Modular Access to Diarylmethyl Sulfonamides via Visible Light-Promoted Cross-Coupling Reactions

Yu-Tong Mei,^a Hui Zhang,^a Yu Jiang,^a Yu-Jia Gu,^a Jiang-Lai Deng,^a Dan Yang,^{a*} Lin-Hai Jing,^{a*} Ming-Song Shi^{b*}

^{*a*}Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China ^{*b*}NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China

Email: <u>danyangchem@mail.nankai.edu.cn</u>, <u>danyang@cwnu.edu.cn</u>, <u>jlhhxg@cwnu.edu.cn</u>; shims90@sc-mch.cn

(A) General Information	S2
(B) General procedure for the synthesis of <i>p</i> -QMs	S3
(C) Optimization of the reaction conditions	S4
(D) General procedure for the synthesis of diarylmethyl sulfonamides	
(E) Synthetic applications	S14
(F) Radical trapping experiment with TEMPO	S14
(G) Stern-Volmer fluorescence quenching experiments	S15
(H) Unsuccessful examples	S18
(I) NMR spectra of new compounds	S19

(A) General Information

All reactions and manipulations which are sensitive to moisture or air were performed under inert atmosphere of argon. All chemicals were purchased from J&K, Acros and Aldrich, and were used as received. Anhydrous CH₂Cl₂, EA, THF, DME, DMSO, DMF and MeCN were freshly distilled from calcium hydride. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AVANCE 400 and chemical shifts are reported in δ (ppm) referenced to residual undeuterated solvent signal for ¹H NMR (7.26 ppm) and ¹³C NMR (77.00 ppm). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. HRMS spectra were recorded on a Waters Acquity UPLC/Xevo TQD-MS-MS quadrupole mass spectrometer. The light source for the photocatalytic reaction is manufactured by GeAo chemistry with a power of 40 W, a broad band source (450–465 nm). A fan was used to maintain the reaction temperature at room temperature (about 25-30 °C). The reactions were carried out in a borosilicate glass vessel and the distance from the light source to the irradiation vessel is about 1 cm.

Photoreactor (GeAo) (small scale)

Photoreactor (GeAo) (large scale)

(B) General procedure for the synthesis of *p*-QMs 1.

Substrates **1a-1x** were synthesized according to the reported literature.¹⁻³ In a Dean-Stark apparatus, to a mixture solution of 2,6-di-*tert*-butylphenol (5.0 mmol, 1.0 eq.) and the corresponding aromatic aldehyde (5.5 mmol, 1.1 eq.) in 30 mL toluene was heated with an oil bath to reflux. Then piperidine (10.0 mmol, 2.0 eq.) was added dropwise and the reaction mixture was continued to reflux for 24 h. after cooling the reaction mixture just below the boiling point of toluene, acetic anhydride (10.0 mmol, 2.0 eq.) was added and the reaction mixture was stirred for another 1 h at the same temperature. Then the reaction mixture was poured into ice water (100 mL) and extracted with ethyl acetate (20 mL x 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue were purified by flash column chromatography (petroleum ether/ethyl acetate) affording the desired products *p*-QMs **1a-1x**.

Substrate **1y** was synthesized according to the reported literature.⁴ To a solution of 2,6-di-*tert*-butyl-4-ethylphenol (2.4 g, 10 mmol) in hexane (30 mL) was added a solution of $K_3Fe(CN)_6$ (13.2 g, 40.0 mmol) and KOH (2.4 g, 42.0 mmol) in water (30 mL) under argon atmosphere. The reaction mixture was stirred at room temperature for 6 h. The combined organic layer was washed with saturated brine and extracted with ethyl acetate (20 mL x 3), and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Then the product **1y** was obtained by recrystallization from CH₂Cl₂ and hexane (1.4 g, 59% yield, yellow solid).

Substrate **1z** was synthesized according to the reported literature.⁵ To a solution of propofol (1.8 g, 10.0 mmol) in anhydrous toluene in ice-water bath was added benzoyl chloride (2.6 g, 18.0 mmol). Then $AlCl_3$ (535.0 mg, 4.0 mmol) was added in three batches. And the reaction mixture was raised to room temperature and stirred overnight, after complete consumption of starting

material, solvent was concentrated under reduced pressure and the residue were purified by flash column chromatography to afford product **S-1**.

To a solution of S-1 in anhydrous ethanol (30 mL) was added 10% Pd/C (534 mg, 5 mol%), and then stirred at room temperature for 5 h under hydrogen atmosphere (balloon). Filtered through a pad of celite, and solvent was concentrated under reduced pressure and the residue was purified by flash column chromatography to afford product S-2.

To a solution of **S-2** in hexane (30 mL) was added $K_3Fe(CN)_6$ (13.2 g, 40.0 mmol) and KOH (2.4 g, 42.0 mmol) sequently under an argon atmosphere. The reaction mixture was stirred at room temperature for 1 h. The combined organic layer was washed with saturated brine and extracted with ethyl acetate (20 mL x 3), and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure and the residue was purified by flash column chromatography to afford product **1z** (1.8 g, 67% yield for three steps).

(C) Optimization of the reaction conditions.

