Supporting Information

Photoinduced Radical Selective *O*-Alkenylation of Phenols and Naphthols with Terminal Alkynes

V. Praveen Kumar^{a,b}, C. S Athira^{a,b}, B. Mohan^{a,b}, S. Priya^{b,c}, and B. S. Sasidhar^{*,a,b}

^a Chemical Sciences and Technology Division,, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, Kerala, India.

^b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India

^c Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, Kerala, India.

drsasidharbs@niist.res.in and drsasidharbs@gmail.com

CONTENT

1.	General methods	S2
2.	Table S1	\$3
3.	Experimental procedures	S5
4.	Cyclic voltammetry (CV) measurements	\$6
5.	Control experiments	S6
6.	Product transformations	\$7
7.	Characterisation of synthesised compounds	\$9-\$17
8.	¹ H and ¹³ C NMR spectra	S18-S44

1. General Methods

1.1 General Experimental Methods

All the reactions are performed with commercially available best-grade chemicals without further purification. All of the solvents used are reagent-grade and commercially available. Column chromatography was performed using 100–200 mesh silica gel, and mixtures of hexane–ethyl acetate were used for the elution of the products. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker AMX 500 spectrometer (CDCl₃ as solvent). Chemical shifts for ¹ H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.25, singlet) Multiplicities are given as s (singlet); d (doublet); t (triplet); *q* (quartet); dd (doublet of doublet); dt (doublet of triplet); m (multiplet). Coupling constants are reported as δ in units of parts per million (β 77.03, triplet). The mass spectra were recorded under EI/HRMS at 60,000 resolutions using a Thermo Scientific Exactive mass spectrometer.

Table S1: optimisation of reaction conditions^a

entry	1a (equiv.)	2a (equiv.)	photocatalyst	Additive (oxidant)	solvent	Light source	yield (%)
1	1	1.2	Т(<i>р</i> -F)РРТ	-	DCM	White LED	40
2	1	2	Т(<i>р-</i> F)РРТ	-	DCE	White LED	15
3	1	2	Т(р-F)РРТ	-	CH₃CN	White LED	N.D
4	1	2	Т(р-F)РРТ	-	MeOH	White LED	N.D
5	1	2	Т(<i>р</i> -F)РРТ	-	HFIP	White LED	N.D
6	1	2	Т(<i>р</i> -F)РРТ	-	TFE	White LED	N.D
7	1	2	T(<i>p</i> -F)PPT	-	DCM	White LED	89
8	1	2.5	Т(<i>р</i> -F)РРТ	-	DCM	White LED	70
9	1	3	Т(<i>р</i> -F)РРТ	-	DCM	White LED	69
10	1	2	MesAcr ⁺ BF ₄ ,	-	DCM	White LED	N.D
11	1	2	Eosin Y	-	DCM	White LED	N.D
12	1	2	Rose bengal	-	DCM	White LED	N.D

13	1	2	ТРРТ	-	DCM	White LED	N.D
14	1	2	T(p-Cl)PPT	-	DCM	White LED	15
15	1	2	T(p-Me)PPT	-	DCM	White LED	N.D
16	1	2	T(<i>p</i> -OMe)PPT	-	DCM	White LED	trace
17	1	2	T(<i>p</i> -F)PPT	-	TFE	White LED	18
18	1	2	T(p-Br)PPT	-	DCM	White LED	5
19	1	2	T(<i>p</i> -F)PPT	-	DCM	White LED	80 ^b
20	1	2	T(<i>p</i> -F)PPT	-	DCM	White LED	78 ^c
21	1	2	T(<i>p</i> -F)PPT	$K_2S_2O_8$	DCM	White LED	ND
22	1	2	T(<i>p</i> -F)PPT	(NH ₄) ₂ S ₂ O ₈	DCM	White LED	trace
23	1	2	Т(<i>р</i> -F)РРТ	$Na_2S_2O_8$	DCM	White LED	trace
24	1	2	No catalyst	-	DCM	White LED	ND
25	1	2	Т(<i>р</i> -F)РРТ	-	DCM	No light	ND
26	1	2	Т(<i>р</i> -F)РРТ	-	DCM	Green LED	ND
27	1	2	Т(<i>р</i> -F)РРТ	-	DCM	Red LED	ND

^aunless otherwise mentioned **1a** (0.3468 mmol), **2a** (2 equiv.) and 5 mol% catalysts in 1 mL of solvent. ^b10 mol% catalyst added. ^c15 mol% catalyst added. ND: Not detected

2. Experimental procedures

2.1 General procedure for preparation of 2-hydroxy styrenes

To a 5 dram glass vial equipped with a magnetic stir bar **1** (0.3468 mmol), **2** (0.6936 mmol), 1 mL of DCM solvent and photocatalyst T(*p*-F)PPT (5 mol%) were sequentially added. The solution was stirred at a distance of ~3 cm from 20 W white LED at room temperature. After the completion of the reaction monitored by TLC, the solvent was removed in *vacuo* and extracted with ethyl acetate (3x10 ml), organic layers were dried over Na₂SO₄ and evaporated in vacuo and purified by column chromatography using 100–200 mesh silica gel with ethyl acetate/hexane (1:9) as the eluent to afford the corresponding hydroarylated compounds as the product.

2.1.1 Procedure for the gram scale preparation of 2-hydroxy styrenes

To a 5 dram glass vial equipped with a magnetic stir bar **1** (0.010 mol), **2** (0.020 mol) DCM solvent and photocatalyst T(*p*-F)PPT (5 mol%) were sequentially added. The solution was stirred at a distance of ~3 cm from 20 W white LED at room temperature. After the completion of the reaction monitored by TLC, the solvent was removed in *vacuo* and extracted with ethyl acetate (3x10 ml), organic layers were dried over Na₂SO₄ and evaporated in vacuo and purified by column chromatography using 100–200 mesh silica gel with ethyl acetate / hexane (1:9) as the eluent to afford the corresponding hydroarylated compounds as products.

