p).

4,4-difluoro-2-(4-methoxyphenyl)-2-methyl-*N*-phenylbutanamide (3q).

4,4-difluoro-2-methyl-*N*-(m-tolyl)-2-(p-tolyl)butanamide (3s).

7.72

4,4-difluoro-2-methyl-N,2-diphenylbutanamide (3u).

198 20

--111.08

10. References

1 J. Wang, M. Liu, J. Zou, W. Sun, X. Liu, Org. Lett. 2022, 24, 309-313