^r Bu ^o ^r Bu ^t Bu ^t Bu 1a	+ N S CI PC (5 mol%) (TMS) ₃ SiH (2 equiv) MeCN, Ar, rt, 12 h 40 W blue LED 2a	OH 'Bu 'Bu 'Bu 'Bu 'Bu 'Bu 'Bu 'Bu 'Bu 'Bu 'Bu
Entry	PC	Yield $(\%)^b$
1	Eosin Y	41
2	Rose Bengal	46
3	Rhodamine 6G	76
4	4CzIPN	50
5	$Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$	35
6	$[Ru(bpy)_3](PF_6)_2$	0

 Table S1. Photocatalyst screening^a

^a**1a** (0.1 mmol), **2a** (0.2 mmol), PC (5 mol%), (TMS)₃SiH (2 equiv), MeCN (1 mL), 40 W blue LED (450-465 nm), Ar, rt (25-30 °C), 12 h. ^bIsolated yield.

Table S2. Solvent screening^a

^t Bu ⁻	^{'Bu} ^{'Bu} 1a	+ N ^S CI 2a	Rhodamine 6G (5 mol%) (TMS) ₃ SiH (2 equiv) solvent, Ar, rt, 12 h 40 W blue LED	^{'Bu} ^{'Bu} ^{'Bu} ^{SN} ^{'Bu} ^{3a}
	Entry	:	Solvent	Yield $(\%)^b$
	1		MeCN	76
_	2		CH_2Cl_2	15

3	THF	64
4	EA	43
5	DME	58
6	DMF	20
7	DMSO	0

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), Rhodamine 6G (5 mol%), (TMS)₃SiH (2 equiv), Solvent (1 mL), 40 W blue LED (450-465 nm), Ar, rt (25-30 °C), 12 h. ^{*b*}Isolated yield.

Table S3. Halogen atom transfer (HAT) reagent screening^a

¹ Bu ¹ Bu 1a	+ N S CI 2a Rhodamine 6G (5 mol%) HAT (2 equiv) MeCN, Ar, rt, 12 h 40 W blue LED	^{'Bu} ^{'Bu} ^{'Bu} ^{'Bu} ^{'Bu} ^{Su}
Entry	HAT (2 equiv)	Yield $(\%)^b$
1	(TMS) ₃ SiH	76
2	Et ₃ SiH	0
3	Me ₂ EtSiH	0
4	ⁱ Pr ₃ SiH	0
5	^t BuMe ₂ SiH	0
6	Bn ₃ SiH	18
7	PhMe ₂ SiH	17
8	ⁱ PrNEt	0
9	Et ₃ N	0
10	Py•BH ₃	11
11	BPh ₄ Na	0
	^v Bu ^v Bu 1a Entry 1 2 3 4 5 6 7 8 9 10 11	$ \begin{array}{c} \stackrel{^{l}Bu}{{ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right)}} \stackrel{^{l}Bu}{{ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right)}} \stackrel{^{l}Bu}{{ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right)}} \stackrel{^{l}Bu}{{ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right)} \stackrel{^{l}Bu}{{ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), Rhodamine 6G (5 mol%), HAT (2 equiv), MeCN (1 mL), 40 W blue LED (450-465 nm), Ar, rt (25-30 °C), 12 h. ^{*b*}Isolated yield.

^t Bu´	^t Bu tBu tBu tBu tBu tBu	+ N ^S CI -	hodamine 6G (5 mol%) (TMS) ₃ SiH (x equiv) MeCN, Ar, rt, 12 h 40 W blue LED ^t Bu ^t Bu
-	Entry	x (equiv)) Yield $(\%)^b$
_	1	2	76
	2	3	78
	3	5	66

Table S4. The equivalent of halogen atom transfer (HAT) reagent screening^a

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), Rhodamine 6G (5 mol%), (TMS)₃SiH (x equiv), MeCN (1 mL), 40 W blue LED (450-465 nm), Ar, rt (25-30 °C). ^{*b*}Isolated yield.

^{'Bu} ^{'Bu} ^{'Bu} ¹ a	+ N ^O , O N ^S CI 2a Rhodamine 6G (5 m (TMS) ₃ SiH (2 equi MeCN, Ar, rt, tim 40 W blue LED	ol%) v) $v \rightarrow$ t_{Bu} t_{Bu
Entry	Time (h)	Yield $(\%)^b$
1	6	70
2	12	76
3	24	58
4	36	31
5	48	32

Table S5. Reaction time screening^a

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), Rhodamine 6G (5 mol%), (TMS)₃SiH (2 equiv), MeCN (1 mL), 40 W blue LED (450-465 nm), Ar, rt (25-30 °C). ^{*b*}Isolated yield.

^{*a*}**1a** (0.1 mmol), **2a** (0.2 mmol), Rhodamine 6G (5 mol%), (TMS)₃SiH (2 equiv), MeCN (1 mL), 40 W blue LED (450-465 nm), Ar. ^{*b*}Isolated yield.

Table S7. Control experiments^{*a*}

Entry	Control experiments	Yield $(\%)^b$
1	none	76
2	Without PC	0
3	Without (TMS) ₃ SiH	0
4	Air	0
5	Without light	0

^a**1a** (0.1 mmol), **2a** (0.2 mmol), Rhodamine 6G (5 mol%), (TMS)₃SiH (2 equiv), MeCN (1 mL), 40 W blue LED (450-465 nm), Ar, rt (25-30 °C).12 h. ^bIsolated yield.

(D) General procedure for synthesis of diarylmethyl sulfonamides

To an 8 mL vial equipped with a magnetic stir bar was added **1** (0.1 mmol), sulfamoyl chlorides (0.2 mmol), (TMS)₃SiH (49.8 mg, 0.2 mmol), Rhodamine 6G (2.4 mg, 5.0 mol%) and MeCN (1 mL) under argon atmosphere and sealed with PTFE cap. Then the reaction mixture was stirred upon 40 W blue LED (450–465 nm) at room temperature for 12 h. The solvent was concentrated in vacuo and the residue was purified by a column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to provide the desired product **3**.