Figure S1. Cyclic voltammetry (CV) measurements

2.2 Control experiments

To a 5 dram glass vial equipped with a magnetic stir bar **1** (0.3468 mmol), **2** (0.6936 mmol), 1 mL of DCM solvent and photocatalyst T(p-F)PPT (5 mol%) and TEMPO were sequentially added. The solution was stirred at a distance of ~3 cm from 20W white LED at room temperature. After the completion of the reaction monitored by TLC, the solvent was removed in *vacuo* and extracted with ethyl acetate (3x10 ml), organic layers were dried over Na₂SO₄ and evaporated in vacuo and purified by column chromatography using 100–200 mesh silica gel with ethyl acetate / hexane (1:9) as the eluent to afford the corresponding hydroarylated compounds as products.

No hydroarylated products were formed in the presence of the TEMPO reagent instead TEMPO adduct of the 2-Naphthol 1a was detected in LCMS **Figure S2**. Which indicates the involvement of the radical pathway.

Line#:1 R.Time:--MassPeaks:5 -(Scan#:--Spectrum Mode:Averaged 0.514-1.288(122-304) Base Peak:299(5413654) BG Mode:Averaged 1.296-1.483(306-350) Segment 1 - Event 2 Intensity 7000000 ä m/z

Figure S2. LCMS spectrum of TEMPO adduct 5

2.3 Product transformations

2.3.1. General procedure for one pot synthesis of vinyl iodide¹

To a round bottom flask equipped with a magnetic stir bar **1** (0.3468 mmol), **2** (0.6936 mmol), 2 mL of DCM solvent and photocatalyst T(*p*-F)PPT (5 mol%) were sequentially added. The solution was stirred at a distance of ~3 cm from 20W white LED at room temperature. After the completion of the reaction monitored by TLC the solvent was removed in *vacuo* then to this crude I₂ (128.8 mg, 2.5 mmol), and MeCN (2mL) was added. The reaction mixture was refluxed for 4 h. allowed the reaction to cool at room temperature and quenched with Na₂S₂O₃ solution, then extracted with Ethyl acetate (2 x 10mL). The combined organic layer was dried over anhydrous Na₂SO₄ and then concentrated under reduced pressure to afford the crude product. The residue was purified by column chromatography using 100–200 mesh silica gel with hexane /ethyl acetate (10 : 2, v/v) to afford the product **6** (96 mg, 74% yield). The NMR chemical shifts of **6** match with the previously reported values.

1. P. Kaswan, G. M. Shelke, V. K. Rao, A. Kumar, Synlett 2016, 27, 2553-2556

2.3.2. General procedure for one pot synthesis of naphthofuran derivatives²

To a round bottom flask equipped with a magnetic stir bar **1** (0.3468 mmol), **2** (0.6936 mmol), 2 mL of DCM solvent and photocatalyst T(*p*-F)PPT (5 mol%) were sequentially added. The solution was stirred at a distance of ~ 3cm from 20W white LED at room temperature. After the completion of reaction monitored by TLC the solvent was removed in *vacuo* then to this crude K₂CO₃ (67.8mg, 0.4912 mmol) and AgCO₃ (90.3mg, 0.3274 mmol) DMF (2 mL), was added under Ar atmosphere, and stirred at 120 °C for 20 h. allow the reaction mixture to cool down and add 5mL of water into the reaction mixture and then extracted with ethyl acetate (EA) (3x15mL).). The combined organic layer was dried over anhydrous Na₂SO₄. After concentration, the residue was purified by column chromatography using 100–200 mesh silica gel with hexane /ethyl acetate (10 : 1, v/v) to afford the product **7**.

 W. Wang, J. Huang, R. Zhou, Z.-J. Jiang, H.-Y. Fu, X.-L. Zheng, H. Chen, R.-X. Li, Adv.Synth. Catal. 2015, 357, 2442-2446

3. Characterisation of synthesised compounds

1		Pale yellow liquid (80.34mg, 89% Yield); ¹ H NMR (500
		MHz, CDCl ₃) δ 7.70 - 7.71 (m, 2H), 7.43 -7.44 (m, 3H), 7.20
	3a OH	- 7.22 (m, 2H), 7.16 (d, J = 8.0 Hz, 3H), 6.99 (d, J = 10.0
		Hz, 2H), 620 (s, 1H), 5.56 (s, 1H), 5.37 (s, 1H), 2.23 (s, 3H).
		¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.4, 142.3, 138.6,
	1-(1-(p-	135.92, 132.8, 129.5, 129.4, 128.9, 128.0, 126.5, 126.2,
	tolyl)vinyl)naphthalen-2-ol	124.9, 123.3, 120.2, 117.9, 117.3, 21.2. HRMS (ESI-
		Orbitrap) m/z: Calcd. for C ₁₉ H ₁₆ O([M+H] ⁺) 261.1279
		;found 261.1275
2	MeO	White solid (86.30 mg, 90% Yield); Mp: 82-84 °C; ¹ H
		NMR (500 MHz, CDCl₃) δ 7.63-7.67 (m, 2H), 7.41 – 7.42
	ОН	(m, 1H), 7.14 – 7.19 (m, 5H), 6.66 (d, J = 8.5 Hz, 2H), 6.08
		(s, 1H), 5.58 (s, 1H), 5.26 (s, 1H), 3.62 (s, 3H).
	3b	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 159.9, 150.4, 141.8,
	1-(1-(4-methoxyphenyl)	132.87, 131.2, 129.5, 128.9, 128.0, 127.7, 126.5, 125.0,
	vinyl)naphthalen-2-ol	123.3, 120.3, 117.3, 116.7, 114.1, 55.3.
		HRMS (ESI-Orbitrap) m/z: Calcd. for $C_{19}H_{16}O_2$ ([M+H] ⁺)
		277.1228; found 277.1228
3		Pale yellow solid (71mg, 83% Yield); Mp: 112-113 °C ; ¹ H
		NMR (500 MHz, CDCl₃) δ 7.70 -7.73 (m,2H), 7.43 – 7.45
	ОН	NMR (500 MHz, CDCl₃) δ 7.70 -7.73 (m,2H), 7.43 – 7.45 (m, 1H), 7.28 – 7.30 (m, 2H), 7.18 - 7.23 (m, 6H), 6.26 (s,
	ОН	NMR (500 MHz, CDCl ₃) δ 7.70 -7.73 (m,2H), 7.43 – 7.45 (m, 1H), 7.28 – 7.30 (m, 2H), 7.18 - 7.23 (m, 6H), 6.26 (s, 1H), 5.55 (s, 1H), 5.44 (s, 1H).
	OH 3c	NMR (500 MHz, CDCl ₃) δ 7.70 -7.73 (m,2H), 7.43 – 7.45 (m, 1H), 7.28 – 7.30 (m, 2H), 7.18 - 7.23 (m, 6H), 6.26 (s, 1H), 5.55 (s, 1H), 5.44 (s, 1H). ¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.4, 142.5, 138.7,
	CH CH CH CH CH CH CH CH CH CH CH CH CH C	 NMR (500 MHz, CDCl₃) δ 7.70 -7.73 (m,2H), 7.43 – 7.45 (m, 1H), 7.28 – 7.30 (m, 2H), 7.18 - 7.23 (m, 6H), 6.26 (s, 1H), 5.55 (s, 1H), 5.44 (s, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 150.4, 142.5, 138.7, 132.79, 129.6, 128.9, 128.7, 128.5, 128.0, 126.5, 126.3,
	он Зс 1-(1-phenylvinyl) naphthalen-2-ol	 NMR (500 MHz, CDCl₃) δ 7.70 -7.73 (m,2H), 7.43 – 7.45 (m, 1H), 7.28 – 7.30 (m, 2H), 7.18 - 7.23 (m, 6H), 6.26 (s, 1H), 5.55 (s, 1H), 5.44 (s, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 150.4, 142.5, 138.7, 132.79, 129.6, 128.9, 128.7, 128.5, 128.0, 126.5, 126.3, 124.9, 123.3, 120.0, 118.9, 117.3, 77.2, 77.0, 76.7.
	он Зс 1-(1-phenylvinyl) naphthalen-2-ol	 NMR (500 MHz, CDCl₃) δ 7.70 -7.73 (m,2H), 7.43 – 7.45 (m, 1H), 7.28 – 7.30 (m, 2H), 7.18 - 7.23 (m, 6H), 6.26 (s, 1H), 5.55 (s, 1H), 5.44 (s, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 150.4, 142.5, 138.7, 132.79, 129.6, 128.9, 128.7, 128.5, 128.0, 126.5, 126.3, 124.9, 123.3, 120.0, 118.9, 117.3, 77.2, 77.0, 76.7. HRMS (ESI-Orbitrap) m/z: Calcd for C₁₈H₁₄O([M+H]⁺)

4	F	Yellow viscous liquid (70mg, 76% Yield); ¹ H NMR (500
		MHz, CDCl ₃) δ 7.70 – 7.73 (m,, 2H), 7.39 7.40 (m, 1H), 7.18
	OH	– 7.25 (m, 5H), 6.88(t, J = 8.0 Hz, 2H), 6.19 (s, 1H), 5.50 (s,
		1H), 5.41 (s, 1H).
	3d	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 163.9, 161.9,
	1-(1-(4-fluorophenyl)vinyl)	150.4, 141.57, 134.9, 134.8, 132.6, 129.8, 128.9, 128.1,
	naphthalen-2-ol	128.1, 128.0, 126.6, 124.7, 123.4, 119.7, 118.5, 117.3,
		115.7, 115.5. ¹⁹ F NMR (371 MHz, Chloroform-d) δ -
		113.11 (s, 1F)
		HRMS (FSI) m/z . Calcd. for $C_{10}H_{12}EO([M+H]^{+})$ 265 1028.
		found 265 1039
5		Pale vellow liquid (61mg, 75% Yield): ¹ H NMR (500 MHz.
	S	CDCl ₂) δ 7 70 (d. / = 8 5 Hz 2H) 7 50 (d. / = 8 5 Hz 1H)
	OH	7.22 - 7.28 (m, 4H), 7.17 (d, $J = 8.0$ Hz, 1H), 6.74 (s, 1H),
	3e 1-(1-(thiophen-3- yl)vinyl)naphthalen-2-ol	6.16 (s. 1H), 5.48 (s. 1H), 5.35 (s. 1H).
		¹³ C{ ¹ H} NMR (125 MHz. CDCl ₃) δ 150.0. 140.9. 137.3.
		132.71. 129.6. 128.8. 128.0. 126.5. 125.1. 124.8. 124.2.
		123.3, 120.2, 117.7, 117.3.
		HRMS (ESI-Orbitrap) m/z : Calcd. for C ₁₆ H ₁₂ OS([M+H] ⁺)
		253.0687; found 253.0695
6		yellow liquid (95mg,95% Yield); ¹ H NMR (500 MHz, CDCl ₃)
		δ 7.70 – 7.72 (m, 2H), 7.45 – 7.46 (m, 1H), 7.17 -7.23 (m,
	OH	5H), 7.00 (d, J = 8.0 Hz, 2H), 6.22 (s, 1H), 5.54 (s, 1H), 5.38
		(s, 1H), 2.47 (t, J = 7.5 Hz, 2H), 2.05 (sext, 2H), 0.84 (t, J =
	3f	7.5 Hz, 3H).
		¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.3, 143.4, 142.3,
	1-(1-(4-propylphenyl)	136.0, 132.85, 129.5, 128.9, 128.8, 128.0, 126.5, 126.2,
	vinyl)naphthalen-2-ol	124.9, 123.2, 120.2, 118.0, 117.3, 37.7, 24.4, 13.8.
		HRMS (ESI-Orbitrap) m/z: Calcd. for $C_{21}H_{20}O([M+H]^+)$
		289.1592; found 289.1593