1-(4-(*tert*-butyl)phenyl)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*,*N*-dimethylmethanesulfona mide (3a)

White solid, mp 135–136 °C, 34.9 mg, 76% yield. $R_f = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (d, J = 8.4 Hz, 2H), 7.43 (s, 2H), 7.40 (d, J = 8.4 Hz, 2H), 5.27 (s, 1H), 5.24 (s, 1H), 2.58 (s, 6H), 1.44 (s, 18H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.0 (C), 151.3 (C), 136.0 (C), 131.8 (C), 129.1 (CH), 126.4 (CH), 125.7 (CH), 124.9 (C), 71.6 (CH), 37.8 (CH₃), 34.5 (C),

34.4 (C), 31.2 (CH₃), 30.2 (CH₃). HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{27}H_{41}NO_3SNa$: 482.2699; Found: 482.2691.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethyl-1-phenylmethanesulfonamide (3b)

White solid, mp 172–173 °C, 32.6 mg, 81% yield. $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (d, J = 7.2 Hz, 1H), 7.43 (s, 2H), 7.41-7.33 (m, 3H), 5.28 (s, 1H), 5.27 (s, 1H), 2.59 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.1 (C), 136.0 (C), 134.9 (C), 129.4 (CH), 128.7 (CH), 128.3 (CH), 126.3 (CH), 124.7 (C), 71.8 (CH), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z:

 $[M+Na]^+$ calcd for $C_{23}H_{33}NO_3SNa$: 426.2073; Found: 426.2077.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*,*N*-dimethyl-1-(*p*-tolyl)methanesulfonamide (3c)

White solid, mp 157–158 °C, 32.1 mg, 77% yield. $R_f = 0.35$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.56 (d, J = 8.0 Hz, 2H), 7.43 (s, 2H), 7.19 (d, J = 8.0 Hz, 2H), 5.26 (s, 1H), 5.24 (s, 1H), 2.59 (s, 6H), 2.34 (s, 3H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.0 (C), 138.1 (C), 136.0 (C), 131.9 (C), 129.4 (CH), 129.3 (CH), 126.3 (CH), 124.9 (C), 71.6 (CH), 37.9 (CH₃), 34.4 (C),

30.2 (CH₃), 21.1 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₄H₃₆NO₃S: 418.2410; Found: 418.2406.

1-([1,1'-biphenyl]-4-yl)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*,*N*-dimethylmethanesulfonamide (3d)

Yellow solid, mp 165–166 °C, 38.3 mg, 80% yield. $R_{\rm f} = 0.35$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.76 (d, J = 8.0 Hz, 2H), 7.64-7.85 (m, 4H), 7.48 (s, 2H), 7.46-7.42 (m, 2H), 7.38-7.34 (m, 1H), 5.34 (s, 1H), 5.30 (s, 1H), 2.64 (s, 6H), 1.47 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.1 (C), 141.1 (C), 140.4 (C), 136.2 (C), 133.9 (C), 129.9 (CH), 128.8 (CH), 127.5 (CH),

127.4 (CH), 127.0 (CH), 126.4 (CH), 124.8 (CH), 71.7 (CH), 37.9 (CH₃), 34.4 (C), 30.3 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{29}H_{38}NO_3S$: 480.2567; Found: 480.2568.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-(4-methoxyphenyl)-*N*,*N*-dimethylmethanesulfonamide (3e)

Yellow solid, mp 153–154 °C, 32.0 mg, 74% yield. $R_f = 0.25$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, J = 8.8 Hz, 2H), 7.41 (s, 2H), 6.91 (d, J = 8.8 Hz, 2H), 5.26 (s, 1H), 5.22 (s, 1H), 3.80 (s, 3H), 2.59 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.5 (C), 154.0 (C), 136.0 (C), 130.7 (CH), 127.0 (C), 126.3 (CH), 125.0 (C), 114.1 (CH), 71.2 (CH), 55.3 (CH₃), 37.9 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z:

 $[M+H]^+$ calcd for $C_{24}H_{36}NO_3S$: 434.2360; Found: 434.2366.

$1-(3,5-di\ tert-butyl-4-hydroxyphenyl)-1-(4-fluorophenyl)-N, N-dimethylmethanesulfonamide\ (3f)$

White solid, mp 168–169 °C, 28.2 mg, 67% yield. $R_{\rm f} = 0.35$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.66-7.63 (m, 2H), 7.39 (s, 2H), 7.10-7.05 (m, 2H), 5.30 (s, 1H), 5.25 (s, 1H), 2.60 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 162.6 (d, J = 249.5 Hz) (C), 154.2 (C), 136.2 (C), 131.2 (d, J = 8.1 Hz) (C), 130.8 (d, J = 4.0 Hz) (CH), 126.3 (CH), 124.5 (CH), 115.6 (d, J = 21.2 Hz) (C), 71.0 (CH), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). ¹⁹F NMR(376 MHz,

 $CDCl_3$) δ : -113.7. HRMS (ESI) m/z: $[M+Na]^+$ calcd for $C_{23}H_{32}FNO_3SNa$: 444.1979; Found: 444.1977.

1- (4-chlorophenyl)-1- (3, 5-di-tert-butyl-4-hydroxyphenyl)-N, N-dimethylmethanesulfonamide~(3g)

White solid, mp 180–181 °C, 33.2 mg, 76% yield. $R_{\rm f} = 0.4$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.62-7.60 (m, 2H), 7.38-7.35 (m, 4H), 5.31 (s, 1H), 5.24 (s, 1H), 2.60 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.2 (C), 136.2 (C), 134.3 (C), 133.5 (C), 130.8 (CH), 128.9 (CH), 126.3 (CH), 124.3 (C), 71.1 (CH), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI)

m/z: [M+Na]⁺ calcd for C₂₃H₃₂NClO₃SNa: 460.1684; Found: 460.1693.