7	F ₃ CO	Yellow viscous liquid (80.30mg, 70% Yield); ¹ H NMR (500
		MHz, CDCl₃) δ 7.71 – 7.74 (m, 2H), 7.38 – 7.40 (m, 1H),
	ОН	7.29 (d, J = 8.5 Hz, 2H), 7.24 – 7.25 (m, 2H), 7.18 – 7.21
		(m, 1H), 7.03 - 7.05 (d, J = 8.5 Hz, 2H), 6.25 (s, 1H), 5.50
	3g	(s,1H),5.48 (s,1H).
	1-(1-(4-(trifluoromethoxy)	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.4, 149.3, 141.3,
	phenyl)vinyl)naphthalen-	137.38, 132.5, 129.9, 128.9, 128.1, 127.7, 126.7, 124.6,
	2-ol	123.4, 121.0, 119.6, 119.4, 117.3.
		¹⁹ F NMR (371 MHz, Chloroform- <i>d</i>) δ -58.84 (s, 3F)
		HRMS (ESI-Orbitrap) m/z: Calcd. for C ₁₉ H ₁₃ F ₃ O ₂ ([M+H] ⁺)
		331.0945, found 331.0948.
8	Br	Pale yellow oil (82mg, 74% Yield); ¹ H NMR (500 MHz,
		CDCl ₃) δ 7.69 - 7.72 (m, 2H), 7.35 - 7.37 (m, 1H), 7.30 (d,
	OH	J = 8.5 Hz, 2H), 7.16 -7.24 (m,3H), 7.12 (d, J = 8.5 Hz, 2H),
		6.23 (s, 1H), 5.51 (s, 1H), 5.45 (s, 1H).
	3h	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.4, 141.6, 137.7,
	1-(1-(4-bromophenyl)vinyl)	132.63, 131.8, 129.9, 128.9, 128.1, 127.9, 126.7, 124.7,
	naphthalen-2-ol	123.4, 122.7, 119.4, 119.3, 117.3,
		HRMS (ESI-Orbitrap) m/z: Calcd. for C ₁₈ H ₁₃ BrO([M+H] ⁺)
		325.0228; found 327.0173.
9		Yellow oil (76mg, 80% Yield); ¹ H NMR (500 MHz, CDCl ₃)
		δ 7.72 – 7.74 (m, 2H), 7.36 – 7.38 (m, 1H), 7.32 – 7.33 (d,
	ОН	J = 8.5 Hz, 2H), 7.22 – 7.24 (m, 4H), 7.18 (d, J = 2.5 Hz, 1H),
		6.28 (s, 1H), 5.49 - 5.50 (d, J = 6.5 Hz, 2H), 3.02 (s, 2H).
	3і	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.4, 141.9, 139.1,
	1-(1-(4-ethynylphenyl)	132.6, 132.5, 129.8, 128.9, 128.1, 126.6, 126.2, 124.7,
	vinyl)naphthalen-2-ol	123.4, 122.2, 119.8, 119.4, 117.3, 83.3, 78.2.
		HRMS (ESI-Orbitrap) m/z: Calcd. for C ₂₀ H ₁₄ O([M+Na] ⁺)
		293.0942 ; found 292.0861.