1-(4-bromophenyl)-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethylmethanesulfonamide (3h)

White solid, mp 177–178 °C, 34.6 mg, 72% yield. $R_{\rm f} = 0.45$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.53 (q, J = 8.4 Hz, 4H), 7.37 (s, 2H), 5.30 (s, 1H), 5.22 (s, 1H), 2.60 (s, 6H), 1.43 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.2 (C), 136.2 (C), 134.0 (C), 131.8 (CH), 131.1 (CH), 126.3 (CH), 124.2 (C), 122.5 (C), 71.2 (CH), 37.9 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₃₃BrNO₃S: 482.1359; Found: 482.1352.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethyl-1-(m-tolyl)methanesulfonamide (3i)

White solid, mp 155–156 °C, 32.9 mg, 79 % yield. $R_{\rm f} = 0.35$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.93 (d, J = 8.0 Hz, 1H), 7.19 (s, 2H), 7.11-7.07 (m, 1H), 7.03-6.96 (m, 1H), 5.35 (s, 1H), 5.06 (s, 1H), 2.43 (s, 6H), 2.24 (s, 3H), 1.23 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.0 (C), 136.1 (C), 136.0 (C), 133.6 (C), 130.8 (CH), 128.5 (CH), 128.0 (CH), 126.5

(CH), 126.4 (CH), 124.5 (C), 66.8 (CH), 37.9 (CH₃), 34.4 (C), 30.2 (CH₃), 20.1 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₄H₃₆NO₃S: 418.2410; Found: 418.2406.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-(3-methoxyphenyl)-*N*,*N*-dimethylmethanesulfonamide (3j)

White solid, mp 143–144 °C, 36.4 mg, 84% yield. $R_{\rm f} = 0.25$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.36 (s, 2H), 7.24-7.16 (m, 3H), 6.81-6.78 (m, 1H), 5.20 (s, 3H), 5.16 (s, 3H), 3.75 (s, 3H), 2.53 (s, 6H), 1.36 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 159.6 (C), 154.1 (C), 136.3 (C), 136.0 (C), 129.6 (CH), 126.3 (CH), 124.6 (C), 121.8 (CH),

114.9 (CH), 114.0 (CH), 71.7 (CH), 55.2 (CH₃), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{24}H_{36}NO_3S$: 434.2360; Found: 434.2368.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-(3-fluorophenyl)-N,N-dimethylmethanesulfonamide (3k)

White solid, mp 174–175 °C, 35.8 mg, 85% yield. $R_{\rm f} = 0.35$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.45-7.32 (m, 5H), 7.05-7.00 (m, 1H), 5.31 (s, 1H), 5.25 (s, 1H), 2.61 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 162.7 (d, J = 247.5 Hz) (C), 154.3 (C), 137.3 (d, J = 7.1 Hz) (C), 130.1 (d, J = 9.1 Hz) (CH), 126.3 (CH), 125.2 (d, J = 3.0 Hz) (CH), 124.2 (C), 116.5 (d, J = 22.2 Hz)

(CH), 115.3 (d, J = 21.2 Hz) (CH), 71.3 (CH), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). ¹⁹F NMR(376 MHz, CDCl₃) δ : -112.0. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₃₂FNO₃SNa: 444.1979; Found: 444.1977.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethyl-1-(o-tolyl)methanesulfonamide (31)

White solid, mp 145–146 °C, 32.5 mg, 78 % yield. $R_f = 0.35$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.95 (d, J = 8.0 Hz, 1H), 7.20 (s, 2H), 7.12-7.06 (m, 1H), 7.04-6.97 (m, 1H), 5.36 (s, 1H), 5.09 (s, 1H), 2.44 (s, 6H), 2.25 (s, 3H), 1.24 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.0 (C), 136.0 (C), 135.9 (C), 133.6 (C), 130.8 (CH), 128.4 (CH), 128.0 (CH), 126.6 (CH), 126.4 (CH), 124.4 (C), 66.7 (CH), 37.8 (CH₃), 34.3 (C), 30.2 (CH₃), 20.1 (CH₃). HRMS (ESI) m/z: [M+Na]⁺

calcd for C₂₄H₃₅NO₃SNa: 440.2230; Found: 440.2242.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-(2-methoxyphenyl)-*N*,*N*-dimethylmethanesulfonamide (3m)

White solid, mp 149–150 °C, 35.5 mg, 82 % yield. $R_f = 0.25$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (d, J = 8.8 Hz, 2H), 7.41 (s, 2H), 6.91 (d, J = 8.8 Hz, 2H), 5.26 (s, 1H), 5.22 (s, 1H), 3.80 (s, 3H), 2.59 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 156.5 (C), 153.8 (C), 135.8 (C), 129.9 (CH), 129.2 (CH), 126.6 (CH), 125.1 (C), 123.6 (C), 120.8 (CH), 110.8 (CH), 61.7 (CH),

55.7 (CH₃), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{24}H_{36}NO_3S$: 434.2360; Found: 434.2351.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-(2-fluorophenyl)-N,N-dimethylmethanesulfonamide (3n)

White solid, mp 167–168 °C, 34.1 mg, 81% yield. $R_f = 0.4$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 8.06 (t, J = 7.6 Hz, 1H), 7.43 (s, 2H), 7.33-7.28 (m, 1H), 7.23-7.19 (m, 1H), 7.11-7.06 (m, 1H), 5.74 (s, 1H), 5.28 (s, 1H), 2.64 (s, 3H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.3 (J = 247.5 Hz) (C), 159.0 (C), 154.2 (C), 136.2 (C), 130.3 (J = 2.0 Hz) (CH), 129.8 (J = 9.1 Hz) (CH), 126.5 (CH), 124.4 (J = 3.0 Hz) (CH), 122.8 (J = 14.1 Hz) (C), 115.5 (J = 23.2 Hz)

(CH), 62.0 (J = 4.0 Hz) (CH), 37.3 (CH₃), 34.4 (C), 30.2 (CH₃). ¹⁹F NMR(376 MHz, CDCl₃) δ : -118.1. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₃₂FNO₃SNa: 444.1979; Found: 444.1967.

1-(2-chlorophenyl)-1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethylmethanesulfonamide (30)

White solid, mp 160–161 °C, 31.5 mg, 72% yield. $R_{\rm f} = 0.35$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, J = 8.0 Hz, 1H), 7.24 (s, 2H), 7.22-7.20 (m, 1H), 7.17-7.13 (m, 1H), 7.08-7.04 (m, 1H), 5.80 (s, 1H), 5.08 (s, 1H), 2.46 (s, 6H), 1.24 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.1 (C), 136.1 (C), 134.2 (C), 133.2 (C), 130.2 (CH), 129.8 (CH), 129.3 (CH), 127.2 (CH), 126.4 (CH), 124.3 (C), 66.2 (CH), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: [M+Na]⁺

calcd for C₂₃H₃₂ClNO₃SNa: 460.1684; Found: 460.1674.

1-(2-bromophenyl)-1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*,*N*-dimethylmethanesulfonamide (3p)

White solid, mp 159–160 °C, 36.1 mg, 75% yield. $R_{\rm f} = 0.5$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 8.21 (dd, J = 8.0, 1.6 Hz, 1H), 7.59 (dd, J = 8.0, 1.6 Hz, 1H), 7.44 (s, 2H), 7.38 (td, J = 7.6, 1.6 Hz, 1H), 7.17 (td, J = 7.6, 1.6 Hz, 1H), 5.60 (s, 1H), 5.27 (s, 1H), 2.65 (s, 6H), 1.43 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.1 (C), 136.0 (C), 134.9 (C), 133.2 (CH), 130.3 (CH), 129.6 (CH), 127.8 (CH), 126.4 (CH), 125.2 (C), 124.3 (C), 69.0 (CH), 37.8 (CH₃), 34.3 (C),

30.2 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₃₃BrNO₃S: 482.1359; Found: 482.1367.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-(3,5-dimethoxyphenyl)-*N*,*N*-dimethylmethanesulfonamid e (3q)

White solid, mp 154–155 °C, 43.1 mg, 93% yield. $R_f = 0.2$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.43 (s, 2H), 6.85 (d, J = 2.4 Hz, 2H), 6.42 (t, J = 2.4 Hz, 1H), 5.28 (s, 1H), 5.17 (s, 1H), 3.80 (s, 6H), 2.62 (s, 6H), 1.43 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.7 (C), 154.1 (C), 136.9 (C), 136.0 (C), 126.3 (CH), 124.5 (C), 107.5 (CH), 100.4 (CH), 71.7 (CH), 55.3 (CH₃), 37.9 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: [M+Na]⁺ calcd for

C₂₅H₃₇NO₅SNa: 486.2285; Found: 486.2287.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*,*N*-dimethyl-1-(3,4,5-trimethoxyphenyl)methanesulfonam ide (3r)

White solid, mp 172–173 °C, 42.9 mg, 87% yield. $R_f = 0.2$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.44 (s, 2H), 6.94 (s, 2H), 5.31 (s, 1H), 5.17 (s, 1H), 3.89 (s, 6H), 3.83 (s, 3H), 2.61 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.2 (C), 153.1 (C), 137.9 (C), 136.1 (C), 130.2 (C), 126.3 (CH), 124.5 (C), 106.6 (CH), 71.7 (CH), 60.8 (CH₃), 56.1 (CH₃), 37.9 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₄₀NO₆S: 494.2571; Found: 494.2567.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethyl-1-(naphthalen-1-yl)methanesulfonamide (3s)

White solid, mp 151–152 °C, 38.1 mg, 84% yield. $R_{\rm f} = 0.45$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 8.39 (d, J = 7.2 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.89-7.83 (m, 2H), 7.60-7.55 (m, 2H), 7.51-7.48 (m, 3H), 6.19 (s, 1H), 5.25 (s, 1H), 2.58 (s, 6H), 1.42 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.1 (C), 136.0 (C), 134.1 (C), 131.3 (C), 130.8 (C), 129.3 (CH), 128.8 (CH), 127.1 (CH), 126.7 (CH), 126.6 (CH), 125.6 (CH), 125.4 (CH),

124.8 (CH), 122.2 (C), 66.0 (CH), 37.9 (CH₃), 34.3 (C), 30.2 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{36}NO_3S$: 454.2410; Found: 454.2407.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethyl-1-(naphthalen-2-yl)methanesulfonamide (3t)

Yellow solid, mp 109–110 °C, 34.9 mg, 77% yield. $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 8.14 (s, 1H), 7.89-7.83 (m, 4H), 7.54 (s, 2H), 7.51-7.49 (m, 2H), 5.50 (s, 1H), 5.31 (s, 1H), 2.64 (s, 6H), 1.47 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.1 (C), 136.1 (C), 133.2 (C), 132.9 (C), 132.4 (C), 128.8 (CH), 128.3 (CH), 128.1 (CH), 127.5 (CH), 126.9 (CH), 126.4 (CH), 126.4 (CH), 126.3 (CH), 124.8 (C), 72.0 (CH), 37.9 (CH₃),