10		Dark brown liquid (73mg, 88% yield); ¹ H NMR (500 MHz,
		CDCl₃) δ 7.60 (dd, <i>J</i> = 18.0 Hz, 9.0 Hz, 4H), 7.18 (d, <i>J</i> = 8.0
	MeO	Hz, 2H), 7.04 (s, 1H), 6.99 -7.02 (m, 2H), 6.86 (dd, J = 9.0
	46	Hz, 2.5 Hz, 1H), 6.73 (d, J = 2.0 Hz, 1H), 6.17 (s, 1H), 5.56
	40	(s, 1H), .5.39 (s, 1H), 3.57 (s, 1H), 2.24 (s, 3H). ¹³ C{ ¹ H}
	7 mothern 1 /1 /n	NMR (125 MHz, CDCl₃) δ 158.1, 151.0, 142.7, 138.53,
	7-methoxy-1-(1-(p-	136.0, 134.0, 129.5, 129.4, 129.2, 126.3, 124.3, 119.5,
	tolyljvinyljnaphthalen-2-ol	117.9, 115.5, 114.7, 104.0, 55.0, 21.1.
		HRMS (ESI-Orbitrap) m/z: Calcd. for C ₂₀ H ₁₈ O ₂ ([M+H] ⁺)
		291.1385; found 291.1380.
11	MeO	White solid (84mg,95% yield); Mp: 119-120 °C; ¹ H NMR
		(500 MHz, CDCl₃) δ 7.60 (dd, <i>J</i> = 16.0, 9.0 Hz, 2H), 7.22 (d,
	MeO	J = 9.0 Hz, 2H), 7.03 (d, J = 9.0 Hz, 1H), 6.86 (dd, J = 9.0 Hz,
	4c	2.5 Hz, 1H), 6.70 (d, J = 9.0 Hz, 3H), 6.10 (s, 1H), 5.62 (s,
		1H), 5.32 (s, 1H), 3.68 (s, 3H), 3.57 (s, 3H). ¹³ C{ ¹ H} NMR
	7-methoxy-1-(1-(4-	(125 MHz, CDCl₃) δ 159.9, 158.1, 151.0, 142.19, 134.0,
	methoxyphenyl)vinyl)naph	131.3, 129.5, 129.2, 127.7, 124.2, 119.5, 116.7, 115.5,
	thalen-2-ol	114.7, 114.0, 104.0, 55.3, 55.0.
		HDMS (ESL Orbitron) m/r. Caled for
		TRIVIS (ESI-Orbitrap) III/2: Calcu. Tor
		$C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338.
12		C ₂₀ H ₁₈ O ₃ ([M+H] ⁺)307.1334; found 307.1338. Yellow oil (64 mg, 85% yield);
12		HKWS (ESI-Orbitrap) H/2. Calcd. Hor C ₂₀ H ₁₈ O ₃ ([M+H] ⁺)307.1334; found 307.1338. Yellow oil (64 mg, 85% yield); 1 ¹ H NMR (500 MHz, CDCl ₃) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J
12	ОН	Implify Implify Calculation $C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338. Yellow oil (64 mg, 85% yield); ¹ H NMR (500 MHz, CDCl ₃) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J = 9.0 Hz, 1H), 7.25 - 7.31 (m, 2H), 7.19 – 7.21 (d, J = 9.0 Hz,
12	Br Ad	Implify Implify
12	H	HKWS (ESI-Orbitrap) H /2.Calcd.For $C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338.Yellow oil (64 mg, 85% yield); ¹ H NMR (500 MHz, CDCl ₃) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J= 9.0 Hz, 1H), 7.25 -7.31 (m, 2H), 7.19 – 7.21 (d, J = 9.0 Hz,1H), 7.12 - 7.13 (d, J = 8.5 Hz, 2H), 6.99 - 7.01 (d, J = 8.0Hz, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 5.36 (s, 1H), 2.23 (s,
12	Br 4d 6-bromo-1-(1-(p-	HKWS (ESI-Orbitrap) H /2.Calcd.Hor $C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338.Yellow oil (64 mg, 85% yield); ¹ H NMR (500 MHz, CDCl ₃) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J= 9.0 Hz, 1H), 7.25 -7.31 (m, 2H), 7.19 – 7.21 (d, J = 9.0 Hz,1H), 7.12 - 7.13 (d, J = 8.5 Hz, 2H), 6.99 - 7.01 (d, J = 8.0Hz, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 5.36 (s, 1H), 2.23 (s,3H).1 ³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.7, 141.8, 138.8,
12	\mathbf{F}_{dd}	RNNS (ESI-Orbitrap) III /2.Calcd.For $C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338.Yellow oil (64 mg, 85% yield); 1H NMR (500 MHz, CDCl3) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J= 9.0 Hz, 1H), 7.25 -7.31 (m, 2H), 7.19 – 7.21 (d, J = 9.0 Hz,1H), 7.12 - 7.13 (d, J = 8.5 Hz, 2H), 6.99 - 7.01 (d, J = 8.0Hz, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 5.36 (s, 1H), 2.23 (s,3H).13C{1H} NMR (125 MHz, CDCl3) δ 150.7, 141.8, 138.8,135.60, 131.3, 130.0, 129.9, 129.7, 129.5, 128.6, 126.8,
12	$i = \frac{1}{4d}$	HKWS(ESI-Orbitrap)H /2.Calcd.Hor $C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338.Yellow oil (64 mg, 85% yield); ¹ H NMR (500 MHz, CDCl ₃) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J= 9.0 Hz, 1H), 7.25 -7.31 (m, 2H), 7.19 – 7.21 (d, J = 9.0 Hz,1H), 7.12 - 7.13 (d, J = 8.5 Hz, 2H), 6.99 - 7.01 (d, J = 8.0Hz, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 5.36 (s, 1H), 2.23 (s,3H). ¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.7, 141.8, 138.8,135.60, 131.3, 130.0, 129.9, 129.7, 129.5, 128.6, 126.8,126.1, 120.4, 118.5, 118.2, 117.1, 21.2.
12	Image: Constraint of the system Image: Constraint of the system <th>HKWS(ESI-Orbitrap)H/2:Calcd.Hor$C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338.Yellow oil (64 mg, 85% yield);¹H NMR (500 MHz, CDCl3) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J= 9.0 Hz, 1H), 7.25 -7.31 (m, 2H), 7.19 – 7.21 (d, J = 9.0 Hz,1H), 7.12 - 7.13 (d, J = 8.5 Hz, 2H), 6.99 - 7.01 (d, J = 8.0Hz, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 5.36 (s, 1H), 2.23 (s,3H).¹³C{¹H} NMR (125 MHz, CDCl3) δ 150.7, 141.8, 138.8,135.60, 131.3, 130.0, 129.9, 129.7, 129.5, 128.6, 126.8,126.1, 120.4, 118.5, 118.2, 117.1, 21.2.HRMS (ESI-Orbitrap) m/z: Calcd. for C₁₉H₁₅BrO([M+Na]⁺)</th>	HKWS(ESI-Orbitrap)H /2:Calcd.Hor $C_{20}H_{18}O_3([M+H]^+)307.1334$; found 307.1338.Yellow oil (64 mg, 85% yield); ¹ H NMR (500 MHz, CDCl3) δ 7.84 (s, 1H), 7.60 – 7.61 (d, J= 9.0 Hz, 1H), 7.25 -7.31 (m, 2H), 7.19 – 7.21 (d, J = 9.0 Hz,1H), 7.12 - 7.13 (d, J = 8.5 Hz, 2H), 6.99 - 7.01 (d, J = 8.0Hz, 2H), 6.20 (s, 1H), 5.58 (s, 1H), 5.36 (s, 1H), 2.23 (s,3H). ¹³ C{ ¹ H} NMR (125 MHz, CDCl3) δ 150.7, 141.8, 138.8,135.60, 131.3, 130.0, 129.9, 129.7, 129.5, 128.6, 126.8,126.1, 120.4, 118.5, 118.2, 117.1, 21.2.HRMS (ESI-Orbitrap) m/z: Calcd. for C ₁₉ H ₁₅ BrO([M+Na] ⁺)