34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{36}NO_3S$: 454.2410; Found: 454.2416.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-(6-methoxynaphthalen-2-yl)-*N*,*N*-dimethylmethanesulfon amide (3u)

White solid, mp 197–198 °C, 40.1 mg, 83% yield. $R_f = 0.4$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 8.01 (d, J = 1.6 Hz, 1H), 7.81-7.74 (m, 3H), 7.49 (s, 2H), 7.15 (dd, J = 8.8, 2.0 Hz, 1H), 7.11 (d, J = 2.8 Hz, 1H), 5.42 (s, 1H), 5.28 (s, 1H), 3.92 (s, 3H), 2.60 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 158.0 (C), 154.0 (C), 136.0 (C), 134.2 (C), 129.9 (CH), 129.6 (C), 128.7 (C), 128.7 (CH),

127.4 (CH), 127.2 (CH), 126.4 (CH), 124.9 (C), 119.2 (CH), 105.4 (CH), 71.8 (CH), 55.3 (CH₃), 37.9 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₈H₃₈NO₄S: 484.2516; Found: 484.2501.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethyl-1-(pyridin-2-yl)methanesulfonamide (3v)

White solid, mp 144–145 °C, 30.3 mg, 75% yield. $R_{\rm f} = 0.2$ (petroleum ether/ethyl

acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 8.59 (dt, J = 4.0, 0.8 Hz, 1H),

7.89-7.87 (m, 1H), 7.73 (td, J = 7.6, 2.0 Hz, 1H), 7.52 (s, 2H), 7.25-7.23 (m, 1H), 5.59 (s, 1H), 5.28 (s, 1H), 2.62 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 155.0 (C), 154.3 (C), 149.2 (CH), 136.9 (CH), 136.1 (C), 126.7 (CH), 124.1 (CH), 123.7 (C), 123.1 (CH), 73.9 (CH), 37.8 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₃₃N₂O₃S: 405.2206; Found: 405.2211.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-*N*,*N*-dimethyl-1-(thiophen-3-yl)methanesulfonamide (3w)

Yellow solid, mp 162–163 °C, 32.7 mg, 80% yield. $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.48-7.47 (m, 1H), 7.39-7.38 (m, 3H), 7.34-7.32 (m, 1H), 5.41 (s, 1H), 5.29 (s, 1H), 2.59 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.2 (C), 136.1 (C), 134.9 (C), 128.5 (CH), 126.5 (CH), 125.8 (CH), 124.9 (CH), 124.3 (C), 67.5 (CH), 37.7 (CH₃), 34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₃₃N₂O₃S: 410.1818; Found: 410.1808.

1-(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N-dimethyl-1-(thiophen-2-yl)methanesulfonamide (3x)

White solid, mp 164–165 °C, 33.5 mg, 82% yield. $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.48-7.47 (m, 1H), 7.39-7.38 (m, 3H), 7.34-7.32 (m, 1H), 5.41 (s, 1H), 5.29 (s, 1H), 2.58 (s, 6H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 154.2 (C), 136.2 (C), 134.9 (C), 128.5 (CH), 126.5 (CH), 125.8 (CH), 125.0 (CH), 124.4 (C), 67.5 (CH), 37.7 (CH₃), 34.4 (C), 30.3 (CH₃).

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{33}N_2O_3S$: 410.1818; Found: 410.1812.

1-(4-hydroxy-3,5-diisopropylphenyl)-N,N-dimethyl-1-phenylmethanesulfonamide (3z)

Yellow oil, 16.9 mg, 45% yield. $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.67-7.65 (m, 2H), 7.39-7.31 (m, 5H), 5.41 (s, 1H), 5.29 (s, 1H), 4.92 (s, 1H), 3.18-3.11 (m, 2H), 2.60 (s, 6H), 1.27-1.26 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ : 150.3 (C), 134.9 (C), 134.0 (C), 129.5 (CH), 128.7 (CH), 128.3 (CH), 126.0 (CH), 125.0 (C), 71.8 (CH), 37.9 (CH₃), 27.3 (CH), 27.0 (CH₃). HRMS (ESI) m/z: [M-H]⁺ calcd for C₂₁H₂₉NO₃S: 374.1793; Found: 374.1756.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-(3,5-dimethoxyphenyl)-*N*,*N*-diethylmethanesulfonamide (4a)

White solid, mp 142–143 °C, 38.3 mg, 78% yield. $R_f = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (s, 1H), 6.84 (d, J = 2.4 Hz, 2H), 6.41 (t, J = 2.4 Hz, 1H), 5.25 (s, 1H), 5.06 (s, 1H), 3.79 (s, 6H), 3.09-3.03 (m, 4H), 1.44 (s, 18H), 1.00 (t, J = 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.7 (C), 153.9 (C), 137.4 (C), 135.9 (C), 126.4 (CH), 125.1 (C), 107.7 (CH), 100.4 (CH), 73.5 (CH), 55.3 (CH₃), 42.3 (CH₂), 34.3

White solid, mp 117–118 °C, 39.1 mg, 82% yield. $R_{\rm f} = 0.2$ (petroleum

ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (s, 2H), 6.84 (d,

(C), 30.2 (CH₃), 14.5 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{42}NO_5S$: 492.2778; Found: 492.2786.

1-(3,5-di-*tert*-butyl-4-hydroxyphenyl)-1-(3,5-dimethoxyphenyl)-*N*-ethyl-*N*-methylmethanesulfona mide (4b)

J = 2.0 Hz, 1H), 6.41 (t, J = 2.4 Hz, 1H), 5.26 (s, 1H), 5.12 (s, 1H), 3.80 (s, 6H), 3.00-2.67 (m, 2H), 2.61 (s, 3H), 1.43 (s, 18H), 1.01 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.7 (C), 154.0 (C), 137.1 (C), 135.9 (C), 126.4 (CH), 124.8 (C), 107.6 (CH), 100.4 (CH), 72.4 (CH), 55.3 (CH₃), 45.2 (CH₂), 34.4 (C), 34.2 (CH₃), 30.2 (CH₃), 13.7 (CH₃). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₆H₄₀NO₅S: 478.2622; Found: 478.2626.

2,6-di-tert-butyl-4-((3,5-dimethoxyphenyl)(pyrrolidin-1-ylsulfonyl)methyl)phenol (4c)

White solid, mp 142–143 °C, 36.2 mg, 74% yield. $R_{\rm f} = 0.2$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.44 (s, 2H), 6.86 (d, J = 2.4 Hz, 1H), 6.41 (t, J = 2.0 Hz, 1H), 5.26 (s, 1H), 5.23 (s, 1H), 3.80 (s, 6H), 3.17-3.12 (m, 2H), 3.09-3.03 (m, 2H), 1.72-1.64 (m, 4H), 1.43 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.7 (C), 154.0 (C), 137.2 (C), 135.9 (C), 126.4 (CH), 124.9 (C), 107.6 (CH), 100.4 (CH), 71.7 (CH), 55.3 (CH₂), 48.3 (CH₂), 34.4 (C), 30.2 (CH₃), 25.8 (CH₂). HRMS (ESI) m/z:

 $[M+H]^+$ calcd for C₂₇H₄₀NO₅S: 490.2622; Found: 490.2622.

2,6-di-tert-butyl-4-((3,5-dimethoxyphenyl)(piperidin-1-ylsulfonyl)methyl)phenol (4d)

White solid, mp 119–120 °C, 38.2 mg, 76% yield. $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (s, 2H), 6.84 (d, J = 2.4 Hz, 2H), 6.41 (t, J = 2.4 Hz, 1H), 5.26 (s, 1H), 5.08 (s, 1H), 3.04-2.93 (m, 4H), 1.44 (s, 18H), 1.41-1.31 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.7 (C), 154.1 (C), 137.1 (C), 136.0 (C), 126.5 (CH), 124.8 (C), 107.7 (CH), 100.4 (CH), 72.6 (CH), 55.4 (CH₃), 47.1 (CH₂), 34.4 (CH₂), 30.3 (CH₃), 25.7

(CH₂), 23.8 (CH₂). HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₈H₄₂NO₅S: 504.2778; Found: 504.2780.

2,6-di-tert-butyl-4-((3,5-dimethoxyphenyl)((4-methylpiperidin-1-yl)sulfonyl)methyl)phenol (4e)

White solid, mp 112–113 °C, 41.9 mg, 81% yield. $R_{\rm f} = 0.3$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (s, 2H), 6.83 (d, J = 2.4 Hz, 2H), 6.41 (t, J = 2.4 Hz, 2H), 5.25 (s, 1H), 5.08 (s, 1H), 3.80 (s, 6H), 3.67-3.58 (m, 2H), 2.45 (td, J = 12.0, 2.4 Hz, 1H), 2.29 (td, J = 12.4, 2.8 Hz, 1H), 1.44 (s, 18H), 1.31-1.23 (m, 2H), 1.06-0.92 (m, 3H), 0.85 (d, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.7 (C), 154.1 (C), 137.1

(C), 136.0 (C), 126.4 (CH), 124.8 (C), 107.7 (CH), 100.5 (CH), 72.7 (CH), 55.3 (CH₃), 46.5 (CH₂), 46.4 (CH₂), 34.4 (C), 34.0 (CH₂), 33.9 (CH₂), 30.4 (CH), 30.3 (CH₃), 21.5 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for C₂₉H₄₄NO₅S: 518.2935; Found: 518.2939.

2,6-di-tert-butyl-4-((3,5-dimethoxyphenyl)(morpholinosulfonyl)methyl)phenol (4f)

White solid, mp 167–168 °C, 38.9 mg, 77% yield. $R_f = 0.45$ (petroleum ether/ethyl acetate = 3:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (s, 2H), 6.83 (d, J = 2.4 Hz, 2H), 6.43 (t, J = 2.4 Hz, 1H), 5.29 (s, 1H), 5.10 (s, 1H), 3.80 (s, 6H), 3.51 (q, J = 5.2 Hz, 4H), 3.04-3.01 (m, 4H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ : 160.8 (C), 154.2 (C), 136.5 (C), 136.1 (C), 126.4 (CH), 124.3 (C), 107.7 (CH), 100.5 (CH), 72.8 (CH), 66.8 (CH₂), 55.4 (CH₃), 46.4 (CH₂),

34.4 (C), 30.2 (CH₃). HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{27}H_{40}O_6S$: 506.2571; Found: 506.2577.

(E) Synthetic application

(1) Procedure for the Synthesis of 3q at 1.0 mmol Scale.