13	ОН	Colourless liquid (55 mg, 51% yield); ¹ H NMR (500 MHz,
	Et 4e 4-ethyl-2-(1- phenylvinyl)phenol	CDCl ₃) δ 7.21 - 7.23 (m, 2H), 7.09 - 7.10 (d, <i>J</i> = 8.0 Hz, 2H),
		7.02 - 7.04 (m, 1H), 6.91 (s, 1H), 6.81 - 6.82 (d, <i>J</i> = 8.0 Hz,
		1H), 5.76 (s, 1H), 5.30 (s, 1H), 4.96 (s, 1H), 2.47 - 2.51 (q,
		2H), 2.30 (s, 3H), 1.12 - 1.15 (t, <i>J</i> = 7.5 Hz, 3H). ¹³ C NMR
		(125 MHz, CDCl₃) δ 151.04, 145.29, 138.60, 136.59,
		136.12, 129.57, 129.42, 128.73, 127.41, 127.00, 115.70,
		115.58, 77.28, 77.03, 76.78, 27.96, 21.21, 15.85.
		HRMS (ESI-Orbitrap) m/z: Calcd. for C ₁₆ H ₁₆ O([M+Na] ⁺)
		225.1279 ; found 225.1283.
14	ОН	Viscous liquid (46 mg, 50% yield); ¹ H NMR (500 MHz,
		CDCl ₃) δ 7.33 – 7.38 (m, 5H), 6.87 (d, <i>J</i> = 9.0Hz 1H), 6.81-
		6.84 (m, 1H), 6.639(d, J = 2.5 Hz, 1H), 5.86 (s, 1H), 5.42 (s,
	OMe 4f	1H), 4.78 (s, 1H), 3.74 (s, 3H). ¹³ C{ ¹ H} NMR (125 MHz,
	4-methoxy-2-(1-	CDCl₃) δ 153.3, 147.1, 145.3, 139.1, 128.7, 128.6, 128.1,
	phenylvinyl)phenol	127.0, 116.7, 116.5, 115.3, 115.1, 55.7.
		HRMS (ESI-Orbitrap) m/z: Calcd. for $C_{15}H_{14}O_2([M+H]^+)$
		227.1072; found 227.1068.
15	ОН	Viscous liquid (53mg, 55% yield); ¹ H NMR (500 MHz,
		CDCl ₃) δ 7.17 – 7.20 (d, <i>J</i> = 3.0 Hz, 2H), 7.06 - 7.07 (d, <i>J</i> =
		8.0 Hz, 2H), 6.78 – 6.80 (d, J = 4.0 Hz, 2H), 6.73 – 6.75 (dd,
	4g	J = 7.0, 3.0 Hz, 1H), 6.25 – 6.31 (d, J = 3.0 Hz, 1H) 5.73 (s,
	4-methoxy-2-(1-(p-	1H), 5.28 (s, 1H), 4.73 (s, 1H), 3.69 (s, 3H), 2.27 (s, 3H).
	tolyl)vinyl)phenol	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 153.3, 147.1, 145.1,
		138.69, 136.2, 129.4, 128.2, 126.9, 116.5, 115.9, 115.2,
		115.0, 55.7, 21.2.
		HRMS (ESI-Orbitrap) m/z: Calcd. for C ₁₆ H ₁₆ O ₂ ([M+H] ⁺)
16		Colourless liquid (53 mg, 51% yield); ¹ H NMR (500 MHz,
		CDCl ₃) δ 7.18 – 7.20 (d, <i>J</i> = 7.5 Hz, 2H), 7.06 – 7.08 (d, <i>J</i> =
		8.0 Hz, 2H), 6.96 - 6.98 (dd, J = 8.5 Hz, 3 Hz, 1H), 6.87 (s,

	ОН	1H), 6.76 - 6.77 (d, J = 8.0 Hz, 1H), 5.72 (s, 1H), 5.27 (s,
	4h	1H), 4.93 (s, 1H), 2.28 (s, 3H), 2.20 (s, 3H).
		¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.8, 145.2, 138.5,
		136.6, 130.6, 129.9, 129.5, 129.4, 127.4, 126.99, 115.7,
	tolvl)vinvl)nhenol	115.5, 21.1, 20.4.
		HRMS (ESI-Orbitrap) m/z: Calcd. for $C_{16}H_{16}O([M+H]^+)$
		225.1279 ; found 225.1279.
17		Colourless liquid (59 mg, 50% yield); ¹ H NMR (500 MHz,
		CDCl ₃) δ 7.46 - 7.48 (d, <i>J</i> = 7.5 Hz, 2H), 7.42 - 7.43 (d, <i>J</i> =
	ОН	8.5 Hz, 1H), 7.30 - 7.33 (m, 3H), 7.21 - 7.24 (m, 2H), 7.18
		(s, 1H), 7.08 -7.09 (d, J = 7.5 Hz), 6.94 - 6.95 (d, J = 8.0 Hz,
		1H), 5.79 (s, 1H), 5.35 (s, 1H), 5.13(s, 1H), 2.28 (s, 3H);
	Pn 4i	¹³ C NMR (125 MHz, DMSO) δ 152.76, 145.03, 140.60,
	3-(1-(p-tolyl)vinyl)-[1,1'-	138.79, 136.31, 133.61, 129.51, 129.00, 128.72, 128.08,
	biphenyl]-4-ol	127.02, 126.74, 116.23, 116.08, 77.28, 77.03, 76.78,
		21.21.
		HRMS (ESI-Orbitrap) m/z: Calcd. for $C_{21}H_{18}O([M+H]^+)$
		287.1436 ; found 287.1441.
18	ОН	Pale yellow liquid (46 mg, 52% yield); ¹ H NMR (500 MHz,
		CDCl₃) δ 7.19 – 7.20 (m, 3H), 7.06 – 7.08 (m, 3H), 6.78 -
		6.80 (d, J = 8.5 Hz, 1H), 5.74 (s, 1H), 5.27 (s, 1H), 4.93 (s,
	4j	1H), 2.28 (s, 3H), 1.21 (s, 9H).
	4-(tert-butyl)-2-(1-(<i>p</i> -	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 150.78, 145.49, 143.11,
	tolyl)vinyl)phenol	138.59, 136.49, 129.42, 127.22, 126.96, 126.30, 115.64,
		115.18, 34.10, 31.55, 21.21.
		HRMS (ESI-Orbitrap) m/z: Calcd. for $C_{19}H_{22}O([M+H]^+)$
		267.1748; found 267.1753
19		Colourless liquid (51 mg, 55% yield); ¹ H NMR (500 MHz,
		CDCl₃) δ 7.19 – 7.21 (m, 2H), 7.07 - 7.09 (d, <i>J</i> = 8.0 Hz, 2H),
		7.04 – 7.06 (dd, J = 8.5, 2.5 Hz, 1H), 6.91 (d, J = 2.0 Hz,
		1H), 6.79 - 6.80 (d, J = 8.0 Hz, 1H), 5.75 (s, 1H), 5.29 (s,

	ОН	1H), 4.94 (s, 1H), 2.72 - 2.80 (sept, 1H), 2.29 (s, 3H), 1.15
		(s, 3H), 1.14 (s, 3H).
		¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 151.0, 145.3, 140.7,
	4k	138.59, 136.5, 129.4, 128.2, 127.3, 127.2, 126.9, 115.6,
	4-isopropyl-2-(1-(p-	115.5, 33.2, 24.2, 21.2.
	tolyl)vinyl)phenol	HRMS (ESI-Orbitrap) m/z: Calcd. for C ₁₈ H ₂₀ OH([M+H] ⁺)
		253.1592; found 253.1588
20	ОН 	Viscous liquid (46 mg, 60% yield); ¹ H NMR (500 MHz,
		CDCl₃) δ 7.21 - 7.22 (d, <i>J</i> = 8.0 Hz, 2H), 7.09 - 7.12 (m, 3H),
	tBu	6.92 (d, <i>J</i> = 2.0 Hz, 1H), 6.21 (s, 1H), 5.38 – 5.39 (d, <i>J</i> = 4.5
	4k	Hz, 1H), 2.32 (s, 3H), 1.34 (s, 9H), 1.32 (s, 9H).
	3,5-di-tert-butyl-2-(1-(p-	¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 152.6, 151.4, 148.1,
	tolyl)vinyl)phenol	145.18, 138.2, 136.5, 129.3, 126.1, 123.2, 118.1, 116.3,
		109.8, 77.2, 77.0, 76.7, 37.1, 34.8, 32.3, 31.3, 21.1.
		HRMS (ESI-Orbitrap) m/z: Calcd. for C ₂₃ H ₃₀ OH([M+H] ⁺)
		323.2374; found 323.2374
21	H-	Viscous liquid (96 mg, 74% yield); ¹ H NMR (500 MHz,
		CDCl₃) δ 7.29-7.78 (m, 2H), 7.36 (s, 1H), 7.40 (d, <i>J</i> = 8.5 Hz,
	OH	1H), 7.5-7.28(m, 7H), 5.18 (s, 1H). ¹³ C{ ¹ H} NMR (125 MHz,
		CDCl₃) δ 149.4, 146.8, 138.6, 131.5, 130.4, 129.1, 128.9,
		128.8, 128.2, 127.0, 126.4, 124.0, 123.7, 121.1, 117.6,
	(E)-1-(2-1000-1-	86.0.
	pnenyivinyi)naphthalen-2-	HRMS (ESI-Orbitrap) m/z: Calcd. for C ₁₈ H ₁₃ IO([M+H] ⁺)
	01	373.0089; found 373.0091
22		Colourless liquid (55 mg, 65% yield); ¹ H NMR (500 MHz,
		CDCl³) δ 8.08 (d, J = 8.5 Hz, 1H), 7.99 (d, J = 9.0 Hz, 1H),
	i v	7.82 (d, J = 9.0 Hz, 1H), 7.33 -7.76 (m, 2H), 7.67 (d, J=7.5
		Hz, 2H), 7.52-7.58 (m, 3H), 7.47 7.50 (m, 1H), 7.40 (t, <i>J</i> =
	7a	7.5 Hz, 1H) ¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 153.1,
	1-phenylnaphtho[2,1-	141.7, 133.1, 130.8, 129.8, 128.9, 128.6, 128.3, 127.8,
	b]furan	125.9, 125.9, 124.4, 124.3, 123.3, 120.7, 112.6. HRMS