To an 50 mL vial equipped with a magnetic stir bar was added 1q (356.0 mg, 1.0 mmol), *N,N*-dimethylsulfamoyl chloride 2a (288.0 mg, 2.0 mmol), (TMS)₃SiH (498.0 mg, 2.0 mmol), Rhodamine 6G (24.0 mg, 5.0 mol%) and MeCN (10 mL) under nitrogen atmosphere and sealed with PTFE cap. Then the reaction mixture was stirred upon 40 W blue LED (450–465 nm) at room temperature for 24 h. The solvent was concentrated in vacuo and the residue was purified by a column chromatography on silica gel with petroleum ether/ethyl acetate (6:1) as eluent to provide the desired product **3q** as a white solid (416.7 mg, 90% yield).

(2) Sunlight driven experiment

To an 8 mL vial equipped with a magnetic stir bar was added 1q (70.8 mg, 0.2 mmol), *N*,*N*-dimethylsulfamoyl chloride 2a (57.2 mg, 0.4 mmol), (TMS)₃SiH (99.6 mg, 0.4 mmol), Rhodamine 6G (4.8 mg, 5.0 mol%) and MeCN (2 mL) under nitrogen atmosphere and sealed with PTFE cap. The reaction mixture was stirred upon sunlight irradiation under argon atmosphere for 12 h. Then the solvent was concentrated in vacuo and the residue was purified by a column chromatography on silica gel with petroleum ether/ethyl acetate (6:1) as eluent to provide the desired product 3q as a white solid (68.7 mg, 74% yield).

(F) Radical trapping experiment with TEMPO

To an 8 mL vial equipped with a magnetic stir bar was added **1a** (35.0 mg, 0.1 mmol), *N*,*N*-dimethylsulfamoyl chloride **2a** (28.6 mg, 0.2 mmol), (TMS)₃SiH (49.8 mg, 0.2 mmol), Rhodamine 6G (2.4 mg, 5.0 mol%), TEMPO (62.4 mg, 0.4 mmol) and MeCN (1.0 mL) under nitrogen atmosphere and sealed with PTFE cap. Then the reaction mixture was stirred upon 40 W blue LED (450–465 nm) at room temperature for 12 h. HRMS (ESI) m/z: compound **5**, [**5**+Na]⁺ calcd for C₁₈H₄₅ONSiNa: 240.2470; Found: 240.2477.

(G) Stern-Volmer fluorescence quenching experiments

Stern-Volmer fluorescence quenching experiments were run with freshly prepared solutions of 1.25 μ M Rhodamine 6G, in degassed dry MeCN at room temperature. The solutions were irradiated at 347 nm and fluorescence was measured from 357 nm to 684 nm. Control experiments showed that the excited state Rhodamine 6G* was mainly quenched by **1a**.

Figure S1. Fluorescence quenching of excited Rhodamine 6G with **1a**, **2a**, $(TMS)_3SiH$ in MeCN (excitation wavelength: 347 nm). Rhodamine 6G (1.25 μ M) in MeCN (black line), Rhodamine 6G (1.25 μ M) with **1a** (1.0 mM) in MeCN (green line), Rhodamine 6G (1.25 μ M) with **2a** (1.0 mM) in MeCN (blue line), Rhodamine 6G (1.25 μ M) with (TMS)_3SiH (1.0 mM) in MeCN (red line).

Figure S2. Luminescence quenching of Rhodamine 6G by (TMS)₃SiH (10⁻³ M).

Figure S3. Luminescence quenching of Rhodamine 6G by 1a (10^{-3} M)

Figure S4. Luminescence quenching of Rhodamine 6G by 2a (10⁻³ M).

Figure S5. Stern-Volmer plots of Rhodamine 6G and three quenchers. I_0 and I are luminescence intensities in the absence and presence of the indicated concentrations (10⁻³ M) of the corresponding quencher.

These results suggested that the excited photocatalyst Rhodamine 6G was primarily quenched by 1a, while 2a and (TMS) ₃SiH showed much less effect.

(H) Unsuccessful examples

References:

[1] Yan, Y.; Li, H.; Xie, F.; Lu, W.; Zhang, Z.; Jing, L.; Han, P. Electrochemical Reductive Carboxylation of *para*-Quinone Methides with CO₂. *Adv. Synth. Catal.* **2023**, *365*, 3830-3836

[2] Xiong, B.; Xu, S.; Liu, Y.; Tang, K.-W.; Wong, W.-Y. Metal-Free, Acid/Phosphine-Induced Regioselective Thiolation of *p*-Quinone Methides with Sodium Aryl/Alkyl Sulfinates. *J. Org. Chem.* **2021**, *86*, 1516-1527.

[3] Dong, N.; Zhang, Z.-P.; Xue, X.-S.; Li, X.; Cheng, J.-P. Phosphoric Acid Catalyzed Aasymmetric 1,6-Conjugate Addition of Thioacetic Acid to *para*-Quinone Methides. *Angew. Chem. Int. Ed.* **2016**, *55*, 1460-1464.

[4] Luo, C.; Lu, W.-h.; Wang, G.-q.; Zhang, Z.-b.; Li, H.-q.; Han, P.; Yang, D.; Jing, L.-h.; Wang, C. Photocatalytic Synthesis of Diarylmethyl Silanes via 1,6-Conjugate Addition of Silyl Radicals to *p*-Quinone Methides. *J. Org. Chem.* **2022**, *87*, 3567-3576.

[5] Zhu, J.; Xu, M.; Gong, B.; Lin, A.; Gao, S. (*Z*)-Selective Synthesis of Bromofluoroalkenes via the TMSCF₂Br-Mediated Tandem Reaction with *para*-Quinone Methides. *Org. Lett.* **2023**, *25*, 3271-3275.

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

ОН ^tBu ∠^tBu F S 0 0 3k ¹⁹F NMR (376 Hz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

yd-4-71-1-F.10.fid

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -2 f1 (ppm)

100 90 f1 (ppm)