		(ESI-Orbitrap) m/z : Calcd. for $C_{18}H_{12}O([M+H]^+)$
		245.0966; found 245.0968
23	MeO	Yellow liquid (65 mg, 68% yield); ¹ H NMR (500 MHz,
		CDCl₃) δ 7.91 (d, <i>J</i> = 8.0 Hz, 1H), 7.81 (d <i>J</i> = 8.5 Hz, 1H),
		7.63 (d, J = 9.0 Hz, 1H), 7.57 (d, J = 9.0 Hz, 1H), 7.53 (s,
		1H), 7.39 (d, <i>J</i> = 7.5 Hz), 7.32 (t, <i>J</i> = 7.5 Hz, 1H), 7.26 (t, <i>J</i> =
	7b	7.5 Hz, 1H), 6.92 (d, <i>J</i> = 7.5 Hz, 1H), 3.78 (s, 3H). ¹³ C{ ¹ H}
	1-(4-	NMR (125 MHz, CDCl ₃) δ 159.3, 153.0, 141.5, 133.5,
	wethoxyphenyl)naphtho[2,	130.9, 130.7, 128.8, 128.3, 125.9, 125.8, 125.1, 124.2,
	1-blfuran	123.9, 123.3, 120.9, 114.0, 112.6, 55.3. HRMS (ESI-
		Orbitrap) m/z: Calcd. for $C_{19}H_{14}O_2([M+H]^+)$ 275.1072;
		found 272.1072
24	s	Pale yellow liquid (54 mg, 62% yield); ¹ H NMR (500 MHz,
		CDCl₃) δ 8.10 (d, <i>J</i> = 8.0 Hz), 7.97 (d, <i>J</i> = 8.0 Hz, 1H0, 7.79
	0	(d, J = 9.0 Hz, 1H), 7.70 – 7.73 (m, 2H), 7.42 – 7.54 (m,
		4H), 7.37 (d, $J = 5.0$ Hz, 1H). ¹³ C{ ¹ H} NMR (125 MHz,
	7c	CDCl₃) δ 153.0, 141.8, 132.7, 130.7, 129.3, 128.8, 128.3,
		126.1, 126.0, 125.9, 124.4, 123.8, 123.3, 120.9, 119.0,
	1-(thiophen-3-	112.6, HRMS (ESI-Orbitrap) m/z: Calcd. for
	yl)naphtho[2,1-b]furan	C ₁₈ H ₁₀ OS([M+H] ⁺) 251.0530; found 251.0525
25		Colourless liquid (68 mg, 68% vield) ^{, 1} H NMR (500 MHz,
		CDCl ₃) δ 8.09 (d. $J =$ Hz.1H), 9.97 (d. $J =$ 8.0 Hz), 7.95 (d.
		J = 9.0 Hz), 7.69 -7.73 (m, 2H), 7.56 (d, $J = 8.0$ Hz, 1H),
		7.44 -7.47 (m. 1H). 7.39 (t. J = 7.5 Hz. 2H). 2.74 (t. J =
	7d	7.5 Hz, 2H), 1.75 -1.82 (sext, 2H), 1.06 (t, J = 7.5 Hz, 3H).
		¹³ C{ ¹ H} NMR (125 MHz, CDCl ₃) δ 153.1, 142.4, 141.6,
	1-(4-	130.8, 130.2, 129.7, 128.8, 128.6, 128.4, 125.9, 125.8,
	propylphenyl)naphtho[2.1-	124.4, 124.3, 123.4, 120.8, 112.6, 37.9, 24.5, 13.9. HRMS
	b]furan	(ESI-Orbitrap) m/z: Calcd. for C ₂₁ H ₁₈ O([M+H] ⁺) 287.1435:
		found 287.1444
i i		1

26		Yell
		CDC
	MeO	7.64
		1H),
	7e	¹³ C{
	8-methoxy-1-	133
	phenylnaphtho[2,1-b]furan	125
		HRN
		275

Yellow liquid (59 mg, 62% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84(d, J = 10 Hz, 1H), 7.71 (d, J = 10 Hz, 2H), 7.64(d, J = 5 Hz, 2H), 7.51 – 7.57 (m,3H), 7.45 – 7.48 (m, 1H), 7.30 (s, 1H), 7.08 (d, J = 10 Hz, 1H), 3.57 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 157.74, 153.62, 141.13, 133.13, 130.26, 130.09, 129.46, 128.41, 127.88, 125.70, 125.66, 124.22, 120.11, 116.35, 110.12, 102.87, 54.86. HRMS (ESI-Orbitrap) m/z: Calcd. for C₁₉H₁₄O₂([M+H]⁺) 275.1072; found 275.1075

4. ¹H and ¹³C{¹H} spectrum of synthesised compounds

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 3a in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 3b in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 3c in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 3d in CDCl_3

¹H NMR of 3e in CDCl₃

 ^1H NMR of 3g in CDCl_3

 ^{19}F NMR of 3g in CDCl3

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 3i in CDCl₃

 $^{13}C{^1H} NMR of 4b in CDCl_3$

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 4c in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 4e in CDCl_3

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 4f in CDCl₃

 $^{13}C{^1H}$ NMR of 4g in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 4i in CDCl_3

 $^{13}C{^1H} NMR of 6 in CDCl_3$

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 7a in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 7b in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 7c in CDCl₃

 $^{13}\text{C}\{^{1}\text{H}\}$ NMR of 7d in CDCl₃

 $^{13}\text{C}\{^1\text{H}\}$ NMR of 7e in CDCl₃